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Abstract: 
Applying a probabilistic causal approach, we define a class of time series causal models 
(TSCM) based on stationary Bayesian networks. A TSCM can be seen as a structural VAR 
identified by the causal relations among the variables. We classify TSCMs into 
observationally equivalent classes by providing a necessary and sufficient condition for the 
observational equivalence. Applying an automated learning algorithm, we are able to 
consistently identify the data-generating causal structure up to the class of observational 
equivalence. In this way we can characterize the empirical testable causal orders among 
variables based on their observed time series data. It is shown that while an unconstrained 
VAR model does not imply any causal orders in the variables, a TSCM that contains some 
empirically testable causal orders implies a restricted SVAR model. We also discuss the 
relation between the probabilistic causal concept presented in TSCMs and the concept of 
Granger causality. It is demonstrated in an application example that this methodology can be 
used to construct structural equations with causal interpretations. 
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1 Introduction

Since the development of the successful learning algorithms for Bayesian net-
works, the probabilistic causal approach attracts more and more attention
of the scientific community1. Spirtes, Glymour, and Scheines (2001) provide
a detailed description of learning Bayesian networks through sequential tests
and the causal interpretation of the test results. Pearl (2000) gives a rigorous
account of the probabilistic approach to causality. Heckerman, Geiger, and
Chickering (1995) provide the Bayesianian technique for learning Bayesian
networks from data. Despite the controversial debate on this Bayesian net-
work causal approach2, the automated causal inference based on Bayesian
network models becomes an effective instrument to assess causal relations
empirically.

Recently, these graphical models have found their way into the literature
on time series analysis and econometrics. Dahlhaus (2000) gives a graph-
ical interpretation of the conditional independence among the elements of
multivariate time series. Bach and Jordan (2004) present graphical models
for multivariate time series in the frequency domain. Eichler (2003) gives a
graphical presentation of the Granger causality among the elements of mul-
tivariate time series. Some pioneering works of graphical models in econo-
metrics can be found in Glymour and Spirtes (1988). Hoover (2005) sketches
the application of the Bayesian network technique for identifying structural
VAR models. Swanson and Granger (1997) apply a similar concept to iden-
tity the causal chain in VAR residuals. Demiralp and Hoover (2004) apply
the Bayesian network method to VAR residuals to infer the causal order in
the money demand and the monetary transmission mechanism.

Following this line of research, in this paper we develop a causal model for
multivariate time series data. We apply the probabilistic causal approach to
define causal models for multivariate time series. Under reasonable assump-
tions on the causal structures for time series, TSCMs become statistically
assessable. Further we show that these TSCMs are equivalent to SVAR mod-
els. In this way, we give a causal theoretical justification for the application
of the automatic inference to identify a SVAR as described in Hoover (2005).
We interpret a SVAR in terms of a contemporaneous causal structure and a
temporal causal structure. A two-step procedure is developed to learn the
contemporaneous and the temporal causal structure of a multivariate time
series causal model.

The rest of the paper is organized as follows.

1Although inferring causal relations used to be the primary target of statistical analysis,
this ambition was abandoned for a long time. See Pearl (2000) for more details.

2see Cartwright (2001) and Pearl (2000) p. 41 for more details.
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In Section 2 we review the basic idea of the inferred causation. Here we
focus on the causal interpretation of the Bayesian network models and their
relations to linear recursive structural models. Within the class of linear
recursive structural models we discuss in detail the structure of inferrable
causation and the model equivalence. In Section 3 we extend the concept of
the causal models to time series data and define time series causal models.
Here we show the equivalence of TSCMs and SVAR models, and discuss the
relation between the Granger causality and the probabilistic causal depen-
dence. In Section 4 we present a two step procedure to estimate the time
series causal models from the observed time series data. We show the consis-
tence of the procedure and document some simulation results to assess the
small sample properties of the procedure, as well as the effectiveness of the
procedure in recovering the true causal order. Section 6 is devoted to an
illustrative application example of the TSCM. The last section concludes.

2 Inferred Causation

2.1 A Model Selection Approach to Inferred Causation

A fundamental assumption of the method of inferred causation is that, as
given in Definition 2 in Pearl and Verma (1991): the casual relations among
a set of variables U can be modelled in a directed acyclic graph(DAG) D
and a set of parameters ΘD, compatible with D. ΘD assigns a function
xi = fi(pa(xi), εi) and a probability measure gi to each xi ∈ U , where pa(xi)
are parents of xi in D and each epsiloni is a random disturbance distributed
according to gi independently of the other ε’s and of any preceding xj: 0 <
j < i.

The probability measure compatible with D is called to satisfy the Markov
condition in Pearl (2000) p.16. The Markov condition implies in particu-
lar that the disturbance εi are independent form other ε’s. In addition to
the Markov condition, the minimality of the causal structure3, D, and the
stability of the distribution are two key assumptions on the data-generating
causal model to rule out the ambiguity of the statistical inference in recover-
ing the data-generating causal model.4. Further, a DAG with a Probability
measure P that satisfy the Markov condition with respect to the DAG(See
Fig.1 for examples.) prescribes an ordering of the variables in the DAG and
the factorization of the joint distribution of the variables as the product of

3See Definition 5 in Pearl and Verma (1991)
4It is still an ongoing debate whether causality can be formulated in such assumptions.

See Cartwright (2001), Pearl (2000), Spirtes et al. (2001) Freedman and Humphreys (1998)
for more discussion. Spirtes et al. (2001) took an axiomatic approach to pave the logical
basis for the method of inferred causation.
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the conditional distributions. A sparse DAG implies in particular a set of
conditional dependence and independence among variables. In (a) and (b)
of Fig.1 A and C is said to be d-separated by B. This implies that for all
compatible distributions with the DAGs A and C would be dependent, but
conditioning on B, they would be independent. In this case B is said to
screen A from B. In (c) of Fig.1 A and C is not d-separated by B. This
implies that at least for one distribution compatible with the DAG, A and
C would be independent, but conditioning on B they would become depen-
dent5. B is the effect of A and C. Here B is called an unshielded collider
on the path ABC. In the literature an unshield collider is also called a v
structure, because it consists of two converging arrows whose ends are not
connected. A shielded collider would have a direct link between A and C.

A C

B

A C

B

(a) (b)

A C

B x3

x2

x1

x4

x5

(c) (d)
Figure 1: Influence Diagram

Under the Markov assumption, a compatible distribution of a DAG can be
factorized into the conditional distributions according to the DAG. Hence we

5See Pearl (2000) p.18.
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know that the DAG (d) in Fig.1 implies that the joint distribution can be
calculated as follows.

f(x1t, x2t, x3t, x4t, x5t)

= f(x4t|x5t)f(x5t|x1t, x3t)f(x3t|x2t)f(x1t|x2t)f(x2t), (2.1)

This implies the following conditional independence: given x5t, x4t is inde-
pendent on other variables; given x1t and x3t, x5t is independent on x2t; and
given x2t, x3t is independent on x1t.

The fundamental assumption of the method of inferred causation translates
the problem to infer causal relations among variables into a statistical prob-
lem to recover the true data generating DAG model using the observed data,
and then to interpret the directed edges in the DAG as causal relations.

The implication of a DAG on the patterns of the conditional dependence
and independence invites inference of the data generating DAG from these
patterns of the conditional dependence and independence. Identifying the
underlying DAG from the patterns of conditional independence and depen-
dence has been the main research activity in the area of inferred causation.
We will give a more detailed description about it in the next section.

Alternatively, consistent model selection criteria can also be used to identify
the data generating DAG, if the data generating DAG is under the set of
models to be selected. The assumption that the data generating DAG is un-
der the set of DAG models under consideration is called the causal sufficiency
assumption6.

Therefore, under causal sufficiency applying a consistent model selection cri-
terion to search over all possible DAG models will identify the data generating
DAG or its observationally equivalent models consistently.

In this paper we will use this method to uncover the data generating DAG.
The statistical process of uncovering the data generating DAG is called learn-
ing of DAG in the literature.

In example (d) in Fig.1 we will search over all DAG models consisting of the
five variables x5t, x4t, x3t, x2t, x1t. A consistent model selection criterion eval-
uates a model by the sum of its likelihood and a penalty on the dimensionality
of the model. The likelihood is the leading term in this sum such that all
misspecified models will not be selected asymptotically and the penalty term

6If some variables are not observed(these kind of variables are called latent variables),
then the data generating DAG may not be within the set of DAG models to be investigated.
The method of inferred causation can be used to detect the existence of latent variables.
We will not discuss this issue in this paper. We consider here only the cases under causal
sufficiency assumption.
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will go to infinite as T →∞, such that the probability to select a model with
too many parameters will converge to zero.

In this context, statistically learning of the causal order is equivalent to
searching for the most parsimonious model that can account for the joint
distribution of the variables in the class of all possible recursive models.

Now it is of interest to ask:

• If data are generated from a causal model, can statistical procedures
always uniquely identify this causal model?

