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Abstract 

The aim of this study is to investigate the possible contagion risk coming from energy, food 

and metals commodity markets and to assess risk spillovers from biofuel to food commodity 

markets and from crude oil to food markets. To this purpose, we use the delta Conditional 

Value-at-Risk ΔCoVaR) approach recently proposed by Adrian and Brunnermeier (2016) 

based on quantile regression. This novel methodology allows us first to identify a measure of 

contagion risk for energy, food and metals commodity markets, then to detect whether the 

risk contribution for a given market is significant, while distinguishing between tail events 

driven by financial factors, economic fundamentals or both, and finally, to assess whether 

the contagion effect of one market is significantly larger than the one of another market. The 

results show that energy, food and metals commodity markets transmit contagion within 

markets and there are spillovers from crude oil and biofuel to food markets. In particular, oil 

is systemically riskier than the other markets in causing economic instability. Oil is also more 

important than biofuel in affecting food markets. It emerges that contagion risk is mainly 

triggered by financial factors for energy and metal markets, while financial and economic 

fundamentals are relevant for food markets.  
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1. Introduction  

Systemic risk and the spreading of contagion have attracted considerable attention among 

researchers and policy makers since the outburst of the global financial crisis in 2008. 

Generally, systemic risk describes the vulnerability of the financial sector in which adverse 

consequences of internal shocks can spread and even magnify within the entire sector and 

then spill over in a wave-like manner to the rest of the economy. The global financial crisis 

has, indeed, demonstrated that breakdowns in individual parts or components of the 

financial system could have disruptive effects for the entire financial network and contagion 

effects could spread out to the economy at large.  

Starting from this background, the present study aims to move the attention from the 

traditional financial sectors to commodity markets by assessing the drivers of contagion risk 

and the existence of spillovers across markets. Differently from the extant literature, that 

has extensively investigated the transmission of risks from one institution (bank or financial 

company) to another within the same sector (financial or banking), we focus on whether and 

to which extent the risk of distress in one market, namely energy, food and metals 

commodity, transmits across markets and to the whole economy. We further assess whether 

financial determinants, economic fundamentals or both factors drive contagion risk and if 

risk spillovers take place from energy to food commodity futures markets distinguished in 

their main components: maize, rapeseed, soybean, soybean-oil, sugar and wheat.  

In our analysis, the risk of contagion coming from commodity markets is caused by extreme 

price shocks (i.e., abnormal price rises and price falls located on the far tails of the return 

distribution) of a given commodity that can spill over across markets and affect negatively 

the entire economy. Technically, the risk of extreme commodity prices and their impact on 

the economy are identified by the ΔCoVaR measure of risk, recently proposed by Adrian and 

Brunnermeier (2016). Thus, ΔCoVaR captures the potential for the propagation of specific 

market distress across the economy by gauging the increase in tail co-movements. 

The rationale for examining the contribution to contagion risk coming from energy, food and 

metals sectors is driven by the fact that commodity trading could cause an analogous degree 

of risk as that one caused by traditional financial markets. For instance, with the new 

European market infrastructure regulation (EMIR) package, the EU has highlighted that 

systemic risk can be channelled from energy and food sectors to the traditional financial 

sector through the use of derivatives, thus the EU has envisaged that the scope of financial 

regulation could be expanded towards commodity markets. In addition, there is a certain 

similarity between commodity and traditional financial markets. Both are crucial to all the 

sectors of the economy through production, consumption and financial contracts, and the 

scarcity in one of them is susceptible to trigger serious damage to the economy. Indeed, 

demand for energy and food is usually inelastic, showing evidence of the strong dependence 

of the economy on these commodity prices. Integration of commodity market and 
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conventional asset markets may further allow shocks to easily propagate and trigger waves 

of contagion. 

The study provides several contributions to the extant literature. It explicitly examines how 

commodity markets contribute to contagion risk. In this sense, contagion risk quantifies the 

extent to which a tail event in a particular commodity market can generate and spread out a 

tail event to another market and to the rest of the economy.  

The focus on how commodity markets can induce contagion risk has hardly been the subject 

of research. To our knowledge, the studies by Raynaud and Lautier (2012) and by Pierret 

(2013) have flagged the possibility of a systemic risk in the energy markets, but a thorough 

analysis that involves contagion risks of energy, food and metals markets and transmission 

of abnormal price ups and downs across markets has so far not been undertaken. This is 

important given the interlinkages between oil, biofuels and food commodity markets and 

their effects on the whole economy. Such an analysis is, in fact, crucial as it makes possible 

to take into account the eventuality that a price shock occurring in a specific market can 

spread, not only through its own market, but also to other markets, and vice-versa. A further 

novelty is that we try to establish which of the commodity market contributes the most to 

contagion risk and which factors drive it. An additional novelty of the study relates to the use 

of the ΔCoVaR risk measure to detect impacts and interactions between energy and food 

markets, and to examine dependence during extreme market events generated by economic 

fundamentals, financial factors or a combination of the two. This methodology has been 

recently proposed in the systemic risk literature, but applied only to financial institutions or 

to the financial sector (Bernal et al. 2014). We extend it to commodity markets with some 

differences to account for their specificity. It should be mentioned that studying contagion 

risk associated to commodity markets is particularly relevant since, quoting Serra and Gil 

(2012), commodity “price increases are the most likely to have relevant negative economic 

impacts”. 

The remainder of the study is organized as follows: Section 2 reviews the existing literature 

on risk measures, Section 3 depicts the adopted methodology, Section 4 describes the data 

used in the study and sketches their descriptive statistics, Section 5 presents the empirical 

analysis and discusses the results, and Section 6 concludes. 
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2. Literature Review 

Contagion occurs when extreme price shocks materializing in one specific commodity market 

become so widespread to reach a systemic dimension. Put differently, strong spillover and 

ripple effects operate during turbulent times so that the distress in a particular market 

transmits to other commodity markets and ultimately to the whole economy. 

In order to detect contagion and its determinants we draw from the literature of systemic 

risk1 measures2. Well-known examples of risk measures include: 1. the Systemic Risk (SRISK) 

Index (Acharya et al. 2012; Acharya et al. 2010; Brownlees and Engle 2012), 2. the Game 

theoretic ‘Shapley Value’ (Tarashev et al. 2010; Drehmann and Tarashev 2013), 3. the 

ΔCoVaR measure (Adrian and Brunnermeier 2016).  

The SRISK index of an individual firm is determined by the expected capital shortage a 

financial firm would experience in case of a significant market decline over a given time 

horizon. The shortage depends on the firm’s degree of leverage, its size and its equity loss 

conditional on a market decline, which is also known as Marginal Expected Shortfall (MES). 

This risk measure can be considered as a ‘top-down measure’ given that it tries to assess the 

impact of distress occurring at the level of the financial system on an individual financial 

institution. 

The Shapley value (SV) is a very general methodology developed in the context of 

cooperative games, which consists in allocating the output (gains or losses, i.e., ‘the shared 

value’) produced by a group, among its members (players) in a way that reflects fairly their 

individual contributions. The share of the aggregated value attributed to a particular player 

is the SV of this player. Applied to the financial system, the SV methodology allocates the 

total risk of the aggregated financial system (the shared value) to individual institutions (the 

players). The allocations are based on each institution’s marginal contribution to the overall 

risk. The systemic importance of each institution is hence its Shapley value. Institutions with 

higher systemic importance will have a higher SV than others. 

A rather different approach underpins the ΔCoVaR measure, which has been suggested by 

Adrian and Brunnermeier (2016) as a way to measure the systemic importance of 

institutions and possible contagion effects. Indeed, the prefix ‘Co’ stands for Conditional, 

Contagion or Co-movement. ΔCoVaR gauges, thus, the severity of distress in the system, 

conditional on distress in a given institution or in a group of institutions. In this sense, it can 

be considered as a ‘bottom-up measure’ of risk. 

There is no perfect methodology that precisely measures the contributions of individual 

commodity market shocks to contagion risk. However, we adopt the ΔCoVaR approach since 

                                                      
1
 Systemic risk arises if the distress in one a bank or group of financial institutions threatens the functioning of 
the entire financial system and then spills over to the rest of the economy (Hellwig1998). 

