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Abstract 
 
Riordan and Sappington (JET, 1988) show that in an agency relationship in which the agent’s 
type is correlated with a public ex post signal, the principal may attain first best (full surplus 
extraction and efficient output levels) if the agent is faced with a lottery such that each type is 
rewarded for one signal realization and punished equally for all the others. Gary-Bobo and 
Spiegel (RAND, 2006) show that this kind of lottery is most likely to be locally incentive 
compatible when the agent is protected by limited liability. In this paper, we investigate how the 
principal should construct the lottery to attain not only local but also global incentive 
compatibility. We first assess that the main issue with global incentive compatibility rests with 
intermediate types being potentially attractive reports to both lower and higher types. We then 
show that a lottery including three levels of profit (rather than only two) is optimal in that it is 
most likely to be globally incentive compatible under limited liability, if local incentive 
constraints are strictly satisfied. We identify conditions under which first best is implemented. In 
a setting with three types and three signals we also pin down the optimal distortions when those 
conditions are violated. We show that, if local incentive compatibility is not an issue but first 
best is beyond reach, then it is generally optimal to concede an information rent to one type 
only. 

JEL-Codes: D820. 

Keywords: informative signals, limited liability, conditional probability, incentive compatibility, 
full-rank condition. 
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1 Introduction

Motivation

In principal-agent relationships, it is now well known how the principal can take advantage

of some ex-post signal of the agent�s private information to improve the e¢ ciency of the trade.

When the private information concerns the cost of running the activity, useful signals are the

result of an audit, or the performance of another agent running a similar activity, which are

naturally correlated with - hence, informative of - the cost. To take advantage of the signals,

the principal o¤ers a compensation scheme such that the agent is faced with a lottery, which

associates a pro�t with each signal realization. The lower that the pro�t can be set for some

signal realization(s), the more likely that the principal is to elicit information at no agency

cost. Limited liability on the agent�s side tightens the conditions under which this outcome

is attained (Demougin and Garvie [3], Gary-Bobo and Spiegel [5]). On the other hand, those

conditions also depend on the agent�s cost function, which determines the bene�t that the

agent could derive by camou�aging information. In spite of a general recognition that the

reliance on informative signals enhances contracting, hitherto no study has investigated for

what technologies some contractual achievement can be attained, given the liability of the

agent. The goal of our paper is to shed light on this issue.

To see why this is relevant, consider, for instance, an agent using the familiar Cobb-Douglas

technology to produce some good or service for the principal. To �x ideas, take q = 1
�
l�k�,

where q is the level of output, l and k are the levels of two inputs (say, labour and capital),

and � is privately known (the type of the agent). With decreasing returns to scale (�+ � < 1),

the cost is increasing and convex in the type, as is assumed by Gary-Bobo and Spiegel [5]

(henceforth, GBS). With these technological features, high types are little motivated to mimic

lower types, as they have much to loose in cost reimbursement in that case. The concern of the

principal is thus to design lotteries in such a way as to extract information and retain surplus

from the low types, which have much to gain in cost reimbursement, instead, if they over-

report. By contrast, when returns to scale are increasing (�+ � > 1), as is likely, for instance,

in regulated industries, the cost is increasing and concave in the type.1 Then, not only is

the principal concerned with ensuring that low types face su¢ ciently unattractive lotteries,

through which any gain in cost reimbursement associated with type overstatement is washed

out. She is also concerned with avoiding that high types face too attractive lotteries, which more

than o¤set the penalty in cost reimbursement associated with type understatement. This is a

complex issue in that two con�icting interests must be reconciled, as Riordan and Sappington

[11] (henceforth RS) show. Indeed, the less attractive that the lotteries are made for low types,

if they over-report, the more attractive that the lotteries become to high types, if they under-

report. Whereas the two interests are handily harmonized when the cost of the agent is convex

1More precisely, regulated industries are often characterized by economies of scale, a concept that is related
to but broader than that of increasing returns to scale.
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in the type, no de�nitive conclusion can be drawn if the cost is concave instead, unless further

analysis is developed. One would need to understand how to deal with the con�ict, taking

into account that limited liability on the agent�s side imposes restrictions on the choice of the

pro�ts that can be assigned to each type.

As an additional example, one may consider the situation, already explored by the literature

on incentive problems, in which the agent�s cost is composed of a �xed cost and a privately

known variable cost that are inversely related. This is the case, for instance, when the �xed
cost is, in fact, an opportunity cost of renouncing to alternative businesses, which naturally

increases with the e¢ ciency of the agent in the trade with the principal. Obviously, depending

on the shape of the two components, the total cost may take any shape with respect to the

type (Maggi and Rodriguez-Clare [8]). In particular, the total cost is concave in the type

when, as is highly plausible, the opportunity cost increases with the e¢ ciency of the agent at a

decreasing rate (Lewis and Sappington [7]). Then, the incentive issue pinpointed with regards

to the Cobb-Douglas technology, comes out to be relevant again.

Setting and main results

We �rst consider a simple setting with three types and two or three informative signals.

We look for conditions under which �rst best is implemented, as would be the case under

complete information. With both two and three signals, we show that the principal deals with

two issues, which have been looked at separately in the previous studies. First, as evidenced by

GBS, the liability of the agent should be su¢ ciently high for the principal to be able to make

the lotteries of the low types, if they over-report, su¢ ciently unattractive. That is, any gains in

cost reimbursement associated with over-reporting is extracted through the lotteries. Second,

as pointed out by RS, there should be no con�ict between the incentive constraints whereby the

extreme types are unwilling to mimic the intermediate type. This requires ensuring that the

value of the lottery which the lowest type is faced with, if it over-reports, is not too negative.

Indeed, as the value of that lottery gets lower, the value of the lottery that the highest type

is faced with, if it under-reports, becomes higher and, hence, under-reporting becomes more

attractive. As a result, it might be impossible to �nd a vector of pro�ts for the intermediate

type, which is unattractive to either of the extreme types.

Our main contribution is to show that, when there are three informative signals, rather than

only two, the vectors of optimal pro�ts may not be as characterized in the previous studies. In

a setting with more than two signals, RS propose a compensation scheme such that each type

of the agent is assigned an equal pro�t for all signal realizations but one (although pro�ts di¤er

across types, of course). They provide su¢ cient conditions for that compensation scheme to

implement �rst best. GBS show that an e¢ cient allocation is e¤ected under limited liability

only if it is e¤ected with the compensation scheme proposed by RS. With three types, the

intermediate type is assigned the same negative pro�t for all signal realizations but the one

that the lowest type is least likely to draw. The principal can retain surplus from both the lowest
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and the intermediate type, only if that vector of pro�ts satis�es the limited liability constraints.

Any other incentive compatible vector of pro�ts would tighten those constraints. We �nd that

it might be necessary to opt for a di¤erent compensation scheme when the main di¢ culty for

the principal is not that of preventing type overstatement but, rather, that of discouraging the

extreme types from mimicking the intermediate type. Speci�cally, if it is possible to decrease

one of the equal pro�ts assigned to the intermediate type, given the liability of the agent,

then the incentives to over-report of the lowest type are lessened. Whereas this makes under-

reporting more attractive to the highest type, one can further �ne-tune the remaining two

pro�ts of the intermediate type, in such a way as to avoid reinforcing the incentives of the

highest type to understate. Overall, the essential bene�t of this amended scheme is that it

permits to e¤ect an e¢ cient allocation with a wider family of cost functions, including those

that are (not too) concave in the type, which have been disregarded in agency problems with

limited liability so far.

We next turn to consider a general setting with a continuum of types and a �nite number of

informative signals. The main result we derive is that, even if there are more than three signals

that can be used in contractual design, the conditions that are necessary to e¤ect an e¢ cient

allocation depend on the properties of three signals only. The reason is as in the three-type

case. First, a low type is least motivated to overstate information if a high type receives more in

the state which is least likely to be drawn by the low type than in any other state. Second, the

con�ict between upward and downward incentive constraints is weakest, if each type is faced

with the highest sustainable de�cit in all the remaining states but one. Third, the remaining

pro�t is adjusted to attain local incentive compatibility. With these features, the compensation

scheme is found to be an immediate extension of that pinned down in the three-type case, as

obtained by setting the pro�t to the minimum for all the signal realizations other than the

ones that are exploited to �ne-tune incentives. As long as the necessary conditions hold, this

compensation scheme is also su¢ cient for e¤ecting an e¢ cient allocation. Intuitively, provided

that upward and downward incentive constraints are not in con�ict, and that local incentive

compatibility is attained, global incentive compatibility is at reach as well.

Once the optimal vector of pro�ts is characterized for any given type, a cut-o¤ level of

liability is pinned down, which determines whether or not an e¢ cient allocation can be e¤ected,

depending on the degree of concavity of the cost with respect to the type. The exact class of

cost functions for which the e¢ cient outcome is attained will naturally depend on the level of

the agent�s liability. Besides, it will also depend on the properties of the signal. In particular,

the more informative that some signal is about the agent�s type, the easier that it will be for

the principal to induce information release and, hence, the more concave that the agent�s cost

is allowed to be with respect to the type.

As a �nal step, we study the contractual design in a case where the agent�s liability is

too low for the principal to be able to induce truthtelling without distortions and, hence,

to e¤ect an e¢ cient allocation. To avoid technical complications that would not add to the
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economic insights, we develop this second-best analysis considering again three types and three

informative signals. The analysis becomes quickly complex as it should be considered that, if a

rent must be conceded to one extreme type to elicit information, then that type might become

an attractive report to the other extreme type. However, looking at situations in which this

issue does not arise, we show that the vectors of second-best pro�ts displays the same structure

as found in the �rst-best analysis. Particularly, this means that the intermediate type is faced

three di¤erent levels of pro�ts in the three states, rather than facing only two levels of pro�t

as in the scheme of GBS. We further ascertain that the level of liability, which separates the

regime in which local incentive compatibility is attained from that in which it is not, is also the

level of liability which separates situations in which the optimal compensation includes three

levels of pro�t from those in which it includes only two levels of pro�t. Noticeably, in the former

situations, it is optimal to concede an information rent to only one of the extreme types, in

general. Indeed, whereas it is impossible to �nd a vector of pro�ts such that the intermediate

type is an attractive report to none of the extreme types without giving up some surplus, any

choice of pro�ts that lessens the incentives to cheat of one such type ends up tightening the

incentives to cheat of the other. Thus, the best for the principal is to pick, between the extreme

types, the one to which conceding a rent is less costly. Intuitively, this is related to how likely

the principal is to face one extreme type relative to the other.

1.1 Review of the literature

Our paper is related to the line of research pioneered by RS. They show that an e¢ cient

allocation is e¤ected if the cost function is convex in the type whereas the probability function

of the most informative signal is concave in the type. They also show that when there are only

two informative signals, it is necessary and su¢ cient that the cost function be less concave in

the type than the likelihood of the signal that is more informative between the two. In our

results, the conditions on the cost function with respect to the type, which are both necessary

and su¢ cient, depend not only on the properties of the likelihood function, as in RS, but also

on the level of the agent�s liability.

The �rst paper to consider limited liability on the agent�s side in settings with correlated

information is that of Demougin and Garvie [3]. In their model with a continuum of types and

a binary signal, limited liability is represented in two alternative ways. First, the transfer from

the principal to the agent cannot be negative, because the principal has no power to tax the

agent under any conditions.2 Second, the agent cannot incur any de�cits, hence he will recover

the entire cost of the activity, regardless of the signal realization. In line with GBS, we consider

the latter kind of limited liability and assume that the agent can only be exposed to bounded

de�cits. Essentially, we refer to situations in which the principal is concerned with preserving

the agent�s �nancial viability, though not ensuring reimbursement of the entire cost. This is

2A similar form of limited liability is also represented in the two-type two-signal model of Kessler et al. [6],
who allow for the transfer to be negative but not unbounded.
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common practice, for instance, in regulated industries, where the �rms��nancial distress is

generally prevented to avoid activity interruptions. Unlike in Demougin and Garvie [3] and

Kessler et al. [6], and similarly to GBS, we allow for more than two informative signals, which

is a crucial ingredient to our investigation. As already mentioned, unlike GBS, we also let the

cost function take any shape with respect to the type.

As is well known, limited liability can alternatively be regarded as an extreme form of

risk aversion. With that interpretation, our study is also related to Eso [4], who explores full

surplus extraction in an agency problem with correlated information and risk aversion on the

agent�s side. Speci�cally, the author considers an auction in which the auctioneer/principal

faces two potential buyers/agents, both risk averse. Their privately known valuations of the

object o¤ered for sale are correlated and can take only two values. By contrast, we develop the

analysis considering a richer set of types. This extension enables us to capture the important

circumstance that incentive compatibility is problematic essentially because intermediate types

may potentially attract false reports by both lower types and higher types.

Lastly, our paper is related to the broader literature on mechanism design with multiple

agents and correlated private information. Studies like Myerson [10], Crémer and McLean

[2] (henceforth, CM) and McAfee and Reny [9], represent a seller/principal who o¤ers an

object through an auction, facing a number of potential buyers/agents whose privately known

preferences for the object (their types) are correlated. In that environment, the signals of each

agent�s type are generated endogenously through the reports collected by the principal from the

other agents. In our setting, as in RS and GBS, the signals are exogenous, instead. However,

regardless of whether correlated information is endogenous or exogenous, similar results are

obtained on �rst-best implementation. Indeed, the necessary and su¢ cient conditions, which

are shown to be valid for any utility function of the agents in the studies aforementioned, would

carry over for any cost function of the agent in frameworks like ours. Our analysis pins down

the properties that the cost function should display for that outcome to be attained under

limited liability.

1.2 Outline

The reminder of the article is organized as follows. In section 2 we describe the model.

In sections 3 and 4 we develop the analysis of �rst-best implementation. We �rst consider a

discrete number of types and then allow for a continuum of types. In section 5 we return to

a discrete-type framework to investigate the optimal second-best contracting in a case where

�rst-best implementation is beyond reach because the level of liability is too low. We conclude

in section 6. Mathematical proofs are relegated to an appendix.
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2 The model

A principal P delegates the production of q units of a good (or service) to an agent. They

are both risk neutral. The agent incurs the cost of production C (q; �) ; where � 2 � �
�
�; �
�

parametrizes his productivity. As a compensation, he receives a payment of z from P, who

derives the gross utility S (q) from consumption. The cost function C (�; �) is twice continuously
di¤erentiable in either argument, with the following partial and cross derivatives: Cq (q; �) > 0,

C� (q; �) > 0 and Cq� (q; �) > 0: In words, the total cost increases in the size of the production;

both the total cost and the marginal cost increase with �: We impose no restriction on the sign

of the second derivative C�� (q; �) : We only require the sign to be the same for all values of q

and �. The function S (�) is twice continuously di¤erentiable with derivatives S 0 (�) > 0 and

S 00 (�) < 0: Moreover, S (0) = 0 and the Inada�s conditions are satis�ed.
In the contracting stage, the productivity parameter � is privately known to the agent

and represents his type. It is commonly known that the distribution function of � is F (�)

with F 0 (�) � f (�). The agent�s type is correlated with a random signal s; which is observed

publicly after the contract is drawn up and the output is produced (or chosen) and before

the compensation is made. The realized signal (the "state of nature") is hard information,

involving that a legally enforceable contract can be signed upon.3 We take the signal to be

drawn from the discrete support N � f1; ::; ng ; where n � 2: The probability that signal s is
realized conditional on the type being � is ps (�) : We assume that ps (�) > 0; 8s; 8�, and that
the monotonic likelihood property, which is standard in mechanism design, is here satis�ed in

a weak sense:
p1 (�)

p1(�
0)
>
ps (�)

ps(�
0)
>
pn (�)

pn(�
0)
; 8� > �0; 8s 6= 1; n; if n > 2: (1)

With this property in place, we shall say that there are at least three "informative" signals.

