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Abstract

Low-visibility conditions at airports can lead to capacity reductions and therefore to
delays or cancelations of arriving and departing flights. Accurate visibility forecasts are
required to keep the airport capacity as high as possible. We generate probabilistic now-
casts of low-visibility procedure (lvp) states, which determine the reduction of the airport
capacity due to low-visibility. The nowcasts are generated with tree-based statistical
models based on highly-resolved meteorological observations at the airport. Short com-
putation times of these models ensure the instantaneous generation of new predictions
when new observations arrive. The tree-based ensemble method “boosting” provides the
highest benefit in forecast performance. For lvp forecasts with lead times shorter than one
hour variables with information of the current lvp state, ceiling, and horizontal visibility
are most important. With longer lead times visibility information of the airport’s vicinity,
humidity, and climatology also becomes relevant.

Keywords: aviation meteorology, visibility, nowcast, decision tree, bagging, random forest,
boosting.

1. Introduction

Low-visibility conditions reduce the operational capacity of airports. At peak hours capacity
reductions may lead to flight delays or even cancelations. Consequently, costs for airports
and airlines as well as the environmental impact increase. These effects grow considerably
when low visibility is predicted incorrectly. Pessimistic visibility predictions may cause an
overly strong reduction of the airport capacity. Hence, scheduled short-distance flights may
be kept on ground at their airport of departure to ensure the flight safety. This action results
in costs for airlines, as well as in decreased revenues from landing fees for airports. On the
other hand, if visibility is predicted too optimistically, the number of arriving aircraft might
exceed the remaining capacity of an airport. Consequently, many en route flights have to
circle into stacks until landing is possible. Results are increased costs for airlines through
crew scheduling, fuel consumption, and emissions. Accurate forecasts of low visibility can
help to avoid such scenarios. Precise forecasts can be used by air traffic controllers to plan
the number of arriving and departing aircraft in a safe and economical way.
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The reduction of aircraft movements due to low visibility depends on different safety oper-
ations, which decelerate the air traffic and increase the distance between successive arrivals
and departures. The execution of these operations is defined by low-visibility procedure (lvp)
states. Upcoming available capacity is therefore directly connected to lvp forecasts at air-
ports. Typically, lvp states are determined by particular thresholds of horizontal and vertical
visibility. The exact thresholds and resulting capacity reductions, however, vary for each
airport. In this study lvp forecasts are investigated for Vienna International Airport (VIE).
Nowcasts with lead times up to two hours are of main interest. Currently, human forecasters
generate the lvp predictions at VIE by using observations at the airport and information
from numerical weather prediction (NWP) models. Providing probabilistic predictions of lvp
states, however, would support the forecasters producing their predictions.

Two different types of approaches are typically employed for automatic predictions of meteo-
rological variables. The first one is based on numerical modeling and uses all relevant physical
equations to compute forecasts. Many physically-based models for visibility and fog forecasts
were developed in the past, e.g. HRRR (Benjamin et al. 2016), The London Model (Boutle
et al. 2016), and PAFOG (Bott and Trautmann 2002). Generally, these models are com-
putationally expensive and special end-user related variables such as lvp have to be derived
afterwards from their output.

The second approach uses historical data to train a statistical model and produces proba-
bilistic forecasts of variables such as lvp directly. This approach is generally computationally
cheaper so that new predictions are available instantaneously with new input information. In
the past various statistical methods were tested to generate visibility forecasts. Vislocky and
Fritsch (1997) for example used multiple linear regression to generate visibility forecasts from
observations. Their forecasting system was later improved by Leyton and Fritsch (2003, 2004)
through increasing the density and frequency of the surface observations. An operational vis-
ibility forecasting system for several lead times and locations was developed by Ghirardelli
and Glahn (2010), using again multiple linear regression. Glahn et al. (2017) combined this
system with the physically-based forecasts of Benjamin et al. (2016) to improve the perfor-
mance. Other statistical techniques to forecast visibility are for example neural networks (e.g.,
Pasini et al. 2001; Marzban et al. 2007), Bayesian model averaging (e.g., Roquelaure et al.
2009), or decision trees (e.g., Bartoková et al. 2015; Dutta and Chaudhuri 2015). Herman and
Schumacher (2016) compared various statistical methods for visibility predictions at airports
and found that no specific model performs best overall.

