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Abstract 
 
This paper examines the degree of persistence in UK inflation by applying long-memory 
methods to historical data that span the period from 1660 to 2016. Specifically, we use both 
parametric and non-parametric fractional integration techniques, that are more general than 
those based on the classical I(0) vs. I(1) dichotomy. Further, we carry out break tests to detect 
any shifts in the degree of persistence, and also run rolling-window and recursive regressions to 
investigate its evolution over time. On the whole, the evidence suggests that the degree of 
persistence of UK inflation has been relatively stable following the Bretton Woods period, 
despite the adoption of different monetary regimes. The estimation of an unobserved-
components stochastic volatility model sheds further light on the issues of interest by showing 
that post-Bretton Woods changes in UK inflation are attributable to a fall in the volatility of 
permanent shocks. 
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1. Introduction 

Inflation persistence has been extensively analysed in the literature because its properties have 

implications for both theoretical models and monetary policy. Central banks aim to anchor 

expectations in order to lower persistence and reduce the output costs of disinflation (Moreno 

and Villar, 2010), since high persistence is often due to backward-looking expectations in the 

presence of price and wage rigidities (Gali and Gertler, 1999). Alternatively, it might reflect 

the fact that private agents have limited information about the objectives of the central bank, 

which underlines the importance of transparency for monetary policy (Walsh, 2007). 

 After World War II (WWII), the degree of inflation persistence has been high in 

several countries (Miles et al., 2017), but there has been controversy over whether it has 

remained stable throughout the post-WWII period. Empirical tests based on autoregressive 

(AR) models, namely the approach most frequently used in the literature, suggest that it may 

have decreased when central banks started to follow inflation-targeting policies. However, 

studies based on such models usually find it difficult to reject the hypothesis that inflation has 

a unit root. Moreover, according to Pivetta and Reis (2007) and Stock and Watson (2007, 

2010), no significant change in persistence can be detected over the post-WWII period if one 

accounts for uncertainty around point estimates or distinguishes between persistent and 

transitory changes in inflation. 

 The aim of the present paper is to provide further evidence on the stochastic behaviour 

of inflation by using long-memory (fractional integration) techniques to analyse the UK 

experience. The historical data for inflation in this country span a much longer time period 

than those for others, and therefore the UK experience is particularly suitable to examine 

persistence with long-memory methods. In particular, our sample includes more than 350 

annual observations, from the Restoration of the English monarchy in the second half of the 

17th century until 2016. The advantage of using long-range dependence methods is that they 
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do not require imposing the assumption of a unit root or a simple AR process, and therefore 

are much more general and flexible than the autoregressive-moving average (AR(I)MA) 

models most commonly used in the literature. In addition, in order to examine any possible 

changes in persistence, we also test for breaks and estimate persistence in the corresponding 

subsamples, and then we apply rolling-window or recursive methods to capture other forms of 

time variation. Finally, with the aim of shedding further light on our findings for the post-

WWII period (during which inflation dynamics have been a source of controversy) we 

estimate the unobserved-components stochastic volatility outlier-adjusted (UCSVO) model of 

Stock and Watson (2016). The chosen fractional integration framework already represents an 

improvement relative to ARMA modelling, and the UCSVO model also enables us to 

interpret the evidence in terms of permanent or transitory changes in inflation. 

 The layout of the remainder of the paper is as follows. Section 2 reviews the literature, 

Section 3 outlines the methodology, Section 4 describes the data, and Section 5 discusses the 

results. Finally, Section 6 offers some concluding remarks. 

 

2. Literature Review 

The period following WWII has been characterised in many countries by high persistence 

(Miles et al., 2017). Theorists have followed two main approaches to explain this stylised fact 

(Meenagh et al., 2009). In New Keynesian DSGE models (e.g., Christiano et al., 2005) 

persistence is directly related to the specification of the Phillips curve and is not affected by 

changes in monetary regime. By contrast, on the basis of the Lucas (1976) critique one would 

expect economic agents to revise their decision rules in response to policy changes and 

therefore the reduced-form parameters of structural DSGE models, including inflation 

persistence, to change over time. Meenagh et al. (2009) report evidence confirming that 

persistence varies across regimes and conclude that models with little nominal rigidity are the 
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most suitable to account for its behaviour. Dixon and Kara (2006) argue that the distribution 

of contract lengths explains inflation persistence better than indexation. 