Once (1) is reformulated as

p01 (�)

p1 (�)
>
p0s (�)

ps(�)
>
p0n (�)

pn(�)
; 8s 6= 1; n; 8�;

saying that a signal is informative of the agent�s type is tantamount to saying that the rate of

change of its likelihood with respect to the type di¤ers from that of any other signal. Formally,

the above triplet of conditions shows that, for any subset N 0 � N containing signal 1 and some

other signal s 6= 1, the rate of change of 1 is higher than that of s; for any subset N 00 � N

containing signal n and some other signal s 6= n, the rate of change of n is lower than that of

s:

Invoking the Revelation Principle, we can con�ne attention to contractual o¤ers fq (�) ; z (�)g ;
8�; in which q (�) is the quantity an agent of type � is required to produce and z (�) �

3For instance, in regulatory settings, the agent is a regulated �rm and the signal can be the behaviour
or the market performance of another �rm, operating either in the same (or a similar) sector, which conveys
information about the cost of the regulated �rm. In other contexts, the signal can be the outcome of an audit
of the activity run by the agent.
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(z1 (�)) ; :::; zn (�)) is the vector of the transfers he is assigned in the di¤erent states. The

net surplus of P in state s is S(q (�)) � zs (�) : Denote e�s (�0 j� ) � zs (�
0) � C (q (�0) ; �)

the pro�t an agent of type � obtains in state s when he announces �0 to P. Knowing that

zs (�
0) = �s (�

0) + C (q (�0) ; �0) ; we can rewrite

e�s (�0 j� ) = C (q (�0) ; �0)� C (q (�0) ; �) + �s (�
0) ; (2)

This reduces to e�s (� j� ) = �s (�) ; if the agent reveals his type. The vector of pro�ts he faces

in that case is thus given by � (�) � (�1 (�) ; :::; �n (�)). We will say that, when he tells the

truth and signal s is realized, an agent of type � receives a reward if �s (�) > 0 and incurs a

punishment if �s (�) < 0.4 Consistent with this, the programme of P, to be presented in the

next subsection, depends only on the pro�ts rather than on the exact structure of the transfers

assigned to the various types in the di¤erent states.

The relationship between P and the agent unfolds as follows. Before contracting takes place,

nature draws � and the agent learns its realization. P addresses the contractual o¤er to the

agent. If the agent rejects the o¤er, then the parties obtain their reservation payo¤s and the

relationship ends. If the agent accepts the o¤er, then he makes a report about his type to P

(or, alternatively, he picks an option within the contractual menu) and produces accordingly.

Next, the signal is realized and the contractually speci�ed transfer is paid.

2.1 The programme of the principal

For any given type � and signal s, the ex-post net surplus of P is reformulated as S (q (�))�
C (q (�) ; �) � �s (�) ; provided that the agent reveals his type in equilibrium. Accordingly,

referring to the pro�t �s (�) rather than to the transfer zs (�) ; with a standard change of

variable, and letting R (�) �
Pn

s=1 �s (�) ps (�) denote the expected pro�t of the agent, the

programme of P, to be denoted �; is formulated as follows:5

Max
fq(�);�(�);8�g

Z
�2�

(S(q (�))� C (q (�) ; �)�R (�)) f (�)

subject to

R (�) � C (q (�0) ; �0)� C (q (�0) ; �) +
nX
s=1

�s (�
0) ps (�) ; 8�; �0 (IC)

R (�) � 0; 8� (PC)

�s (�) � �L; 8�; 8s: (LL)

4It is useful to remark that (2) would be the same if zs (�) were to include a �xed component related to the
type and a stochastic component conditional on the signal realization, as considered by Bose and Zhao [1].

5A more general formulation of the objective function in the programme of P would beR
�
(S(q (�))� C (q (�) ; �)� (1� !)R (�)) f (�) ; for some ! 2 (0; 1). With this formulation, results would be

qualitatively the same in that P dislikes giving a rent to the agent and would attempt to set pro�ts such that
R (�) is as low as possible. Accounting for this, we simply take ! = 0.
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(IC) is the incentive compatibility constraint whereby an agent of type � prefers revealing his

true type rather than cheating. (PC) is the participation constraint which ensures that his

expected pro�t is non-negative. (LL) is the limited liability constraint which ensures that the

maximum de�cit to which the agent is exposed, does not exceed L > 0 in each possible state.

Essentially, this form of limited liability represents situations in which the principal would like

to avoid the agent becoming so �nancially distressed that the activity must be interrupted, at

least as long as the agent does not attempt to conceal information.6 Overall, the programme

is standard, except that the cost of production can take any shape with respect to the type �.

The �rst part of our study will be devoted to investigating under what conditions and

in which way P e¤ects the �rst-best allocation. This is de�ned by the optimality condition

S 0(qfb (�)) = Cq
�
qfb (�) ; �

�
; 8�; together with the surplus extraction constraint

R (�) = 0; 8�: (3)

In what follows, unless di¤erently speci�ed, we will use the notation

�C (�; �0) � C
�
qfb (�) ; �

�
� C

�
qfb (�) ; �0

�
; 8 (�0; �) :

Also, we will let �(�) be the set of vectors � (�) ; the elements of which satisfy (PC) as an

equality (so that (3) holds) and, in addition, satisfy (IC). We will have to verify that � (�) is

non-empty, i.e., that the e¢ cient allocation is incentive compatible. Besides, we will have to

verify that there exist vectors in � (�) that satisfy (LL) as well.

2.2 Previous �ndings

Before turning to the analysis, it is useful to recall the previous �ndings on �rst-best im-

plementation in settings with informative signals which are relevant for our study.

RS Assume that C (�; �) is strictly convex in the type �; and that 9i 2 N such that pi(�) is

increasing and concave in �: Taking the type to be drawn from the discrete set f�1; �2; :::; �Tg ;
instead of �; so that the generic value speci�es as �t; and also taking L ! 1; � (�t) is non-

empty for any �t: After presenting this result in Corollary 1.4, RS show that the principal

e¤ects the �rst-best allocation by adopting the binary vector of pro�ts �i (�t) 2 � (�t) ; which
6For instance, in regulated industries, in which this is common practice, L could be interpreted as an

indicator of �nancial viability, beyond which the regulated �rm would go bankrupt. Remark that the limited
liability constraints are required to hold as long as the agent does not conceal information. This involves that,
even if the pro�ts are set such that the agent does not lose more than L in equilibrium, he might still incur a
greater loss, should he decide to deliver an out-of-equilibrium report.
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is de�ned for any t � 2 as

�i (�t) = �C (�t; �t�1)
1� pi(�t)

pi(�t)� pi(�t�1)
(4)

�s (�t) = ��C (�t; �t�1)
pi(�t)

pi(�t)� pi(�t�1)
; 8s 6= i; (5)

In Corollary 1.5, RS further show that, if n = 2; then �i (�t) 2 � (�t) if and only if

�C (�2; �1)

��C (�2; �3)
� pi(�2)� pi (�1)

pi (�3)� pi(�2)
: (6)

This is ensured if the cost function is less concave in type than the conditional probability of

signal i: In general, (6) can be satis�ed when types �1 and �2 have similar costs of producing

output q; relative to types �2 and �3; and/or when types �2 and �3 have similar probabilities

of drawing signal i; relative to types �1 and �2:

GBS Assume that ps(�) is continuously di¤erentiable and that 9i such that i = argmax
s2N

n
p0s(�)
ps(�)

o
;

8�: Then, under the conditions identi�ed by RS, it is found that �i (�) 2 �(�) ; where �i (�) is
now (re)de�ned as

�i (�) = C�
�
qfb (�) ; �

� 1� pi(�)

p0i (�)
(7)

�s (�) = �C�
�
qfb (�) ; �

� pi(�)
p0i (�)

; 8s 6= i: (8)

Moreover, among all the elements of �(�), �i (�) is most likely to satisfy (LL). Being based on

(8), we see that (LL) holds if and only if

C�
�
qfb (�) ; �

� pi(�)
p0i (�)

� L; 8�: (9)

CM Take L ! 1 and, in line with RS, let the type �t be drawn from the discrete set

f�1; �2; :::; �Tg. As long as the vectors p (�t) � fp1 (�t) ; :::; pn (�t)g are linearly independent
across types, �(�t) is non-empty for all �t: This follows from Farkas� lemma, which implies

that for all �t there exists a n�dimensional vector h (�t) � fh1 (�t) ; :::; hn (�t)g such that the
following two conditions hold:

nX
s=1

hs (�t) ps (�t) = 0; 8�t 2 �T (10)

nX
s=1

hs (�t) ps (�t0) < 0; 8�t; �t0 2 �T : (11)

10



By setting �s (�t) = 
ths (�t) ; 8s; 8t; and choosing the "scaling" parameter 
t arbitrarily big,
all surplus is extracted from type �t and no incentive to mimic �t is triggered for any other

type. First best is beyond reach if there exists some type �t for which no vector h (�t) can be

found such that (10) and (11) are satis�ed.7

In substance, RS highlight that, as long as the agent can be imposed unlimited punishments,

�rst best is possibly at hand even when the set of informative signals includes only two elements.

As is evident from the de�nition of �i (�t) ; the agent�s gain only depends on whether signal i

is realized, rather than any other signal, regardless of how rich the subset of other signals is.

From GBS we further retain that any other vector of pro�ts belonging to �(�t) includes an

element, the value of which is below that of (5), involving that it is more di¢ cult to satisfy (LL).

Given property (1), i = 1 in our framework. The best known result in agency problems with

correlated information is perhaps that of CM, who show that the �rst-best outcome is attained

if the vectors of conditional probabilities of the signals are linearly independent. Importantly,

this result is obtained regardless of the properties of the cost function. By setting rewards

and punishments arbitrarily high, any untruthful report can be made unattractive. However,

high punishments are unfeasible when the agent is protected by limited liability. One then

needs to consider the properties of the cost and the probability functions to ascertain whether

there exists some vector of pro�ts that permits �rst-best implementation under limited liability,

consistent with the analysis developed by GBS.

Our goal is to extend the analysis beyond that of GBS and investigate whether �rst best is

at reach when (6) and (9) are not jointly satis�ed, and what vector of pro�ts should be adopted

in that case. Indeed, with property (1) being veri�ed, (9) is relaxed to the utmost for signal

i = 1: Therefore, one will naturally think that the vector �1 (�t) should be used. However,

for �1 (�t) to be incentive compatible, it must be such that (6) holds, as is known from RS.

This might not be the case though. Whereas the assumption that some signal displays the

highest likelihood ratio for all types is similar to that introduced by GBS, the assumption that

some other signal displays the lowest likelihood ratio, embodied in property (1), is made for

the purpose of our study. We show in Appendix that property (1) entails that the full-rank

condition of CMmust be satis�ed for the extreme types but not necessarily for the other types.8

In this respect, our analysis diverges from that of CM and comes closer to that of RS and GBS.

7The "only if" proof of CM shows that if the vector h(�T ) does not exist, then it is impossible to ensure that
�T is not an attractive report to any type �t < �T : Notice however that the existence of h(�t) is not necessary
for all types. In particular, it does not need to hold for type �1: This paves the way for the results drawn in
the study of RS, in which �rst-best implementation does not necessarily depend on the existence of h(�t), 8t.
Bose and Zhao [1] show that Proposition 1 in RS implies that �rst best might be e¤ected when the full-rank
condition is violated.

8In Appendix A we consider a discrete type set, in line with RS and CM. We show that, as long as property
(1) holds, p (�1) and p (�T ) do not lie in the convex hull generated by the probability vectors of the other types.
Moreover, there exist vectors p (�t) ; t 6= 1; T; which lie in the convex hull generated by the probability vectors
of the other types and do not violate conditions (1).
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3 Three types and two or three signals

We begin by considering a simple setting with three types. We will highlight the charac-

teristics that the vectors of pro�ts should display when there are two and three signals.