The first investigation of lvp, which is the relevant variable for airport operations, was con-
ducted in a companion paper by Kneringer et al. (2017). They used ordered logistic regression
(OLR) models to produce lvp nowcasts at VIE for the cold season (September to March) with
lead times up to 2 hours and 30-minutes resolution. To provide decision makers with more
detailed information we increase the temporal resolution of the predictions to 10 minutes
and extend the predictor variable setup of Kneringer et al. (2017) with temporally lagged and
spatially averaged visibility information. During the cold season the peak of lvp is in the early
morning hours, coinciding with the airport’s rush hours (Kneringer et al. 2017). Since low
visibility has most impact during these times we generate lvp predictions in this paper only
from September to March during 6 and 9 UTC. Tree-based statistical methods are used as a
flexible nonparametric alternative to the parametric OLR for generating the forecasts. The
predictions of these models are compared amongst each other and to the forecasts of the OLR
models of Kneringer et al. (2017). Furthermore, the impact of the predictors on the forecasts
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is analyzed to provide information of the most important inputs for statistically-based lvp
nowcasts.

2. Data

In this section the predictand and the predictors used for lvp nowcasts are described. The
first part is about the determination of lvp, which has to be derived from horizontal and
vertical visibility measurements. In the second part the predictor variables are described.
These variables contain observations at VIE and its vicinity from September 2012 to March
2017 between 6 and 9 UTC.

2.1. Low-Visibility Procedure States

The lvp state is an ordered categorical variable that specifies the application of safety pro-
cedures at airports due to low visibility. Generally, lvp states are determined by nonlinear,
threshold-bounded combinations of horizontal and vertical visibility. Naturally, the exact
thresholds and the associated capacity reductions vary for each airport. At VIE, three lvp
states are specified (Tab. 1). The horizontal visibility used for lvp determination is runway
visual range (rvr), which is defined as the distance over which the pilot of an aircraft on the
centerline of the runway can see the runway surface markings or the lights delineating the
runway or identifying its center line (International Civil Aviation Organization 2005). The
vertical visibility threshold is determined by ceiling (cei), the altitude of the cloud base with
at least five octa coverage.

Each touchdown point at VIE is equipped to quantify rvr and cei . While rvr is measured
directly by transmissiometers, cei has to be derived from ceilometer measurements. Typically,
this procedure is conducted by human forecasters, who determine an airport-averaged cei ev-
ery 30 minutes by comparing the backscatter profiles of several ceilometers at the airport. For
the generation of 10-minutes resolved lvp, however, cei is required in a 10-minutes resolution.
Hence, we developed an algorithm in collaboration with the forecasters at VIE to compute
touchdown point specific cei with a 10-minute resolution. The predictand lvp is computed
afterwards by using the touchdown-point-specific cei and the 10-minutes resolved rvr at each
touchdown point, respectively. In this study we focus on forecasts at the touchdown point
with the highest climatological lvp state occurrence.

Table 1: Definition of lvp states with their occurrence probability for the forecast period (cold
seasons and early morning hours from 2012 to 2017) and the capacity limitations pertaining to
each lvp state at VIE. The operational capacity utilization for each lvp state is given relative
to the maximum capacity.

lvp state rvr cei occurrence capacity

0 90.4% 100%
1 <1200 m or <90 m 2.5% 75%
2 <600 m or <60 m 5.8% 60%
3 <350 m 1.3% 40%
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2.2. Predictor Variables

All meteorological variables used as predictors are available in a 10-minutes output frequency.
Moreover, most of them are measured at multiple locations within the vicinity of VIE. For
example, wind speed is observed at nine different locations within an area of about 8 km2.
These measurements are highly correlated and thus the forecast performance of the statistical
models would not increase when using all wind speed measurements. To this end, we conduct
a manual preselection of the observations at VIE to generate a highly informative predictor
setup. This predictor setup consists of single point measurements, derived observations, and
climatological information. Some variables occur several times through spatial averaging and
temporal lagging (Tab. 2, large setup).