Numerous empirical studies have analysed inflation persistence using different 

approaches, but mainly estimating ARMA models. Papers on US inflation initially focused on 

point estimates, and found that inflation persistence had declined after the 1980s (Cogley and 

Sargent, 2002). However, subsequent studies allowing for uncertainty around point estimates 

concluded that it had remained stable (Pivetta and Reis, 2007). More recently, Stock and 

Watson (2007, 2010) have suggested a method to separate transitory and permanent 

components of inflation and reconcile the previous two findings. Stock and Watson (2016) 

refined this method further by including a model-based adjustment for large inflationary 

spikes (i.e., outliers).1  

As for UK inflation in particular, some studies have focused on nonlinearities 

(Clements and Sensier, 2003; Arghyrou et al., 2005), whilst others have analysed its 

behaviour under different monetary regimes (e.g., Nelson, 2001, 2009; and Nelson and 

Nikolov, 2004). Benati (2008) examined inflation both in the UK (from 1718 to 2006) and in 

other countries in order to understand whether inflation persistence could be deemed 

structural in the sense of Lucas (1976). His results, based on both reduced-form and structural 

New-Keynesian models, do not support a structural interpretation of persistence, which is 

measured by estimating AR models as in much of the existing literature.2 

The issue of seasonality is addressed by Osborn and Sensier (2009), who find that both 

seasonal patterns and persistence in (monthly) UK inflation have changed over time; 

specifically, both a univariate model and a Phillips curve representation of UK inflation 

                                                           
1 Stock and Watson (2007) use a different method to adjust for possible outliers that requires knowing in 
advance whether large inflationary spikes are mean-reverting. 
2 Note, however, that Benati (2008) found reduced-form evidence that US inflation was highly persistent after 
the Volcker stabilisation period, a result that is consistent with those of both Cogley and Sargent (2002) and 
Pivetta and Reis (2007). 
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suggest the presence of a structural break that can be associated with the introduction of 

inflation targeting in October 1992; the reduction of inflation persistence after 1993 is seen as 

an indication of the success of the Bank of England’s monetary policy. 

As reported by Miles et al. (2017), UK inflation has behaved rather similarly to US 

inflation over the time period for which data are available for both countries, namely since the 

beginning of World War I (WWI). Specifically, both their level and volatility were initially 

rather high, but went down over time, especially during the Great Moderation (i.e., in the 

1990s). Inflation volatility then increased again during the Great Recession brought about by 

the global financial crisis of 2007-8, when it reached values similar to those of the Great 

Depression of 1929. According to Miles et al. (2017), the only notable difference between the 

experience of these two countries is that, in the UK, the period of low volatility that 

characterised the 1990s had actually started with the end of the Bretton Woods monetary 

system, whilst this occurred much later in the case of US inflation. 

 

3. Econometric Methodology 

We estimate the following model: 

  (1) 

where yt stands for the rate of inflation, α and β are unknown coefficients corresponding 

respectively to the intercept and a linear time trend, the de-trended series xt and the error ut are 

assumed to be I(d) and I(0) respectively, and d is an unknown parameter, to be estimated 

together with α and β.  

We examine the cases of both uncorrelated (white noise) and autocorrelated 

(Bloomfield, 1973) errors,2 and estimate three different specifications of the model: i) without 

deterministic terms, setting α = β = 0 a priori, in eq. (1); ii) with an intercept, with α being 

                                                           
2The model of Bloomfield (1973) is a simple (non-parametric) approach that approximates highly parameterised 
ARMA models and is highly suitable in the context of fractional integration (see, e.g., Gil-Alana, 2004). 

,,...,2,1,)1(, TtuxLxty tt
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unknown and β = 0 a priori; and iii) with a linear time trend, with α and β in eq. (1) both being 

unknown. 

Regardless of the case considered, the model in eq. (1) implies that yt is a stationary 

variable only if d < 0.5; otherwise, i.e., for d ≥ 0.5, it is not covariance-stationary and is 

highly persistent.3 In the latter case, yt can either be mean-reverting (i.e., d < 1) or not. 

Therefore, since d is a real-value parameter, one can assess the degree of persistence of 

inflation with more accuracy than by using the competing AR(I)(MA) models, which have 

been frequently employed in the literature. In particular, the estimation of d enables one to 

distinguish between unit root and near-unit root processes. We use the parametric procedure 

of Robinson (1994) that yields Whittle estimates of d in the frequency domain (Dahlhaus, 

1989), along with the non-parametric approach of Bloomfield (1973) when allowing for 

autocorrelation in the error term.4 

After obtaining these two sets of results for the whole sample period, we estimate d 

using a rolling-window approach to detect any changes in the fractional degree of integration 

and, therefore, any possible time-variation in the persistence of inflation. In order to obtain 

reliable estimates, the window width is chosen to be 60 years. In addition we also estimate d 

with a recursive approach, starting with a sample of 60 observations, and adding recursively 

one more at a time. The possibility of structural breaks in the same fractional integration 

context is also investigated. 