3.1 Two signals

For the time being, we focus on the discrete set of types f�1; �2; �3g and take n = 2: Property
(1), which refers to a case where n � 3, is replaced by

p1 (�t)

p1(�t0)
>
p2 (�t)

p2(�t0)
; 8�t > �t0 : (12)

Consider any binary vector of pro�ts (�1 (�t) ; �2 (�t)) belonging to � (�t) ; designed for the

generic type �t 2 �; such that �2 (�t) < 0 < �1 (�t) : Given that surplus extraction requires

(3) to hold, we can express �1 (�t) in terms of �2 (�t) as �1 (�t) = ��2 (�t) p2 (�t) =p1 (�t) : This
expression is useful to formulate the expected value of the lottery which type �t0 is faced with, if

it announces �t; in terms of �2 (�t) only. Speci�cally, that lottery grants ��2 (�t) p2 (�t) =p1 (�t)
with probability p1 (�t0) ; and �2 (�t) with probability p2 (�t0) ; so that its expected value to

type �t0 is �2 (�t) p2 (�t)
�
p2(�t0 )
p2(�t)

� p1(�t0 )
p1(�t)

�
: Because �2 (�t) < 0; given property (12), that value

is negative if �t0 < �t; and positive in the converse case. That is, the pro�ts designed for type �t
penalizes a lower type �t0 ; if it announces �t; because, as compared to �t; type �t0 is more likely

to draw signal 2 and less likely to draw signal 1: Conversely, those pro�ts favour a higher type

�t0 ; if it announces �t; because, as compared to �t; type �t0 is now less likely to draw signal 2 and

more likely to draw signal 1: In addition to the lottery, the payo¤ of type �t0 ; if it announces

�t; includes the di¤erence between the (false) cost reimbursed by P and the (real) cost incurred

to perform the task. Overall, the payo¤ of type �t0 ; if it announces �t; is given by

�2 (�t) p2 (�t)

�
p2(�t0)

p2 (�t)
� p1(�t0)

p1 (�t)

�
+�C (�t; �t0) :

The above expression is suggestive of what may incentivize type �t0 to report �t: If �t > �t0 ;

then type �t0 loses in terms of lottery by reporting �t; but gains in terms of cost reimbursement

(since �C (�t; �t0) > 0 in that case). On the opposite, if �t < �t0 ; then type �t0 loses in terms of

cost reimbursement (since �C (�t; �t0) < 0) but gains in terms of lottery. Thus, for both lower

and higher types, there are two opposite e¤ects at work. Remark that such e¤ects follow from

type �t being rewarded in state 1 and punished in state 2: In the converse case, given property

(12), lower types would obviously want to announce �t because, by doing so, they would gain

in terms of both lottery and cost reimbursement, which justi�es our choice to consider a pair

of pro�ts such that �2 (�t) < 0 < �1 (�t) in the �rst place. Taking this all into account, one can

assess what requirements the pro�ts should verify for not attracting false reports. In particular,

12



the pro�ts of the three types in state 2 must be respectively such that

�2 (�1) �
�C (�1; �t0)

p2(�1)
�
p1(�t0 )
p1(�1)

� p2(�t0 )
p2(�1)

� ; t0 = 2; 3; (13)

�C (�2; �3)

p2(�2)
�
p1(�3)
p1(�2)

� p2(�3)
p2(�2)

� � �2 (�2) �
��C (�2; �1)

p2(�2)
�
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

� (14)

and

�2 (�3) �
��C (�3; �t0)

p2(�3)
�
p2(�t0 )
p2(�3)

� p1(�t0 )
p1(�3)

� ; t0 = 1; 2: (15)

Considering these requirements together with limited liability, two kinds of necessary conditions

are identi�ed. There are, �rst, the conditions due to limited liability, which represent the

counterpart of (9) - the condition established by GBS - in a setting with three types and two

signals:

�C (�2; �1)
p1(�2)

p1(�2)� p1 (�1)
� L; (16)

�C (�3; �t0)
p1(�3)

p1(�3)� p1 (�t0)
� L; 8t0 2 f1; 2g : (17)

Besides, there is one more condition, which follows from (14):

�C (�2; �1)

��C (�2; �3)
�

p1(�2)�p1(�1)
p1(�2)

� p2(�2)�p2(�1)
p2(�2)

p1(�3)�p1(�2)
p1(�2)

� p2(�3)�p2(�2)
p2(�2)

: (18)

With a simple manipulation in which the property p2 (�) = 1� p1 (�) is used, (18) is rewritten
as (6) - the condition established by RS.

Proposition 1 Take � 2 f�1; �2; �3g and n = 2: � (�t) is non-empty 8t 2 f1; 3g.
(GBS) Assume that � (�2) is non-empty. 9� (�t) 2 � (�t) such that (LL) holds 8t if and

only if (16) and (17) are satis�ed.

(RS) � (�2) is non-empty if and only if (6) is satis�ed.

For further analysis, it is useful to refer to (18), rather than to its equivalent formulation in

(6). Let us interpret (18). Given that type �1 gains in cost reimbursement and loses in terms

of lottery, if it claims �2; whereas the converse occurs for type �3; there exist values of �2 (�2)

such that types �1 and �3 are both discouraged from claiming �2 if and only if the ratio between

the gain to type �1 and the loss to type �3 in terms of cost reimbursement does not exceed the

ratio between the loss to type �1 and the gain to type �3 in terms of lottery. In line with the

interpretation of (6), the gain/loss ratio in terms of cost reimbursement does not exceed the

loss/gain ratio in terms of lottery if and only if the cost is less concave (more convex) than the

conditional probability of signal 1.

13



Obviously, the conditions stated in Proposition 1 are also su¢ cient for �rst-best imple-

mentation. Indeed, if they are satis�ed, then there exists a vector � (�t) 2 � (�t) ; 8�t; such
that (LL) holds. In de�nitive, when the signal is binary and there are only three types, the

conditions for �rst-best implementation are con�rmed to be as established by the previous

literature.

Corollary 1 Take � 2 f�1; �2; �3g and n = 2: Provided that (18) to (17) are satis�ed, �rst best
is implemented if the vectors of pro�ts are as follows:

�1 (�1) = (0; 0)

�1 (�2) =

�
�C (�2; �1)

1� p1 (�2)

p1 (�2)� p1(�1)
;��C (�2; �1)

p1(�2)

p1 (�2)� p1(�1)

�
�1 (�3) =

�
L
1� p1 (�3)

p1 (�3)
;�L

�
:

Let us �rst discuss the design of the pro�ts of the extreme types. Being based on (13) and

(15), it is immediate to see that it is not an issue to �nd pro�ts such that neither �1 nor �3 is an

attractive report to any other type, as long as the necessary conditions hold. First, it su¢ ces

to set �s (�1) = 0; 8s; because, in that case, higher types lose money, if they produce qfb (�1)
and are reimbursed C

�
qfb (�1) ; �1

�
rather than their true cost. Second, types lower than �3

are least motivated to claim �3; if this type is assigned the lowest possible pro�t (�L) in state
2; which lower types are more likely to draw. Thus, P can set �2 (�3) = �L and, accordingly,
�1 (�3) = L (1� p1 (�3)) =p1 (�3) : As far as the intermediate type is concerned, once �2 (�2) is

set to comply with (14), one can use (3) to determine �1 (�2) : In particular, setting �2 (�2)

to the higher between the upper bound to the range of feasible values identi�ed in (14) and

�L; namely �2 (�2) = ��C (�2; �1) p1(�2)
p1(�2)�p1(�1) ; then �1 (�2) and the vector �

1 (�2) are found

accordingly. The pro�ts in �1 (�2) are just the pro�ts de�ned in (4) and (5) for the case of a

binary signal and �t = �2.

3.2 Three signals

We found that when the signal is binary, the best compensation scheme that P can use

to e¤ect the �rst-best allocation is the scheme �rst proposed by RS and then reconsidered by

GBS in a setting with a continuum of types and limited liability. We now look at a case where

n = 3. This extension will allow us to show that when there is an additional signal, it might be

optimal to o¤er the intermediate type a di¤erent pro�t for each signal realization. Proceeding

as above, we formulate the incentive constraints whereby �t is an attractive report neither to
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lower types nor to higher types as follows:

�3 (�t) �
�C (�t; �t0) + �2 (�t) p2(�t)

�
p2(�t0 )
p2(�t)

� p1(�t0 )
p1(�t)

�
�p3(�t)

�
p3(�t0 )
p3(�t)

� p1(�t0 )
p1(�t)

� ; 8�t0 < �t (19)

�3 (�t) �
�C (�t; �t0)� �2 (�t) p2(�t)

�
p1(�t0 )
p1(�t)

� p2(�t0 )
p2(�t)

�
p3(�t)

�
p1(�t0 )
p1(�t)

� p3(�t0 )
p3(�t)

� ; 8�t0 > �t: (20)

These two conditions, which are the counterpart of (13) - (15) in situations with three signals,

are expressed in terms of two pro�ts, rather than only one as in the case of a binary signal.

It is easy to verify that also in this setting, just as with a binary signal, there are two kinds

of necessary conditions to be veri�ed. First, the incentive constraints should not be in con�ict

with the limited liability constraints, namely (19) should hold together with �3 (�t) � �L:
Second, there should be no con�ict between the incentive constraints whereby the extreme

types are unwilling to mimic the intermediate type.

Let us begin with the �rst potential con�ict. It turns out that the additional signal does

not relax the conditions under which it is eliminated. Indeed, (19) is not in con�ict with the

limited liability constraint in state 3 if and only if it is not when �3 (�t) = �2 (�t) < 0. To

see it, start from this equality and consider raising one of the two pro�ts, say, �3 (�t) : Then,

at least one of �1 (�t) and �2 (�t) must be decreased. To avoid tightening the limited liability

constraints, one should reduce �1 (�t) instead of �2 (�t). However, associated with the raise in

�3 (�t) ; a reduction in �1 (�t) would strengthen the incentives of some lower type to report �t
more than would a reduction in �2 (�t) ; provided lower types are less likely to draw signal 1

than signal 2: It follows that (16) and (17) are necessary also in a case where n = 3:

Let us now consider the second potential con�ict. The possibility of using an additional

signal induces a critical change in this respect. Indeed, the necessary condition (18) is replaced

by
�C (�2; �1)
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� ��C (�2; �3)
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� ��2 (�2) p2(�2)
�
 2;3 (�1; �2)�  2;3 (�3; �2)

�
; (21)

where the following de�nition has been used:

 s;n (�
0; �) �

p1(�
0)

p1(�)
� ps(�

0)
ps(�)

p1(�
0)

p1(�)
� pn(�

0)
pn(�)

:

If  2;3 (�1; �2) >  2;3 (�3; �2) ; then (21) is weakest when �2 (�2) is set to �L. To interpret, �rst
rewrite the inequality as

p1(�2)�p1(�1)
p1(�2)

� p2(�2)�p2(�1)
p2(�2)

p1(�3)�p1(�2)
p1(�2)

� p2(�3)�p2(�2)
p2(�2)

>

p1(�2)�p1(�1)
p1(�2)

� p3(�2)�p3(�1)
p3(�2)

p1(�3)�p1(�2)
p1(�2)

� p3(�3)�p3(�2)
p3(�2)

(22)
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and observe that the left-hand side of (22) replicates the right-hand side of (18), and that the

right-hand side of (22) is just the same as the left-hand side, except that the likelihood of

signal 3 replaces the likelihood of signal 2: Next consider that, if �2 (�2) is decreased, then by

announcing �2 instead of telling the truth, type �1 loses and type �3 gains in terms of lottery.

Having (22) satis�ed means that the ratio between such loss and gain exceeds the ratio between

the loss to type �1 and the gain to type �3 that would result from a decrease in �3 (�2) (instead

of �2 (�2)): Then, the best is to set �2 (�2) = �L: Obviously, in the converse case, the best
would be to set �3 (�2) = �L; instead. For simplicity, we refer to the case where (22) is satis�ed
indeed, namely  2;3 (�1; �2) >  2;3 (�3; �2) ; and it is optimal to set �2 (�2) = �L. This leads
us to derive our next result. As in Proposition 1, we identify conditions for the two potential

con�icts not to arise. To that end, it is useful to introduce the following notation:

	1;n (�
0; �; �00) =

�C(�;�0)
pn(�0)
pn(�)

� p1(�0)
p1(�)

� ��C(�;�00)
p1(�00)
p1(�)

� pn(�00)
pn(�)P

s 6=1;n ps(�)
�
 s;n (�

0; �)�  s;n (�
00; �)

� :
Proposition 2 Take � 2 f�1; �2; �3g and n = 3: � (�t) is non-empty 8t 2 f1; 3g.
Assume that � (�2) is non-empty. 9� (�t) 2 � (�t) such that (LL) holds 8t if and only if

(16) and (17) are satis�ed.

Assume that  2;3 (�1; �2) >  2;3 (�3; �2). � (�2) is non-empty if and only if

L � 	1;3 (�1; �2; �3) : (23)

According to the proposition, �rst-best implementation rests critically on (23). With this

condition satis�ed, P can �nd vectors of pro�ts such that the incentives to lie upwards are

eliminated jointly with the incentives to lie downwards and, hence, incentive compatibility is

attained in any reporting directions. This condition establishes a clear relationship between the

properties of the cost function with respect to the type, the likelihood function, and the level

of liability. In particular, depending on the agent�s liability, (23) is satis�ed for cost functions

that are not too concave with respect to the type. The results in Proposition 2 are obtained

with the compensation scheme that we now present.

Corollary 2 Take � 2 f�1; �2; �3g and n = 3: Under (16) ; (17) and (23) ; �rst best is imple-
mented if the vectors of pro�ts are as follows:

�� (�1) = (0; 0; 0)

�� (�2) =

0@�C (�2; �1)� Lp3(�2)�p3(�1)
p3(�2)

p1 (�2)
�
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� � L;�L;
�C (�2; �1)� Lp1(�2)�p1(�1)

p1(�2)

�p3(�2)
�
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� � L

1A
�� (�3) =

�
L
1� p1 (�3)

p1 (�3)
;�L;�L

�
;
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where ��3 (�2) > ��2 (�2) = �L.
If (18) is violated, then 9� (�2) 2 � (�2) that satis�es (LL) only if �� (�2) 2 � (�2).

The main implication of the corollary is that �� (�2) 6= �1 (�2) ; except in a very particular
case. Not surprisingly, there is no change in the vectors of pro�ts of the extreme types instead.

Let us again comment on the extreme types �rst. The fact that �� (�1) = �1 (�1) is

explained similarly to the case with the binary signal. Let us see why �� (�3) = �1 (�3) :

Starting from �2 (�3) = �3 (�3) = �L, it is impossible to weaken the incentives of the lower
types to report �3: Indeed, a decrease in �1 (�3) could only be induced together with a raise

in either �2 (�3) or �3 (�3) ; which is not convenient for P, provided types �1 and �2 are both

more likely to draw signal 2 and 3 than signal 1: Let us now consider the intermediate type.

Interestingly, unlike for report �3; the incentive constraints whereby report �2 is unattractive

to any other type are relaxed if �3 (�2) is set above �L while, as we explained, �2 (�2) = �L:
To see this, replace �2 (�2) = �L in (20) and rearrange to obtain

�3 (�2) �
�c (�2; �3) + Lp1(�3)�p1(�2)

p1(�2)

p3(�2)
�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� � L: (24)

This shows that, if L is su¢ ciently high for (17) (or (16)) to be strictly satis�ed, then �3 (�2)

should be set strictly above �L. The reason is that this permits to account for the incentives
of either extreme type to mimic the intermediate type. First, to discourage type �1 from over-

reporting the best would be to set �2 (�2) = �3 (�2) = �L; since this type is less likely to
draw signal 2 and 3 than signal 1: Yet, because �1 (�2) would be high in that case, type �3
might be motivated to under-report, provided this type is more likely to draw signal 1 than

signal 2 and 3: This temptation is contrasted if one of the pro�ts �2 (�2) and �3 (�2) is set

above �L. The issue is then to establish which of those pro�ts should be picked. If it is
considered that the incentives of type �1 to over-report will be reinforced thereof, then the best

is to pick the pro�t that has the weaker impact on those incentives. It turns out that, with

 2;3 (�1; �2) >  2;3 (�3; �2), that pro�t is �3 (�2). It remains to determine the values of �3 (�2)

and �1 (�2) : Replacing �2 (�2) = �L in (19) taken for t = 2 (hence, t0 = 1) and rearranging,
one obtains

�3 (�2) �
�C (�2; �1)� Lp1(�2)�p1(�1)

p1(�2)

�p3(�2)
�
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� � L: (25)

Recall that (20), taken for t = 2 (and hence, t0 = 3); is rewritten as (24) when �2 (�2) = �L:
Joint inspection of (24) and (25) evidences that, under (17) and (16), if there exists a range of

feasible values of �3 (�2) ; then either it includes �L; or it lies entirely above �L: For instance,
if P sets �3 (�2) in such a way as to saturate (25), and �1 (�2) is derived from (3) thereof, then

the vector �� (�2) is obtained.