The point measurements included in this predictor setup are rvr , horizontal visibility (vis), air
temperature (tl), relative humidity (rh), wind direction (dir), and wind speed (ff ). Postpro-
cessed information from the observations are lvp, cei, dewpoint depression (dpd), temperature
difference between 5 cm above the surface and 2 m (dts), and wind speed difference between
the height of 100 m and 2 m (ffd). All locations of the point measurements are close to the
touchdown point with exception of vis, which is observed at a distance of about 7 km north-
east of the touchdown point. This location is well-known to the forecasters since radiation
fog often forms there first.

Table 2: Predictor variables used in the statistical models. The variables on the upper part
are used in the “standard setup” while the “large setup” additionally considers the variables
on the lower part. Variables available in the standard setup contain information at forecast
initialization and at the touchdown point. In the large setup lvp, cei , and rvr information is
available also 10-minutes lags to forecast initialization and averaged for runway and airport,
respectively. The variables dirN , dirSE , rr, and sza used in the standard setup are not
included in the large setup (for more details to the standard predictor setup see Kneringer
et al. 2017).

Variable Unit Description

lvp [0,1,2,3] Low-visibility procedure
rvr [m] Runway visual range
cei [m] Ceiling
vis [m] Visibility
dts [◦C] Temperature difference 2m−5cm

dpd [◦C] Dew point depression
rh [0–100] Relative humidity
dirN [no,yes] Wind direction from north binary

dirSE [no,yes] Wind direction from south east binary

rr [no,yes] Rain in the last 12 hours binary

sza [◦] Solar zenit angle

dir [◦] Wind direction
tl [◦C] Air temperature
ff [ms−1] Wind speed
ffd [ms−1] Wind speed difference 100m−2m

cc [0–1] Conditional climatology
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Originally, rvr is censored at 2000 m because visibility above this range is not relevant for
the landing approach. For possible fog advection, however, visibility information from ranges
above 2000 m is required. Hence, we replace all censored rvr values with visibility information
measured next to the transmissiometers.

Since lvp is a combination of rvr and cei these three variables are expected to have the
strongest influence on lvp nowcasts. We therefore generate spatially averaged and tempo-
rally lagged predictors from these variables. Spatially averaged observations are averages at
the runway and from the complete airport. Runway averages only contain information di-
rectly from the runway. In case of rvr three sensors are used for averaging (located at both
touchdown points and the midpoint); cei averages at the runway contain information of two
ceilometers (located at both ends of the runway). Airport averages, however, contain all ob-
servations of one variable available in the airport area and therefore cover an area of about
8 km2. Averaged lvp information of the runway and airport are computed by using runway
and airport averaged values of rvr and cei, respectively. The temporally lagged information
used is lvp, rvr, and cei observations at the touchdown point from 10 minutes before forecast
initialization.

Additionally, we include a conditional 31-day lvp 0 state climatology (cc) for each day of the
year, containing the lvp 0 proportion of the actual day plus/minus 15 days around this day
from September 2012 to March 2017 between 6 and 9 UTC.

3. Methods

For the generation of statistical lvp state forecasts ordered response models are required,
which can be easily accommodated in decision trees. Such decision trees have a flowchart-
type structure and are therefore easy to understand and interpret. Typically, the forecast
performance of decision trees can be improved by aggregating an ensemble of trees using
methods like bagging, random forest, or boosting (James et al. 2014). While such an ensemble
usually improves predictive performance the interpretability is not straightforward anymore
due to the more complex structure. However, computing variable importance measures still
allows to determine the predictors with the highest benefit for the forecast. In the following,
an overview is provided of the tree-based forecasting methods along with details for validation
and interpretation.