• If a causal model cannot be uniquely identified by statistical proce-
dures, which causal properties of the causal model can be identified by
statistical procedures?

• How effective is a statistical learning procedure?

The answers to these questions are the main research issues of the prob-
abilistic causal approach. The first and the second question concern the
observational equivalence of causal models and the assumptions of causal
models. The third one concerns the efficiency of algorithms to learn causal
relations implied in the observed data. Pearl (2000), Spirtes et al. (2001) and
Heckerman et al. (1995) provide the most detailed and up-to-date accounts
in this area.

Observationally equivalent models will generate data with identical statistical
properties. Therefore, statistical method can only identify the underlying
DAGs up to the observationally equivalent classes. For the observational
equivalence we quote the results in Pearl (2000) p.19.

Proposition 2.1 [Observational Equivalence ] Two DAGs(models) are ob-
servationally equivalent if and only if they have the same skeleton and the
same set of v-structures, that is two converging arrows whose tails are not
connected by an arrow (Verma and Pearl 1990).

Since statistical method cannot differ the observationally equivalent models
from each other from the data, not every causal direction in a DAG can al-
ways be identified according to this Proposition. Only those causal directions
in a DAG can be identified, if they constitute v structures or if their change
would result in new v-structures or cycles. Consequently, if a data generating
DAG has observationally equivalent models, i.e. there exists some arrows in
the DAG, the change of whose directions will not lead to a new v structure
or cycles, the direction of these arrows in the DAG cannot be uniquely in-
ferred from the data. The existence of observational equivalence places a
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limit on the ability of statistical method to identify the the directionality of
dependence.

Given a set of data generated from a causal model, a statistical procedure
can principally identify all the conditional independence. However, the sta-
tistical procedure cannot differ whether this kind of independence is due to
a lack of the edge in the DAG of the causal model or due to particularly
chosen parameter values of the DAS such that the edge in this case implies
the independence. To rule out this ambiguity, Pearl (2000) assumes that all
the identified conditional independence are due to lack of edges in the DAG
of the causal model. This assumption is called stability condition in Pearl
(2000). In Spirtes et al. (2001) it is called faithfulness condition. This as-
sumption is therefore important for interpreting the conditional dependence
and independence as causal relations.

2.2 DAGs and Structural Models

It can be generally shown that if an n-vector X is jointly normally distributed,
a DAG model of X is equivalent to a linear recursive simultaneous equation
model (SEM).

xj =

j−1∑

k=1

ajkxk + εj, j = 1,2,...n (2.2)

where εj is independently normally distributed. We call (2.2) a linear causal
model. We put this fact in the following proposition7.

Proposition 2.2 If a set of variables X are jointly normal X ∼ N(0, Ω), a
DAG model for X can be equivalently formulated as a linear recursive simul-
taneous equations model that is represented by a lower triangular coefficient
matrix A with 1s along the principle diagonal. Any nonzero elements in this
coefficient matrix, say ajk correspond to a directed edge form variable k to
variable j.

A =




1 0 . . . 0

−a21 1
. . .

...
...

. . . . . . 0
−an1 −an2 . . . 1


 , (2.3)

where A is the inversion of the triangular decomposition matrix of Ω with
AΣA′ = D and D is a diagonal matrix.

7Bayesian network models can be used to encode any joint distributions. Therefore,
they can also be applied to nonlinear models. Because linear models are often used in
econometrics we discuss here only linear models.
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Proof: Let Ω be the covariance matrix of X. A Bayesian network model for
X is a factorization of the joint distribution as product of the conditional dis-
tributions of the components of X in a given order. Because conditional dis-
tributions of jointly normal distributed random variables are normal and the
conditional means are linear functions of conditioning variables, a Bayesian
network model for jointly normal distributed variables corresponds to a linear
recursive simultaneous equations model. 2

Remark 1 It is worth noting that using the rule given in Proposition 2.2 we
can always get a unique corresponding DAG from a linear recursive simul-
taneous equations model. But from a DAG of jointly normally distributed
variables we may sometimes get different linear recursive simultaneous equa-
tion models. For example the DAG of (c) in Fig. 1 can be written as:




1 0 0
0 1 0
1 −aca −acb







Xa

Xb

Xc


 =




εa

εb

εc


 (2.4)

or 


1 0 0
0 1 0
1 −acb −aca







Xb

Xa

Xc


 =




εb

εa

εc


 (2.5)

Such linear causal models presented by their coefficient matrices are trivially
equivalent, because they present the same causal information and they dif-
fer only in the causally irrelevant order of their components. We call such
linear causal models that correspond to the same DAG ”trivially equivalent
models”.

Remark 2 Given the correspondence between a recursive SEM and a DAG,
the parameter aij of the SEM corresponds to the edge from the vertex xj to
the vertex xi. aij = 0 corresponds to the absence of the edge from the vertex
xj to the vertex xi, which implies that xj and xi are conditionally indepen-
dent, given the predecessors of xi. Therefore, the more null restrictions a
recursive model has, the simpler the corresponding DAG will be. Searching
for the DAG with minimal structure is equivalent to searching for the most
parsimonious recursive SEM for the data.

A useful property of multivariate normal distribution is that the conditional
covariance, the conditional variance and the conditional correlation coeffi-
cient: σXj ,Xi|z, σXj |z and ρXj ,Xi|z are all independent of the value z. Moreover
the partial correlation coefficient is zero if and only if (Xi⊥Xj|z)8. Because
we can estimate a recursive SEM by OLS, we have an important relation

8(Xi⊥Xj |z) denotes that conditioned on z, Xi and Xj are independent.
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between the parameter of the recursive SEM and the partial correlation co-
efficient(See also Pearl (2000) Chapter 2.):

rY X.Z = ρY X|Z
σY |Z
σX|Z

, (2.6)

where rY X.Z is the regression coefficient of Y in the linear regression on X
and Z

Y = aX + b1z1 + b2z2 + ... + bkzk (2.7)

This means the coefficient a is given by a = rY X.Z . This relation is very
useful for deriving the results later.

2.3 Observational Equivalence and Inferrable Causa-
tion in SEMs

From Proposition 2.1 we know some arrows in a data generating DAG may
not be identified due to the existence of observationally equivalent models.
In this subsection we study how the condition of the observational equiva-
lence is expressed by the parameters in linear causal models. A linear causal
model is a recursive structural equation model, the upper triangular ele-
ments of the coefficient matrix are zeros (See Eq. (2.3)). A linear causal
model is characterized through the zero restrictions on the parameters in the
the lower triangular part of the coefficient matrix. Hence, when talk about
zero restrictions, we mean the zero elements in the lower triangular part of
the coefficient matrix.

If two different causal models can generate data with the same statistical
property we will have problems to differentiate these two causal models by
using statistical methods. Therefore, we have the following definition.

Definition 2.3 (Observationally Equivalent Causal Models) If two dif-
ferent linear causal models can always generate identical joint distribution,
they are called observationally equivalent.

To the relation between two trivially observationally equivalent causal models
we have the following proposition:

Proposition 2.4 (Interchange Rule 1) Let A be a lower triangular (re-
cursive) coefficient matrix of a linear causal model, and row i and row j be
two adjacent rows of A with j = i+1. Let Ai↔j be the lower triangular coeffi-
cient matrix obtained by interchange of i-th row and i-th column with j-th row
and j-th column. If aj,i = 0. then A and Ai↔j are trivially observationally
equivalent.
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Proof: Because the DAG of A and the DAG of Ai↔j are identical, they are
trivially observationally equivalent. 2

Remark This interchange rule can be extended to the case of interchange
of some consecutive rows and columns. The consecutive rows and columns
are called block. Let A be a lower triangular (recursive) coefficient matrix of
a linear causal model and i is the index of a block of rows and j is the index
of the next block of rows with j = i + 1. Let Ai↔j be the lower triangular
coefficient matrix obtained by interchange of i-th block of rows and i-th block
of columns with j-th block of rows and j-th block of columns. If Aj,i = 0,
then A and Ai↔j are trivially observationally equivalent, where Aj,i is the
submatrix in A consisting of j-th block of rows and i-th block of columns.

Proposition 2.5 (Structure of Nontrivial Observational Equivalence)
A linear causal model has nontrivial observational equivalence if and only if
there are two adjacent rows whose zero elements are in the same columns or
they have no zero elements.

Proof: See Appendix.

Corollary 2.6 (Interchange Rule 2) Let A be a lower triangular (recur-
sive) coefficient matrix of a linear causal model. If there are two adjacent
rows, i-th and j-th rows, whose zero elements are in the same columns, then
the interchange of these two rows and the corresponding columns Ai↔j con-
stitute a new observationally equivalent causal model.

Proof: See the proof of Proposition 2.5.

Remark 1 An interchange of two adjacent rows and columns implies that the
order of the recursion between these two variables changes. It does not mean
that the parameter values remain the same after change. They are freely
varying parameters before and after the change. In terms of a graph, the
interchange of two adjacent rows changes the direction of the edge between
the two variables if they are connected by an edge.