We now provide a numerical example to illustrate the results drawn in the setting with

three informative signals.
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Example 1 Consider the Cobb-Douglas production function Q (l; k) = 1
�
l�k�. Letting Pl and

Pk be respectively the price of two inputs (say, labour and capital), the associated cost function

is given by C (q; �) = g (�; �)P
�

�+�

l P
�

�+�

k (�q)
1

�+� ; where g (�; �) �
�
�
�

� �
�+�

+
�
�
�

� �
�+� and q is

the level of production. Further consider the surplus function S (q) = A"
"�1q

"�1
" ; where A > 0;

" > 0. In this setting, S 0
�
qfb (�)

�
= Cq

�
qfb (�) ; �

�
yields

qfb (�) =

�
1

A

g (�; �)

�+ �
P

�
�+�

l P
�

�+�

k �
1

�+�

��

;

where 
 � "(�+�)
"+(1�")(�+�) . For an agent of type �

0 the cost of producing qfb (�) units is

C
�
qfb (�) ; �0

�
= [A (�+ �)]



�+�

�
g (�; �)P

�
�+�

l P
�

�+�

k

�1� 

�+�

(�0)
1

�+� ��
:

Take now the following values: � = 1:5, � = 1:3, " = 0:8, Pl = 20, Pk = 30, a = 30,

�1 = 5, �2 = 10 and �3 = 14; and the following probability vectors, which satisfy property (1) :

p (�1) = (
1
4
; 1
4
; 1
2
), p (�2) = (34 ;

3
16
; 1
16
); p (�3) = (

5
6
; 3
24
; 1
24
). Remark that, because �+� = 2:8 > 1;

C (q; �) is concave in �. With the previous values, we obtain �C (�2; �1) ' 0:98, �C (�2; �3) '
�0:56, p1(�2) � p1 (�1) =

1
4
; p1 (�3) � p1(�2) =

1
6
. Hence, (6) is violated and �rst best is not

implemented with �1 (�2) = (2;�2;�2). Instead, �rst best is implemented with �� (�2) as long
as L � 	1;3 (�1; �2; �3) = 47:2. Taking L = 47:2, we �nd �� (�2) = (12:38;�47:2; 15:48).

4 A continuum of types and a �nite number of signals

Take � 2 � and n � 3: Given that the expected payo¤ of an agent of type �0; if he reports
�; is given by

Es [e�s (� j�0 )] = nX
s=1

�s (�) ps (�
0) + �C (�; �0)

and that (3) must hold for �rst-best implementation, the incentive constraint is rewritten as

�� (�; �0) �
nX
s=1

�s(�)(ps(�)� ps (�
0)); 8�0; � 2 �: (26)

Henceforth, we will refer to (26) as to the global incentive constraint in �: According to (26), �

is not an attractive report to type �0 if the gain in cost reimbursement associated with that lie,

namely �C (�; �0) ; is lower than the loss in terms of the lottery (
Pn

s=1 �s(�)(ps(�) � ps (�
0)));

when � > �0; and if the loss in cost reimbursement, namely ��C (�; �0) ; exceeds the gain in
terms of the lottery (

Pn
s=1 �s(�)(ps (�

0)� ps(�))); when � < �0:

We hereafter determine the vectors of incentive compatible pro�ts proceeding in a similar

fashion as in the discrete case. Using (3), one can express �1 (�) in terms of the pro�ts assigned
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in all states other than 1. The expression so obtained can be used to reformulate (26) as the

following pair of conditions on �n (�) (see Appendix B for details):9

�n (�) pn(�) �
��C

�
�; ��

�
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

�
X
s 6=1;n

�s (�) ps(�) s;n
�
��; �

�
; 8�� < �; (27)

and

�n (�) pn(�) �
�C

�
�; �+

�
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

�
X
s 6=1;n

�s (�) ps(�) s;n
�
�+; �

�
; 8�+ > �: (28)

Taking the limits for �� ! � and �+ ! � yields the local incentive constraint, formulated as

the following expression of �n (�):10

�n (�) =
C�(q

fb (�) ; �) +
P

s 6=1;n �s(�)ps(�)
�
p01(�)
p1(�)

� p0s(�)
ps(�)

�
�pn(�)

�
p01(�)
p1(�)

� p0n(�)
pn(�)

� ; 8� 2 �: (29)

This tells that, once P chooses the pro�ts to be assigned to type � in states 2 to n � 1; she
must set the pro�t in state n according to (29) to prevent all neighboring types from reporting

�.

Once it is assessed that �1 (�) must be chosen according to (3) and �n (�) such that (29)

holds, it must be �gured out how the pro�ts should be set in states 2 to n � 1 for (27) and
(28) to be satis�ed, taking into account that the limited liability constraint must hold in each

state. Actually, the necessary conditions are of the kind already identi�ed in the discrete-type

case. That is, two potential con�icts must be eliminated. The �rst is that between the incentive

constraints and the limited liability constraints. We will see that now, because types are drawn

from a continuous interval, this boils down to a con�ict between local incentive constraints and

limited liability constraints. The second is the potential con�ict between downward and upward

incentive constraints.

First consider the former con�ict. Looking at the incentive constraints, as formulated

above, one can tell that this is a con�ict between the upper bound imposed on �n (�) by (27)

and the lower bound of �L imposed by (LL). Besides, the choice of �n (�) depends also on
how the pro�ts are set in the remaining states. The local incentive constraint, as formulated

in (29), de�nes the exact relationship between �n (�) and �s (�), for s 6= 1; n, such that the

compensation scheme prevents any incentives to lie in a neighborhood. To account also for

limited liability, one should �rst consider that, as is evident from (29), if any change is induced

in �s (�) ; for some s 6= 1; n; then this change must be matched with an opposite variation in
9We let �� and �+ denote types respectively below and above �, but not necessarily limit values around

�. We also adapt the notation previously introduced for the cost to the continuous case here considered, with
analogous meaning.
10The standard procedure would be to derive the local incentive constraint directly from (26) by taking the

limit for �0 ! �: The expression of �n (�) in (29) would result after manipulating the local incentive constraint.
We follow a somewhat di¤erent procedure that is functional to the analysis developed hereafter.
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�n (�) ; and vice versa. Furthermore, an adjustment in �1 (�) will be necessary to ensure that

(3) holds. This is all summarized in the next lemma.

Lemma 1 Take n � 3; �(�) 2 �(�) 8� 2 �; and any triplet of signals fi; j; kg 2 N such that

p0i(�)

pi(�)
>
p0j(�)

pj(�)
>
p0k(�)

pk(�)
; 8� 2 �: (30)

For any given value of �s(�) 2 �(�); 8s =2 fi; j; kg ; if a change is induced in �i(�); then

changes must also be induced in �j(�) and �k(�); in two opposite directions, for the resulting

vector �0(�) to be such that �0(�) 2 �(�).

Being based on Lemma 1, one can conclude that the vector � (�) ; such that (LL) is most

likely to be satis�ed, is as follows. First, one sets �s(�) = �n(�) < 0, 8s 6= 1; n; in such a

way as to satisfy (29). Next, one sets �1(�) > 0; in such a way as to extract all surplus. Not

surprisingly, the resulting vector of pro�ts is tantamount to �1(�); the one derived by GBS.11

The intuition behind this result is understood by interpreting Lemma 1 along the same lines as

in the discrete-type analysis. Start from a situation in which �s(�) = �n(�) < 0; 8s 6= 1; n, and
local incentive compatibility is attained together with full surplus extraction. If �s 6=1 (�), say,

is raised, then some other pro�t should be decreased to restore full surplus extraction. Suppose

that pro�t is �1 (�) : Then, full surplus extraction can be restored, but the incentives to report

� of some type just below � are strengthened, since that type is more likely to draw signal s

than signal 1. The only way to also attain local incentive compatibility is to raise �1 (�) and

decrease some other pro�t, say �n(�): Hence, the limited liability constraint will be tightened.

The following result obtains.

Lemma 2 (GBS) 9� (�) 2 � (�) satisfying (LL) only if �1 (�) satis�es (LL).

This result suggests that one vector of pro�ts that could be used under limited liability

is �1 (�). To establish whether this is or not the best choice, one should further account for

the potential con�ict between upward and downward incentive constraints. Recall that in the

analysis of GBS this con�ict is ruled out by assuming that the cost function is convex in the

type, whereas the likelihood function of the reward signal is concave in the type. Indeed, under

those conditions, �rst best is attained through the vector of pro�ts �1 (�) 8�; in line with
Corollary 1.5 of RS.

As a �rst step, we use the expression of �n (�) in (29) to reformulate (27) and (28) as in

the next lemma, where the following notation is used:


 (�0; �) �  s;n (�
0; �)�

p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

; 8�; �0:

11In their proof, GBS take any triplet of pro�ts including the pro�t associated with signal 1 (i.e., with the
signal the conditional probability of which satis�es property (1)), and show that the limited liability constraints
are most likely to be satis�ed only if the other two pro�ts are equal. Lemma 1 emphasizes that this is the case
due to property (30), which will be useful for further analysis.
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Lemma 3 Given (PC) and (29) ; (26) is satis�ed if and only if the following two conditions
are satis�ed for any given � 2

�
�; �
�
:

C�
�
qfb (�) ; �

�
�
�
p01 (�)

p1(�)
� p0n (�)

pn(�)

�0@ �C
�
�; ��

�
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

+
X
s 6=1;n

�s (�) ps(�)

�
��; �

�1A ; 8�� < �;

(31)

and

C�
�
qfb (�) ; �

�
�
�
p01 (�)

p1(�)
� p0n (�)

pn(�)

�0@ ��C
�
�; �+

�
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

+
X
s 6=1;n

�s (�) ps(�)

�
�+; �

�1A ; 8�+ > �:

(32)

Being based on (31) and (32), and observing that 

�
��; �

�
� 


�
�+; �

�
=  s;n

�
��; �

�
�

 s;n
�
�+; �

�
, we see that the necessary condition, to be veri�ed for any triplet

�
��; �; �+

	
, is

written as

�C
�
�; ��

�
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

�
��C

�
�; �+

�
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

� �
X
s 6=1;n

�s (�) ps(�)
�
 s;n

�
��; �

�
�  s;n

�
�+; �

��
: (33)

In good substance, one should �rst verify that, for each possible report �; there exists a

vector of pro�ts such that (33) holds without violating (LL). Once this is ascertained, one

should further verify that those pro�ts satis�es (31) and (32) as well. Provided (31) has to

be veri�ed for any pair
�
�; �+

	
; and (32) for any pair

�
��; �

	
, the analysis may look complex

overall. The problem is tractable, in fact, thanks to the following result.

Lemma 4 Condition (33) is necessary and su¢ cient for (31) and (32) to hold.

The next step is to investigate how � (�) should be chosen such that (33) is weakest. To

that end, it is useful to de�ne

�s (�
0; �) � ps (�

0) + (� � �0) p0s (�
0)

ps(�)
; 8�0 6= � 2 �; 8s 2 N;

The magnitude of �s (�; �) is a measure of the curvature of the probability function of signal s:
Indeed, �s (�

0; �) = 1 if ps (�) is linear, �s (�0; �) < 1 if ps (�) is strictly convex, and �s (�0; �) > 1
if ps (�) is strictly concave. Therefore, �s (�0; �) can be used to assess how much the likelihood of
signal s; if type is �0; diverges from the likelihood of that same signal, if type is �: The more that

�s (�
0; �) diverges from 1; the higher that the degree of convexity/concavity of ps (�) is 8�0 6= �;

and the more that the likelihood of type �0 to draw signal s diverges from the likelihood of type

� to draw that same signal. It can be shown that if

�s (�
0; �)� �1 (�

0; �)���p1(�0)p1(�)
� ps(�

0)
ps(�)

��� <
�n (�

0; �)� �1 (�
0; �)���p1(�0)p1(�)

� pn(�
0)

pn(�)

��� ; (34)
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then the term in brackets in the right-hand side of (33) is negative 8� such that �� � � � �+;

with at least one of these inequalities holding strictly (the proof is found in Appendix F).

Proposition 3 Assume that n � 3 and (34) holds. The �rst-best allocation is implemented if
and only if either

�C
�
�; ��

�
��C

�
�; �+

� � p1(�)� p1(�
�)

p1(�
+)� p1(�)

; 8�; ��; �+ 2 �; �� < � < �+ (35)

and

L � �C
�
�; ��

� p1(�)

p1(�)� p1(�
�)
; 8��; � 2 �; �� < �; (36)

or (35) is violated and

L � 	1;n
�
��; �; �+

�
; 8�; ��; �+ 2 �; �� < � < �+: (37)

This proposition extends Proposition 2 of GBS to a case where the cost is possibly concave

in the type. In that case, the necessary condition (36) is no longer su¢ cient for �rst-best

implementation.12 If �1 (�) is used, then it is necessary to have also (35) satis�ed. If (35) is

found to be violated, then one should move away from �1 (�). This leads to a new necessary

condition on the level of liability, namely (37). We denote as �� (�) the vector of pro�ts by

means of which P is most likely to implement �rst best as long as (37) holds.

Corollary 3 The vector of pro�ts �� (�) is composed as follows:

��1 (�) =
C�
�
qfb (�) ; �

�
� Lp0n(�)

pn(�)

p1(�)
�
p01(�)
p1(�)

� p0n(�)
pn(�)

� � L; ��n (�) =
L
p01(�)
p1(�)

� C�
�
qfb (�) ; �

�
pn(�)

�
p01(�)
p1(�)

� p0n(�)
pn(�)

� � L; ��s 6=1;n (�) = �L;

where ��1 (�) > �11 (�) ; �
�
n (�) > �1n (�) and �

�
s (�) < �1s (�) ; 8s 6= 1; n; 8� 2

�
�; �
�
:

When the cost and the probability functions display the properties stated in Proposition

3, P should rely on Lemma 1 and proceed as follows. Starting from �1 (�) ; P should raise

the pro�ts in state 1 and n and decrease them in all other states. According to Lemma 1, P

gains �exibility when switching from �1 (�) to a new vector, in which the pro�t in state 1 is

raised and opposite changes are induced in the other pro�ts. As explained in the discrete-type

case, it is convenient to increase the pro�t of type � in state 1 and decrease it in some state

s 6= 1; because type �� is then led to face a greater loss, if it reports �: This is because, under
property (1), p

0
1(�)

p1(�)
> p0s(�)

ps(�)
; 8s 6= 1; involving that type �� will obtain less with a signal that

it is more likely to draw, and more with a signal that it is less likely to draw. This process

can be replicated for signal 1 and other n � 2 signals, with which pro�ts higher than �L are
12Notice that as �� approaches � (36) reduces to (9) for i = 1; which is the exact formulation in GBS. We

present the condition as in (36) because this alternative formulation helps us stress that the necessity of the
condition only results from the incentives of lower types to exaggerate information.
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initially associated. On the other hand, for one signal realization the pro�t must be increased

in order to weaken the incentive of type �� to over-report. The remaining question is thus for

which signal realization, beside 1; the pro�t should be increased, and for which ones it should

be decreased instead. Corollary 3 identi�es those signals.