3.1. Decision Tree

Decision trees are composed of a recursive partitioning algorithm, which splits the training
sample into different cells, depending on the association between the forecast variable and
its predictors. After the splitting procedure a constant model is usually computed for each
terminal cell.

Classic decision trees, such as CART (Breiman et al. 1984) and C4.5 (Quinlan 1993) select
their split variables by maximizing an information measure of node impurity for all possible
splits. Such variable selection criteria, however, prefer split variables with many possible
splits or missing values and tend to overfit the data (Hothorn et al. 2006b). The decision
trees developed in this study are based on the unified conditional inference framework of
Hothorn et al. (2006b). These trees separate the variable selection and splitting procedure
into two steps and do not suffer from a systematic tendency towards split variables with many
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Figure 1: Example of a decision tree for half-hourly lvp state forecasts at Vienna Interna-
tional Airport. The subscripts refer to: at touchdown point (td), averaged over runway (rw)
or airport (ap), 10 minutes prior (-10); dpd is dew point depression, n is the number of ob-
servations in the terminal cell. The two parts highlighted in different shades of gray refer to
the examples discussed in the text.

possible splits or many missing values (Hothorn et al. 2006b).

In the first step of the tree growing process the association between the response and each
of the covariates is computed by deriving the p-value for each association. In case of ordinal
variables such as lvp, the p-values are derived by an χ2-test (Hothorn et al. 2006a). If the
minimum p-value is below a prespecified nominal level α, the covariate with lowest p-value is
selected as split variable. Otherwise no split is computed. Hence, α can be seen as statistical
stopping criterion to avoid overfitting.

For the chosen split variable the optimal split point is computed by applying a second test
statistic over all subsets which can result from possible splits. The split point is set where the
discrepancy between two subsets is maximized. In case of lvp forecasts, the χ2-test is used
again as the test statistic (Hothorn et al. 2006a). Both steps, the variable selection and the
split point determination, are repeated recursively until a stopping criterion is reached (e.g.
all p-values exceed α or a maximum growth depth is reached). The conditional distribution of
the response in the particular terminal cells represents the probabilistic forecast of the tree.

As an example of the described algorithm a decision tree for a 30-minutes lvp forecast at VIE
is shown in Fig. 1. The first split variable of this tree is the current lvp state at the touchdown
(lvptd) of the runway. If it is 2 or 3 (> 1), the next split variable is the averaged lvp state
at the runway (lvprw). If, however, lvptd is 0 or 1, the lvp state over the airport (lvpap) is
required to generate a forecast. The process of comparing the observations with the splitting
rule has to be repeated at each subsequent split point until a terminal cell is reached and a
probabilistic forecast can be generated (histograms in Fig. 1).

A common observation at VIE is for example lvp state 0 at touchdown, runway, and the com-
plete airport at forecast initialization as well as 10 minutes before. The resulting prediction
from this observation is almost 100% lvp 0 (see dark gray path in Fig. 1). In the tree building
process most of the observations drop into this terminal cell (n = 11684). The second most
common combination of the tree (n = 1057, light gray path) results in a prediction of 4% lvp
0, 10% lvp 1, 78% lvp 2 and 8% lvp 3. This prediction is the most frequent one for prevailing
lvp conditions (for example lvp 2 is observed at each measurement site at forecast initializa-
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tion). All other possible predictions occur only rarely, which can be seen in the number of
observations in the terminal cells.

3.2. Tree-Based Ensemble Approaches

A well-known weakness of single decision trees is their high variance, i.e., the tree structure
may change considerably when learning it on randomly perturbed (sub)samples from the
same data set. Growing an ensemble of decision trees and aggregating them into one model
typically reduces the variance and improves the forecast accuracy (James et al. 2014). Hence,
the ensemble methods bagging, random forest, and boosting are employed subsequently.