2
 See Bisias et al. (2012) for a comprehensive survey. 
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it can be seen as a measure more closely capturing contagion risks, while SRISK is a measure 

that more closely captures the exposure to common shocks that affect the whole financial 

system. In addition, the ΔCoVaR approach offers great flexibility for evaluating risk spillovers 

and interconnectedness across markets, and, given that it relies on high-frequency data, it is 

a highly reactive risk measure. 

In what follows, we will first describe the use of ΔCoVaR in the context of financial systemic 

risk and then adapt it to commodity markets and to the case of biofuel/crude oil-related 

price transmission.  
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3. CoVaR Methodology 

Let {𝑅𝑡
𝑠𝑦𝑠𝑡𝑒𝑚

}
𝑡
and {𝑅𝑡

𝑖}
𝑡
denote the time-series of log- price returns3 of the financial system 

(measured by the stock market returns) and the log-returns of a financial institution i, 

respectively 

Given some critical level 𝜏, the 𝐶𝑜𝑉𝑎𝑟𝑠𝑦𝑠𝑡𝑒𝑚|𝑖  is the Value-at-Risk (VaR) of the financial 

system conditional (Co) on an event affecting institution i, which is materialized by the log-

returns for this institution (Ri) being equal to its level of VaR for a 𝜏𝑖
𝑡ℎ quantile (i.e., 

𝑅𝑖 = 𝑉𝑎𝑅𝑅𝑖(𝜏𝑖)). The Value-at-Risk is a probabilistic measure that evaluates the potential 

loss in value/returns of a risky asset or portfolio over a defined period (e.g., one day) for a 

given confidence interval (e.g., 95%). For instance, if 1 day-VaR on an asset is 1 million with 

95% confidence level, there is a only a 5% chance that the value of the asset will drop more 

than 1 million over any given day. The VaR is the maximum loss of value, which statistically 

corresponds to the lower (left) tail of the unconditional value/return distribution with a 5% 

cumulative value (Figure 1). 

 

 

Figure 1: The Value-at-Risk 

 

The 𝐶𝑜𝑉𝑎𝑟𝑠𝑦𝑠𝑡𝑒𝑚|𝑖(𝜏) is, thus, defined by the τth quantile of the conditional probability 

distribution of log-returns of the system (Rsystem) (Figure 2). Formally,  

 ℙ(Rsystem ≤ CoVaRsystem|i(τ)|Ri = VaRRi(τi)) = τ 

and  

 ℙ(Ri ≤ VaRRi(τi)) = τi 

                                                      
3
Price returns Rt are daily logarithm price differential, i.e., Rt = ln St – ln St-1 where St is the price of the stock at 
time t. 
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Figure 2: 𝑪𝒐𝑽𝒂𝒓 

 

The actual measure gauging the effect of an extreme event on the financial system is given 

by the difference between the 𝐶𝑜𝑉𝑎𝑅 of the system when a given financial institution i is in 

distress – i.e., when it is at a critical tail level 𝜏𝑖 – and the 𝐶𝑜𝑉𝑎𝑅 of the same financial system 

when the institution i is at a ‘normal’ or uncritical level, such as 50%, i.e., when i is at his 

median state. Hence, the measure in question is defined as:  

 𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑖(𝜏) = 𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑅𝑖 =𝑉𝑎𝑅
𝑅𝑖(𝜏𝑖)(𝜏) − 𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑅𝑖 =𝑉𝑎𝑅

𝑅𝑖(50%)(𝜏) 

In short, the  𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑖(𝜏) measures the risk materializing at the complete system 

when the institution i is in distress relative to a situation where i is at its median (or normal 

state). We can think the  𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑖(𝜏) as the ‘systemic risk contribution’ of the financial 

institution i since, intuitively, it quantifies the increase in the risk of the financial system 

when the institution i experiences extreme events. 

We transpose the ΔCoVaR methodology applied in the financial sector to commodity 

markets with three main differences.  

First, we consider in our application the whole economy as ‘the system’ proxied by the 

Standard & Poor’s 500 (S&P), since, as described in Section 4, it mirrors the global economic 

activity. Crude oil (O), food (F), biofuels (B), all metals (M) play the role of ‘institution i’. In 

this sense, we assess the impact on the whole economy of adverse shocks (or the risk of 

distress) affecting one of the different commodity markets. 

Second, for each ‘institution i’ we look at both the left and right tail of each commodity 

distribution (rather than just the left tail used in financial applications), while we still 

consider the left tail of the system (Figure 3). The reason stems from the fact that in our 

setting distress in commodity markets occurs when prices are extremely high or extremely 

low, while in financial applications a crisis takes place when a bank (or a financial institution) 

records extreme losses. For our system (the S&P 500 index), distress (or economic 
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instability) occurs when it registers losses, as in the case of financial application, therefore 

we are interested in the left tail of its distribution. 

 

 

Figure 3: 𝑪𝒐𝑽𝒂𝒓 for commodity market analysis 

 

Third, we distinguish between 𝛥𝐶𝑜𝑉𝑎𝑅 measures driven by financial variables, 𝛥𝐶𝑜𝑉𝑎𝑅 

measures driven by economic fundamentals and 𝛥𝐶𝑜𝑉𝑎𝑅 measures triggered by both factors 

to establish which factors explain tail dependence between the system and institutions. 

Hence, the finding that commodities price shocks driven by financial factors are significant 

could have relevant policy implications in terms of regulating commodity futures markets. 

We develop our analysis in few stages. Initially, we evaluate energy, food and metals 

markets contagion risk via 𝛥𝐶𝑜𝑉𝑎𝑅, so that we build four risk measures:  𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑂, 

 𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝐹,  𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝐵, and  𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑀, with system={S&P}. In this phase, 

we distinguish tail dependence driven by financial contagion vs. economic fundamentals 

factors. 

We then evaluate whether extreme prices in energy, food and all metals market can affect 

the entire system, i.e., we test whether energy, food and all metals markets contagion risk is 

statistically significant. Technically, this implies running a formal test of significance with null 

hypothesis:  

 𝐻0:     𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑖(𝜏) = 0,           𝑖 ∈ {𝐹, 𝑂, 𝐵, 𝑀},         𝜏 ∈ 𝒯 ⊂ (0, 1) (1) 

We proceed with a formal test of dominance to rank the most risky markets in terms of 

contagion. The test of dominance has the following null hypothesis:  

 𝐻0:     |𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑖(𝜏)| ≤ |𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑗(𝜏)|,    𝑖 ∈ {𝐹, 𝑂, 𝐵, 𝑀},   𝜏 ∈ 𝒯 ⊂ (0, 1)  (2) 
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In other words, this test enables us to establish which market among crude oil, food, biofuel 

and all metals, has the major impact on the entire economy. 

Given the interlinkages between energy and food markets, we further evaluate if risk 

spillovers exist from energy to food markets. In particular, we assume that the single food 

commodity plays the role of the system and energy commodities are the ‘institutions’4. It is 

worthwhile noticing that, this time for both system and ‘institutions’, we look at the right tail 

of their return distributions, given that abnormal increases in energy prices can lead to 

extreme price upswings in each food commodity market (Figure 4). 

Again, we run significance tests for disaggregated food products with null hypotheses:  

 𝐻0:  𝛥𝐶𝑜𝑉𝑎𝑅𝑘|𝑂(𝜏) = 0,   (3) 

 𝐻0:  𝛥𝐶𝑜𝑉𝑎𝑅𝑘|𝐵(𝜏) = 0,   (4) 

with  

𝑘 ∈ {𝑚𝑎𝑖𝑧𝑒, 𝑟𝑎𝑝𝑒𝑠𝑒𝑒𝑑, 𝑠𝑜𝑦𝑏𝑒𝑎𝑛,   𝑠𝑜𝑦𝑏𝑒𝑎𝑛 − 𝑜𝑖𝑙, 𝑠𝑢𝑔𝑎𝑟, 𝑤ℎ𝑒𝑎𝑡},   𝜏 ∈ 𝒯 ⊂ (0, 1)  

Rejection of such hypotheses means that crude oil and/or biofuel markets have an impact on 

specific food markets (i.e., there are risk spillovers from O to commodity market k or from B 

to commodity market k). 