Remark 2 Let A be a lower triangular (recursive) coefficient matrix of a
linear causal model. If there is no zero restriction in the first block of i-rows
(i = 2, 3, 4, ...n), then according to Corollary 2.6, any order of these i-rows
will constitute an observationally equivalent model to A. Especially, when
there are no zero restrictions in A at all, any permutation of the order of the
elements of X constitutes an observationally equivalent model to A. In this
case the order of the recursion does not provide any information about the
causal direction.
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Remark 3 As we know from Proposition 2.1, the existence of an observa-
tionally equivalent model can be characterized by v-structures. In terms of
graphs Corollary 2.6 says that we can alter the direction of the arrow xi → xj

to get an observationally equivalent model if xi’s parents are the parents of
xj. That xi’s parents are the parents of xj implies the arrow xi → xj does
not constitute a v structure, because all the tails of arrows into xj are con-
nected with xi. For the same reason an arrow xj → xi does not constitute a
v structure. Therefore the change the direction of the arrow xi → xj will not
lead to a new v structure. Further, since all parents of xi are parents of xj,
there is no path from xi to xj. The change in direction of the arrow xi → xj

will not lead to a cycle. Therefore, the change of the direction of the arrow
xi → xj generates an observationally equivalent model, since the change of
the direction of the arrow xi → xj result in a DAG with the same skeleton
and v-structures.

Following Remark 3 above, only the directions of edges whose change will
lead to the change of the v-structures or lead to a cycle can be used to infer
causal dependence. Other direction of edges in DAGs do not have any causal
implication.

Corollary 2.7 (Observational Differentiability) A linear causal model
is called observationally distinguishable, if and only if there are no two adja-
cent rows, obtained through interchange rule 1, such that their zero elements
are on the same columns or they have no zero elements.

Remark Expressed in terms of DAG this corollary means simply that a
causal model is observationally differentiable if and only if the DAG con-
sists only of v-structures and those edges whose change will change the v-
structures or will lead to a cycle.

Proposition 2.8 (Structure of Observational Equivalence) An obser-
vationally indistinguishable linear causal model consists of one or more blocks
(consecutive adjacent rows) in which some zero elements are on the same
columns.

Proof: Applying the result of the Proposition 2.5, we know that if a linear
causal model is observationally indistinguishable, it must have one or more
blocks in which zero elements are on the same columns. Applying interchange
rule 2 any reordering within such blocks will generate a new observationally
equivalent linear causal model. 2

Because the causal ordering within such blocks are statistically not inferrable
but the causal ordering between different blocks are statistically inferrable,
we call these blocks simultaneous causal blocks. Based on this observation
we can characterize the inferrable causal structure as follows.
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Proposition 2.9 (Inferrable Causal Structure)

Assuming that observed data are generated by an unknown linear causal
model, we have the following results:

• If the data generating linear causal model is observationally distinguish-
able, the causal order of the variables can be inferred uniquely.

• If the data generating linear causal model has no zero restrictions in the
recursive coefficient matrix, then there is only one simultaneous causal
block. No causal order can be inferred from this model.

• If the data-generating linear causal model has zero restrictions and ob-
servationally equivalent models, then the causal order of the variables
can be inferred up to the simultaneous causal blocks, and those causal
directions whose change will alter the v-structures or will lead to a cycle
can be inferred uniquely.

Proof: Because linear causal models are recursive simultaneous equation
models, their parameters can be consistently estimated by OLS9. Now the
data generating causal model is a member of the set of all recursive simul-
taneous equations models. If it is observationally distinguishable, it can be
identified consistently, by using a consistent model selection criterion over
the set of all recursive simultaneous equations models.

If there are no restrictions on the data-generating linear causal model, fol-
lowing the Corollary 2.6 Remark 2, no causal order can be inferred from the
data.

If a linear causal model has zero restrictions and observationally equivalent
models, using a consistent model selection criterion, we can identify the ob-
servationally equivalent class of the data-generating causal model. Following
Corollary 2.6 and the Proposition 2.8, the v-structures and the order of the
simultaneous causal blocks can be consistently identified. 2

3 Learning Bayesian Networks

As stated in Section 1, inferring causal relations on a set of variables is to
uncover the underlying data generating DAG from the observed data of the
variables.

Principally, we could evaluate every possible recursive model and find the one
with the maximal criterion value. This is, however, only practicable if the

9See Dhrymes (1993) for details
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number of variables is very small, because the number of all possible causal
models grows explosively with the increase of the number of variables. For
a system of 6 variables there are 3781503 possible models. Even the most
powerful computers will reach their limit of computation with the increase
of the number of variables in the system.

To solve this problem many heuristic algorithms are developed. There are
now basically three kinds of solutions to this problem. One is based on se-
quential tests of partial correlation coefficients. The tests run from the lower
order partial correlation coefficients in unconstrained models to the higher
order partial correlation coefficients10. A limited version of this algorithm
can be found in Swanson and Granger (1997). Hoover (2005) gives a very
intuitive description of this procedure. Spirtes et al. (2001) provide a detailed
discussion about these kinds of algorithms. Pearl (2000) presents a version
of this algorithm, called the IC algorithm, as follows.(We quote Pearl (2000)
p. 50)

IC Algorithm (Inductive Causation)

Input: P a stable11 distribution on a set X of variables.
Output: a pattern (DAG) compatible with P .

• for each pair of variables (Xi,Xj) ∈ X, search a set Sij such that
(Xi⊥Xj|Sij) holds in P . Construct an undirected graph G such that
vertices Xi and Xj are connected with an edge if and only if no such
set Sij can be found.

• For each pair of nonadjacent variables Xi and Xj with a common neigh-
bor Xk, check if Xk ∈ Sij.
If it is, then continue. If is is not, then add arrowheads pointing as Xk:
(Xi− > Xk < −Xj).

• In the partially directed graph that results, orient as many of the undi-
rected edges as possible subject to two conditions: (i) the orientation
should not create a new v structure; and (ii) the orientation should not
create a directed cycle.

Remarks: Principally, the construction of DAG using this class of proce-
dures is based on statistical tests. Therefore the probability to choose wrong

10See http://www.phil.cmu.edu/projects/tetrad/ for more details and software for this
algorithm.

11Stability of a distribution means that the freely varying parameters of the data-
generating causal models will assume parameter values other than zero (or the proba-
bility to assume the value zero is zero) in order that all identified zero parameter-values
are interpreted as zero restrictions on the parameters. It is also known as faithfulness
condition.
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models equals the probability of type I errors of the test. However, since
the tests are consistent, this procedure will consistently identify the true
DAG, if the significance level of the tests converges to zero as the number of
observations goes to infinite.

The second solution is based on the Bayesian approach of model averaging.
Heckerman (1995) documents the basic technique of this approach. This
technique combines the subjective knowledge with the information of the
observed data to infer the causal relation among variables. These kinds of
algorithms differ in the choice of criteria for the goodness of fit that is often
called the score of a network, and in the choice of search strategy. Because
the search problem is NP-hard12 heuristic search algorithms such as greedy
search, greedy search with restarts, best-fit search, and Monte-Carlo method
are used13. The third solution uses classic model selection approach. Its
implementation is similar to the Bayesian approach but without any use of a
priori information. A network is evaluated according to information criteria
such AIC and BIC. The search algorithms are similar to those in the Bayesian
approach, such as greedy search, and greedy search with restart.

Greedy Search Algorithm:

Input: P a stable distribution on a set of variables X.
Output: a (DAG) compatible with P .

• Step 1 Start with a Bayesian network Ao.

• Step 2 Calculate the network score according to BIC/AIC/likelihood
criterion.

• Step 3 Generate the local neighbour networks by either adding, remov-
ing or reversing an edge of the network Ao.

• Step 4 Calculate the scores for the local neighbour networks. Choose
the one with the highest score as An. If the highest score is larger than
that of Ao, go to Step 2 and update Ao by An. If the highest scores is
less than that of the original Ao, output Ao.

Applying consistent model selection criterion in the greedy search algorithm
implies that if the data generating linear causal model is statistically distin-
guishable, and the greedy search can find the global maximum, then it will
uniquely identify the causal order. If the data generating causal model is
not statistically distinguishable, the greedy search algorithm will uniquely
identify the causal order among the simultaneous causal blocks and the v-
structures consistently.