Bagging
In bagging multiple trees are grown and their predictions are merged to reduce the variance
over single decision trees (Strobl et al. 2009; Bühlmann and Yu 2002). In the first part of
bagging multiple training samples of the size of the original training sample are generated
by drawing randomly observations from the original training sample with replacement (boot-
stapping). Afterwards, an individual tree is fitted to each new sample and the predictions
of the individual trees are merged. We use the aggregation pattern developed by Hothorn
et al. (2004), which collects all observations contained in the obtained terminal cells of the par-
ticular trees. The forecast of bagging is then just the distribution of the collected observations.

Random Forest
While bagging considers all predictor variables for splitting at any stage of any tree, random
forest only considers a different randomly drawn subset of predictors at each stage. Thus,
bagging is a special case of random forests (Strobl et al. 2009) but the latter leads to trees
that are less correlated with each other.

The principle of including additional randomness into the single trees can often improve the
prediction accuracy of an ensemble. Commonly one predictor has potentially stronger power
than the other covariates. Most of the bagged trees will therefore select this predictor as first
split variable so that the predictions of the individual trees will have a strong correlation,
and consequently only a small variance reduction over a single tree when aggregating these
trees (James et al. 2014). Trees grown in a random forest, on the contrary are quite diverse
amongst each other. Through the random preselection of possible split variables in random
forests weaker predictors have the chance to be selected first and may reveal interaction effects
with other variables that would have been missed otherwise (Strobl et al. 2009).

Boosting
The third method used to combine an ensemble of decision trees is boosting. New decision
trees grow in boosting always on forecast information of previously grown trees (James et al.
2014). The new tree is fitted therefore to residual information of the previous trees and is sub-
sequently added to them. Afterwards the residual information of the new model is computed
and a new tree is fitted to it. The computation of the residual information varies with differ-
ent boosting methods. In this study we use the component-wise gradient boosting algorithm
developed by Bühlmann and Hothorn (2007), which computes the residual information with
the negative gradient vector of the loss-function from the current model. To boost ordinal
response variables such as lvp the log-likelihood of the proportional odds model (Agresti 2003)
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is used as loss-function (Schmid et al. 2011). Moreover, a shrinkage parameter is used for tree
aggregation to avoid overfitting.

The trees used in the boosting algorithm are the conditional inference trees of Hothorn et al.
(2006b, see Sec. 3.1). Since boosting is able to project additive data structures, and decision
trees can model nonlinear data features, boosting trees can project both, additive and non-
linear data features. The branch depth of the individual trees can be used to control whether
boosting rather captures additive or nonlinear structures.

3.3. Computational Implementation

Decision Tree

The conditional inference trees used are implemented in the R package party (Hothorn et al.
2017b). Each tree developed in this investigation can grow until the p-value between the
response and its most associated predictor exceed the default α value of 0.05.

Bagging and Random Forest

Bagging and random forest models used in this investigation are also implemented in the R
package party (Hothorn et al. 2017b). Both models contain 500 single decision trees, which
turned out to be a reasonable number to ensure short computation times with good forecast
performance. The settings of the individual trees in bagging and random forest are default.
In random forests the number of randomly preselected split variables is set to five, which is
approximately the square root of the number of predictors (typically recommended in the
literature; see James et al. 2014).

Boosting

The boosting method used in this study is implemented in the R package mboost (Hothorn
et al. 2017a). Each boosting model consists of 1500 trees, which is a reasonable number to
guarantee high forecast performance with low computational cost. The shrinkage parameter
for tree aggregation is set to the default value 0.1. Each tree in the boosting can grow to a
maximum branch depth of three because we rather combine several small trees instead of few
large ones. Using this adjustment we are able to model both, additive and non-linear data
structures.

3.4. Reference Model

To analyze the benefit of the different tree-based models we compare their forecast per-
formance to an ordered logistic regression model (OLR), which was shown to outperform
climatology, persistence, and predictions of human forecasters at VIE (Kneringer et al. 2017).