Corollary 4 (31) is relaxed and (32) is tightened when �� (�) replaces �1 (�) :

This result formalizes the impossibility of lessening the incentives to over-report and the

incentives to under-report altogether, by switching from one vector of pro�ts to another in

� (�). However, provided that (34) holds, when replacing �1 (�) with �� (�) the positive e¤ect

of type �� becoming less eager to claim � prevails on the negative e¤ect of type �+ becoming

more eager to do that. Indeed, under (34), one has  s;n
�
��; �

�
>  s;n

�
�+; �

�
, 8s 6= 1; n, which

is rewritten as
p1(�

+)
p1(�)

� ps(�
+)

ps(�)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

<

p1(�
�)

p1(�)
� ps(�

�)
ps(�)

p1(�
�)

p1(�)
� pn(�

�)
pn(�)

: (38)

This is the counterpart of (22) in a setting with more than three types. Under (38), it is easier

to lessen the con�ict between the incentive constraints "from below" and "from above" if the

pro�ts of type � are decreased to �L in all states but 1 and n; rather than in all states but n
only. Remarkably, when (33) is not a concern, as in the setting considered by GBS, it su¢ ces

to refer to the rate of change of the conditional probability to determine the pro�ts that lessen

the tension between local incentive compatibility and limited liability to the utmost. However,

this is no longer the only requirement to be met in terms of probabilities, as it comes to the

incentive scheme that makes the con�ict between upward and downward incentive constraints

weakest. The curvature of the function p (�) becomes important as well, because the potential
gains and losses from the di¤erent lies depend on how the probabilities of the signals vary with

the type. The next corollary lists conditions that are necessary and su¢ cient for (34) to hold

and, hence, for (33) to be weakest.

Corollary 5 For (34) to hold 8s 6= 1; n :
(i) it is necessary to have �s (�

0; �) < max f�1 (�0; �) ; �n (�0; �)g and su¢ cient to have
�s (�

0; �) < min f�1 (�0; �) ; �n (�0; �)g ;
(ii) it is necessary and su¢ cient to have

�n (�
0; �)� �1 (�

0; �)

�s (�
0; �)� �1 (�

0; �)
>

p1(�
0)

p1(�)
� pn(�

0)
pn(�)

p1(�
0)

p1(�)
� ps(�

0)
ps(�)

; (39)

if

�n (�
0; �) > �s (�

0; �) > �1 (�
0; �) ;

and to have the converse of (39) satis�ed, if

�1 (�
0; �) > �s (�

0; �) > �n (�
0; �) :
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Intuitively, because any decrease in �s (�) ; where s 6= 1; n; is compensated with an increase
in both �1 (�) and �n (�) (recall Lemma 1), �� (�) cannot be employed unless at least one

between p1 (�) and pn (�) is less convex/more concave than the conditional probability of any
other signal. If this is not the case, then the incentives to understate information are too

strong for (33) to be lessened by means of �� (�) : Speci�cally, (32) is tightened more than

(31) is relaxed (recall Corollary 4). The remaining conditions listed in Corollary 5, which are

conditions on the degree of concavity/convexity of the likelihood functions, are su¢ cient for

(34) to hold.

In substance, as long as (LL) does not bind in �1 (�) at least for some �; there is a neat

bene�t to P to move away from that vector of pro�ts and exploit the slack of (LL).

Corollary 6 Condition (37) is weaker than (35).

In words, the bene�t to P is that, under limited liability, incentive compatibility is attained

for a wider family of cost functions than admissible under the su¢ cient condition of RS. This

is immediately veri�ed by reformulating (37) as

�C
�
�; ��

�
��C

�
�; �+

� �
p1(�)� p1

�
��
�

p1
�
�+
�
� p1(�)

+

0@ pn(�
�)

pn(�)
� p1(�

�)
p1(�)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

�
p1(�)�p1(��)

p1(�)

p1(�
+)�p1(�)
p1(�)

1A (40)

+L

pn(�
�)

pn(�)
� p1(�

�)
p1(�)

�C
�
�; �+

� X
s 6=1;n

ps(�)
�
 s;n

�
��; �

�
�  s;n

�
�+; �

��
;

and observing that the �rst term in the right-hand side is the same as in (35), and that the two

additional terms are both positive. One should nonetheless recall that this bene�t is available

only if the liability is higher than required by GBS.

Corollary 7 Condition (37) implies (36) if and only if (35) is violated.

There is a simple conclusion to be drawn from this result. As long as (36) is slack, P can shift

from �1 (�) to �� (�) to take advantage of that slackness and relax the incentive compatibility

constraints. Thereby, �rst best is at hand in a richer variety of contractual relationships.

5 A second-best analysis with discrete types

Being based on Proposition 3, we identify two possible departures from �rst best. The �rst

occurs when (35) is satis�ed whereas (36) is violated. In that case, which is considered by

GBS in their second-best analysis, P cannot attain local incentive compatibility as long as she

insists on the �rst-best allocation. The second departure from �rst best occurs when (35) is

violated and, in addition, the maximum sustainable de�cit (L) is not high enough to have (37)
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satis�ed. We now turn to explore these two possibilities.13

To address these issues, we consider again a setting with three types and three signals.

Our motivation for this focus is that, whereas standard solution methods are unlikely to be

applicable in settings with a continuum of types, our �rst-best analysis made it plain that

the incentives at work are neatly highlighted in the simple three-type framework.14 Hence,

we see no reason why the results we will derive with three types should not carry over with a

continuum of types, once the technical complications are taken into account.

Formally, we take � = f�1; �2; �3g and n = 3: In a second-best setting, one expects at least
one type to obtain an information rent, which would add complexity to the identi�cation of

the binding incentive constraints. Take the most e¢ cient type, for instance. If this type must

be given up a rent for not announcing �2; then one would want to design pro�ts for type �2 in

such a way as to minimize that rent. However, this cannot be done unless the lottery that type

�3 faces, if it announces �2; is made more attractive; and it might also be necessary to concede

a rent to dissuade type �3 from understating information. In turn, this may motivate type �1
to report �3 (rather than �2): Of course, this reasoning can be replicated, mutatis mutandis,

for the least e¢ cient type, to which report �1 might become more attractive than report �2.

To keep the analysis tractable and avoid complexities that would add little to the economic

insights, we will restrict attention to situations where the extreme types are not tempted to

mimic each other. To do so, we will solve a reduced programme of P, in which the associated

incentive constraints are omitted. In a later stage, we will provide a su¢ cient condition for those

constraints to be satis�ed at the solution to the reduced problem, hence for that solution to be

also a solution to the general problem �, in which all the incentive constraints are considered.

The reduced problem is given by

Max
fq(�t);�(�t);8�tg

Z
�t2f�1;�2;�3g

(S(q (�t))� C (q (�t) ; �t)�R (�t)) f (�t)

subject to (�0)

R (�t) � �C (�t0 ; �t) +
X
s

�s (�t0) ps (�t) ; 8 f�t; �t0g 6= f�1; �3g ; f�t; �t0g 6= f�3; �1g

R (�t) � 0; 8�t
�s (�t) � �L; 8�t; 8s:

To characterize the solution to �0; we will explore two alternative situations, in which either

(36) or (37) is violated, taking into account that, with three types, (36) boils down to (16) and

(17), and (37) to (23). If it is considered that (37) implies (36) (Corollary 7), then it is not

surprising that the results presented below depend on whether (16) and (17) are violated, or

13Another possible departure from �rst best is that in which (34) is violated. However, in that case, the
analysis would proceed along the same lines. That is, one would identify some pair of signals, other than
f1; ng ; the properties of which could be exploited in the design of the optimal pro�ts.
14Technically speaking, the �rst-order approach may not be applicable because the contractual allocation is

not necessarily di¤erentiable.
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these conditions are satis�ed whereas (23) is violated. More importantly, the vectors of optimal

pro�ts di¤er in the two cases, similarly to the �rst-best framework.

Lemma 5 At the solution to �0 :
(1) If (16) and (17) are violated, then �2 (�2) = �3 (�2) = �L:
(2) If (16) and (17) are satis�ed, whereas (23) is violated, then �2 (�2) = �L < �3 (�2) :

In either case, �s (�1) = �L; 8s 6= 3; and �s (�3) = �L; 8s 6= 1:

Case (1) of the lemma, which arises when (36) is violated, is the counterpart of the result

that GBS derive in their second-best analysis. Not surprisingly, type �2 is faced with the

maximum loss in all states but one because this permits to minimize the rents that must be

conceded to attain local incentive compatibility. Case (2) refers to situations where, rather

than satisfying the local incentive constraints under limited liability, the relevant issue is to

eliminate the con�ict between upward and downward incentive constraints. Then, it is optimal

for P to depart from a vector of pro�ts with the characteristics previously described, just as

switching from �1 (�2) to �� (�2) was found to be optimal in the �rst-best analysis.

We now turn to investigate what information rents P concedes and what production levels

she recommends, taking into account that the optimal pro�ts are as presented in Lemma 5.

We begin with case (1) in the lemma. Two e¤ects are identi�ed. First, the low types �1 and

�2 cannot be prevented from over-reporting, unless they are conceded a rent. Even if they are

exposed to the maximum sustainable de�cit in states 2 and 3, which are both more likely to be

drawn than state 1, namely �s (�t) = �L; 8�t 6= �1; 8s 6= 1; that de�cit is not su¢ ciently high
to discourage them from cheating, unless they are assigned a rent. Second, whereas setting

�2 (�2) = �3 (�2) = �L enables P to contain the rent of type �1 to the minimum a¤ordable

level, it might induce type �3 to report �2; unless it receives a rent. This issue makes the

screening problem more complex, as we said. When it does not arise, the following result is

obtained. With a slight abuse, we hereafter preserve the notation �C (�t; �t0) ; 8�t 6= �t0 ; to

denote cost di¤erences, with the understanding that it now refers to any production level q (�t)

rather than to qfb (�t) speci�cally.

Proposition 4 Assume that (16) and (17) are violated and  2;3 (�1; �2) >  2;3 (�3; �2). Further

assume that R (�3) = 0 at the solution to �0. Then, the optimal information rents are given by

R (�1) = �C (�2; �1) + �C (�3; �2)
p1 (�1)

p1 (�2)
� L

p1 (�3)� p1 (�1)

p1 (�3)
(41)

R (�2) = �C (�3; �2)� L
p1 (�3)� p1 (�2)

p1 (�3)
: (42)

The optimal production levels are such that q (�1) = qfb (�1), q (�2) < qfb (�2), q (�3) < qfb (�3)

and
��C (�2; �3)
�C (�3; �2)

� p1 (�3)

p1 (�2)
: (43)
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The expressions in (41) and (42) are tantamount to those obtained by GBS in their second-

best analysis. Moreover, as in their solution, the quantities of all types but the most e¢ cient

one are both decreased below their �rst-best levels to contain the rents, which is standard in

screening problems. In addition, those quantities must be such that (43) is satis�ed. Absent

any restriction on the shape of the cost function with respect to the type, (43) is found to be

necessary for types �2 and �3 not being tempted to mimic each other. This condition requires

setting q (�2) su¢ ciently high relative to q (�3) : With this, the penalty of ��C (�2; �3) ; which
type �3 faces if it under-reports, is su¢ ciently high relative to the bonus of �C (�3; �2) ; which

type �2 faces if it over-reports, to eliminate any incentives to deliver those fake reports.

We now provide a su¢ cient condition for the second e¤ect aforementioned to be ruled out

so that R (�3) = 0 at the solution to �0: Actually, it is a condition usually assumed in the

literature, and our results con�rm previous �ndings, in fact.

Remark 1 The solution with R (�3) = 0 presented in Proposition 4; arises if

�C (�2; �1)

��C (�2; �3)
<
p1 (�2)� p1 (�1)

p1 (�3)� p1 (�2)
: (44)

Intuitively, if type �3 announces �2; rather than telling the truth, it faces an increase in the

expected value of the lottery, due to the fact that it receives a reward in the state it is most

likely to draw - state 1. If the cost is either more convex or less concave with respect to the

type, relative to the likelihood of signal 1; then the increase in the value of the lottery faced by

type �3 is more than o¤set by the penalty in terms of cost, which is high under (43), as we said.

It follows that (6) holds true, which explains why type �3 is discouraged from under-reporting

without receiving any rent.

Let us next consider case (2) in Lemma 5, where the level of liability is high enough to

satisfy (17) and (16) but not (23). Similarly to case (1) ; there are two e¤ects potentially at

work. First, P cannot make sure that types �1 and �3 are unwilling to mimic each other, unless

she concedes an information rent at least to one such type. To contain that rent, she distorts

the production of type �2 away from its �rst-best level. Second, if type �1 receives a rent, then

type �3 might �nd report �1 more attractive than report �2; similarly, if type �3 receives a rent,

then type �1 might �nd report �3 more attractive than report �2: However, given our focus on

�0, the results presented hereafter are those obtained if the second e¤ect is not at work.

Before characterizing this contractual solution, it is useful to denote � �  2;3 (�1; �2) �

 2;3 (�3; �2) and � �
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

.

Proposition 5 Assume that (17) and (16) are satis�ed, whereas (23) is violated. Then, at the
solution to �0, R (�2) = 0. Furthermore:

(1) If f(�3)
f(�1)

> �; then R (�3) = 0 and R (�1) = Rsb
1 ; where:

Rsb
1 �

�
p3 (�1)

p3 (�2)
� p1 (�1)

p1 (�2)

�
p2 (�2)� (	1;3 (�1; �2; �3)� L) :
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(2) If f(�3)
f(�1)

< �; then R (�1) = 0 and R (�3) = Rsb
3 ; where:

Rsb
3 �

�
p1 (�3)

p1 (�2)
� p3 (�3)

p3(�2)

�
p2 (�2)� (	1;3 (�1; �2; �3)� L) :

(3) If f(�3)
f(�1)

= �; then R (�1) 2
�
0; Rsb

1

�
and R (�3) 2

�
0; Rsb

3

�
such that R (�1) = Rsb

1 �
�R (�3).