Besides, we implement dominance tests with the null hypothesis: 

 H0:     |ΔCoVaRk|O(τ)| ≤ |ΔCoVaRk|B(τ)|,     τ ∈ 𝒯 ⊂ (0, 1) 

The latter test is useful to determine whether crude oil returns have a larger impact than 

biofuel returns on food commodity k, with k{maize, rapeseed, soybean, soybeanoil, sugar, 

wheat}. 

                                                      
4
We consider maize, rapeseed, soybean, soybean-oil, sugar, and wheat since they fuel the production of 
biofuels. We do not consider the aggregate food commodity index as it includes also products such as coffee 
and cocoa that are not used in biofuel production. 
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Figure 4: 𝑪𝒐𝑽𝒂𝒓 for food and energy spillover market analysis 

 

3.1 Estimation of CoVaR  

In order to construct the 𝛥𝐶𝑜𝑉𝑎𝑅 risk measures for the system conditioned on each market 

we implement a six-step procedure. 

Step 1. We run the τi-quantile regression  

 𝑅𝑡
𝑖  = 𝛼𝑖 + 𝛾𝑖𝑁𝑡 + 𝑒𝑡

𝑖      (5) 

where 𝑅𝑡
𝑖  refers to daily price returns of one of the four markets of interest (oil, food, 

ethanol, all metals), αi is the constant, Nt is a set of explanatory variables, which reflect 

common market conditions that may drive individual commodity market’s returns, and the 

error term 𝑒𝑡
𝑖 is assumed to be i.i.d. with zero mean and constant variance, and independent 

of Nt. Specifically, we have estimated three return series models: in the first one, Nt contains 

only common financial risk factors, labelled 𝑁𝑡
𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝑠; in the second model, Nt includes only 

economic fundamentals, labelled 𝑁𝑡
𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙𝑠; in the third one, Nt comprises both financial 

and fundamentals factors, labelled 𝑁𝑡
𝑎𝑙𝑙. In this way, we have been able to disentangle tail 

dependence determined by financial drivers (financial contagion), economic triggers 

(fundamentals-based contagion) and both factors taken together (mixed contagion). The 

confidence level τi is set at 5% when we look at the left tail of the institution’s return 

distribution and at 95% when we examine the right tail.  

Step 2. We obtain the τi -VaR for institution or market i as the predicted value  

 𝑉𝑎𝑅̂𝑡
𝑖  (𝜏𝑖) = 𝛼̂𝑖 +  𝛾𝑖𝑁𝑡  (6) 

Here 𝛼̂𝑖 and 𝛾𝑖 represent the estimated parameters from eq. (5). 

Step 3. We repeat the first two steps replacing τi by 50% to obtain 50%-VaR for market i. 
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Step 4. We run the -quantile regression  

 Rt
system

 = a +  b Rt
i + c Zt + t (7) 

where 𝑅𝑡
𝑠𝑦𝑠𝑡𝑒𝑚 denotes log-returns of the S&P 500 index at time t, the error term t is 

assumed to be i.i.d. with zero mean and constant variance and independent of 𝑅𝑡
𝑖, and the 

set of explanatory variables Zt.  

Step 5. We compute the following 𝐶𝑜𝑉𝑎𝑅 measures, which are the VaR of the system 

conditional on a situation of distress within oil, food, biofuel and all metals markets (i.e., τi is 

fixed at 5% (95%) level, which corresponds to the left (right) tail of the ‘institutions’ 

distribution), and the VaR of the system conditional on a normal situation within oil, food, 

biofuel and all metals markets (represented by a 50% quantile regression):  

 CoVaR̂t

system|Ri=VaR
Ri(τi)

 (τ) = â +  b̂ VaR̂t
i  (τi) + ĉ Zt 

 CoVaR̂t

system|Ri=VaR
Ri(50%)

 (τ) = â +  b̂ VaR̂t
i  (50%) + ĉ Zt 

Here â, b, , and ĉ indicate the estimated parameters from eq.(7). 

Step 6. The estimated 𝛥𝐶𝑜𝑉𝑎𝑅 measure can finally be obtained as the difference  

  ΔCoVaR̂
t
system|i

 (τ) =  CoVaR̂
t

system|Ri=VaR
Ri(τi)

 (τ) − CoVaR̂t

system|Ri=VaR
Ri(50%)

(τ). 

The  𝛥𝐶𝑜𝑉𝑎𝑅̂
𝑡
𝑠𝑦𝑠𝑡𝑒𝑚|𝑖

 (𝜏) represents the marginal contribution of oil, food, biofuel, or all 

metals market to contagion risk and, when τi = 95%, a 𝛥𝐶𝑜𝑉𝑎𝑅 different from zero can be 

interpreted as an increase in extreme market losses for the system (economic instability) 

when a given market is in distress. 

The six-step procedure is also implemented to assess risk spillovers from energy to food 

markets. In this case, 𝑅𝑡
𝑖 refers to daily price returns of oil and ethanol, while 𝑅𝑡

𝑠𝑦𝑠𝑡𝑒𝑚 denotes 

daily price returns of disaggregated food commodities. 

 

3.2 Testing Procedures 

To implement the significance and dominance tests, we consider the testing procedure 

proposed by Bernal et al. (2014). For a fixed value of , the authors test whether or not the 

cumulative distribution functions (CDFs) of 𝐶𝑜𝑉𝑎𝑅s at a the τi level and at the 50% level are 

different from each other. This is achieved by bootstrapping the Kolmogorov-Smirnov (KS) 

test statistic using the procedure proposed by Abadie (2002). The KS test cannot be used 

directly because the estimated distributions introduce an unknown nuisance parameter that 

jeopardizes the distribution-free character of the KS test. Hence, Bernal et al. (2014) use the 

method of Abadie (2002) that allows to obtain critical values by resampling the test statistic 

under conditions consistent with the null hypothesis. The method of Abadie (2002) consists 

in a nonparametric i.i.d. block bootstrap in stochastic dominance tests, in which data are 
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divided into blocks that are resampled to replicate the time-dependent structure of the 

original data. 

The two-sample Kolmogorov-Smirnov statistic they use is hence defined as:  

 Kmn(τ)  =  sup
u

| Fm(u) − Gn(u)| (8) 

where m and n are the size of the two samples and Fm(u) and Gn(u) are the CDFs of the 

 𝐶𝑜𝑉𝑎𝑅̂
𝑡

𝑠𝑦𝑠𝑡𝑒𝑚|𝑅𝑖=𝑉𝑎𝑅
𝑅𝑖(𝜏𝑖)

 (𝜏) and 𝐶𝑜𝑉𝑎𝑅̂
𝑡

𝑠𝑦𝑠𝑡𝑒𝑚|𝑅𝑖=𝑉𝑎𝑅
𝑅𝑖(50%)

(𝜏), respectively. 

For the dominance hypothesis with a fixed value of , the test statistic to bootstrap is given 

by:  

 Gmn(τ)  =  sup
u

| Am(u) − Bn(u)| (9) 

Where Am(u) and Bm(u) are the CDFs of the absolute values of 𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑖(𝜏) and 

𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑗(𝜏) and m and n are the size of the two samples. Again, bootstrap-based 

methods are needed to calculate the p-values for the dominance test. 

 



12 

4. Data Description 

To estimate the contribution of commodity market to contagion risk and risk spillovers 

across markets, we consider daily trading data from 16 May 2005 to 19 June 2013, for a total 

of 2041 observations. All data are taken from Bloomberg database (Table 1).  