Finally, to gain additional insights into our results for the last part of the sample period 

(i.e., the post-WWI subsample), we estimate a UCSVO model. When trying to assess the 

(in)stability of inflation persistence, the literature has mostly focused on the post-WWI 

                                                           
3 It is nonstationary in the sense that the variance of the partial sums increase in magnitude with d. 
4 Very similar results were obtained when using other more recent approaches (Sowell, 1992; Beran, 1995; 
Lobato and Velasco, 2007). The reason for choosing the method of Robinson (1994) is that it is the most 
efficient in the Pitman sense against local departures, and, unlike the other methods, it remains valid even in 
nonstationary contexts (d ≥ 0.5). 
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period; the UCSVO framework enables one to analyse that issue in terms of permanent and 

transitory changes in inflation. In particular, the assumption behind the UCSVO model is that 

inflation can be decomposed into (i) a trend component following a martingale process and 

(ii) transitory shocks. Both the permanent shocks affecting the trend and the transitory ones 

are assumed to have a time-varying variance; a correction for outliers is also used in the case 

of the latter, which is useful to reduce the probability of a single large shock being taken as a 

signal of a more systematic increase in the volatility of transitory shocks. 

The UCSVO model is estimated with Bayesian methods, with the posterior 

distribution of the variables of interest being obtained using a Markov chain Monte Carlo 

(MCMC) algorithm. In particular, we use the algorithm proposed by Stock and Watson 

(2016), which improves the accuracy of the estimates for two reasons. First, the posterior 

distributions of the stochastic volatilities are approximated with an accurate 10-component 

Gaussian mixture (Omori et al., 2007). Second, the algorithm is devised to avoid the general 

mistake found in the implementation of models with stochastic volatility by Del Negro and 

Primiceri (2015). Moreover, the framework of Stock and Watson (2016) is particularly 

suitable for our purposes, since it was developed to fit post-WWII US data, and, as already 

mentioned, Miles et al. (2017) documented that US inflation behaved very similarly to UK 

inflation during the last 100 years. See Appendix B for details about both the UCSVO model 

(Section B.1) and its estimation (Section B.2). 

 

4. Data Description 

The series examined is annual headline CPI inflation; the source is the Bank of England’s 

historical macroeconomic dataset.5 Following Miles et al. (2017), we start our analysis in 

1660, which is the year of the Restoration of the British monarchy and precedes by a few 

                                                           
5 “A millennium of macroeconomic data”, version 3.1. 
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decades the de facto adoption of the Gold Standard monetary regime in 1717. Therefore, our 

sample period goes from 1660 to 2016. 

 Figure 1 displays the series under investigation. Visual inspection suggests that UK 

inflation was highly volatile around zero and not very persistent until approximately the start 

of the 20th century; both its level and degree of persistence have instead been higher since the 

official end of the Gold Standard (i.e., 1914). 

[Insert Figure 1 and Table1 about here] 

In order to obtain a clearer picture of how the level and volatility of inflation evolved 

over time, we report in Table 1 summary statistics for six subsamples. These are: the period 

preceding the de jure Gold Standard, the de jure Gold Standard, the Interwar period, the 

Bretton Woods regime, the interim regime between the Bretton Woods system and the 

adoption of inflation targeting by the Bank of England, and the inflation targeting regime. The 

table shows that inflation was generally low and volatile during the first three periods, with 

the interwar period being deflationary. Moreover, it declined over time until the Bretton 

Woods period, during which its volatility kept falling whilst inflation itself was generally 

higher than previously. After the end of the Bretton Woods system inflation volatility rose 

even further, until the adoption of inflation targeting by the Bank of England reduced both its 

level and volatility, with inflation stabilising around 2%. 

[Insert Figure 2 about here] 

Figure 2 reports some preliminary evidence on inflation persistence based on standard 

measures used in the existing literature, namely the Pearson statistic and the first-order 

autocorrelation coefficient in an OLS regression, applying both rolling and recursive window 

methods. Both suggest that inflation persistence was generally not significantly different from 

zero until approximately 1850. Subsequently, and most notably after WWI, persistence 

jumped and then reached a plateau. It is noteworthy that, while the rolling-window estimates 
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suggest that it increased slightly also over the last part of our sample (i.e., during the Great 

Moderation and after 2000), the recursive window ones imply that the last upward correction 

in the post-WWI era occurred in the 1980s. 