12See Heckerman (1995) for details.
13See Heckerman (1995) for details. A R-package ”deal” for learning the Bayesian

network using the Bayesian approach can be found at http://www.r-project.org/gR/
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4 Time Series Causal Models

4.1 Extending the Linear Causal Models to Time Se-
ries Data

As we know, an n-dimensional multivariate time series can be generally rep-
resented by a sequence of random n-vector {Xt} with a discrete index set
t ∈ I and each Xt has n elements indexed by i ∈ {1, 2, ..., n}. A linear
causal model for the sequence {Xt} will be a recursive model of {Xt} in all
its elements (indexed by t and i). In terms of graphs each vertex of the
corresponding DAG represents a random element of Xit. Since we have only
one observation for each random element Xit, many restrictions have to be
imposed on this recursive model to make statistical inference possible. The
task is now to formulate reasonable restrictions on the recursive model such
that the resulting class of models are general enough to encompass most
practically useful time series models and restrictive enough to allow statis-
tical assessment. One naturally obvious restriction is the temporal causal
constraint, i.e. the variable Xt cannot be a cause for Xt−τ for τ > 0. This
implies that the direction of an edge between two vertices in a DAG of time
series causal models always goes from the vertex with an earlier time index to
the vertex with a later time index or to a vertex with the same time index,
but never the other way around. The time index provides here a natural
causal direction here. Hence, a time series causal model can be formulated
in the following way14:




A01 0 . . . 0
A21 A02 0
...

. . .
...

AT1 AT2 . . . A0T







X1

X2
...

XT


 =




ε1

ε2
...

εT


 , (4.8)

where εt, t = 1, 2, ..., T are vectors of independent random variables15. Ob-
viously the temporal causal constraints are not enough, because there are
still more unknown parameters in the coefficient matrix than the number of
observations. A further reasonable constraint is the time invariance of the
causal relation. This means the causal relation between the variables Xt and
Xt−τ should be the same as the causal relation between Xt+s and Xt−τ+s.
This constraint implies that up to the initial conditions, parameters in each
row of the coefficient matrix in (4.8) is the same, because they represent the
causal relation between the variable of the current and the past variables.

14We have an explicit formulation of the initial conditions of the time series model: the
model starts by t = 1 for simplicity of presentation.

15In the model above we have assumed that the random process have started at t = 1.
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As T → ∞, the equation (4.8) becomes a matrix equation with infinite
dimension. The time invariance of the causal relation requires that each
n rows of the coefficient matrix in (4.9) is the same, if it is read from the
diagonal to the left.




. . . A2 A1 A0 0 . . . . . . 0
. . . A2 A1 A0 0 . . . 0

. . . . . .
...

. . . A2 A1 A0 0
. . . A2 A1 A0







...
X−1

X0

X1

X2
...

XT−1

XT




=




ε1

ε2
...

εT−1

εT




. (4.9)

Equation (4.9) contains still too many parameters. In fact the number of the
unknown parameter is still larger than that of observations (see the last row
of the coefficient matrix). One may impose restrictions on the sequence of
parameter matrices Ai, i = 1, 2, ... to make them estimable. A simpler way
to constrain the parameter space is to cut the causal influence at certain lags
p, by assuming that Ai = 0 for i > p. This assumption implies that the
causal dependence is not infinite. That is, at least from the practical point
of view, an acceptable simplification. For p = 2 the causal model is written
as follows.




A0 0 . . . . . . 0
A1 A0 0 . . . 0
A2 A1 A0 0 . . . 0

0
. . . . . . . . . . . .

...
... 0 A2 A1 A0 0
0 . . . 0 A2 A1 A0







X1

X2
...

XT−1

XT




=




ε1

ε2
...

εT−1

εT




. (4.10)

The first two rows represent the initial condition for the time series. The
other rows represent the invariant causal relations over time.

Based on the discussion above, we will define the time series causal mod-
els(TSCM) as follows.

Definition 4.1 (TSCM) A linear recursive model of time series is called a
time-series-causal-model if it satisfies the following three constraints:

• temporal causal constraint,
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• causal time-invariant constraint, and

• finite causal influence constraint.

Besides the initial condition the matrix equation (4.10) can be written as
follows:

A0Xt + A1Xt−1 + A2Xt−2 = εt, t = p + 1, ..., T (4.11)

where E(εtε
′
t−s) = 0, E(εtε

′
t) = D and D is a diagonal matrix. The causal

relations among the time series variables are expressed by the coefficient
matrices A0, A1, A2, ..., Ap. A0 is itself a lower triangular matrix. It describes
the contemporaneous causal relations among the elements of the n-vector Xt.
Ai describes the causal dependence between the elements of Xt and elements
of Xt−i. Zero elements in the coefficient matrices Ai correspond to missing
edges in the DAG and hence implies no direct causal influence.

4.2 Granger Causality vs. the Probabilistic Causality

Although TSCMs as defined above are based on the fundamental assumption
of the representation of causal relation in DAGs that are equivalent to the
recursive simultaneous equations models in linear cases, there is an intimate
formal relation between TSCMs and VAR models of time series.

Proposition 4.1 (TSCM and VAR)

Under the assumption of homoscedasticity, a TSCM has a VAR representa-
tion. A VAR corresponds to a TSCM.

Proof: A VAR model is denoted as follows:

Xt =

p∑
i=1

ΠiXt−i + Ut. for t = p + 1, p + 2, ..., T , (4.12)

and E(UtU
′
t) = Σ. Without loss of generality we take p = 2.

Premultiply the inverse of A0 to both sides of the equation (4.11) we get:

Xt = −A−1
0 A1Xt−1−A−1

0 A2Xt−2 +A−1
0 εt, t = p + 1, ..., T . (4.13)

We have E(A−1
0 εtε

′
tA

−1′
0 ) = A−1

0 D′A−1′
0 . Under the assumption of homoscedas-

ticity we have:Σ := A−1
0 DA−1′

0 . It follows that the Equation (4.13) is a
VAR(p) model.
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On the other hand, for any covariance matrix Σ of a VAR model like (4.12)
there exists at least one decomposition, for instance the triangular decompo-
sition, such that the following holds:

A∗
0ΣA∗

0
′ = S, (4.14)

where A∗
0 is a lower triangular matrix and S is a diagonal matrix. Premulti-

plying (4.12) by the inverse of A0
∗, we obtain:

A∗
0Xt −

p∑
i=1

A∗
0ΠiXt−i = A∗

0Ut. (4.15)

Since A∗
0Ut has a diagonal covariance matrix, its components are independent.

Obviously, together with the initial condition, (4.15) is formally a TSCM.

2

In the context of time series analysis one often used concept is the Granger
causality. Given the correspondence between TSCMs and VAR models, it
is of interest to describe the relation between the Granger causality and
the causal dependence implied in a TSCM. Generally, the Granger causality
and the causal dependence are two different concepts: While the Granger
causality describes the relation between an element of an n-vector Xt, say
Xi,t and whole sequence of other elements of time series Xj,t−s for all s >
0, the probabilistic causal dependence describes the relation between two
single elements Xi,t and Xj,s. However, in the VAR framework, the Granger
causality can be formulated as zero restrictions on the parameters of a VAR
model and the probabilistic causal dependence can also be presented by a
zero restriction on a TSCM. Using the correspondence between TSCM and
VAR we get the following relations between the Granger causality and the
probabilistic causal dependence.

Proposition 4.2 (Granger Causality and TSCM)

Let pXi,t denote all the elements of Xt that are predecessors of Xi,t in the
TSCM. If the elements Xk,t−s for s = 0, 1, 2, ...p does not have temporal
causal influence on pXi,t and Xi,t, then Xk,t does not Granger cause Xi,t.

Proof: Given the correspondence between VAR (4.12) and TSCM (4.11), we
have the relation

Πs(i, k) =
n∑

j=1

A
(−1)
0 (i, j)As(j, k), (4.16)

where Πs(i, k) is the (i, k) element of the VAR coefficient matrix Πs, A
(−1)
0 (i, j)

and As(j, k) are the (i, j) and (j, k) element of the TSCM coefficient matrices
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A−1
0 and As, respectively. In the VAR framework the non-Granger causality

of Xk,t for Xi,t means Πs(i, k) = 0 for s = 1, 2, ...p. Because A0 is a lower
triangular matrix the inverse of A0 is also a lower triangular matrix. We have

Πs(i, k) =
n∑

j=1

A
(−1)
0 (i, j)As(j, k) =

j∑
j=1

A
(−1)
0 (i, j)As(j, k) = 0. (4.17)

The last equation follows from the assumption that Xk,t−s does not have any
causal influence on pXi,t and Xi,t. 2

Remark: The following example shows that no probabilistic causal depen-
dence of Xi,t on any Xjt−s for s ≥ 0 is not enough to ensure that Xjt does
not Granger cause Xit.