The optimal production levels are such that q (�t) = qfb (�t) ; 8t = 1; 3; and q (�2) < qfb (�2)

if and only if
d

dq

 
�C (�2; �1)
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� ��C (�2; �3)
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

!
> 0:

Interestingly, considering the three cases in the proposition, we see that, except in a partic-

ular case, P concedes an information rent to only one type. To interpret, consider the pro�ts

assigned to type �2 and the incentives they provide to the extreme types, and reason along

the lines of the �rst-best analysis. First, because � > 0 (given property (22)), it is optimal

to set �2 (�2) = �L to make the con�ict between upward and downward incentive constraints
weakest. Next, it is necessary to establish how �1 (�2) and �3 (�2) should be set, considering

that, given R (�2) = 0, the higher that one such pro�t is the lower that the other must be. An

increase in �3 (�2) ; associated with a decrease in �1 (�2) ; triggers an increase in R (�1) and a

decrease in R (�3) : Intuitively, because type �1 is more likely to draw signal 3 and type �3 is

more likely to draw signal 1, these changes make report �2 more attractive to the former type,

which requires conceding a higher rent to prevent cheating, and less attractive to the latter

type, which allows for a lower rent. Obviously, the converse is true if a decrease is induced in

�3 (�2) ; as coupled with an increase in �1 (�2) : In substance, �1 (�2) and �3 (�2) are used as

tools to reduce R (�1), at the cost of inducing an increase in R (�3), or vice versa. To preserve
incentive compatibility, a variation of one unit in R (�3) must be matched with a variation of

� units in R (�1) in the opposite direction. Because (23) is violated, entailing that there are

no values of �3 (�2) such that (24) is satis�ed together with (25), that pro�t must be picked as

follows:

�3 (�2) 2

24��C (�2; �1) + Lp1(�2)�p1(�1)
p1(�2)

p3(�2)
�
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� � L;
�C (�2; �3) + Lp1(�3)�p1(�2)

p1(�2)

p3(�2)
�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� � L

35 :
In case (1), where the frequency of type �3 is high relative to that of type �1; and the rate of

adjustment of R (�1) to changes in R (�3) is low, it is least costly for P if she sets �3 (�2) to the

highest value of the feasible range and avoids conceding a rent to type �3: In case (2) ; where

the opposite conditions are true, P prefers to set �3 (�2) to the lowest value of the feasible range

so that R (�1) = 0 instead. In case (3), any value of �3 (�2) in the feasible range is indi¤erent

to P because any associated values of the rents R (�1) and R (�3) ; determined as previously

explained, are equally costly to her.

28



To complete the analysis, it must be veri�ed that the incentive constraints whereby the

extreme types are unwilling to mimic each other, which were omitted in �0; are satis�ed. It

turns out that a su¢ cient condition for this is the cost function not being "too concave" with

respect to the type.

Corollary 8 9� > 0 such that if

�C (�2; �1)

��C (�2; �3)
� �; (45)

then: (i) at the solution to �0; the assumption R (�3) = 0 of Proposition 4 is satis�ed; (ii) the

solution to �0 is a solution to �.

As long as (45) holds, the gain of �C (�2; �1) that type �1 obtains, if it announces �2; is

su¢ ciently low relative to the penalty of ��C (�2; �3) that type �3 faces, if it announces �2.
Hence, preventing any of the extreme types from announcing the intermediate type is relatively

cheap, i.e., it does not require giving up much surplus. As a result, there is no incentive for

any of the extreme types to mimic the other, if the other obtains a rent under the conditions

of Proposition 4 and 5. For analogous reason, there is no need to assign a rent to the least

e¢ cient type in case (1) of Lemma 5, as we explained.

6 Conclusion

In a principal-agent model with private information on cost and ex-post public signals, we

showed that the focus on the full-rank condition, the most common approach in the literature, is

not necessarily the best approach to study optimal contractual design. This is due to the agent

being protected by limited liability. Because of that, one cannot abstract from considering

the characteristics of the cost function to assess what contractual attainments are at reach.

Whereas Bose and Zhao [1] identify conditions for �rst-best implementation when the full-

rank condition does not hold, our contribution is to show that, under limited liability, the

possibility of attaining the �rst-best outcome is not necessarily determined by the way in which

the conditional probabilities of the signals depart from the full-rank condition. Moreover, the

existence of an exact relationship between the extent of the liability and the admissible degree

of concavity of the cost function (when this is not convex in the type) involves that the set of

technologies for which �rst best is at reach under limited liability is richer than considered by

GBS.

We highlighted that the principal is faced with two essential issues. First, low (e¢ cient)

types should be faced with su¢ ciently unfair lotteries, as meant to discourage them from exag-

gerating cost. Second, high (ine¢ cient) types should not be faced with particularly attractive

lotteries, which might incentivize them to pretend a lower cost. We found that the contrac-

tual solution - whether the �rst-best or a second-best one - depends on which issue is more
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concerning for the principal. When the second issue is more important, a given contractual

performance is attained with a higher level of liability than would be otherwise. Accordingly,

the level of liability that separates the situations in which the �rst-best outcome is viable from

those in which it is not, also separates the situations in which the �rst issue is preeminent

from those in which the second is preeminent instead. Thus, relative to the existing literature,

the results of our analysis o¤er a wider perspective on the optimal contractual design with

informative signals.

As a general view, our study contributes to shedding light on how to attain incentive

compatibility when the principal faces more than two types of agent and can use more than

two signals in contracting. Our �ndings suggest that, when exploring agency relationships

with informative signals and limited liability, it might be with loss of generality to restrict

attention to the two-type case, or to a binary signal. Nonetheless, by allowing for more than

two signals, we found that it is not only necessary but also su¢ cient to select only three of

them, which display desirable properties, regardless of the exact available number. This points

to the conclusion that a parsimonious but appropriate use of exogenous information is enough

to enhance contracting in a variety of practical instances.
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A The vector h (�t) under property (1)
We show that property (1) implies (10) and (11) for �1 and �T ; and that it does not imply

(10) and (11) for the other types.
Suppose @h (�1) as de�ned in the text. It follows from Farkas� lemma that p (�1) is not

linearly independent of the other vectors of probabilities. Then, there exists a vector (�2; :::; �T );
where �t 2 [0; 1] ; 8t 2 f2; :::; Tg ; and

PT
t=2 �t = 1; such that

ps (�1) = �2ps (�2) + :::+ �Tps (�T ) ; 8s 2 N:

Using this condition for s = 1 and s 6= 1; jointly with property (1), we obtain

p1 (�1) = �2p1 (�2) + :::+ �Tp1 (�T )

or, equivalently,

p1 (�1)

p1 (�2)
= �2

p1 (�2)

p1 (�2)
+ :::+ �T

p1 (�T )

p1 (�2)

> �2
ps (�2)

ps (�2)
+ :::+ �T

ps (�T )

ps (�2)
=
ps (�1)

ps (�2)
:

The inequality p1(�1)
p1(�2)

> ps(�1)
ps(�2)

contradicts property (1) and, hence, the hypothesis that @h (�1).
Therefore, (1) implies h (�1).
Similarly, suppose @h (�T ). Then, there exists a vector (�1; :::; �T�1); where �t 2 [0; 1] ;

8t 2 f1; :::; T � 1g ; and
PT�1

t=1 �t = 1; such that

ps (�T ) = �1ps (�1) + :::+ �T�1ps (�T�1) ; 8s 2 N:

Using this for s = 1 and s 6= 1; jointly with property (1), we obtain

p1 (�T ) = �1p1 (�1) + :::+ �T�1p1 (�T�1)

or, equivalently,

p1 (�T )

p1 (�T�1)
= �1

p1 (�1)

p1 (�T�1)
+ :::+ �T�1

p1 (�T�1)

p1 (�T�1)

< �1
ps (�1)

ps (�T�1)
+ :::+ �T�1

ps (�T�1)

ps (�T�1)
=

ps (�T )

ps (�T�1)
:

The inequality p1(�T )
p1(�T�1)

< ps(�T )
ps(�T�1)

contradicts property (1) and, hence, also the initial hypothesis
that @h (�T ). Therefore, h (�T ) is implied by property (1).
Take any vector p (�t) ; where t =2 f1; Tg. Suppose 9h (�t). Then, there is no vector

(�1; :::; �t�1; �t+1; :::; �T ); where �t 2 [0; 1] 8t 2 f1; :::; t� 1; t+ 1; :::; Tg and
P

t0 6=t �t0 = 1; such
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that
ps (�t) = �1ps (�1) + :::+ �t�1ps (�t�1) + �t+1ps (�t+1) + :::+ �Tps (�T ) ;

which is equivalent to

ps (�t)

ps (�t+1)
= �1

ps (�1)

ps (�t+1)
+ :::+ �t�1

ps (�t�1)

ps (�t+1)
+ �t+1

ps (�t+1)

ps (�t+1)
+ :::+ �T

ps (�T )

ps (�t+1)
: (46)

However, taking p (�t) such that

ps0 (�t)

ps0 (�t+1)

>
p1 (�t)

p1 (�t+1)

>
ps0 (�t)

ps0 (�t+1)
+ �1

�
p1 (�1)

p1 (�t+1)
� ps0 (�1)

ps0 (�t+1)

�
+ :::+ �t�1

�
p1 (�t�1)

p1 (�t+1)
� ps0 (�t�1)

ps0 (�t+1)

�
; 8s0 6= 1;

it is found that both property (1) and the equality in (46) are satis�ed. To see this, �rst use
(46) for s = 1 to rewrite the second inequality here above as

�t+1
p1 (�t+1)

p1 (�t+1)
+ :::+ �T

p1 (�T )

p1 (�t+1)
>

ps0 (�t)

ps0 (�t+1)
+ �1

�
� ps0 (�1)

ps0 (�t+1)

�
+ :::+ �t�1

�
�ps

0 (�t�1)

ps0 (�t+1)

�
= �t+1

ps0 (�t+1)

ps0 (�t+1)
+ :::+ �T

ps0 (�T )

ps0 (�t+1)
:

Next use (46) for s0 to rewrite

�t+1
p1 (�t+1)

p1 (�t+1)
+ :::+ �T

p1 (�T )

p1 (�t+1)
> �t+1

ps0 (�t+1)

ps0 (�t+1)
+ :::+ �T

ps0 (�T )

ps0 (�t+1)
;

which is true by property (1). Hence, there exists a vector (�1; :::; �t�1; �t+1; :::; �T ) and the
initial hypothesis is contradicted, entailing that @h (�t) ; 8t 6= 1; T:

B Derivation of (27) and (28)
Using e�s (� j�0 ) = zs (�)� C (q (�) ; �0) and �s (�) = e�s (� j� ) ; we have

Es [e�s (� j�0 )] = nX
s=1

�s (�) ps (�
0) + C (q (�) ; �)� C (q (�) ; �0) :

Using (3), Es [e�s (� j�0 )] is rewritten as (26). Rewriting (3) as �1 (�) = �Pn
s=2 �s (�)

ps(�)
p1(�)

, (26)
is rewritten as

�C (�; �0) �
X
s 6=1;n

�s (�) ps (�)

�
p1 (�

0)

p1(�)
� ps (�

0)

ps(�)

�
+ �n (�) pn(�)

�
p1 (�

0)

p1(�)
� pn (�

0)

pn(�)

�
;
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hence as

�n (�) pn(�)

�
p1 (�

0)

p1(�)
� pn (�

0)

pn(�)

�
� �C (�; �0)�

X
s 6=1;n

�s (�) ps (�)

�
p1 (�

0)

p1(�)
� ps (�

0)

ps(�)

�
: (47)

Recall that, by assumption, p1(�
0)

p1(�)
> pn(�

0)
pn(�)

if and only if �0 > �: Using this property for �� < �

and �+ > �; (47) is respectively rewritten as (27) and (28).

C Proof of Lemma 1
Recall e�s (� j�0 ) = zs (�)� C

�
qfb (�) ; �0

�
and

Es [e�s (� j�0 )] � nX
s=1

�
zs (�)� C

�
qfb (�) ; �0

��
ps (�

0) : (48)

The �rst-order condition of the agent�s problem, evaluated at �0 = �; is given by:

nX
s=1

�
z0s (�)� Cq

�
qfb (�) ; �

� �
qfb (�)

�0�
ps (�) = 0: (49)

From zs (�) = �s (�) + C
�
qfb (�) ; �

�
; we compute z0s (�) = �0s (�) + Cq

�
qfb (�) ; �

� �
qfb (�)

�0
+

C�
�
qfb (�) ; �

�
; which we then replace into (49) to �nd

C�
�
qfb (�) ; �

�
= �

nX
s=1

�0s (�) ps (�) : (50)

Using (3), we obtain �
Pn

s=1 �
0
s (�) ps (�) =

Pn
s=1 �s (�) p

0
s (�). Using this equality, (50) is

rewritten as

C�
�
qfb (�) ; �

�
=

nX
s=1

�s (�) p
0
s (�) (51)

Suppose that some pro�t �i (�) is changed by "i: Accordingly, �j (�) is changed by "j and
�k (�) by "k such that (PC) is still saturated and the right-hand side of (51) does not vary.
Dropping the argument � everywhere for the sake of shortness, this requires

"jpj = �"ipi � "kpk , "j = �"i
pi
pj
� "k

pk
pj

(52)

"kp
0
k = �"jp0j � "ip

0
i , "k = �"j

p0j
p0k
� "i

p0i
p0k
: (53)

Replacing �rst "k from (53) in (52), then "j from (52) in (53), and rearranging we obtain

"j = �"i
pi
pj

p0i
pi
� p0k

pk
p0j
pj
� p0k

pk

; "k = "i
pi
pk

p0i
pi
� p0j

pj

p0j
pj
� p0k

pk

; (54)
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from which we deduce that "j and "k have di¤erent signs.

D Proof of Lemma 3
Taking the expression of �n (�) pn(�) from (29), plugging into (27) and making use of the

inequalities p01(�)
p1(�)

> p0n(�)
pn(�)

and
pn(��)
pn(�)

>
p1(��)
p1(�)

to rearrange, (27) is rewritten as (31). Similarly,
(28) is rewritten as (32).

E Proof of Lemma 4
The necessity of (33) is obvious. To show su¢ ciency, we compute

lim
�0!�

 s;n (�
0; �) = lim

�0!�

p1(�
0)�p1(�)
�0��
p1(�)

�
ps(�0)�ps(�)

�0��
ps(�)

p1(�0)�p1(�)
�0��
p1(�)

�
pn(�0)�pn(�)

�0��
pn(�)

=

p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

: (55)

Taking �+ ! � and using (55), (33) is rewritten as (31). Similarly, taking �� ! � and using
(55), (33) is rewritten as (32). Hence, (33) boils down to either (31) or (32), entailing that it
is su¢ cient for either such condition to hold.