 

5. Empirical Results 

5.1  Fractional Integration Analysis 

Table 2 reports the estimates of d under the assumption of uncorrelated and autocorrelated 

errors, respectively, for the three models previously mentioned. The other estimated 

coefficients are shown in Table 3. The results indicate that a time trend is required regardless 

of the specification adopted for the error term. Under the assumption of white noise residuals, 

the estimated value of d is 0.22, which is significantly higher than 0 and implies long-memory 

behaviour. By contrast, when assuming that the error term ut is autocorrelated as in the 

exponential spectral model of Bloomfield (1973), the estimated value of d is approximately 

equal to -0.08 and the I(0) null hypothesis (short memory) cannot be rejected, namely a lower 

degree of persistence is found in this case.6 

[Insert Table 2 and Table 3 about here] 

In the Appendix, Figure A.1 shows a slightly upward trend for both uncorrelated (in 

Figure A.1i) and autocorrelated errors (in Figure A.2ii); note, however, that the estimated 

coefficients (see Table 3) were obtained under the assumption of a constant differencing 

parameter over the whole sample period. 

[Insert Table 4 about here] 

Next we examine the possibility of structural breaks. For this purpose, we use first the 

Bai and Perron (2003) approach, and then the methods proposed by Gil-Alana (2008) and 

                                                           
6 This is a common finding for macro series in the case of autocorrelated disturbances and is attributable to the 
competition between the fractional differencing parameter and that associated with the autocorrelation structure 
in accounting for the degree of dependence in the data (see, e.g., Gil-Alana and Robinson, 1997). 
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Hassler and Meller (2014), both specifically designed for the case of fractional integration. 

These methods are based on minimising the sum of squared residuals over different 

subsamples. The results indicate that there is a single break in the series around 1933. 

Therefore, we split the sample into the two corresponding subsamples, and estimate the 

differencing parameter for each of them. The results are displayed in Table 4. There appears 

to be a very significant increase in the degree of persistence after the break. In particular, 

under the white noise assumption for the error term, the estimated value of d increases from 

0.12 in the first subsample to 0.73 in the second one. When allowing for autocorrelation in the 

disturbances, the estimates are much smaller, but there is once again a sharp increase from 

0.29 in the first subsample to 0.34 in the second one. Note that these results provide evidence 

of long memory (d > 0) in the second subsample, regardless of the assumption made about the 

error term. 

Even when allowing for breaks, the model still imposes a constant parameter for the 

degree of integration in each subsample with a sudden break around 1933. Next, we 

investigate if the differencing parameter has remained stable or not over the whole sample as 

well as the subsamples considered. In Figure 3, we display the 60-year rolling window 

estimates of d, once again for the two cases of uncorrelated and autocorrelated errors. The 

results are broadly consistent; the lower values in the latter case might be due to the 

competition between the differencing parameter and the Bloomfield one in describing the 

degree of dependence. As can be seen, inflation persistence was rather stable from 1660 till 

approximately 1776. Then, there was a slight increase till 1917-18, followed by a sharp jump 

to a stable higher level, and a further slight increase from 1981. 

Given the results in Figure 3, we use once again Gil-Alana’s (2008) approach to test 

for breaks in the series corresponding to the rolling-window estimates and obtain additional 

information on the evolution of persistence over time. The results are conclusively in favour 
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of three breaks in these series, specifically, in 1776, 1917 and 1980. Table 5 reports the 

estimates of d (and their 95% confidence interval) for the corresponding subsamples.  

[Insert Figure 3 and Table 5 about here] 

Table 5i and Table 5ii show the results for uncorrelated and autocorrelated 

disturbances, respectively. The degree of persistence appears to have increased monotonically 

over time. In particular, in the case of uncorrelated errors, the estimated value of d increases 

from -0.25 in the first subsample to 0.13 in the second, 0.84 in the third and 0.99 in the fourth 

one, and the I(1) null hypothesis cannot be rejected in the last two subsamples. With 

autocorrelated disturbances, the estimate of d is initially equal to -0.89, and then moves over 

time to -0.48, -0.06 and finally 0.00; however, the corresponding confidence intervals are very 

wide and therefore the differences between the estimated parameters are not statistically 

significant. 

To complete the fractional integration analysis, we re-estimate d, this time recursively, 

starting with a sample of 60 observations, (1660-1719) and adding one observation at a time. 

The estimated values of d (along with their 95% bands) for the case of uncorrelated errors are 

displayed in Figure 4(i). The time trend (not shown) becomes significant from the 98th 

subsample onwards, namely from the 1660-1816 subsample onwards. The estimate of d 

remains around -0.2 from the first subsample till the one incorporating the year 1822; then it 

jumps, and remains stable (slightly below 0) till the subsample ending in 1917. Subsequently 

it increases once more, and it remains significantly above 0 thereafter. It is noteworthy that 

the recursive estimates d are systematically lower than the first-order autocorrelation 

coefficients displayed in Figure 2, which suggests that standard AR(1) models might 

overestimate the degree of inflation persistence. 
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The recursive estimation under the alternative assumption of autocorrelated 

disturbances yields a similar picture, although the estimated values of d are about 0.20 smaller 

in all cases (see Figure 4ii). 