A1 =




−0.4 1.7 −2.2 −0.0
0.2 0.4 1.0 0.8
1.0 0.0 −0.8 1.6
−0.1 0.1 −0.8 2.1


 A0 =




1.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0
1.0 0.0 1.0 0.0
0.2 1.0 0.6 1.0


 (4.18)

Π = A−1
0 A1 =




−0.4 1.7 −2.2 −0.0
0.7 −1.4 3.3 0.8
1.4 −1.7 1.3 1.6
−1.8 2.2 −4.5 0.1


 (4.19)

A0(3, 2) = 0 and A1(3, 2) = 0 imply that X2t has neither contemporaneous
nor temporal causal influence on X3t. But Π(3, 2) 6= 0 implies that X2t

Granger causes X3t. A TSCM measures the direct effect of a variable on
the other. To make an optimal prediction of a variable, say Xit, in a TSCM
we have to known the values of all its parents. Conditional on knowing the
values of these parents the values of other variables are irrelevant for the
prediction. This is expressed by the zero coefficients before those variable
that are not in the set of the parents of Xit. However, if we do not know
the values of the parents of Xit, the values of non-parent variables may be
useful to predict the values of these parents. In this case knowing the value
the the non-parents variables may improve the prediction. This is why the
variables Xkt−s with s = 0, 1, 2, 3, ..P are not probabilistic causes of Xit but
Xkt may Granger cause Xit, i.e. the Xkt−s with s = 1, 2, 3, ..P may be useful
for prediction of Xit.

4.3 Learning TSCMs

Similar to the cases of causal models for cross sectional data, the most impor-
tant issue of the statistical treatment of TSCMs is whether we can recover
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the underlying causal TSCM if the data are generated by the TSCM. We
could directly apply those algorithms developed for the independent data,
if we had repeated observations on the same time series. But the typical
situation in economics is that we have only one observation at each point in
time.

Our strategy is a two step procedure16: We infer the contemporaneous causal
structure first. In the second step we infer the temporal causal structure.
Concretely we estimate an unconstrained VAR model for the data to obtain
consistent estimates of the residuals. These estimated residuals can be used
as input data to learn the contemporaneous structure of A0. The learning of
the contemporaneous causal structure A0 can be done by using the methods
described in the previous section. After we get an estimate for the contem-
poraneous causal structure A0, i.e. the zero restrictions on the A0 matrix
as well as identifying the order of the variables, we have a recursive SEM.
We can use the BIC criterion to select models over all subsets of the lagged
variables and hence determine Ai

∗.

A0
0Xt +

p∑
i=1

A∗
i Xt−1 = εt, (4.20)

where A0
0 is the contemporaneous causal structural matrix with zero restric-

tions identified in the first step and A∗
i is the uncovered temporal causal

structure coefficient using BIC.

Proposition 4.2 [Two step procedure for TSCMs]

• If the contemporaneous causal structure of the data generating TSCM
is observationally distinguishable, the two step procedure will identify
the true causal structure of the TSCM consistently.

• If a TSCM is observationally distinguishable but the contemporaneous
causal structure is observationally indistinguishable, the two step proce-
dure with a consistent model selection criterion will ”uniquely” identify
the data generating causal model consistently.

• If a TSCM is observationally indistinguishable, then the two step pro-
cedure with a consistent model selection criterion will uniquely identify
the causal order of the simultaneous causal blocks.

Proof: By applying a consistent model selection criterion, we can consistently
identify the true lag length of the VAR model. Because the estimate of

16Other approaches such as hidden Markov models or dynamic Bayesian networks can
also be applied. See Kevin Murphy(1998) for details.
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the covariance matrix is consistent and the true structure is observationally
distinguishable, a consistent learning procedure, such as a model selection
algorithm based on the BIC criterion, will identify the contemporaneous
causal structure consistently17.

We have plim
T→∞

Â0 = A0. It follows that the data generating causal model

is asymptotically nested in the recursive SEM (4.20). The uncovering of
temporal causal structure becomes a problem of model selection in a classic
regression model. As BIC criterion is consistent, we will consistently identify
the temporal structure by using BIC.

If contemporaneous causal structure is not observationally distinguishable,
then in the first step we can only consistently identify a class of contem-
poraneous causal structures that are observationally equivalent to the true
contemporaneous causal structure. Each member of this identified class im-
plies a recursive SEM. Because the data-generating causal model is obser-
vationally distinguishable, searching over all members of the observational
equivalent class, the one chosen by BIC criterion: A∗

i for i = 1, 2, ..., p will
converge to the data-generating temporal causal structure Ai for i = 1, 2, ...p
asymptotically.

The third case is just a restatement of the Proposition 2.9 2

4.4 Simulation Studies

In this subsection we document some simulation results. The reasons for a
simulation study are the following. (1) The results in the last section are
asymptotically valid. For empirical applications, the small sample proper-
ties of the procedure are more relevant. Because simulation is a convenient
way to study the small sample properties in specific settings, we run simu-
lations to assess the performance of the two step procedure. (2) Although
there are some simulation results about the performance of Bayesian net-
work models, our input for learning the contemporaneous causal structure
is not independently generated random numbers, but the estimated residu-
als of a unconstrained VAR. Demiralp and Hoover (2004) document some
simulation results of learning the causal structure from VAR residuals by the
PC-algorithm. They found that the PC algorithm can recover the true struc-
ture only moderately well. We investigate here the effectiveness of the two

17It is well known that a consistent model selection criterion can identify the true model
if the true model is within the set of the candidate models. The practical difficulty is that
we can surely get the true model only at polynomial time. Therefore for large systems
only heuristic procedures are applied such that we get in these cases only a local optimum
but not always the global optimum.
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step procedure with a local greedy search algorithm with random restarts
based on BIC criterion.

Three kinds of models are considered: the first one is an observationally dis-
tinguishable TSCM with an observationally distinguishable contemporaneous
causal structure. For this kind of model we can learn the contemporaneous
causal structure first, and then the temporal causal structure. The second
model is an observationally distinguishable TSCM with an observationally in-
distinguishable contemporaneous causal structure. For this kind of model we
obtain, in the first step, a class of observationally equivalent contemporane-
ous causal models. For each member in the observationally equivalent class,
we then use BIC criterion to search over all subsects of the lagged variables
and determine the contemporaneous and temporal causal structures simul-
taneously. The third model is an observationally indistinguishable TSCM:
we can only identify the observationally equivalent class.

For the cases of observationally distinguishable data-generating TSCMs we
record the frequency of the correctly recovered true causal structure. For the
cases of observationally indistinguishable data-generating TSCMs we record
the frequency of the correctly recovered observationally equivalent models of
the data generating causal model.

In order to evaluate the effect of the range of signal-to-noise, our parameters
of the data-generating TSCM are chosen in a way, such that the expected
t-statistics for these parameters, in the maximum likelihood estimates of the
corresponding unconstraint SVAR (4.20), are roughly the same for A0 and A1

respectively. Therefore, the number of observations can be used to adjust the
range of signal-to-noise. We classify the signal-to-noise strength as follows:
E(|t|) < 2 as L(low), 2 < E(|t|) < 6 as M (middle), 6 < E(|t|) as H (High).

To recover the contemporaneous causal structure we apply a greedy search al-
gorithm with random restart to the estimated residuals of the unconstrained
VAR. The greedy search algorithm looks for the best improvement of a net-
work locally by adding an edge, removing an edge or reversing the direction
of an edge. The network score is based on the BIC criterion. The algorithm
stops at a local optimum. To recover the temporal causal structure for an
identified contemporaneous causal structure, we use BIC criterion to select
the temporal causal structure over all subsets of the lagged variables.

4.4.1 Model 1: Observationally distinguishable TSCMs with an
observationally distinguishable contemporaneous causal struc-
ture

The data generating TSCM is as follows:

A0Xt = A1Xt−1 + εt, (4.21)
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with

A0 =




1 0 0
0 1 0
2 2 1


 A1 =




0.7 0.7 0.7
0.5 0.7 0
0 −0.7 0.7


 E(εtε

′
t) = Ω = I.

Obviously, this TSCM is observationally distinguishable because the zero
elements of two adjacent rows in (A1, A0) are not in the same columns.

T A0|FS A1|A0, FS A0|GS A1|A0, GS Signal

20 464 123 53 13 ML
40 491 263 401 229 HL
60 486 379 423 302 HL
80 498 414 431 355 HL

100 499 445 428 383 HL
120 499 464 431 385 HL
140 500 465 438 404 HM
160 500 482 453 437 HM

Table 1: Frequency of the correctly recovered contemporaneous and temporal
causal structures A0 and A1 in Model 1 with 500 replications.

Table 1 records the simulation results for model 1 with 500 runs. The first
column with the header T reports the number of the observations used in
each simulation. The second column with the header A0|FS reports the
frequency of the correctly recovered contemporaneous causal structure using
BIC criterion by searching over all possible models. Here we see that if the
signal level for the contemporaneous causal structure is M , that is denoted by
the first letter in the last column of the table, the BIC criterion can recover
the true contemporaneous causal structure only moderately well. The third
column with the header A1|A0, FS reports the frequency of the uniquely and
correctly recovered temporal causal structure by using the BIC criterion for
each equation in the model. The difference between the second and the third
column is the number of the frequency of the cases in which the contempo-
raneous causal structure can be correctly identified, but the temporal causal
structure cannot. If the signal level of the temporal causal structure is L,
that is denoted by the second letter in the last column, we cannot get a
satisfactory result. The signal of the temporal causal structure of level M or
higher is enough to ensure rather good results. The fourth column with the
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header A0|GS reports the frequency of the correctly identified contempora-
neous causal models using greedy search. A1|A0, GS reports the frequency
of the correctly identified temporal and contemporaneous causal models us-
ing greedy search. The difference between the fourth and the fifth column
is the number of the frequency of the cases in which the contemporaneous
causal structure can be correctly identified, but the temporal causal struc-
ture cannot. Obviously, this algorithm can recover the true structure only
moderately well, when the signal of the contemporaneous causal structure is
M ; the performance improves when the signal becomes H. Again, when the
temporal signal is low, the temporal causal structure cannot be satisfactorily
identified. The last column with the header Signal reports the signal-noise
range of the data generating causal model. The first letter reports the signal
level of the contemporaneous causal structure and the second letter reports
the signal level of the temporal causal structure. Because the parameters
of the data generating causal model remain unchanged in the simulation
runs the increase of the number in observations leads to the increase of the
strength in the signal level.