 

Table 1: List of Variables and Bloomberg Tickers 

Variables Bloomberg Ticker 

S&P GSCI Commodity Agricultural index SPGSAG Index 

S&P GSCI Commodity All Metals index SPGSAM Index 

Generic 1st WTI Crude Oil futures, US$ (NYMEX) CL1 Comdty 

Generic 1st Ethanol futures, US$ (CBOT) DL1 Comdty 

S&P GSCI Commodity index SPGSCI Index 

Baltic Dry Freight BDIY INDEX 

Standard & Poor’s 500 SPX Index 

Generic 1st Corn No. 2 Yellow futures, US$ (CBOT) C 1 Comdty 

Generic 1st Rapeseed, € (EURONEXT) IJ1 Comdty 

Generic 1st Soybean No. 2 Yellow futures, US$ (CBOT) S 1 Comdty 

Generic 1st soybean-oil, US$ (CBOT) BO1 Comdty 

Generic 1st Sugar No. 11 futures, US$ (ICE) SB1 Comdty 

Generic 1st No. 2 Soft Red Winter Wheat futures, US$ (CBOT) W 1 Comdty 

Dollar effective exchange rate DXY Curncy 

Federal fund rate (overnight interest rate) FEDL01 Index 

Market Volatility Index (20-day ahead implied volatility of S&P 500 index options) VIX INDEX 

Moody’s BAA Corporate Bond yield MOODCBAA Index 

Moody’s AAA Corporate Bond yield MOODCAAA Index 

TED spread BASPTDSP Index 

Libor US0003M Index 

 

The variable used as system is the S&P 500 (S&P) index given that it is a well-established 

measure used in the literature to quantify global economic activity on daily basis5. The S&P 

500 index comprises the 500 largest U.S. firms and is also a benchmark indicator of the 

overall stock market conditions and a leading indicator of the global economy. This is 

because the stock market usually begins to decline before the economy as a whole declines, 

and usually starts to improve before the general economy begins to recover from a slump. 

The variables used as institution are the daily closing futures prices6 of energy, agricultural 

and all metals markets. We focus on commodity futures prices mainly because they are 

                                                      
5
Other variables that could be used as proxies of economic activity, such as GDP or industrial production, are 
not available at high frequency. 

6
We have used the first generic futures contracts series (which considers at each date the price of the contract 
with the closest maturity). 
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important price signals to guide commodity demand and spot prices (e.g., Antoniou and 

Foster 1992; Yang et at. 2005). In addition, given that the volume of trade is larger in futures 

markets than spot markets (e.g., Roehner 2009), it is reasonable to expect that the dynamics 

in futures markets could have a stronger effect on the whole economy since price patterns 

are more reliable. Furthermore, we are interested in knowing how the higher speculative 

influence in commodity futures markets impacts the entire economy. 

Oil data refers to daily futures prices of West Texas Intermediate, also known as Texas Light 

Sweet, which is a type of crude oil used as a benchmark in oil pricing and the underlying 

commodity of the New York Mercantile Exchange’s oil futures contracts.  

As a proxy of the price of biofuels, we consider ethanol futures prices. Ethanol futures 

trading was newly introduced at the Chicago Board of Trade (CBOT) in May 2005, this is the 

reason why our dataset starts in that period. 

We have then collected two aggregated indices for food products and all metals, explicitly, 

the S&P GSCI Agriculture Index and the S&P GSCI All Metals index.  

The S&P GSCI Agriculture Index and the S&P GSCI All Metals Index are sub-indices of the S&P 

GSCI7 and provide investors with a reliable and publicly available benchmark for investment 

performance in the agricultural and metal commodity markets. The S&P GSCI Agriculture 

Index comprises the following commodities in order of weighting importance: wheat, maize, 

soybeans, cotton, sugar, coffee and cocoa. The S&P GSCI All Metals Index includes industrial 

metals, – namely aluminium, copper, lead, nickel and zinc – and precious metals – namely, 

gold and silver.  

The set of Nt and Zt variables entering the CoVaR measure, when the institutions are 

commodity markets and the system is S&P 500, includes those factors identified by the 

literature (Fama and French 1989; Ferson and Harvey 1994) as possible drivers of commodity 

and stock market’s returns. We restrict ourselves to a small set of N and Z factors to avoid 

overfitting the data. Specifically, 𝑁𝑡
𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝑠 comprises:  

• the CBOE Volatility Index (VIX), which captures the implied volatility of the S&P500 

index and reflects stock market expectations of volatility. It is a popular barometer of 

investor sentiment and often referred to as the ‘fear index’ (Koch 2014; Bae et al. 

2003);  

                                                      
7
The S&P GSCI index was originally developed by Goldman Sachs (GS). In 2007, ownership transferred to 
Standard & Poors, who currently own and publish it. It is a tradable index that is readily available to market 
participants of the Chicago Mercantile Exchange. The S&P GSCI contains as many commodities as possible, 
with rules excluding certain commodities to maintain liquidity and investability in the underlying futures 
markets. The index currently comprises 24 commodities from all commodity sectors - energy products, 
industrial metals, agricultural products, livestock products and precious metals. In particular, its composition 
as of February 2013 is given by 78.65% of energy products, 6.12% of industrial metals, 1.81% of precious 
metals, 10.42% of agriculture, and 3.01% of livestock. The index contains a much higher exposure to energy 
than other commodity price indices such as the Dow Jones-UBS Commodity Index. 
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• the conditional volatility within each market, which controls for specific market 

exposure. Conditional volatility is the standard deviation of a future return that is 

conditional on known information such as the history of past returns. It has been 

calculated via a GARCH(1,1) model as developed by Bollerslev (1986). 

𝑁𝑡
𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙𝑠

 includes:  

• the Baltic Dry Index (BDI) proxy for global demand8 (Kilian 2009);  

• the MSCI Emerging Market Index proxy for the strength of economic growth in 

emerging economies that determines the commodity demand from emerging markets 

(Koch 2014; Tang and Xiong 2012);  

• the returns on dollar effective exchange rate (DXY), which controls for the exposure of 

commodity futures (priced in US dollars) to exchange rate risk (Algieri 2014a; Erb and 

Harvey 2006);  

• the US three month T-bill (short-term interest rate) used as barometer of global 

changes in the international monetary policy (Manera et al. 2013; Chevallier 2009; 

Bae et al. 2003; Bessembinder and Chan 1992); 

𝑁𝑡
𝑎𝑙𝑙 includes all the aforementioned variables, i.e. both financial variables and fundamental 

factors.  

The set of state variables Zt used in the quantile regression to explain Rsystem, in addition to 

the CBOE Volatility Index, the Baltic Dry Index and the returns on dollar effective exchange 

rate, comprises: 

• the spread between Moody’s BAA and Moody’s AAA Corporate Bond yields – i.e., 

yield returns of bonds rated BAA and AAA by Moody’s – which represents the default 

risk premium (sometimes called the junk bond yield) (Manera et al. 2013; Chevallier 

2009; Sadorsky 2002);  

• TED spread (i.e., the difference between the 3-Month London Interbank Offered Rate 

(LIBOR) and 3-Month Treasury Bill), which provides a measure of stress (or not) in 

credit markets and, therefore, it is an indicator of world financial and economic health 

(Manera et al. 2013; Bae et al. 2003);  

                                                      
8
The Baltic Dry index has been published daily by the Baltic Exchange in London since May 1985. Based on daily 
quotes for booking vessels of various sizes and across multiple maritime routes (about 50), the Baltic Dry 
Index is an indicator of transportation costs for raw materials and is considered as a leading indicator 
(forward looking) of economic activity since it involves events taking place at the earlier stages of global 
commodity chains. Given that the supply structure of the shipping industry is generally predictable and 
relatively inflexible, changes in shipping costs reflect changes in the worldwide demand for raw materials. A 
high Baltic Dry Index is an indication of a tight shipping supply due to high demand and is likely to create 
inflationary pressures along the supply chain. A sudden and sharp decline of the Baltic Dry Index is likely to 
foretell a recession since producers have substantially curtailed their demand leaving shippers to 
substantially reduce their rates in an attempt to attract cargo. Shortly, a high Baltic Dry Index growth rate is 
positively associated with industrial production growth and vice-versa. 
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• the term spread9, which is calculated as the spread between 10-Year Treasury 

Constant Maturity and 3-Month Treasury Constant Maturity10. 