[Insert Figure 4 and Table 6 about here] 

 Finally, the Gil-Alana (2008) tests on the recursive estimates of d imply that the break 

dates are 1822, 1917 and 1975. The estimated values of d for each subsample are reported in 

Table 6; it can be seen that d increases from the first to the second and then the third 

subsample, whilst it remains stable in the last one. In particular, with uncorrelated 

disturbances, the estimates of d for the four subsamples are -0.05, 0.51, 0.77 and 0.78, 

respectively; therefore there is evidence of long memory (d > 0) in the last three subsample. 

Under the assumption of autocorrelation, the corresponding values are -0.87, -0.25, -0.06 and 

-0.05, and the I(0) null hypothesis cannot be rejected for any of the last three subsamples. 

 To summarise, our results suggest that UK inflation has been highly persistent since 

the end of WWI. Moreover, the rolling- and recursive-window estimates of the fractional 

degree of integration d imply that the null hypothesis of a stable degree of persistence since 

WWI cannot be rejected. The slight increase in inflation persistence detected for the years 

after the 1980s by the rolling-window estimation is likely to reflect the fact that this method 

tends to overestimate the effects of the last regime change detected by the break tests.  

 

5.2  UCSVO Analysis  

Our findings for the latter part of the sample are consistent with those of Pivetta and Reis 

(2006) and Stock and Watson (2007, 2010) for the US, even though both these studies 

adopted econometric strategies that differ from ours. In particular, Stock and Watson (2007) 

proposed analysing trend inflation using an unobserved-components stochastic volatility 

model, which allows for an economically meaningful interpretation of the evolution of 
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inflation in terms of permanent and transitory shocks. Next we describe the results obtained 

applying the most recent version of their model, namely the UCSVO model (Stock and 

Watson, 2016), which embeds a correction for outliers. 

We estimate this model over two subsamples, namely: (a) 1918-2016 and (b) 1950-

2016. The first is chosen on the basis of the previous empirical analysis: visual inspection of 

the data (Figure 1) suggests that the biggest change in the behaviour of UK inflation occurred 

at the end of WWI, and our tests have in fact detected a statistically significant break in 1917 

in the context of both the rolling-window and recursive analysis. The choice of the second 

subsample follows the literature, with most studies examining the period starting around 1950 

when the Bretton Woods system had just been put in place.  

[Insert Figure 5 about here] 

Figure 5 shows the results for both subsamples; specifically, it displays the variance of 

permanent and transitory shocks respectively and also the estimated outliers, which are 

allowed to occur every two years (see Section B.3 of the Appendix for the estimated trends 

and further results). It appears that the volatility of permanent shocks declined over time, 

whilst that of transitory shocks remained constant, regardless of whether the starting point of 

the estimation is the end of WWI or a few years after the beginning of Bretton Woods. The 

only slight differences between the results based on the first and second subsample are the 

narrower confidence bands and slightly smaller median estimate in the case of the latter. The 

difference in the level is not statistically significant, whilst the volatility of permanent changes 

in inflation was very high at the beginning of the 20th century, it remained so in the interwar 

period and during the 1970s, and then converged towards zero after the 1990s. Finally, in the 

most recent years (during the Great Recession and its aftermath) UK inflation appears to be 

driven mainly by outliers, the volatility of transitory shocks remaining essentially the same as 

in the past. 
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 These findings suggest that inflation targeting has reduced the impact of permanent 

shocks on UK inflation, whilst transitory shocks have played a major role as a driving factor. 

The latter signal changes in relative prices, e.g. following commodity price shocks; they 

typically have negative but short-lived effects on consumption that are often difficult for 

monetary authorities to control. The main change appears to have been the decline in the 

volatility of permanent shocks rather than in their persistence, which is consistent with our 

previous finding that the degree of fractional integration remained more or less the same after 

1917. Moreover, the break in UK inflation in the early 1980s detected by our tests is 

associated with a relatively high volatility of permanent shocks and some large outliers (see 

Figure 5). 

 

6. Conclusions 

This paper uses historical data spanning the period from 1660 to 2016 to examine the degree 

of persistence in UK inflation. We use long-range dependence (parametric and non-

parametric) techniques, more specifically fractional integration models that are more general 

than those based on the classical I(0) v. I(1) dichotomy found in most studies and provide 

more accurate estimates of persistence. In addition we carry out break tests to detect any shifts 

in the degree of persistence and also run rolling-window and recursive regressions to examine 

its evolution over time. Finally, we estimate a UCSVO model to distinguish between 

permanent and transitory shocks to inflation. 