4.4.2 Model 2: Observationally distinguishable TSCMs with ob-
servationally indistinguishable instantaneous causal struc-
ture

The data generating TSCM is as follows18: The data generating TSCM is as
follows:

A0Xt = A1Xt−1 + εt, (4.22)

with

A0 =




1 0 0
1 1 0
1 0 1


 A1 =




0.8 0 0
0 0.8 0
0 0 0.8


 E(εtε

′
t) = Ω = I

In this model, the zero element of two adjacent rows are not in the same
columns of (A1, A0). It is observationally distinguishable. But A0 matrix
contains zero elements in same columns for some adjacent rows. Therefore
we do not have an observationally distinguishable contemporaneous causal
structure.

18In the DGP here the elements on the principle diagonal of A0 matrix are not always
normalized to one. They can be normalized to one then the covariance matrix will not
have unit variance. As we are only interested in identifying the causal structure, this does
not make any difference.
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T A0|FS A0|GS OEA0|FS A1|A0 A1, A0|OEA0, FS A1|Ā0 Signal

20 89 13 206 348 192 104 ML
40 145 17 297 464 293 30 ML
60 114 10 356 494 352 6 HL
80 105 4 378 494 378 3 HL

100 128 1 390 498 390 2 HL
120 89 0 403 499 403 3 HL
140 93 0 426 499 426 0 HM
160 104 1 432 498 432 1 HM

Table 2: Frequency of recovering the true contemporaneous and temporal
causal structure A0 and A1 in Model 2 with 500 replications.

The second and the third columns in Table 2 show that if the data generat-
ing contemporaneous causal structure has observationally equivalent struc-
tures, it is impossible to recover the true contemporaneous causal structure
directly from the VAR residuals. But the observationally equivalent con-
temporaneous causal structures of A0 can be correctly identified. Further,
since the TSCM is observationally distinguishable, the temporal causal in-
formation can be used to identify the contemporaneous causal structure and
the temporal causal structures. The fifth column shows the frequency of the
correctly identified A1, if A0 is correctly given. The sixth column shows that
by searching over all subsets of the lagged variables for every observation-
ally equivalent contemporaneous causal structures identified from the VAR
residuals, we can identify the contemporaneous causal structure as well as
the temporal causal structure. The seventh column shows the frequency of
the correctly recovered A1 if an observationally equivalent contemporaneous
causal structure is given instead of A0 itself. Obviously, given a false con-
temporaneous causal structure, there is no chance to recover the temporal
causal structure correctly. This simulation result supports the statement in
Proposition4.2.

4.4.3 Model 3: Observationally indistinguishable TSCMs with
observationally indistinguishable instantaneous causal struc-
ture

The data generating TSCM is as follows:

A0Xt = A1Xt−1 + εt, (4.23)
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with

A0 =




1 0 0
1 1 0
1 0 1


 A1 =




0.8 0.8 0
0.8 0.8 0
0 0 0.8


 E(εtε

′
t) = Ω = I

In this model, the zero element of the first and the second rows are in the
same columns of (A1, A0). It is not observationally distinguishable.

T A0|FS A0|GS OEA0|FS A1|A0 A1|OEA0, FS A1|Ā0 Signal

20 83 7 236 329 27 29 ML
40 148 16 396 466 38 24 ML
60 109 13 436 488 36 34 HL
80 106 2 452 489 25 22 HL

100 97 0 471 496 21 22 HL
120 90 2 464 499 20 15 HL
140 70 0 453 499 23 15 HM
160 90 1 470 499 12 19 HM

Table 3: Frequency of recovering the true contemporaneous and temporal
causal structure A0 and A1 in Model 3 with 500 replications.

The simulation result for model 3 is reported in Table 3 that is constructed
in the same way as the Table 2. The numbers from the second column to
fifth column confirm the result in Table 2: if the contemporaneous causal
structure has observationally equivalent structures, we cannot recover the
contemporaneous causal structure directly from the VAR residuals. But the
observationally equivalent structures can be correctly recovered, which is
shown in the fourth column under the header OEA0|FS. The fifth column
under the header A1|A0 shows that even if A0 is given correctly, A1 can
be correctly recovered. The numbers in the sixth column under the header
A1|OEA0, FS show the frequency of correctly recovered A1 by searching
over all subsets of the lagged variables for all the observationally equivalent
structures of A0. Obviously, in this case we cannot correctly recover A1 since
the temporal causal structure also has observationally equivalent structures.

The simulation result shows that the signal-noise range measured by the
expected t-statistics in the unconstrained VAR is crucial for the performance
of the learning procedure. We summarize the simulation results as follows
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• When the signal of the contemporaneous causal structure is M the
learning procedure can only identify the true contemporaneous struc-
ture A0 (up to observational equivalence) moderately well. Conse-
quently the frequency of detecting the true total structure is also only
moderately often or worse. If the signal of the contemporaneous causal
structure is H, then the true contemporaneous structure can be iden-
tified with high accuracy.

• The signal of the temporal causal structure on level M is enough to
ensure very good performance of the learning procedure. However, if
the signal of the temporal causal structure is L, the performance of the
learning procedure will be negatively influenced.

• The greedy search procedure performs, generally, only moderately well.
Even when the signal level for the contemporaneous causal structure is
very high, the greedy search can only uncover the true contemporane-
ous causal structure A0 at a relative frequency of 75%19. So repeated
random restart is necessary to make sure that the procedure will give
relatively good results.

5 An Application of the Causal Analysis to

Wage-Price Dynamics

There is a view among economic professionals that higher wages lead to
higher prices. The reasoning behind this view seems to be closely related
to that behind the concept of Phillips curves20 and the notion of NAIUR.
Layard, Nickell and Jackman (1994) describe the reasoning as follows: ”[...]
when buoyant demand reduces unemployment (at least relative to recent ex-
perienced levels), inflationary pressure develops. Firms start bidding against
each other for labour, and workers feel more confident in pressing wage claims.
If the inflationary pressure is too great, inflation starts spiraling upwards:
higher wages lead to higher price rises,[...]”. Beside this intuitively appeal-
ing argument, the market-up pricing by firms provides another explanation.
”Since labor costs are a large fraction of a firms total costs of production,
an increase in wages and compensation should put pressure on firms to pass
through these higher costs onto higher prices.”

However, as argued by Hess and Schweitzer (2000) ”This story is incomplete,
however, for a few reasons. First, an increase in wages will not create infla-

19Here we confirm the results as found in Demiralp and Hoover (2004) for the PC
algorithm.

20The original Phillips curve is expressed as empirical law of the relation between the
unemployment rate and the wage inflation. See Phillips (1958)
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tionary pressure if the increase in wages is brought about by increased labor
productivity. Hence, controlling for labor productivity (i.e. supply effects) in
the analysis between wages and prices would seem very important. Second,
an increase in wages will not create inflationary pressure if the increase in
wages leads to a squeeze in a firms profits due to their inability to pass along
cost increases. No firm inherits the right to simply mark-up the prices of
its output as a constant proportion above their costs, as competitive market
pressures provide a strong influence on the pricing decisions of firms.” Jon-
sson and Palmqvist (2004) show in a two sector general equilibrium model
that wage increases do not lead to inflation.

Many economists try to clarify the controversy with the help of empirical
evidence extracted by econometric methods. In the econometric literature
this issue is typically translated into the question whether the wage inflation
Granger-causes the price inflation. According to Hess and Schweitzer (2000)
most studies have not found any strong indications that this is the case. Ex-
amples of such studies are Hogan (1998), Rissman (1995), Clark (1997) and
Mehra (1993). Staiger, Stock, and Watson (1997) find that price predicts
wage better than the other way around. Ghali (1999) finds strong evidence
that wages Granger-cause prices based on a multivariate cointegration analy-
sis. Aaronson (2001) finds that restaurant prices generally rise with changes
in the wage bill. The empirical evidence is thus mixed.

Facing these controversial theoretical arguments and the mixed empirical
evidence identified by Granger causality test so far, we are going to contribute
to this issue with a new methodology of the inferred causation. ”Higher wages
lead to higher prices” is essentially a statement about a causal relation that
implies not only the dependence but also the directionality of the dependence.