To evaluate risk spillover across energy and food markets we further consider the futures 

price returns for single energy products and for those agricultural products used to produce 

the first generation of biofuels, namely maize, rapeseed, soybeans, soybean-oil, sugar, and 

wheat. The set of Nt and Zt variables entering the CoVaR measure, when the institutions are 

energy markets and the system is mirrored by each single agricultural product, consists of 

those factors that might drive energy and food commodity market’s returns. We employ the 

same regressors 𝑁𝑡
𝑎𝑙𝑙 used in the previous analysis for the institutions, i.e., both financial 

variables and economic fundamentals factors, while the factors explaining the system, Zt, 

encompass:  

• the Baltic Dry Index;  

• the MSCI Emerging Market Index;  

• the returns on dollar effective exchange rate;  

• the VIX Index;  

• the Southern Oscillation Index anomalies (SOI). This index measures the fluctuations 

in air pressure occurring between the western and eastern tropical Pacific during El 

Niño and La Niña episodes11 and it is used to proxy global weather conditions. Indeed, 

although the events described by the SOI index arises in the Pacific Ocean, they have 

strong effects on the world’s weather and an important influence on the world’s 

production and price of primary non-oil commodities12 (Brunner 2002; Algieri 2014b).  

 

 

 

                                                      
9
Several studies find that term spread is a good predictor of output growth and recessions. See Wheelock and 
Wohar (2009) for a review. 

10
Yield on long-term securities typically exceeds those on otherwise comparable short-term securities, 
reflecting the preference of most investors to hold instruments with shorter maturities. Therefore, the yield 
curve is typically upward sloping. Analysts have noted that in recessions the yield curve is inverted (i.e., short-
term yields are above those on long-term securities). 

11
It is a standardised index based on the observed sea level pressure differences between Tahiti, French 
Polynesia and Darwin, Australia. In general, a negative phase of the SOI represents below-normal air pressure 
at Tahiti and above-normal air pressure at Darwin. SOI data are taken from the National Oceanic and 
Atmospheric Administration National Climatic Data Center. 

12
Prolonged periods of positive SOI values coincide with La Niña events during which water becomes cooler 
than normal; vice-versa, SOI values below zero mirror El Niño episodes during which water becomes warmer 
than normal. La Niña events are associated with increasing droughts throughout the mid-latitudes, where 
much of wheat and other relevant grains such as maize and soybeans are produced, thus suppressing their 
yield (Hurtado and Berri 1998) and driving up prices. For this reason, La Niña episodes have historically been 
associated with global food crises. El Niño is associated with an increased likelihood of droughts in tropical 
land areas, which mainly affects crops such as sugar.  
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Descriptive statistics 

The evolution of logarithmic commodity returns and descriptive statistics are reported in 

Figure 5 and Table 2 respectively. 

Daily returns have average values close to zero and differing high standard deviations, 

indicating dispersion in volatility behaviour across markets and products. Oil and biofuel 

show higher volatility than food and metals commodities. The maximum (minimum) value 

achieved by oil and biofuel is larger (smaller) than the one recorded for food and metals. 

Within food commodities, sugar, wheat and maize exhibit higher volatility than soybean and 

rapeseed. All series are skewed (with the exception of maize) and display significant excess 

kurtosis (fat tails). The evidence provided by Jarque-Bera test suggests that all series have 

not-normal distributions (all return series strongly reject the normality hypothesis) which is 

consistent with the presence of fat tails and skewness.  
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Figure 5: Time Series Plots of Logarithmic Commodity Returns. 
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Table 2: Descriptive Statistics for Logarithmic Commodity Returns 

 
S&P500 O M F B maize rapeseed soybean soybean-oil sugar wheat 

Mean  1.62E-04 3.61E-04 3.00E-04 3.85E-04 3.67E-04 5.76E-04 3.25E-04 4.25E-04 3.86E-04 3.46E-04 3.97E-04 

Maximum  0.11 0.164 0.067 0.072 0.16 0.128 0.066 0.203 0.075 0.131 0.088 

Minimum  -0.095 -0.131 -0.064 -0.076 -0.137 -0.104 -0.062 -0.234 -0.078 -0.124 -0.100 

Std. Dev.  0.014 0.024 0.015 0.015 0.02 0.021 0.012 0.019 0.016 0.024 0.023 

Skewness  -0.309 0.126 -0.213 -0.203 -0.473 0 -0.704 -0.807 -0.046 -0.251 0.026 

Kurtosis  12.704 8.245 4.546 4.802 8.843 4.906 6.931 24.076 5.48 5.801 4.413 

           
           

Jarque-Bera  8028.971 2341.326 218.531 289.648 2974.785 308.327 1480.49 37939.25 522.942 687.725 169.775 

Probability  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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We report in Table 3 a number of measures of dependence between the ‘system’ and the 

‘institutions’ to describe co-movement between different price returns. In particular, Table 3 

displays the classical linear Pearson correlation index (), the Spearman’s (S) and Kendall’s 

(τ) rank correlation indices. While the simple Pearson correlation fails to capture the 

important tails behaviour of the joint probability distribution, the other measures are more 

robust given that they account for non-linearities and the existence of dependence inside 

extreme values of data sets.  

Specifically, the Spearman’s and Kendall’s tests are nonparametric measures of statistical 

dependence between two variables, are measured as ordinal numeric and allow one to 

analyse the concordance between two rankings. However, while the former merely 

considers the two sets of ranks, the latter also shows whether the components of the vector 

have a tendency to move together. The results for both coefficients are similar, the values 

obtained with Spearman’s rank correlation coefficient being higher (Table 3). The results 

show that there are co-movements between the system and the institutions. The highest 

coefficients appear between the system and oil, followed by the system and metals, the 

system and food, and the system and ethanol. Co-movements are more evident from the 

analysis of food and energy markets (Table 3, Panel B). The measures of dependence 

indicate, in fact, that maize and wheat tend to co-move more with ethanol than oil, while 

soybean, soybean-oil and sugar tend to co-move more with oil than ethanol, rapeseed 

instead co-move with oil and ethanol in a similar way. To evaluate extreme phenomena (or 

extreme co-movements) more in detail we examine the 𝛥𝐶𝑜𝑉𝑎𝑅 risk measures. 

 

Table 3: Measures of dependence between the ‘system’ and the ‘institutions’ 

Panel A: System = S&P 500 

 O M F B 

 0.335 0.294 0.241 0.136 

S 0.293 0.293 0.176 0.094 

τ 0.293 0.293 0.176 0.094 
 

Panel B: System = Food Commodity 

Commodity maize rapeseed soybean soybean-oil sugar wheat 

 
O B O B O B O B O B O B 

 0.311 0.477 0.339 0.318 0.376 0.338 0.504 0.385 0.26 0.208 0.282 0.391 

S 0.282 0.487 0.299 0.297 0.35 0.338 0.466 0.355 0.242 0.202 0.244 0.368 

τ 0.193 0.356 0.205 0.204 0.24 0.235 0.326 0.247 0.163 0.137 0.167 0.257 

Note:  denotes Pearson linear correlation, S is Spearman's rank correlation coefficient, τ is Kendall's rank 
correlation coefficient. 
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5. Empirical Analysis 

5.1 Results of CoVaR and the Significance Tests  

Descriptive statistics and the graphical plot of our estimated risk measures (𝛥𝐶𝑜𝑉𝑎𝑅) 

obtained from using quantile regressions when the system is the S&P 500, the institutions 

are commodity markets and  is set at the 5% level, are reported in Table 4 and Figure 6, 

respectively. We look at both the left tail (τi=0.05) and the right tail (τi=0.95) of the 

commodity market return distribution. The regressors used in all the quantile regressions 

include both economic fundamentals and financial variables. Recalling that 𝛥𝐶𝑜𝑉𝑎𝑅𝑡
𝑖, 

quantifies the marginal contribution of market i to overall contagion risk, we observe that in 

the oil market 𝛥𝐶𝑜𝑉𝑎𝑅 is more volatile and, on average, it is larger than 𝛥𝐶𝑜𝑉𝑎𝑅 for the 

other markets (Table 4). It is also evident that commodity markets move strongly together 

and the contagion risk for oil market shot up dramatically during the crisis while slowed 

down with the other indices after it (Figure 6). The dynamics of 𝛥𝐶𝑜𝑉𝑎𝑅 point to the 

presence of pro-cyclicality which occurs because risk measures tend to be low in booms and 

high in crises. 