F Proof of Proposition 3

Derivation of (37)

Using the de�nition of  s;n
�
�+; �

�
, we see that

d s;n(�+;�)
d�+

< 0 if and only if

p01(�+)
p1(�)

� p0s(�+)
ps(�)

p1(�+)
p1(�)

� ps(�+)
ps(�)

<

p01(�+)
p1(�)

� p0n(�+)
pn(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

: (56)

Multiplying the numerator by
�
�+ � �

�
in both sides, subtracting 1 from each side and manip-

ulating further, (56) becomes

ps(�+)�p0s(�+)(�+��)
ps(�)

� p1(�+)�p01(�+)(�+��)
p1(�)

p1(�+)
p1(�)

� ps(�+)
ps(�)

<

pn(�+)�p0n(�+)(�+��)
pn(�)

� p1(�+)�p01(�+)(�+��)
p1(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

:

Using the de�nition of �s (�
0; �) ; this is rewritten as

�s
�
�+; �

�
� �1

�
�+; �

�
p1(�+)
p1(�)

� ps(�+)
ps(�)

<
�n
�
�+; �

�
� �1

�
�+; �

�
p1(�+)
p1(�)

� pn(�+)
pn(�)

; (57)
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which is satis�ed by assumption. Similarly, using the de�nition of  s;n
�
��; �

�
; we see that

d s;n(��;�)
d��

< 0 if and only if

p01(��)
p1(�)

� p0s(��)
ps(�)

ps(��)
ps(�)

� p1(��)
p1(�)

>

p01(��)
p1(�)

� p0n(��)
pn(�)

pn(��)
pn(�)

� p1(��)
p1(�)

: (58)

Multiplying the numerator by
�
� � ��

�
in both sides, subtracting 1 from either side and rear-

ranging, (58) becomes

p1(��)+p01(��)(����)
p1(�)

� ps(��)+p0s(��)(����)
ps(�)

ps(��)
ps(�)

� p1(��)
p1(�)

>

p1(��)+p01(��)(����)
p1(�)

� pn(��)+p0n(��)(����)
pn(�)

pn(��)
pn(�)

� p1(��)
p1(�)

:

Resting on the de�nition of �; this is rewritten as

�s
�
��; �

�
� �1

�
��; �

�
ps(��)
ps(�)

� p1(��)
p1(�)

<
�n
�
��; �

�
� �1

�
��; �

�
pn(��)
pn(�)

� p1(��)
p1(�)

; (59)

which is satis�ed by assumption. Therefore, we have
d s;n(�+;�)

d�+
< 0 and

d s;n(��;�)
d��

< 0, so
that the di¤erence  s;n

�
��; �

�
� s;n

�
�+; �

�
has a lower bound for �� ! � and �+ ! �. Using

(55), the lower bound is found to be zero. Hence,  s;n
�
��; �

�
�  s;n

�
�+; �

�
� 0, 8

�
��; �; �+

	
such that �� < � < �+, and (33) is weakest if �s (�) = �L; 8s 6= 1; n: Replacing in (33) and
rearranging yields (37).

Derivation of (35) and (36)

Setting �s (�) = �n (�) in (27), we see that �n (�) � �L if and only if (36) is satis�ed.
It follows immediately from Lemma 1 that, if �1 (�) violates (LL), then no other vector of
incentive-compatible pro�ts satis�es (LL).
Setting �s (�) = �n (�) in (29), then plugging the resulting expression of �n (�) ; we see that

(27) and (28) are jointly satis�ed if and only if (35) is satis�ed.

G Proof of Corollary 3
Using �s (�) = �L in (29), �n (�) is rewritten as

�n (�) =
L
P

s 6=1;n ps(�)
�
p01(�)
p1(�)

� p0s(�)
ps(�)

�
� C�

�
qfb (�) ; �

�
pn(�)

�
p01(�)
p1(�)

� p0n(�)
pn(�)

� :

Replacing
P

s 6=1;n ps(�) = 1 � (p1(�) + pn(�)) and
P

s 6=1;n p
0
s(�) = � (p01(�) + p0n(�)) ; �n (�) is

further rewritten as ��n (�). Recalling from (3) that �1 (�) = �
Pn

s=2 �s (�)
ps(�)
p1(�)

and using
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�s (�) = �L together with ��n (�) in the expression of �1 (�), we obtain

�1 (�) = L
X
s 6=1;n

ps(�)

p1(�)
�

0@Lp01(�)
p1(�)

� C�
�
qfb (�) ; �

�
pn(�)

�
p01(�)
p1(�)

� p0n(�)
pn(�)

� � L

1A pn(�)

p1(�)
:

Replacing again
P

s 6=1;n ps(�) = 1� (p1(�) + pn(�)) ; �1 (�) is is further rewritten as ��1 (�).
We are left with verifying that ��1 (�) � �L and ��n (�) � �L: The former is true because

p0n (�) < 0: The latter is implied by
p01(�)
p1(�)

> p0n(�)
pn(�)

together with C�
�
qfb (�) ; �

� p1(�)
p01(�)

� L; which
is implied by (36) in turn.

H Proof of Corollary 4

Using (55) and
d s;n(�+;�)

d�+
< 0 (from the proof of Proposition 3), we see that 


�
�+; �

�
< 0,

8�+ > �, so that the term
P

s 6=1;n �s (�) ps(�)

�
�+; �

�
in the right-hand side of (32) in-

creases as �s (�) is decreased. Hence, (32) is relaxed. Further using (55) and
d s;n(��;�)

d��
< 0

(from the proof of Proposition 3), we see that 

�
��; �

�
> 0, 8�� < �, so that the termP

s 6=1;n �s (�) ps(�)

�
��; �

�
in the right-hand side of (31) increases as �s (�) is decreased. Hence,

(31) is tightened.

I Proof of Corollary 5
(a) �n (�

0; �) > �1 (�
0; �) and �1 (�

0; �) > �s (�
0; �). It is immediate to see that (34) is satis�ed.

We next check situations where at least one of these inequalities is not satis�ed.
(b) �n (�

0; �) > �1 (�
0; �) and �1 (�

0; �) < �s (�
0; �). Using these inequalities in (34) and

rearranging, we obtain (39). Because property (1) implies that the right-hand side of (39) is
above one, (39) is satis�ed only if �n (�

0; �) � �1 (�
0; �) > �s (�

0; �) � �1 (�
0; �) , �n (�

0; �) >
�s (�

0; �).
(c) �n (�

0; �) < �1 (�
0; �) and �1 (�

0; �) > �s (�
0; �). Using these inequalities in (34) and

rearranging, we obtain the converse of (39). Because property (1) implies that the right-hand
side of (39) is above one, the converse of (39) is satis�ed if �1 (�

0; �) � �n (�
0; �) < �1 (�

0; �) �
�s (�

0; �), �n (�
0; �) > �s (�

0; �).
(d) �n (�

0; �) < �1 (�
0; �) and �1 (�

0; �) < �s (�
0; �). It is immediate to see that (34) is violated.

Taking (a)�(d) altogether, (34) holds only if �s (�0; �) < max f�1 (�0; �) ; �n (�0; �)g : From (a)
and (c); it is su¢ cient to have either �n (�

0; �) > �1 (�
0; �) > �s (�

0; �) or �1 (�
0; �) > �n (�

0; �) >
�s (�

0; �), hence min f�1 (�0; �) ; �n (�0; �)g > �s (�
0; �). From (b); it is necessary and su¢ cient

that (39) holds if �n (�
0; �) > �s (�

0; �) > �1 (�
0; �) : From (c) ; it is necessary and su¢ cient that

the converse of (39) holds if �1 (�
0; �) > �s (�

0; �) > �n (�
0; �). From (d) ; (34) is violated if

�n (�
0; �) < �1 (�

0; �) < �s (�
0; �).

J Proof of Corollary 6
Replacing �s (�) = �L in (33) and rearranging, (33) is rewritten as (40).
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K Proof of Corollary 7
(37) implies (36) if and only if

�C(�;��)
pn(��)
pn(�)

� p1(�
�)

p1(�)

� ��C(�;�+)
p1(�

+)
p1(�)

� pn(�+)
pn(�)P

s 6=1;n ps(�)
�
 s;n

�
��; �

�
�  s;n

�
�+; �

�� > �C
�
�; ��

�
p1(�)

p1(�)� p1(�
�)

:

Using the de�nition of  s;n (�
0; �) and grouping the terms that include�C

�
�; ��

�
, this becomes

�C
�
�; ��

�24 1
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

+
p1(�)

p1(�)� p1(�
�)

0@ p1(�
+)

p1(�)

P
s 6=1;n ps(�)�

P
s 6=1;n ps(�

+)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

�
p1(�

�)
p1(�)

P
s 6=1;n ps(�)�

P
s 6=1;n ps(�

�)

p1(�
�)

p1(�)
� pn(�

�)
pn(�)

1A35
>

��C
�
�; �+

�
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

Using
P

s 6=1;n ps(�) = 1� p1 (�)� pn (�) and rearranging further yields

�C
�
�; ��

�
p1(�)

p1(�)� p1(�
�)

0@pn(�) + 1� pn(�)� p1(�)

p1(�
+)

�
1� pn(�

+)
�

p1(�)

p1(�
+)

�
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

�
1A >

��C
�
�; �+

�
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

: (60)

Take the expression in brackets in the left-hand side of (60) and factorize pn(�) to develop

pn (�)

0@1 + 1� pn(�)� p1(�)

p1(�
+)

�
1� pn(�

+)
�

p1(�)

p1(�
+)

�
pn (�)

p1(�
+)

p1(�)
� pn(�

+)
�
1A =

p1(�
+)� p1(�)

p1(�
+)� p1(�)

pn(�
+)

pn(�)

:

The converse of (35) is obtained by using this in (60) and rearranging.

L Proof of Lemma 5
We �rst conveniently reformulate the incentive constraints included in the reduced problem

�0; which we next use to write the Lagrangian. The proof of Lemma 5 follows thereafter.

Incentive constraints

(IC) for type �t and report �t0 is speci�ed as

R (�t) � �1 (�t0) p1 (�t) + �2 (�t0) p2 (�t) + �3 (�t0) p3 (�t) + �C (�t0 ; �t) : (61)
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Using the de�nition of R (�t), we write

�1 (�t) =
R (�t)

p1 (�t)
� �2 (�t)

p2 (�t)

p1 (�t)
� �3 (�t)

p3 (�t)

p1 (�t)
: (62)

Specifying (61) for type �1 and report �2; then using (62) for �t = �2 and rearranging, we obtain

�3 (�2) p3(�2) (63)

�
R (�1)�R (�2)

p1(�1)
p1(�2)

��C (�2; �1)� �2 (�2) p2(�2)
�
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

�
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

:

Specifying (61) for type �3 and report �2; then using (62) for �t = �2 and rearranging, we
further obtain

�3 (�2) p3(�2) (64)

�
R (�2)

p1(�3)
p1(�2)

�R (�3) + �C (�2; �3)� �2 (�2) p2 (�2)
�
p1(�3)
p1(�2)

� p2(�3)
p2(�2)

�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

:

Using (62) for �t = �3 in (61) for type �2 and report �3 and rearranging yields

R (�3) �
"
R (�2)��C (�3; �2)�

X
s 6=1

�s (�3) ps (�3)

�
ps (�2)

ps (�3)
� p1 (�2)

p1 (�3)

�#
p1 (�3)

p1 (�2)
: (65)

Using the de�nition of R (�1) ; we write

�3 (�1) =
R (�1)

p3 (�1)
� �2 (�1)

p2 (�1)

p3 (�1)
� �1 (�1)

p1 (�1)

p3 (�1)
: (66)

Replacing in (61) as speci�ed for type �2 and report �1; we �nd

R (�1) �
"
R (�2)��C (�1; �2)�

X
s 6=3

�s (�1) ps (�1)

�
ps (�2)

ps (�1)
� p3 (�2)

p3 (�1)

�#
p3 (�1)

p3 (�2)
: (67)

We rewrite �0 as

Max
fq(�t);�s 6=3(�1);�s 6=1(�t6=1);R(�t)g

X
�t

(S(q (�t))� C (q (�t) ; �t)�R (�t)) f (�t)

subject to

R (�t) � 0; �s 6=1 (�2) � �L; (63); (64); (65) ; (67) :

Lagrangian and optimality conditions

Denote �t the multiplier associated with (PC) when type is �t; 
s (�1) the multiplier associ-
ated with (LL) when signal is s 6= 3 and type is �1; 
s (�3) the multiplier associated with (LL)
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when signal is s 6= 1 and type is �3; � the multiplier associated with (63); � the multiplier
associated with (64); � the multiplier associated with (65); � the multiplier associated with
(67). The Lagrangian of �0 is given by

L (q (�t) ; �s 6=3 (�1) ; �s 6=1 (�2) ; �s 6=1 (�3) ;R (�t))
=

X
�t

(S (q (�t))� C (q (�t) ; �t)�R (�t)) f (�t)

+
X
s 6=3


s (�1) (�s (�1) + L) +
X
s 6=1


s (�3) (�s (�3) + L) +
X
�t

�tR (�t)

+�

24R (�1)�R (�2)
p1(�1)
p1(�2)

��C (�2; �1)� �2 (�2) p2 (�2)
�
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

�
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� �3 (�2) p3(�2)

35
+�

24�3 (�2) p3(�2) + R (�3)�R (�2)
p1(�3)
p1(�2)

��C (�2; �3) + �2 (�2) p2 (�2)
�
p1(�3)
p1(�2)

� p2(�3)
p2(�2)

�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

35
+�

 "
R (�2)��C (�3; �2)�

X
s 6=1

�s (�3) ps (�3)

�
ps (�2)

ps (�3)
� p1 (�2)

p1 (�3)

�#
p1 (�3)

p1 (�2)
�R (�3)

!

+�

 "
R (�2)��C (�1; �2)�

X
s 6=3

�s (�1) ps (�1)

�
ps (�2)

ps (�1)
� p3 (�2)

p3 (�1)

�#
p3 (�1)

p3 (�2)
�R (�1)

!
:

The �rst-order conditions with respect to R (�1) ; R (�2) ; R (�3) ; �2 (�2) and �3 (�2) are given
by

(i) : 0 = �1 � f (�1)�
 
� � �

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

!

(ii) : 0 = �2 � f (�2) +
p3 (�1)

p3 (�2)
� �

p1(�1)
p1(�2)

�

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

+
p1 (�3)

p1 (�2)

 
� � �

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

!

(iii) : 0 = �3 � f (�3)�
 
� � �

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

!