Using the methodology developed in the last section we analyze the causal de-
pendence among the variables in a wage-price dynamic as in Chen, Chiarella,
Flaschel, and Semmler (2005). There are 6 variables in this dynamic system:
(dw, dp, e, u, dz, pim) are the wage inflation, the price inflation, the labor
utilization rate, the capacity utilization rate, the growth of the labor produc-
tivity, and the inflationary climate, respectively. The main concern of this
exercise is to demonstrate how the method of the causal analysis can be used
to answer the question whether the wage inflation causes the price inflation
or the price inflation cause the wage inflation.

The empirical data for the relevant variables discussed above are taken from
Economic Data - FRED c©21. The data shown below are quarterly, seasonally
adjusted, annualized where necessary and are all available from 1947:1 to
2004:4. Up to the rate of unemployment they represent the business sector
of the U.S. economy. We will make use in our estimations below of the range

21http://research.stlouisfed.org/fred2/.
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from 1965:1 to 2004:4 solely, i.e., roughly speaking of the last five business
cycles that characterized the evolution of the U.S economy. We thus neglect
the evolution following World War II to a large degree.

Variable Transformation Mnemonic Description of the untransformed series
e log(1-UNRATE/100) UNRATE Unemployment Rate (%)
u log(GDPC1/GDPPOT) GDPC1,GDPPOT GDPC1: Real Gross Domestic Product of Bil-

lions of Chained 2000 Dollars, GDPPOT: Real
Potential Gross Domestic Product of Billions
of Chained 2000 Dollars, u:Capacity Utiliza-
tion: Business Sector (%)

w log(HCOMPBS) HCOMPBS Business Sector: Compensation Per Hour, In-
dex 1992=100

p log(IPDBS) IPDBS Business Sector: Implicit Price Deflator, Index
1992=100

z log(OPHPBS) OPHPBS Business Sector: Output Per Hour of All Per-
sons, Index 1992=100

πm MA(dp) inflationary climate measured by the moving
average of price inflation in the last 12 periods

Table 4: Raw Data used for empirical investigation of the model
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Figure 2: Data for the analysis of wage-price spiral

Before we start with our empirical investigation, we examine the stationarity
of the relevant time series. The shown graphs of the series for wage and price
inflation, capacity utilization rates and labor productivity growth suggest the
stationarity of the time series (as expected). In addition we carry out the
augmented DF unit root test for each series. The test results are reported in
Table 4. The unit root tests confirms our expectation.
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Variable Sample Critical value Test Statistic
dw 1947:02 TO 2004:04 -3.45 -7.12
dp 1947:02 TO 2004:04 -3.45 -4.60
e 1947:02 TO 2004:04 -3.45 -4.35
u 1947:02 TO 2000:04 -3.45 -4.01
dz 1947:02 TO 2004:04 -3.45 -15.26

Table 5: Summary of DF-Test Results.

We first construct a six dimensional VAR model for (dw, dp, e, u, dz, pim).
Using the Schwarz information criterion we select the lag length 122. The
Granger causality tests in this VAR(1) setting give the following results.

F-statistic p-value

dp -> dw 31.09595490 1.066199e-07

dw -> dp 6.91532076 9.407467e-03

We see here dw Granger causes dp and dp Granger causes dw. As discussed
in the last section, these results do not give us a clear answer about whether
the wage inflation leads to price inflation or the other way around.

Applying the greedy search algorithm with random restarts to the estimated
residuals of the unconstrained VAR(1), we get the following DAG for the
contemporaneous causal structure.

22The choice of one lag in a system with quarterly data seems to be very unusual.
Taking into account that the inflationary climate variable πm is a summary of the lagged
information, this choice would not be so surprising. See Appendix for details about the
possibility of an alternative choice of lag length.
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Figure 3: The contemporaneous causal graph in the wage price spiral

The corresponding contemporaneous causal structure matrix is:




1 −0.47 −1.93 1.56 0 −0.50
0 1 0 0 0 0
0 0 1 −0.36 0 0.05
0 0 0 1 0 0
0 0 0 0 1 0
0 0.38 0 −2.73 −3.18 1




(5.24)

It is important to emphasize that all the arrows in the causal graph above
are inferable. It is easy to check that the four arrows dp → dw, e → dw,
u → dw and dz → dw constitute v-structures and therefore their directions
are inferable. The three arrows dp → dz, u → dz and πm → dz constitute
also v-structures and their directions are inferable too. Now the change of
the direction of the arrow dz → e will lead to new v-structures therefore
the direction of this arrow is also inferable. And the change of the direc-
tion of the arrow u → e would lead to cycle. Since all directions of the
arrows are inferable, the contemporaneous causal structure identified above
is observationally distinguishable and the arrows imply causal directions.

According to the causal graph, the causal order in the contemporaneous inno-
vation is (u, dp, πm, dz, e, dw). This causal order corresponds to the intuition
that the adjustment of the capacity utilization and the preis adjustment lead
the price inflation climate and the productivity growth, and the labor utiliza-
tion and the wage adjustment follow. dp → dw, e → dw, u → dw, dz → dw
implies that the wage inflation is caused contemporaneously by price infla-
tion, the labor utilization, capacity utilization and the growth of the labor
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productivity. This corresponds to often used wage Phillips curve23.

After rearranging the contemporaneous causal structure in this order we get
the recursive contemporaneous causal structure matrix:

A0 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−2.73 0.38 −3.18 1 0 0
−0.36 0 0 0.05 1 0
1.56 −0.47 0 −0.50 −1.93 1




(5.25)

In the second step we learn the temporal causal structure A1 by applying OLS
to the recursive SEM with the identified contemporaneous causal structural
A0. After neglecting the insignificant coefficient in the OLS estimation we
obtain the estimated temporal causal structure:

A1 =




−1.03 0 0 0 0.28 0
−0.19 −0.52 −0.40 0.07 0 0
0.02 −0.12 −0.90 0 −0.08 0
0.64 0 0 0 0 −0.21
0.30 0.02 0 0 −0.91 0
−2.01 0 −0.54 0 1.94 0




(5.26)

According to these two matrices we can draw the causal graph for the time
series data of the wage price dynamic. We observe that dp has two channels
of direct contemporaneous causal influence on dw that are depicted by the
red arrows. In addition it has three channels of temporal indirect causal
influence on dw that are depicted by the three pink dotted arrows. dw
has neither contemporaneous direct causal influence on dp nor the temporal
indirect causal influence. The feedback of dw on dp goes through three
periods. dwt−2 → dzt−1 → dpt. This is represented by the green dotted line.

23See ? and ?.
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Figure 4: Causal graph of the wage-price spiral system

This derived causal structure provides a clear answer to the causal effect-
relation between the price inflation and the wage inflation. The price inflation
is the driving force in the wage price dynamics.

From the TSCM we obtain two structural Phillips curves, one for the price
inflation one for the wage inflation as follows.

dpt = 0.52dpt−1 + 0.40πmt−1 + 0.19ut−1 − 0.07dzt−1 − 0.21 (5.27)

dwt = 0.47dpt + 0.54πmt−1 + 0.44ut + 0.5dzt + 2.0(∆et−∆ut)− 0.42 (5.28)

Unlike most formulations of Phillips curves that are derived based on the-
oretical arguments, these two structural Phillips curves are the results of
the data-driven causal analysis. They represent the causal influence of the
right-hand-side variables on the dependent variables.

The price Phillips Curve shows that the price inflation is driven by the de-
mand pressure measured by the utilization rate of capacity ut−1, and the
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inflationary climate πmt−1 in which the economy operates i.e. the inertia of
the price inflation rate. The growth of the labor productivity reduces the
wage cost and hence the price inflation.

In the wage Phillips curve the wage inflation rate is driven by the demand
pressure term measured by ut, the living cost pressure measured by pt and
the inflationary climate πmt−1. The growth of labor productivity acts pos-
itively on the wage inflation rate. The variable ut is identified as a proper
measure of demand pressure. Since ut is highly correlated with the rate of
labor utilization of the employed labor, this implies that the level of the rate
of labor utilization of the insiders on the labor market within firms is the de-
mand pressure that acts on wage inflation. However if the increase of labor
utilization spills over from the insiders to the outsiders ∆et−∆ut > 0, large
wage inflation will be expected.

6 Concluding Remarks

In this paper we develop a method to uncover the causal order in stationary
multivariate time series with a vector autoregressive presentation. Com-
plex directionality of dependence among economic variables, such as the uni-
directional dependence, the simultaneous dependence, the contemporaneous
dependence as well as the temporal dependence can be presented in TSCMs.
A two step learning procedure is developed to uncover the potential causal
relations implied in the data. This two step procedure reduces largely the di-
mension of the Bayesian network that is used to present the causal relations.
In case of high signal-to-noise ratio in the contemporaneous causal struc-
ture, this two step procedure can effectively uncover the underlying causal
structure.