 On the whole, the evidence suggests that UK inflation can be characterised as a long-

memory stationary process with a relatively stable degree of persistence in the period 

following the Bretton Woods period, despite the adoption of different monetary regimes. In 

particular, there is no clear evidence that inflation targeting has brought about a lower degree 

of inflation persistence, contrary to what claimed in other studies, such as Osborn and Sensier 
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(2009); the fact that these and related studies are based on relatively standard ARMA models 

and analyse a much shorter time series might account for the different findings. The UCSVO 

estimates suggest that inflation targeting might have reduced to some extent the impact of 

permanent shocks on inflation; however, it is their higher volatility as well as the presence of 

some sizeable outliers that appear to account for the break detected in the early 1980s. 

Future work will aim to investigate possible nonlinearities, for instance applying the 

method of Cuestas and Gil-Alana (2016) based on Chebyshev polynomials in time. 
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Figure 1: UK inflation rate (1660-2016) 

 
 

 
 
 
Figure 2: Rolling and recursive first-order autocorrelation coefficients 
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Table 1: Historical summary statistics  

 
Pre-"de 

jure" Gold 
Standard: 

"De jure" 
Gold 

Standard: 

Interward 
period 

Bretton 
Woods 

Bretton 
Woods to 
inflation 
targeting 

Inflation 
targeting 

Mean 0.55 0.03 -1.89 4.37 9.18 2.09 

Median 0.39 0.20 -0.80 3.88 7.50 2.06 

Min -25.19 -14.40 -14.00 0.60 3.20 0.04 

Max 

 

30.02 15.66 3.40 10.65 22.70 4.46 

Standard 
deviation 

7.60 4.36 4.12 2.49 5.33 1.07 

The entries are expressed as percentages. The historical breakdown is as follows: pre-“de jure” Gold Standard 
from 1660 to 1820, “de jure” Gold Standard from 1821 to 1914, Interwar period from 1921 to 1939, Bretton 
Woods from 1944 to 1971, Bretton Woods to inflation targeting from 1972 to 1991, inflation targeting from 
1992 onwards. 

 

 

 
Table 2: Estimates of d for the UK inflation rate 

 No regressors An intercept A linear time trend 

White noise 0.24   (0.16,  0.36) 

 

0.25   (0.17,  0.35) 

 

0.22   (0.13,  0.35) 

 Bloomfield 0.02  (-0.04, 0.09) 0.02  (-0.04, 0.10) 

 

-0.08   (-0.16, 0.02) 

 In bold, the significant results according to the deterministic terms. 

 

 

 

Table 3: Estimated coefficients for the UK inflation rate 

 No regressors An intercept A linear time trend 

White noise 0.22   (0.13,  0.35) 

 

-0.96071   (-2.56) 0.01405   (1.77) 

Bloomfield -0.08   (-0.16, 0.02) 

 

-1.10705  (-2.41) 0.01482  (6.49) 
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Table 4: Estimated coefficients for the UK inflation rate 
i)   White noise errors 

 No regressors An intercept A linear time trend 

(1660 -  1933) 0.12   (0.00,  0.29) 

 

  

0.12   (0.00,  0.29) 

 

  

0.12   (-0.01,  0.29) 

 

  
(1934 -  2016) 0.74   (0.57,  1.00) 

 

  

0.73   (0.57,  1.00) 

      

 

  

0.73   (0.56,  1.00) 

 ii)   Autocorrelated errors 

 No regressors An intercept A linear time trend 

(1660 -  1933) -0.27  (-0.35, -0.16) 

 

  

-0.29  (-0.39, -0.15) 

 

  

-0.32  (-0.42, -0.18) 

 

  
(1934 -  2016) 0.37   (0.13,  0.65) 

 

  

0.34   (0.13,  0.65) 

 

  

0.34   (0.11,  0.65) 

 

  

In bold, the significant results on the basis of the deterministic terms. 
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  Figure 3: Rolling-window estimates of d with 60 years of observations. 
i) No autocorrelation (white noise) 

 
ii) Autocorrelation (Bloomfield) 
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     Table 5: Rolling window estimates of d for each subsample 
i) White noise errors 

Period Dates No regressors An intercept A linear trend 

1st subsample 1660 – 1776 -0.14 

(-0.28,  0.10) 

-0.13 

(-0.30,  0.10) 

-0.25 

(-0.46,  0.07) 

2nd subsample 1777 – 1917 0.13 

(-0.06,  0.47) 

0.13 

(-0.06,  0.45) 

0.13 

(-0.07,  0.46) 

3rd subsample 1918 – 1980 0.63 

(0.42,  1.00) 

0.84 

(0.55,  1.11) 

0.85 

(0.61,  1.11) 