(iv) : 0 = 
2 (�2) + p2 (�2)

 
�

p1(�3)
p1(�2)

� p2(�3)
p2(�2)

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� �

p2(�1)
p2(�2)

� p1(�1)
p1(�2)

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

!
(v) : 0 = 
3 (�2) + p3(�2) (�� �)

(vi) : 0 = 
s (�3)� ps (�3)

�
ps (�2)

ps (�3)
� p1 (�2)

p1 (�3)

�
p1 (�3)

p1 (�2)
;8s 6= 1

(vii) : 0 = 
s (�1)� ps (�1)

�
ps (�2)

ps (�1)
� p3 (�2)

p3 (�1)

�
p3 (�1)

p3 (�2)
;8s 6= 3
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The �rst-order conditions with respect to q (�1) ; q (�2) and q (�3) are given by

(viii) : S 0 (q (�1)) = Cq (q (�1) ; �1) +
�

f (�1)

d�C (�1; �2)

dq (�1)

p3 (�1)

p3 (�2)

(ix) : S 0 (q (�2)) = Cq (q (�2) ; �2) +
�

f (�2)

d�C(�2;�1)
dq(�2)

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� �

f (�2)

�d�C(�2;�3)
dq(�2)

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

(x) : S 0 (q (�3)) = Cq (q (�3) ; �3) +
�

f (�3)

d�C (�3; �2)

dq (�3)

p1 (�3)

p1 (�2)

Proof of case (1) and case (2)

From (v) we see that either 
3 (�2) > 0 and � < �; or 
3 (�2) = 0 and � = �. It follows that
� � �. Using this inequality in (iv); together with (22), it follows that 
2 (�2) > 0. Hence,
the solution is such that either 
3 (�2) > 0; 
2 (�2) > 0 and � < �, or 
3 (�2) = 0; 
2 (�2) > 0
and � = �. Accordingly, we have case (1) ; where �2 (�2) = �3 (�2) = �L; and case (2) ; where
�2 (�2) = �L < �3 (�2). Because � < � in case (1) ; there is no con�ict between (64) and (65).
If (16) and (17) were satis�ed, then �rst best would be implemented. Because �rst best is not
implemented, case (1) exists only if (16) and (17) are violated. Because � = � in case (2) ; (64)
and (65) are both binding. If (23) were satis�ed, then we know from the �rst-best analysis
that (64) and (65) would both be slack. But this contradicts the result that these constraints
are both binding. Hence, case (2) exists only if (23) is violated.
We are left with assessing how �s (�1), 8s 6= 3; and �s (�3), 8s 6= 1; are set. From (vi)

and (vii) we see that 
s (�1) > 0, 8s 6= 3; and 
s (�3) > 0, 8s 6= 1. Hence, at optimum,
�1 (�1) = �2 (�1) = �L and �2 (�3) = �3 (�3) = �L.

M Proof of Proposition 4
Because (17) and (16) are violated, case (1) of Lemma 5 applies. Recall from the proof of

Lemma 5 that 
3 (�2) > 0, 
2 (�2) > 0 and � < �. Because � < �, � > 0 and (63) is binding.
Because 
3 (�2) > 0 and 
2 (�2) > 0, �2 (�2) = �3 (�2) = �L. Replacing in (63) we obtain

R (�1) = R (�2)
p1 (�1)

p1 (�2)
+ �C (�2; �1)� L

p1 (�2)� p1 (�1)

p1 (�2)
: (68)

We now show that � = 0; which entails that (67) is slack. Replacing �s (�1) = �L; 8s 6= 3;
from Lemma 5, (67) is rewritten as

R (�1) � R (�2)
p3 (�1)

p3 (�2)
��C (�1; �2)

p3 (�1)

p3 (�2)
+ L

p3 (�1)� p3 (�2)

p3 (�2)
: (69)

Replacing (68), (69) further becomes

R (�2)

�
p3 (�1)

p3 (�2)
� p1 (�1)

p1 (�2)

�
+ L

�
p3 (�1)

p3 (�2)
� p1 (�1)

p1 (�2)

�
� �C (�2; �1) + �C (�1; �2)

p3 (�1)

p3 (�2)
:

40



Because R (�2) � 0 and p3(�1)
p3(�2)

> p1(�1)
p1(�2)

, this is strictly satis�ed if

��C (�1; �2)
�C (�2; �1)

>
p3 (�2)

p3 (�1)
:

Knowing that Cq� (�; �) > 0 and that p03 (�) < 0, the above inequality holds if q (�1) > q (�2) at
the solution. Because this is the case, indeed, we can conclude that � = 0.
Replacing �s (�1) = �L; 8s 6= 3; from Lemma (5), (65) is rewritten as

R (�3) � R (�2)
p1 (�3)

p1 (�2)
��C (�3; �2)

p1 (�3)

p1 (�2)
+ L

p1 (�3)� p1 (�2)

p1 (�2)
: (70)

Moreover, recalling that �s (�2) = �L; 8s 6= 1; (64) is rewritten as

R (�3) � R (�2)
p1 (�3)

p1 (�2)
+ �C (�2; �3) + L

p1 (�3)� p1 (�2)

p1 (�2)
: (71)

Taking together (70) and (71), we �nd (43).
We now show that � > 0. Take �rst � < �

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

. It follows from (ii) and � = 0 that

�2 > 0, hence R (�2) = 0. Replacing R (�2) = R (�3) = 0, (70) is rewritten as

�C (�3; �2)
p1 (�3)

p1 (�3)� p1 (�2)
� L:

Suppose that � = 0 and replace in (x): We see that q (�3) = qfb (�3) ; and the above condition
coincides with (17) as speci�ed for �t0 = �2. This contradicts the assumption that (17) is
violated. Hence, if � < �

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

, it must be � > 0. Take now � � �
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

. If � = 0,

then it must be � = 0. Replacing � = � = 0 in (ii), again we �nd that �2 > 0 and we end up
with a contradiction. Hence, if � � �

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

; then again it must be � > 0; hence, (70) is

binding. Replacing R (�3) = 0 in (70), which is binding, we derive (42). Using (42) in (68), we
further derive (41).

N Proof of Remark 1
Recall from the proof of Proposition 4 that (70) and (71) imply (43).
Take �rst � � �

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

. It follows from (iii) that �3 > 0, hence R (�3) = 0. Take next

� < �
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

. From (ii) and � = 0 it follows that �2 > 0, hence R (�2) = 0. Moreover,

because � < �
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

, it must be � > 0; hence, (71) is binding. Replacing R (�2) = 0 and

�s 6=1 (�2) = �L, (71) is rewritten as

R (�3) = �C (�2; �3) + L
p1 (�3)� p1 (�2)

p1 (�2)
: (72)
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Suppose that R (�3) > 0. From (72) it is necessary to have

��C (�2; �3)
p1 (�2)

p1 (�3)� p1 (�2)
< L: (73)

Recall that R (�2) = 0 and replace in (68). We see that R (�1) � 0 if and only if

�C (�2; �1)
p1 (�2)

p1 (�2)� p1 (�1)
� L: (74)

From (73) and (74) it is further necessary that (44) be violated. Hence, if (44) is satis�ed, the
hypothesis that R (�3) > 0 leads to a contradiction.

O Proof of Proposition 5
Because (23) is violated whereas (17) and (16) are satis�ed, case (2) of Lemma 5 applies.

Recall from the proof of Lemma 5 that 
3 (�2) = 0; 
2 (�2) > 0 and � = �. Because � = � > 0,
(63) and (64) are both binding. Because 
3 (�2) = 0 < 
2 (�2) ; it is �3 (�2) > �L = �2 (�2) at
optimum.
Given that � = � > 0; one has � = � = 0. It follows from (ii) that �2 > 0, hence R (�2) = 0.

Moreover, (i) and (iii) are respectively rewritten as

(i0) : 0 = �1 � f (�1) +
�

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

(iii0) : 0 = �3 � f (�3) +
�

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

:

Take f(�3)
f(�1)

= �. Replacing f (�3) = �f (�1) in (iii0) ; we obtain

f (�1) =
�3
�
+

�=�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

:

Using this in (i0); we further obtain ��1 = �3. Hence, either �1 = �3 = 0; or �1 > 0 and �3 > 0:
We found that �2 > 0. Hence, if �1 > 0 and �3 > 0; then �rst best is implemented, which leads
to a contradiction. Therefore, �1 = �3 = 0.
Take f(�3)

f(�1)
> �. Using f (�3) > �f (�1) in (iii0) ; we obtain

�3
�
+

�=�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

> f (�1) (75)

Using (75) in (i0), we see that �1 < (�3=�). Hence, �3 > 0 and so R (�3) = 0.
Take f(�3)

f(�1)
< �. Using f (�3) < �f (�1) in (iii0) ; we obtain the converse of (75). Using it in

(i0) ; we see that �1 > (�3=�) : Hence, �1 > 0 and so R (�1) = 0.
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Replacing R (�2) = 0 and �2 (�2) = �L in (63) and (64), which are binding, we obtain

R (�1) = �C (�2; �1)� Lp2 (�2)

�
p2 (�1)

p2 (�2)
� p1 (�1)

p1 (�2)

�
+ �3 (�2) p3(�2)

�
p3 (�1)

p3 (�2)
� p1 (�1)

p1 (�2)

�
(76)

R (�3) = �C (�2; �3) + Lp2 (�2)

�
p1 (�3)

p1 (�2)
� p2 (�3)

p2 (�2)

�
� �3 (�2) p3(�2)

�
p1 (�3)

p1 (�2)
� p3 (�3)

p3(�2)

�
:(77)

If f(�3)
f(�1)

> �; so that R (�3) = 0, then from (77) we obtain

�3 (�2) =
Lp1(�3)�p1(�2)

p1(�2)
+�C (�2; �3)

p3(�2)
�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� � L

Replacing in (76), we �nd R (�1) = Rsb
1 . If

f(�3)
f(�1)

< �; so that R (�1) = 0, then from (76) we
obtain

�3 (�2) =
Lp1(�2)�p1(�1)

p1(�2)
��C (�2; �1)

p3(�2)
�
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� � L:

Replacing in (77), we �nd R (�3) = Rsb
3 . If

f(�3)
f(�1)

= �; then by rewriting (77) for �3 (�2) we
obtain

�3 (�2) =
�C (�2; �3) + Lp2 (�2)

�
p1(�3)
p1(�2)

� p2(�3)
p2(�2)

�
p3(�2)

�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� � R (�3)

p3(�2)
�
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

� :
Replacing in (76), we �nd R (�1) = Rsb

1 � �R (�3).

P Proof of Corollary 8
The su¢ ciency of (45) to have R (�2) = 0 is immediate from Remark 1. To show the

su¢ ciency of (45) for the incentive constraints omitted in �0 to be satis�ed, we consider the
two cases of Lemma 5 one by one.

Case (1)

Recall from Lemma 5 that �2 (�3) = �3 (�3) = �L. With this, (IC) for type �1 and report
�3 is speci�ed as

R (�1) � R (�3)
p1 (�1)

p1 (�3)
+ �C (�3; �1)� L

p1 (�3)� p1 (�1)

p1 (�3)
: (78)

Recall from the proof of Proposition 4 that R (�1) is given by (68). Replacing in (78) together
with R (�3) and rearranging, we obtain

R (�2) � (�C (�3; �1)��C (�2; �1))
p1 (�2)

p1 (�1)
� L

p1 (�3)� p1 (�2)

p1 (�3)
;
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which holds for any R (�2) � 0 because q (�2) � q (�3) at optimum so that �C (�3; �1) �
�C (�2; �1).
(IC) for type �3 and report �1 is speci�ed as

R (�3) � �1 (�1) p1 (�3) + �2 (�1) p2 (�3) + �3 (�1) p3 (�3) + �C (�1; �3) :

Recalling from Lemma 5 that �2 (�3) = �3 (�3) = �L; this is rewritten as

R (�3) � R (�1)
p3 (�3)

p3 (�1)
+ �C (�1; �3)� L

p3 (�1)� p3 (�3)

p3 (�1)
: (79)

Replacing (68), we obtain

R (�3) � R (�2)
p1 (�1)

p1 (�2)

p3 (�3)

p3 (�1)

+�C (�2; �1)
p3 (�3)

p3 (�1)
+ �C (�1; �3)� L

p3 (�3)

p3 (�1)

�
p3 (�1)

p3 (�3)
� p1 (�1)

p1 (�2)

�
:

This is implied by (71) if and only if

R (�2)
p1 (�1)

p1 (�2)

�
p1 (�3)

p1 (�1)
� p3 (�3)

p3 (�1)

�
(80)

� �C (�2; �1)
p3 (�3)

p3 (�1)
��C (�2; �3) + �C (�1; �3)� L

p1 (�1)

p1 (�2)
:

Rewrite the right-hand side as

��C (�2; �1)
�
�C (�2; �3)��C (�1; �3)

�C (�2; �1)
� p3 (�3)

p3 (�1)

�
� L

p1 (�1)

p1 (�2)

and observe that �C(�2;�3)��C(�1;�3)
�C(�2;�1)

� 1 because

C (q (�1) ; �3)� C (q (�1) ; �1) � C (q (�2) ; �3)� C (q (�2) ; �1) ;

which is true provided C�q (�; �) > 0: Further observe that p3(�3)p3(�1)
< 1 under property (1). Hence,

(80) is satis�ed 8R (�2) � 0.

Case (2)

Recall that (IC) for type �1 and report �3 is speci�ed as (78). From the proof of Proposition
(5), R (�1) = Rsb

1 � �R (�3). Using this equality in (78), we obtain

Rsb
1 � R (�3)

�
p1 (�1)

p1 (�3)
+ �

�
+�C (�3; �1)� L

p1 (�3)� p1 (�1)

p1 (�3)
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Because Rsb
1 > 0, this is satis�ed if

R (�3) �
��C (�3; �1) + Lp1(�3)�p1(�1)

p1(�3)

p1(�1)
p1(�3)

+ �
:

This is tightest for R (�3) = Rsb
3 . Replacing the expression of R

sb
3 and rearranging, it becomes

	1;3 (�1; �2; �3) �
��C (�3; �1) + Lp1(�3)�p1(�1)

p1(�3)�
p1(�1)
p1(�3)

+ �
��

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

�
p2 (�2)� 

+ L

Observing that the right-hand side is positive and using the de�nition of 	1;3 (�1; �2; �3), we
see that 9� > 0 such that if (45) is satis�ed, then the incentive constraint is satis�ed.
Recall that (IC) for type �3 and report �1 is given by (79). Using again R (�1) = Rsb

1 �
�R (�3), (79) is rewritten as

R (�3) �
�
Rsb
1 � �R (�3)

� p3 (�3)
p3 (�1)

+ �C (�1; �3)� L
p3 (�1)� p3 (�3)

p3 (�1)
:

This is tightest for R (�3) = 0. Replacing R (�3) = 0 and the expression of Rsb
1 and then

rearranging, we rewrite

	1;3 (�1; �2; �3) �
��C (�1; �3) + Lp3(�1)�p3(�3)

p3(�1)

p3(�3)
p3(�1)

�
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

�
p2 (�2)� 

+ L:

The right-hand side is positive. Hence, using the de�nition of 	1;3 (�1; �2; �3) ; we see that
9� > 0 such that if (45) is satis�ed, then the incentive constraint is satis�ed.
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