For consistency in model comparison we change the half hourly averages of cei and lvp used by
Kneringer et al. (2017) to the 10-minutes resolved values described in Sec. 2.1. Furthermore,
the size of the training sample is reduced to 5 cold seasons instead of the original 9 cold
seasons.

3.5. Forecast Verification

The forecast performance of the models is analyzed using the ranked probability score (RPS;
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Epstein 1969; Murphy 1971), which is a well-known validation criterion for probabilistic fore-
casts of ordered response variables such as lvp (Wilks 2011). The RPS of a forecast-observation
pair i is computed by the squared errors of the cumulative distribution function of the forecast
probabilities with respect to the observations:

RPSi =
1

J − 1

J∑

s=1

[ s∑

j=1

yij − oij

]2
,

with the forecast probabilities yij and observations oij for each category j = 1, . . . , J . A
perfect forecast results in an RPS of 0; the worst possible forecast has an RPS of 1. For
model comparison we average the RPS values of all forecast-observation pairs produced from
one model.

Moreover, for direct comparison of the forecast performance of a model relative to a reference
the ranked probability skill score (RPSS) can be computed. This criterion requires just the
RPS of the model and the reference for its computation:

RPSS = 1 − RPS

RPSreference
.

The RPS values of each model are computed by applying a season-wise 5-fold cross-validation.
To this end, the dataset is subdivided into five samples, each of which contains one cold season.
Afterwards, the models are trained on four samples and validated on the remaining one. This
training and validating procedure is repeated five times, always with another sample for
validation.

For the computation of the model uncertainty we additionally bootstrap the RPS values
calculated in the cross-validation algorithm above (bootstrapping described in Sec. 3.2 –
bagging). Therefore we generate 2000 bootstrapped samples and compute the mean RPS for
each sample. The model uncertainty is described by the distribution of the mean RPS values.

3.6. Variable Importance Measurement

To identify the variables with the highest impact on the forecasts we apply variable permu-
tation tests in which the true information of a particular predictor is replaced by randomly
drawn information from the predictor’s true distribution. The information of a predictor is
thus intermingled randomly. Stronger decrease in forecast performance shows a higher impact
of the permuted variable.

To conduct the variable permutation test we again use 5-fold cross-validation. Therefore
we always fit the models to four cold seasons and test them on the remaining one. After
generating predictions on the original test sample we randomly permute one predictor variable
and produce forecasts on the modified sample. This procedure is repeated for each predictor
variable in the test sample. The performance of the predictions from each modified sample
is computed by the RPS (Sec. 3.5). We have to mention that permuting predictors with
a strong association amongst others can lead to discrepancies in the model and therefore to
strong effects in the forecast performance (for example lvptd to cei td and rvr td). Nevertheless,
the variables with the highest impact on the forecast performance can be effectively identified
using this analysis
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4. Results

4.1. Model Comparison
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Figure 2: Ranked probability scores (RPS) of the OLR model from Kneringer et al. (2017)
(olr) and the tree-based models decision tree (tree), bagging (bagging), random forest (forest),
and boosting (boosting) for lead time +30, +60, +90 and +120 minutes. For each model the
standard predictor variable setup described by Kneringer et al. (2017) and in Tab. 2 is used.

The comparison of tree-based models and the OLR model (olr) of Kneringer et al. (2017) for
lvp nowcasts is shown in Fig. 2. All models established for this comparison are based on the
standard predictor setup described in Tab. 2 and tested for lead time +30, +60, +90, and
+120 minutes.

OLR outperforms decision trees (tree) at each lead time. The benefit of OLR over decision
trees is between 2.5 and 11 percent with highest value at +120 minutes. Tree-based ensemble
methods, however, outperform OLR at almost all lead times. At the lead time +30 minutes
random forest (forest) performs similar to OLR. With longer lead times, the benefit of random
forest increases and is highest at the lead time +120 minutes. In contrast, bagging (bagging)
has the highest benefit over OLR at lead time +30 minutes. At longer lead times this benefit
disappears and bagging performs similar to OLR. Boosting (boosting) outperforms OLR at
each lead time and has highest benefit over all models except for random forests at +120
minutes. The benefit of boosting over OLR varies between 1 and 4 percent.