4th subsample 1981 – 2016 1.03 

(0.57,  1.84) 

0.99 

(0.50,  1.63) 

0.99 

(0.71,  1.84) 

ii)  Autocorrelated errors 

Period Dates No regressors An intercept A linear trend 

2nd subsample 1777 – 1917 -0.47 

(-0.64,  0.28) 

-0.39 

(-0.50,  0.23) 

-0.48 

(-0.62,  0.33) 

3rd subsample 1918 - 1980 0.13 

(0.06,  0.44) 

0.20 

(-0.09,  1.08) 

-0.06 

(-0.39,  1.09) 

4th subsample 1981 - 2016 -0.47 

(-0.97,  0.35) 

-0.13 

(-0.42,  0.21) 

0.00 

(-0.38,  0.95) 

In bold, the significant results on the basis of the deterministic terms. 
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Figure 4: Recursive estimates of d starting with 60 observations and adding one 
observation at a time 

i)  No autocorrelation (white noise) 

 
ii) Autocorrelation (Bloomfield) 
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     Table 6: Recursive estimates of d for each subsample  
i) White noise errors 

Period Dates No regressors An intercept A linear trend 

1st subsample 1660 – 1822 -0.05 

(-0.16,  0.15) 

-0.05 

(-0.17,  0.16) 

-0.11 

(-0.29,  0.14) 

2nd subsample 1823 – 1917 0.54 

(0.27,  0.85) 

0.51 

(0.26,  0.81) 

0.53 

(0.30,  0.82) 

3rd subsample 1918 – 1975 0.70 

(0.45,  1.04) 

0.77 

(0.50,  1.07) 

0.77 

(0.48,  1.07) 

4th subsample 1976 – 2016 0.71 

(0.49,  1.13) 

0.60 

(0.40,  1.18) 

0.78 

(0.54,  1.16) 

ii)  Autocorrelated errors 

Period Dates No regressors An intercept A linear trend 

1st subsample 1660 – 1822 -0.32 

(-0.40,  -0.22) 

-0.37 

(-0.45,  -0.25) 

-0.87 

(-1.04,  -0.57) 

2nd subsample 1823 – 1917 -0.40 

(-0.93,  0.37) 

-0.34 

(-0.74,  0.33) 

-0.25 

(-0.69,  0.40) 

3rd subsample 1918 – 1975 0.12 

(-0.28,  0.70) 

0.13 

(-0.32,  0.76) 

-0.06 

(-0.49,  0.75) 

4th subsample 1976 – 2016 -0.04 

(-0.38,  0.49) 

-0.02 

(-0.31,  0.32) 

-0.05 

(-0.32,  0.59) 

       In bold, the significant results on the basis of the deterministic terms. 
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                 Figure 5: Time-varying volatilities predicted by the UCSVO model 

”σ permanent shock” is the volatility of changes in the permanent component of inflation, and “σ transitory 
shock” is the volatility of changes in the transitory component. After an initial burn-in phase of 10000 iterations, 
the results are based on 50000 replications, saving every 10 draws. 
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Appendix A 

   Figure A.1: UK inflation rate and estimated trends 
i) White noise case 

 
ii)    Autocorrelation case 
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Appendix B 

B.1  UCSVO Model 

A UCSVO model (Stock and Watson, 2016) for trend inflation in the UK is as follows:  

𝑦𝑦𝑡𝑡 = 𝜏𝜏𝑡𝑡 + 𝜀𝜀𝑦𝑦,𝑡𝑡         (B.1) 

𝜏𝜏𝑡𝑡 = 𝜏𝜏𝑡𝑡−1 + 𝜎𝜎∆𝜏𝜏,𝑡𝑡𝜂𝜂𝑡𝑡        (B.2) 

𝜀𝜀𝑦𝑦,𝑡𝑡 = 𝜎𝜎𝑦𝑦,𝑡𝑡𝑠𝑠𝑡𝑡𝜁𝜁𝑡𝑡         (B.3) 

where yt is the observed time series for inflation, τt is a martingale trend, εy,t is a transitory 

shock and σy,t is the corresponding volatility, σΔτ,t is the volatility of shocks to the trend, st is 

an iid random variable that generates outliers, and, finally, ηt, and ζt are idiosyncratic shocks. 

The two volatilities σy,t and σΔτ,t follow a stochastic process as below: 

∆ln𝜎𝜎𝑦𝑦,𝑡𝑡 = 𝛾𝛾𝑦𝑦𝑢𝑢𝑦𝑦,𝑡𝑡        (B.4) 

∆ln𝜎𝜎∆𝜏𝜏,𝑡𝑡 = 𝛾𝛾∆𝜏𝜏𝑢𝑢∆𝜏𝜏,𝑡𝑡,        (B.5) 

where 𝑢𝑢𝑦𝑦,𝑡𝑡 and 𝑢𝑢∆𝜏𝜏,𝑡𝑡 are random variables so that (ζt , ηt, uy,t , uΔτ,t) is iidN(0, I4). 