 

Table 4: Descriptive Statistics of the 𝜟𝑪𝒐𝑽𝒂𝑹 measures (in percentage) with S&P500 index 
as the system and Nt fundamentals and financial variables. 

 |𝛥𝐶𝑜𝑉𝑎𝑅|, 𝜏𝑖 = 0.05 |𝛥𝐶𝑜𝑉𝑎𝑅|, 𝜏𝑖 = 0.95 

   O       M       F       B       O       M       F       B      

Mean  0.407 0.343 0.16 0.187 0.495 0.216 0.155 0.077 

Maximum  1.443 0.712 0.335 0.803 1.848 0.565 0.34 0.678 

Minimum  0.276 0.258 0.094 0.114 0.252 0.076 0.056 0.026 

Std. Dev.  0.152 0.06 0.041 0.052 0.206 0.064 0.038 0.048 

Skewness  3.477 2.381 1.382 2.873 3.371 1.199 1.093 3.446 

Kurtosis  16.64 10.541 5.381 22.129 15.791 5.68 4.774 27.384 

           
        Jarque-Bera  19946.85 6771.304 1132.691 33949.57 17792.17 1101.076 674.967 54640.34 

Probability  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 

Panel B: Correlation matrices 

 |𝛥𝐶𝑜𝑉𝑎𝑅|, 𝜏𝑖 = 0.05   |𝛥𝐶𝑜𝑉𝑎𝑅|, 𝜏𝑖 = 0.95 

  O M F B 
  

O M F B 

    O      1 
    

O 1 
   

    M      0.487 1 
   

M 0.401 1 
  

    F      0.583 0.431 1 
  

F 0.511 0.42 1 
 

    B      0.127 0.262 0.151 1 
 

B 0.148 0.401 0.039 1 

Note: The table reports descriptive statistics (Panel A) and the correlation matrix (Panel B) for the 𝛥𝐶𝑜𝑉𝑎𝑅 risk 
measure referred to oil (O), all metals (M), food (F), and biofuel (B). τ is set at the 5% level. τi is set at the 95% 
level (right tail of the institution's distribution) or at the 5% level (left tail of the institution's return 
distribution). 
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(a) | 𝛥𝐶𝑜𝑉𝑎𝑅 |, τi=0.05 

 

(b) 𝜟𝑪𝒐𝑽𝒂𝑹, τi=0.95  

Figure 6: Time Series Plots of 𝜟𝑪𝒐𝑽𝒂𝑹 (in percentage) 

 

The significance test, eq. (1), allows us to identify if a given market is significantly risky for 

the system. For this test we distinguish between risk measures driven by economic 

fundamentals (Table 5), financial variables (Table 6) and both factors (Table 7), with the 

objective to evaluate which driver makes a given commodity market significantly risky for 

the whole economy. 

In detail, Tables 5-7 show the observed test statistics in eq. (8) and the associated p-values 

assuming the S&P500 index as the system and oil, food, ethanol, all metals as institutions. 
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We consider T ={0.01,0.05,0.1}13 and set 𝜏𝑖 = 0.05 and 𝜏𝑖 = 0.95 in all the CoVaR 

considered. Put simply, we consider for the ‘institutions’ both the right tails (𝜏𝑖 = 0.95) – 

which mirror a situation of extremely high prices – and the left tails (𝜏𝑖 = 0.05) – which 

correspond to a situation of extremely low prices. For the system, we look at the left tails – 

which refer to abnormal drop in prices, i.e., a marked slowdown in the whole economy. 

The rejection of the null hypothesis, given by a very low p-value, indicates that a given 

‘institution’ i (i.e., oil, food, ethanol, all metals) produces contagion risk.  

 

Table 5: Significance Tests with the S&P500 index as the system and fundamental variables 
(BDI, MSCI, DXY, T-Bill) in the quantile regressions. 

  
𝜏𝑖 = 0.05 

  
𝜏𝑖 = 0.95 

  
O M F B 

 
 O M F B 

τ =0.01  Test Stat  0.003 0.003 0.088 0.205          Test Stat  0.004 0.101 0.213 0.015 

   Pval   1.000 1.000 0.000 0.000          Pval   1.000 0.000 0.000 0.960 

      
 

     
                   O M F B                 O M F B 

τ =0.05   Test Stat  0.002 0.002 0.087 0.173          Test Stat  0.004 0.12 0.195 0.014 

 
 Pval   1.000 1.000 0.000 0.000          Pval   1.000 0.000 0.000 0.985 

      
 

     
                   O M F B                 O M F B 

τ =0.1   Test Stat  0.002 0.002 0.067 0.079          Test Stat  0.003 0.085 0.152 0.008 

   Pval   1.000 1.000 0.000 0.000          Pval   1.000 0.000 0.000 1.000 

Note: The table reports the observed test statistics in eq. (8) and the associated p-values. O, M, F, and B denote 
log-returns for the WTI oil index, S&P GSCI All Metals index, S&P GSCI Agriculture index, and ethanol CBOT 
index, respectively. Data covers the period May 2005-June 2013. 

 

Table 5 shows that when the 𝐶𝑜𝑉𝑎𝑅 and 𝛥𝐶𝑜𝑉𝑎𝑅 measures are explained by economic 

fundamentals, ethanol and oil markets do not generate contagion risk14 when extremely 

high energy prices materialize. Similarly, when abnormal oil and metal price drops are 

generated by economic fundamentals, the underlying markets do not tend to trigger any 

contagion risk. Conversely, when 𝐶𝑜𝑉𝑎𝑅 and 𝛥𝐶𝑜𝑉𝑎𝑅 measures are explained by financial 

factors (Table 6), all markets contributes to contagion risk both when commodity prices 

surge and when they fall abnormally. This holds true also when the 𝐶𝑜𝑉𝑎𝑅 and 𝛥𝐶𝑜𝑉𝑎𝑅 

measures are explained by both financial drivers and economic fundamentals (Table 7).   

                                                      
13
 can be interpreted as a measure of economic instability, we have therefore a general definition of economic 

instability when =0.05, a broader definition of economic instability when =0.1, and a narrower definition of 

economic instability when =0.01. 
14

The same result was obtained when the broader energy commodity index was used instead of oil. For reason 
of space this finding has not been reported but it is available from the authors upon request. 
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Table 6: Significance Tests with the S&P500 index as the system and financial variables 
(VIX, conditional volatility) in the quantile regressions. 

  
𝜏𝑖 = 0.05 

  
𝜏𝑖 = 0.95 

                   O M F B                 O M F B 

τ =0.01  Test Stat  0.171 0.097 0.082 0.119          Test Stat  0.162 0.098 0.084 0.108 

   Pval   0.000 0.000 0.000 0.000          Pval   0.000 0.000 0.000 0.000 

      
 

     
                   O M F B                 O M F B 

τ =0.05   Test Stat  0.150 0.115 0.083 0.105          Test Stat  0.148 0.120 0.082 0.094 

 
 Pval   0.000 0.000 0.000 0.000          Pval   0.000 0.000 0.000 0.000 

      
 

     
                   O M F B                 O M F B 

τ =0.1   Test Stat  0.117 0.083 0.063 0.051          Test Stat  0.111 0.086 0.067 0.046 

   Pval   0.000 0.000 0.000 0.009          Pval   0.000 0.000 0.000 0.022 

Note: The table reports the observed test statistics in eq. (8) and the associated p-values. O, M, F, and B denote 
log-returns for the WTI oil index, S&P GSCI All Metals index, S&P GSCI Agriculture index, and ethanol CBOT 
index, respectively. Data covers the period May 2005-June 2013. 