These results show that aggregating multiple trees substantially improves the forecast perfor-
mance of a single decision tree. The most efficient aggregation method concerning lvp forecasts
is boosting. Random forests perform best at +120 minutes lead time when the forecast de-
pends on multiple predictors instead of only few with very high importance. If, however, only
few of the available predictors control the forecast like at short lead times, where the forecast
relates strongly on persistence, the performance of random forests is worse. In such cases
bagging leads to better results.

4.2. Impact of More Predictors

To improve the forecast performance of the models established in Sec. 4.1 we provide them
the large predictor setup specified in Sec. 2.2. The performance of the tree-based models with
the large predictor setup relative to a reference is shown in Fig. 3. The reference model for
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Figure 3: Ranked probability skill score (RPSS) comparison of the tree-based models with
the large predictor setup defined in Sec. 2.2 relative to the boosting models defined in Fig.
2. The dots show the median values of the RPSS for the lead times +10 minutes to +120
minutes in 10-minute resolution.

this analysis is the boosting model from Sec. 4.1, which is the best performing model with
the standard predictor setup.

Single decision trees with the large predictor setup are outperformed by the reference model at
each lead time. The difference in forecast performance becomes even bigger with longer lead
times. On the contrary, the benefit of the tree-based ensemble models random forest, bagging,
and boosting compared to the reference increases slightly with longer lead times. Random
forest has advantages only for the longest lead times. Bagging outperforms the reference after
+20 minutes, and boosting after a lead time of +10 minutes. At lead time +120 minutes the
benefit over the reference is approximately 5 percent for bagging and 7 percent for boosting.
Again boosting performs best.

At the shortest lead time boosting with the large predictor setup performs almost equally to
the boosting with the standard setup (reference). The other models again perform somewhat
worse, especially random forest which shows a decrease in forecast performance of more than
50% compared to the reference. The reason therefore is the reduced set of randomly drawn
split variables in the tree building process. Since the models mainly try to reproduce the
persistence at the shortest lead times, the single trees strongly require information of current
lvp. If this predictor is not included in the randomly selected split variable setup, the single
trees perform badly. Aggregating many poorly performing trees results again in worse forecast
performance.

4.3. Impact of Predictor Variables

The analysis of the variables with highest impact on the forecasts is conducted by variable
permutation tests (Sec. 3.6). Therefore, the forecast performance from a test sample with
randomly permuted information of a particular predictor is computed and compared to the
forecast performance of the original test sample. Fig. 4 shows the fractional changes in RPS
for predictions on permuted test samples relative to the original sample for bagging (4a) and
boosting (4b). The permuted variables with strongest decrease in forecast performance are
plotted for lead time +10, +60, and +120 minutes.

The highest impact on lvp nowcasts with a lead time of +10 minutes has the current lvp state
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Figure 4: Variable importance analysis for the models bagging (a) and boosting (b). Each
bar in the plot shows the fractional decrease in forecast performance for a test sample with
a randomly permuted predictor compared to the original test sample. Note that the bars are
cut at a maximum fractional decrease of 0.2. Higher values in fractional decrease are written
in the bars. For each model the most important variables are plotted for the lead times +10,
+60 and +120 minutes.