The assumption embedded in eq. (B.3)-(B.4) is that transitory shocks are serially 

uncorrelated and their volatility evolves over time according to a logarithmic random-walk 

process. Conditional on such a process, transitory shocks are modelled as a mixture of normal 

distributions through the outlier scale factor st. The distribution generating this outlier scale 

factor is Bernoulli, so that st = 1 with probability 1 – p, and st = U[2,10] otherwise. The 

volatility of permanent shocks also follows a logarithmic random walk process. 
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B.2  Estimation 

We estimate model (B.1)-(B.5) with Bayesian methods, which require priors for γy, γΔτ, p, s 

and the initial values of τt, Δlnσy,t and ΔlnσΔτ,t. We set these priors and calibrate the estimation 

following Stock and Watson (2016), who applied the UCSVO model to US data. Their setup 

is also suitable for the UK since, as recently documented by Miles et al. (2017), UK and US 

inflation have behaved very similarly during the last 100 years. However, we make a different 

assumption about the frequency of outliers compared to Stock and Watson (2016).3  

The conjugate prior for p is B(α, β), and, by assumption, α and β reflect information 

from a subsample of 10 years, with outliers occurring every two years. The U[2,10] prior for 

the factor s is approximated with an equally-spaced grid of 9 points. The priors for γy and γΔτ 

are uninformative uniform priors, and their calibration allows to scale the standard deviation 

of annual changes in inflation. Given this scaling, lnσy,t, lnσΔτ,t ~ U[0,0.4], and we approximate 

this distribution using equally spaced grids of 5 points. Finally, the priors for τ0, Δlnσy,0 and 

ΔlnσΔτ,0 are independent diffuse priors. 

 The mean and quantiles of the Bayesian posterior distributions are approximated using 

the Markov chain Monte Carlo (MCMC) algorithm, whereby lnηt
2, lnζt

2 ~ lnχt
2. The 

approximation of the lnχt
2 is handled with a mixture of normal distributions, using the 10-

component Gaussian mixture of Omori et al. (2007).4 The analysis is based on 60000 

iterations, the first 10000 of which constitute the burn-in phase. Of the remaining 50000 

iterations, we save one every 10 draws. 

 

                                                           
3 Note that nevertheless our assumption produces very similar results to those of Stock and Watson (2016 - see 
Section B.3 in this appendix).  
4 See Stock and Watson (2016) for the specific sequence of steps. We partition the vector of variables for which 
we need to obtain posterior distributions in the same way as these authors.   
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B.3  Additional results 

In the paper, we report the posterior distributions for σy,t, σΔτ,t, and st for both the 1917-2016 

subsample and the 1950-2016 subsample. In this appendix, we complete the set of results, 

reporting the posteriors for τt, γy, γΔτ and p. See Figure B.1, Table B.1 and Table B.2, 

respectively. 

 Furthermore, we repeated the estimation assuming that an outlier can occur every four 

years. This is the assumption of Stock and Watson (2016), who focus on quarterly data for the 

US over the period from 1960 to mid-2015. Our data for UK inflation are instead annual, and 

the reason for our baseline case of an outlier every two years is that when making this 

assumption the MCMC algorithm predicts large inflationary spikes in the 1940s and the 

1980s, whilst this is not the case when the prior for p is associated with outliers occurring 

every four years. The estimated confidence bands around the median volatility of transitory 

shocks are slightly larger in the latter than in the former case, but all the other results are very 

similar.  
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Figure B.1: Trend inflation (τt) predicted by the UCSVO model 

 
This graph displays the mean of the draws of the posterior distributions. 

Table B.1: Selected values of the posterior distributions of γy and γΔτ 
Value 

(for variance) 
Prior 

(for volatility) Posterior for γy  Posterior for γΔτ 

  Post-1917 
Subsample 

Post-1950 
Subsample 

Post-1917 
Subsample 

Post-1950 
Subsample 

0 0.2 0.24 0.24 0 0 

0.1 0.2 0.24 0.23 0.1 0 

0.2 0.2 0.21 0.21 0.01 0 

0.3 0.2 0.18 0.17 0.18 0.05 

0.4 0.2 0.13 0.15 0. 8 0.95 

 
Table B.2: Posterior distributions of p for a selection of quantiles 

Quantile Posterior for the 
Post-1917 Subsample 

Posterior for the 
Post-1950 subsample 

0.17 0.1 0.12 

0.5 0.15 0.19 

0.83 0.22 0.28 
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