 

These results highlight three interesting points. First, the economic system fragility is 

conditioned by what happens in commodity markets, i.e., there are risk spillover effects 

from commodity markets to the whole economy. Second, while positive or negative shocks 

to economic fundamentals do not always lead to contagion risk, financial drivers contribute 

to make all commodity markets risky for the economy. This is confirmed when both financial 

and economic drivers are considered together. In short, there is a certain evidence of 

financial and mixed contagion. Third, only for food sector both positive and negative shocks 

driven either by economic fundamentals or financial variables or both, can lead to economic 

instability. All these results hold for different significance levels. A small exception is 

recorded for biofuel. Indeed, when a broader definition of economic instability is considered 

(𝜏 = 0.1), extreme hikes in biofuel prices are not significant in generating any contagion risk 

(Table 7).  
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Table 7: Significance Tests with the S&P500 index as the system and fundamentals and 
financial variables (BDI, MSCI, DXY, T-Bill, VIX, conditional volatility) 

  
𝜏𝑖 = 0.05 

  
𝜏𝑖 = 0.95 

                   O M F B                 O M F B 

τ =0.01  Test Stat  0.213 0.143 0.085 0.113          Test Stat  0.249 0.092 0.079 0.054 

   Pval   0.000 0.000 0.000 0.000          Pval   0.000 0.000 0.000 0.004 

      
 

     
                   O M F B                 O M F B 

τ =0.05   Test Stat  0.185 0.163 0.085 0.100          Test Stat  0.231 0.106 0.079 0.047 

 
 Pval   0.000 0.000 0.000 0.000          Pval   0.000 0.000 0.000 0.023 

      
 

     
                   O M F B                 O M F B 

τ =0.1   Test Stat  0.141 0.118 0.064 0.047          Test Stat  0.172 0.078 0.064 0.023 

   Pval   0.000 0.000 0.001 0.023          Pval   0.000 0.000 0.001 0.642 

Note: The table reports the observed test statistics in eq. (8) and the associated p-values. O, M, F, and B denote 
log-returns for the WTI oil index, S&P GSCI All Metals index, S&P GSCI Agriculture index, and ethanol CBOT 
index, respectively. Data covers the period May 2005-June 2013. 

 

5.2 Results of the Dominance Tests  

For the dominance test we consider only 𝐶𝑜𝑉𝑎𝑅 and 𝛥𝐶𝑜𝑉𝑎𝑅 measures explained in terms of 

economic and financial drivers, given that only in this case all the 𝛥𝐶𝑜𝑉𝑎𝑅s are statistically 

significant. Specifically, this test shows the importance of the contributions of each 

commodity market to contagion risk, i.e., which market tends to propagate the highest 

distress (or shock) across the economy. 

In detail, Table 8 reports the observed test statistics in eq. (9) and the associated p-values 

assuming the S&P500 as the system for the critical levels in T={0.01,0.05,0.1}. To establish a 

ranking in terms of contagion for commodity markets, each of the six matrices of Table 8, 

corresponding to the possible pairs (𝜏, 𝜏𝑖), has to be read as follows: market j dominates 

market i, i.e. has a greater impact in terms of contagion, only if the p-value in the ith row–jth 

column is large (e.g., larger than 5%) and the p-value in the jth row–ith column is small (e.g., 

smaller than 5%). Thus, in order to establish whether one market dominates another, the 

two cells in Table 8, corresponding to the two markets, have to be examined together. As an 

example, take oil (O) as market j and food (F) as market i, for 𝜏 = 0.01 and 𝜏𝑖 = 0.95. In this 

case, the observed test statistic, for the null that 𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑖 is smaller than 

𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑗, is equal to 0.000 with a p-value of 99.9%, thereby not rejecting the null 

hypothesis. Furthermore, the observed test statistic for the null that 𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑗 is 

smaller than 𝛥𝐶𝑜𝑉𝑎𝑅𝑠𝑦𝑠𝑡𝑒𝑚|𝑖 is equal to 0.995 with a p-value of 0, which implies a rejection of 

the null. Combining the two results, we conclude that market j, i.e., oil, dominates market i, 

i.e., food. This means that oil is riskier than food in threatening the stability of the whole 

economic system.  
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The results in Table 8 indicate that it is possible to identify a specific rank among the four 

indices for each tail, that means it is possible to order commodity markets on the basis of 

their contribution to contagion. For the right tail, which captures extreme price increases, 

the ranking is:  

• (1) oil dominates all the remaining markets;  

• (2) all metals dominate food and ethanol markets;  

• (3) food dominates ethanol;  

• (4) ethanol is dominated by all the remaining markets.  

For the left tail, that mirrors extreme price drops, the contribution of each market to 

contagion risk can be ranked as follows:  

• (1) oil dominates all the remaining markets;  

• (2) all metals dominate food and ethanol markets;  

• (3) ethanol dominates food;  

• (4) food is dominated by all the remaining markets.  

This denotes that when prices skyrocket and when they reduce significantly, the marginal 

contribution of oil to the overall risk is higher than the contribution of metal, food and 

ethanol. The only difference between the two tails occurs for the ethanol and food markets 

when 𝜏 = 0.01 and 𝜏 = 0.05. Specifically, while food dominates ethanol when prices boost, 

the opposite situation takes place when prices fall. This can be due to the fact, that extreme 

food price drops are less dangerous than sharp increases. For =0.1, instead, the two tails 

show the same ranking. This reveals the fact that extreme hikes and drops in price generate 

the same commodity classification, when a broader definition of system instability is 

considered. It is interesting to notice that the results of the dominance tests are in line with 

the measures of dependence showed in Table 3.  

To sum up, combining the results of the significance and dominance tests, we can establish 

that any perturbation occurring in a given commodity market becomes important in the 

sense that it finishes to affect the whole economy. Some commodity markets tend to have a 

significantly larger propagation effect of shocks. Indeed, the degree of the impact is larger 

when oil market registers distress, because oil may exert influence also on the dynamics of 

the other markets via different channels. Moreover, it emerges that contagion effects are 

more pronounced when the distress in food market is caused by extreme prices surges. In 

this latter case, the spread of market disturbances can be a potential risk mainly for poor 

countries that spend a large percentage of their income on food. The contagion effect 

increases the vulnerability of the poor consumer in periods of high prices, hurting thus food 

and nutrition security.  
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Table 8: Dominance Tests with S&P5000 index as the system and fundamentals and financial variables (BDI, MSCI, DXY, T-Bill, VIX, conditional 
volatility) in quantile regressions. 

  
𝜏𝑖 = 0.05 

 
𝜏𝑖 = 0.95 

            i\j  O M F B i\j O M F B 

            O      - 0.872 (0.000) 0.983 (0.000) 0.944 (0.000)  O      - 0.982 (0.000) 0.995 (0.000) 0.991 (0.000) 

τ =0.01  M      0.000 (0.999) - 0.885 (0.000) 0.609 (0.000)  M      0.000 (0.999) - 0.151 (0.000) 0.714 (0.000) 

            F      0.000 (0.999) 0.000 (1.000) - 0.000 (0.999)  F      0.000 (0.999) 0.027 (0.208) - 0.723 (0.000) 

            B      0.000 (0.999) 0.002 (0.980) 0.395 (0.000) -  B      0.000 (0.999) 0.002 (0.979) 0.005 (0.931) - 

           

           i\j O M F B i\j O M F B 

               O      - 0.395 (0.000) 0.975 (0.000) 0.956 (0.000)  O      - 0.936 (0.000) 0.993 (0.000) 0.992 (0.000) 

τ =0.05   M      0.000 (0.999) - 0.972 (0.000) 0.946 (0.000)  M      0.000 (0.999) - 0.469 (0.000) 0.871 (0.000) 

            F      0.000 (0.999) 0.000 (0.999) - 0.000 (0.999)  F      0.000 (0.999) 0.000 (0.999) - 0.768 (0.000) 

            B      0.000 (0.999) 0.000 (0.998) 0.256 (0.000) -  B      0.000 (0.999) 0.001 (0.996) 0.004 (0.964) - 

    
          

             i\j O M F B i\j O M F B 

            O      - 0.533 (0.000) 0.975 (0.000) 0.998 (0.000)  O      - 0.953 (0.000) 0.993 (0.000) 0.999 (0.000) 

τ =0.1  M      0.000 (1.000) - 0.948 (0.000) 0.995 (0.000)  M      0.000 (0.999) - 0.353 (0.000) 0.966 (0.000) 

            F      0.000 (0.999) 0.000 (0.999) - 0.728 (0.000)  F      0.000 (1.000) 0.000 (1.000) - 0.951 (0.000) 

            B      0.000 (0.999) 0.000 (1.000) 0.001 (0.995) -  B      0.000 (1.000) 0.000 (1.000) 0.000 (0.998) - 

Note: The table reports the observed test statistics in eq. (9) and the associated p-values (in parenthesis). O, M, F, and B denote log-returns for the WTI oil index, S&P GSCI All 
Metals index, S&P GSCI Agriculture index, and ethanol CBOT index, respectively. Data covers the period May 2005 - June 2013. 
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5.3 Risk Spillovers between Energy and Food Markets 

Table 9 reports significance tests in the context of the risk spillovers analysis between energy 

and food markets. Explicitly, we have disaggregated the food commodity market in its main 

components and evaluated if energy market risks affect each food commodity. 