at the touchdown point (lvptd). Permuting this variable decreases the forecast performance
of bagging on average more than 8 times, and of boosting more than 3 times. Additional
variables with impact on the forecasts are the averaged lvp state of the airport (lvpap) and
runway (lvprw) for bagging, and cei information at touchdown (cei td), as well as the lvp state
at touchdown 10 minutes before forecast initialization (lvptd−10) for boosting. With growing
lead times the strong dependence on lvp information at the touchdown point decreases. For
the lead time +60 minutes lvptd still has the highest impact on the forecasts. However, lvprw

also has a strong influence in bagging at +60 minutes lead time. Further variables with
influence are the visibility outside the airport area (visext), lvpap, and the airport averaged
rvr (rvrap). Their influence is stronger in boosting, yet. At the lead time +120 minutes lvpap

has the strongest influence in bagging. Standard meteorological information of humidity
(rh) and temperature (tl), as well as lvptd and visext have further influence. For boosting
lvpap, rvrap, and visext have the strongest impact. Additional impact has lvp information at
touchdown and runway. Moreover, the conditional lvp 0 state climatology (lvpcl) has influence
on forecasts of both models at the lead time +120 minutes.

These results confirm the predictor selection analysis for the OLR model of Kneringer et al.
(2017), which also show strongest impact of current lvp information at short lead times,
and climatological impact at longer lead times. Altogether, the variables with the highest
influence are similar for both models for each lead time. At short lead times point measure-
ments at touchdown have the highest influence, whereas averaged airport information becomes
more important with increasing lead time. In bagging the dependency on lvp information is
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stronger, instead horizontal visibility information has higher impact in boosting.

5. Discussion and Conclusion

Nowcasts of lvp (low-visibility procedure) states at Vienna International Airport are produced
in a high temporal resolution using different tree-based models. The various models are
compared amongst each other and to the OLR (ordered logistic regression) model of Kneringer
et al. (2017). Tree-based boosting leads to the best forecasts, outperforming bagging, random
forests, and OLR – all three of which perform similarly – while single decision trees have the
lowest predictive performance for all lead times.

To improve the forecast performance of lvp nowcasts we enlarge the predictor setup and
increase the output resolution compared to the investigation of Kneringer et al. (2017). The
models established on the enlarged predictor setup are compared to boosting trees with the
standard predictor setup. Boosting performs again most accurate. At the shortest lead
time boosting with the large predictor setup performs about equally to boosting with the
standard setup. With longer lead times the benefit of models with the large predictor setup
increases. Bagging also performs well, however, it is outperformed by boosting at each lead
time. Random forests only perform well at longer lead times, while single decision trees
perform well only at very short lead times and become badly with longer lead time.

The reason of this pattern is based on the different working processes of the models. At
very short lead times the predictions strongly depend on information of the current lvp state
at the touchdown point. Since this predictor often occurs as split variable in the trees all
aggregated decision trees look similar. Hence, the performance of bagging and decision tree
is similar at the shortest lead time. If most information for the forecasts is contained in
only one predictor variable, random forest perform worse due to their random preselection of
potential split variables. With longer lead times the strong dependency to only one predictor
variable decreases and therefore the benefit of the ensemble-merging models increases strongly
compared to single decision trees.

In summary, we have shown that tree-based methods are suitable tools for lvp state nowcasts.
Their computational costs are comparable with linear regression methods and therefore they
are able to produce instantaneous forecasts when new observations arrive. Especially the
tree-based ensemble methods bagging and boosting perform well for lvp predictions. The
predictors with the highest impact to lvp nowcasts contain information of the current lvp
state and horizontal visibility at forecast initialization.
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Abstract
Low-visibility conditions at airports can lead to capacity reductions and therefore to
delays or cancelations of arriving and departing flights. Accurate visibility forecasts
are required to keep the airport capacity as high as possible. We generate probabilis-
tic nowcasts of low-visibility procedure (lvp) states, which determine the reduction
of the airport capacity due to low-visibility. The nowcasts are generated with tree-
based statistical models based on highly-resolved meteorological observations at the
airport. Short computation times of these models ensure the instantaneous gener-
ation of new predictions when new observations arrive. The tree-based ensemble
method ”boosting” provides the highest benefit in forecast performance. For lvp
forecasts with lead times shorter than one hour variables with information of the
current lvp state, ceiling, and horizontal visibility are most important. With longer
lead times visibility information of the airport’s vicinity, humidity, and climatology
also becomes relevant.
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