The system, this time, is given by each single agricultural commodity, while oil and ethanol 

are the two ‘institutions’. Hence, 𝛥𝐶𝑜𝑉𝑎𝑅𝑗|𝑖  captures the increase in risk of individual food 

markets j when energy markets i falls into distress. 

For testing the presence of risk spillovers, we look at the right tails of the distributions (i.e., 

prices upsurges) for both the system and ‘institutions’. We compute both the significance 

and dominance tests for the case 𝜏𝑖 = 0.95 and T={0.9,0.95,0.99}. 

Given that for both oil and ethanol we always reject the null hypothesis that 𝛥𝐶𝑜𝑉𝑎𝑅 is 

equal to zero, the energy sector has a significant impact on each food commodity during a 

period of distress. Put differently, oil and ethanol markets significantly contribute to food 

market distress. 

Table 10 reports dominance tests in the context of the risk spillovers analysis. This test 

establishes whether ethanol has a larger impact than oil on a given food commodity. We 

conclude that oil dominates ethanol for a given commodity if the corresponding p-value in 

the left column is small and, at the same time, the one in the right column is large. Hence, 

for all food commodities oil strongly dominates ethanol. This means that spillovers from oil 

market to food commodity markets are larger than those coming from ethanol market. It is 

interesting to highlight that for maize and wheat, the dominance results differ from those 

regarding the dependence measures of Table 3. 

From a policy perspective, predicting sudden changes in risk spillovers from crude oil to 

agricultural commodities prices can help to design and implement possible subsidy measures 

for specific commodities in poor countries. During the periods of turbulence in crude oil 

prices, indeed, risk spillovers increase. Knowing these risks can be helpful to design 

appropriate policy interventions to mitigate the impact of increasing commodity prices 

especially on the poor and vulnerable. 
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Table 9: Significance Tests for Risk Spillovers. 

   τ =0.90 

           maize rapeseed soybean soybean-oil sugar wheat 

 
 O     B   O     B   O     B   O     B   O     B   O     B  

Test Stat  0.741 0.490 0.704 0.234 0.828 0.365 0.861 0.263 0.687 0.156 0.608 0.429 

Pval   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

                        τ =0.95 

 
maize rapeseed soybean soybean-oil sugar wheat 

   O     B   O     B   O     B   O     B   O     B   O     B  

Test Stat  0.870 0.397 0.705 0.186 0.868 0.367 0.891 0.241 0.685 0.168 0.599 0.406 

Pval   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

                      τ =0.99 

 
maize rapeseed soybean soybean-oil sugar wheat 

   O     B   O     B   O     B   O     B   O     B   O     B  

Test Stat  0.838 0.204 0.881 0.182 0.856 0.354 0.879 0.239 0.795 0.034 0.598 0.281 

Pval   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.169 0.000 0.000 

Note: The table reports the observed test statistics in eq. (8) and the associated p-values 
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Table 10: Dominance Tests for Risk Spillovers. 

  τ =0.90 τ =0.95 τ =0.99 

Commodity  Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

maize  0.756 (0.000) 0.001 (0.995) 0.849 (0.000) 0.000 (0.997) 0.976 (0.000) 0.000 (1.000) 

rapeseed  0.975 (0.000) 0.000 (0.999) 0.982 (0.000) 0.000 (1.000) 0.989 (0.000) 0.000 (0.999) 

soybean  0.960 (0.000) 0.000 (0.999) 0.971 (0.000) 0.000 (0.999) 0.983 (0.000) 0.000 (1.000) 

soybean-oil  0.982 (0.000) 0.000 (1.000) 0.988 (0.000) 0.000 (0.999) 0.985 (0.000) 0.000 (0.999) 

sugar  0.990 (0.000) 0.000 (1.000) 0.988 (0.000) 0.000 (0.999) 1.000 (0.000) 0.000 (0.999) 

wheat  0.720 (0.000) 0.001 (0.994) 0.755 (0.000) 0.001 (0.994) 0.916 (0.000) 0.000 (1.000) 

Note: The table reports the observed test statistics in eq. (9) and the associated p-values (in parenthesis). Left 

column is for the test with null hypothesis 𝐻0: |𝛥𝐶𝑜𝑉𝑎𝑅𝑘|𝑂(𝜏)| ≤ |𝛥𝐶𝑜𝑉𝑎𝑅𝑘|𝐵(𝜏)| 

(Test 1) and right column for the test with null hypothesis 𝐻0: |𝛥𝐶𝑜𝑉𝑎𝑅𝑘|𝐵(𝜏)|≤ |𝛥𝐶𝑜𝑉𝑎𝑅𝑘|𝑂(𝜏)| 

(Test 2) where k denotes one of the food commodity maize, rapeseed, soybean, soybean-oil, sugar, and 
wheat. 
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6. Conclusions 

In this study we have assessed the contribution of commodity market to contagion risk. To 

this purpose, we have first constructed a 𝛥𝐶𝑜𝑉𝑎𝑅 measure of risk within each market, and 

run a significance and dominance test starting from the original 𝐶𝑜𝑉𝑎𝑅 developed by Adrian 

and Brunnermeier (2016). In our analysis market i is in ‘distress’ when it registers an 

abnormal rise or drop in commodity prices, i.e., extremely high or low returns, which are 

susceptible to trigger serious damages to the whole economy. 

The significance test has allowed us to determine whether the 𝛥𝐶𝑜𝑉𝑎𝑅 related to a specific 

market is different from zero, meaning that this market has an impact on the economic 

system (i.e., the market can generate contagion risk and spillover effects). The dominance 

test has permitted us to gauge whether a given market is systemically riskier than another in 

transmitting the effects of extreme price shocks to the entire economy. 

Our results indicate that all commodity markets generate significant contagion risks, i.e., tail 

events tend to propagate from commodity markets to the rest of the economy. This is true 

both when contagion risk measures are explained in terms of financial factors alone and 

when they are explained by financial and economic fundamentals taken together. This 

means that we find evidence of financial and mixed contagion. Conversely, when contagion 

risk measures are explained by economic fundamentals, only food commodity markets can 

lead to economic instability. This reveals that while financial shocks materializing in each 

commodity market, including food, are likely to trigger economic instability, shocks to 

economic fundamentals can produce economic distress only in the case of food commodity 

markets. In addition, the analysis shows that risk measures tend to be high during crises and 

low during booms, suggesting that the dynamics of 𝛥𝐶𝑜𝑉𝑎𝑅s are pro-cyclical. Based on the 

results of the dominance tests, it is possible to sketch a likely rank of commodity markets 

which contribute most to contagion risk. In detail, oil’s risk contribution is found to dominate 

the other markets both when prices experience significant increases and when they 

dramatically fall. Furthermore, all metals market dominates agricultural and ethanol 

markets, and agricultural dominates ethanol market when there are price-ups. In the case of 

price-downs food is dominated by ethanol. From an economic point of view, this means that 

a distress occurring in oil market has the largest negative consequences for the whole 

economy, followed by a distress in metals, agricultural and ethanol markets. 

We have also found that spillover effects take place from energy to food commodity market, 

that oil is systemically riskier than ethanol in pushing distress in maize, wheat, rapeseed, 

soybean and soybean-oil markets, thus price spillovers from oil to food markets are more 

relevant than those coming from ethanol to food.  

From a policy perspective, given that we find evidence of financial contagion from 

commodity market to the rest of the economy it would be desirable that legal 
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infrastructures for financial markets were sound and clear, so to avoid that completely free 

markets without any oversight could lead to dangerous situations.  
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