The TSCMs developed in this paper can be applied to analyze the dynamic
causal relations among economic variables which are of great interest for
economists. The two step learning procedure for TSCMs can be used to un-
cover the directionality of dependence in the data, such as contemporaneous
dependence as well as the temporal dependence.

We applied the TSCM to a wage-price dynamic and obtained the result
that the price-inflation rate is one of the causes that drive the wage-inflation
rate while the wage-inflation rate has only a very weak indirect influence
on the price-inflation rate. From the TSCM of the wage-price dynamic we
obtained two structural Phillips curves that represent the causal influence in
the determination of the price-inflation rate and the wage-inflation rate. As
structural equations in economics are genuinely interpreted as causal relation,
TSCMs provide a way to derive structural equations in which the causal
interpretation of the relations is justified.



7 APPENDIX 37

As the application of the method of inferred causation for the identification
of causal relations among economic variables is still fairly new, many issues
such as the robustness of the resulting causal graphs with respect to the
choice of different sample periods, implications of relaxing the triangularity
assumption on A0, the influence of the applied statistical criteria in the learn-
ing procedure, the efficiency of the algorithm, or the technique for obtaining
a structure that is globally optimal, deserve further investigation.

7 Appendix

• Observational Equivalence ⇔ same Ω up to permutation of the vari-
ables.

• Let O be one order on X = {x1, · · · , xn}. Every order corresponds to
one unique triangular decomposition of AO (lower triangular). AOX
has orthogonal innovations and it is called a causal model.

• By changing a given order O on X to another order O′, usually, the
number of null restrictions in AO′ will reduce. Let O0 represent the
order with most null restrictions (with respect to given Ω).

Lemma 7.1 Let x, y be random variables with E[x] = 0, E[y] = 0. Let
z, z1, · · · , zm be random variables and Z = {z1, · · · , zm}. Let x|z be con-
ditional variable of x on z. Let P(x|z) be the linear projection of x on z,
then

x|z = x− P(x|z) .

The conditional correlation has the following equality

Cov[x|{Z ∪ z}, y|{Z ∪ z}] (7.29)

= Cov[x|Z, y|Z]−Cov[x|Z, z|Z]Var[z|Z]−1Cov[z|Z, y|Z] .

Proof of Proposition 2.5
To prove Proposition 2.5 we show that if an interchange of two variables
keeps the number of the null restrictions, then these two variables must be
sequential neighbors and the corresponding rows in A must have zeros in
same columns.

The coefficients aij in A can be interpreted as the partial regression coefficient

aij = rxi,xj |Xi−1,ĵ
= Cov[xi, xj|Xi−1,ĵ]/Var[xj|Xi−1,ĵ] ,

where Xi−1 = {x1, · · · , xi−1}, ĵ means exclusion of xj, j < i.
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Consider at first two orders O = {1, 2, · · · , k, k + 1, k + 2, k + 3, · · · , n} and
O′ = {1, 2, · · · , k, k + 2, k + 1, k + 3, · · · , n} where the positions of xk+1 and
xk+2 are exchanged. Let aij and a∗ij represent the triangular coefficients with
respect to the order O and O′.

From the interpretation of the triangular coefficients we have

ak+1,j = rxk+1,xj |Xk,ĵ
= Cov[xk+1, xj|Xk,ĵ]/Var[xj|Xk,ĵ] (7.30)

ak+2,j = rxk+2,xj |Xk+1,ĵ
= Cov[xk+2, xj|Xk+1,ĵ]/Var[xj|Xk+1,ĵ] (7.31)

a∗k+1,j = rxk+2,xj |Xk,ĵ
= Cov[xk+2, xj|Xk,ĵ]/Var[xj|Xk,ĵ] (7.32)

a∗k+2,j = rxk+1,xj |(Xk,ĵ∪,xk+2) = Cov[xk+1, xj|(Xk,ĵ ∪ xk+2)]/Var[xj|(Xk,ĵ ∪ xk+2)](7.33)

Applying Lemma 7.1 on the equalities above we can obtain the following
equalities, for j ≤ k,

a∗k+1,j = ak+2,j φ11 + ak+1,j φ12 (7.34)

a∗k+2,j = ak+1,j φ21 − a∗k+1,j φ22 , (7.35)

where

φ11 =
Var[xj|Xk+1,ĵ]

Var[xj|Xk,ĵ]
> 0 , φ12 =

Cov[xk+2, xk+1|Xk,ĵ]

Var[xk+1|Xk,ĵ]

φ21 =
Var[xj|Xk,ĵ]

Var[xj|Xk,ĵ ∪ xk+2]
> 0 , φ22 =

Cov[xk+1, xk+2|Xk,ĵ]

Var[xk+2|Xk,ĵ]
.

Using these two equalities above we can have the following results easily

(ak+1,j = 0, ak+2,j = 0) ⇒ (a∗k+1,j = 0, a∗k+2,j = 0) (7.36)

(ak+1,j 6= 0, ak+2,j 6= 0) ⇒ (a∗k+1,j 6= 0, a∗k+2,j 6= 0) (7.37)

(ak+1,j = 0, ak+2,j 6= 0) ⇒ (a∗k+1,j 6= 0, a∗k+2,j 6= 0) (7.38)

(ak+1,j 6= 0, ak+2,j = 0) ⇒ (a∗k+1,j 6= 0, a∗k+2,j 6= 0) (7.39)

and with these results we conclude that the positions of null constraints have
to be the same in the two interchanged neighboring rows.

We have to remark that we exclude the cases of in which the parameter
may assume a particular value zero (faithfulness assumption). For example,
that ak+2,j φ11 + ak+1,j φ12 occasionally equal to zero while ak+2,j 6= 0 and
ak+1,j 6= 0.

We now prove the equivalence between ( V -structure + Skeleton ) condition
and our interchange condition. First we prove our interchange condition
keeps the skeleton and all V -structure of the graph. k + 1-th and k + 2-
th rows have the same positions of zeros means xk+1 and xk+2 always have
the same parents, say xi, i ≤ k. For changing the order of xk+1, xk+2, the
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positions of zeros remain unchanged, i.e. the set of the common parents in
the graphic remains unchanged. If xk+1 → xk+2 exists (ak+2,k+1 6= 0),

xi −→ xk+1

↘
y

xk+2

,

the interchange turn the arrow between xk+1 and xk+2. As shown, the inter-
change cannot take place in a V -structure since xk+1 and xk+2 have always
the same parents.

If there is no arrow between xk+1 and xk+2 (ak+2,k+1 = 0), the interchange
does not have any effect on the graphics. So we proved the interchange rule
keep the skeleton and V -structure.

We prove now the keeping of skeleton and V -structures can only be done by
our interchange condition.

To keep a given skeleton structure while exchanging two rows which are not
neighbors, for example, k + 1-th and k + 3-th rows

. . . xk+1 xk+2 xk+3 · · ·
xk+1 · · · 1 0 0 · · ·
xk+2 · · · ak+2,k+1 1 0 · · ·
xk+3 · · · ak+3,k+1 ak+3,k+2 1 · · ·

...
. . .

⇓
. . . xk+3 xk+2 xk+1 · · ·

xk+3 · · · 1 0 0 · · ·
xk+2 · · · a∗k+2,k+1 1 0 · · ·
xk+1 · · · a∗k+3,k+1 a∗k+3,k+2 1 · · ·

...
. . .

Table 4:

it is necessary to have a∗k+2,k+1 = 0 because the relation xk+3 → xk+2 does not
exist in the old graphic. And if a∗k+2,k+1 = 0, the interchange of the k + 1-th
row (corresponding xk+3) and the k + 2-th row in the A-matrix represents
the identical graphic. Therefore, we can interchange xk+3 and xk+2 in the
A-matrix
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. . . xk+2 xk+3 xk+1 · · ·
xk+2 · · · 1 0 0 · · ·
xk+3 · · · 0 1 0 · · ·
xk+1 · · · a∗∗k+3,k+1 a∗∗k+3,k+2 1 · · ·

...
. . .

.

Table 5:

Similarly we have a∗∗k+3,k+2 in Table 5 equal to zero because the causation
relation xk+3 −→ xk+1 does not exist in the old graphic. Therefore we can
exchange the k + 2-th row (corresponding xk+3) and k + 3-th row (corre-
sponding xk+1 and obtain

. . . xk+2 xk+1 xk+3 · · ·
xk+2 · · · 1 0 0 · · ·
xk+1 · · · 0 1 0 · · ·
xk+3 · · · a∗∗∗k+3,k+1 0 1 · · ·

...
. . .

.

Table 6:

All together means that the interchange between xk+1 and xk+3 under the
maintain of the skeleton structure can be also done by interchanging at first
xk+1 and xk+2 and then interchanging xk+1 (now in k + 2-th row) and xk+3

which are in neighboring rows.

Now we prove the maintain of V -structure is followed only by the position
constraints in the neighboring rows. When we turn the arrow between xk+1

and xk+2 and assume there exists i ≤ k such that aj,i = 0 and aj+1,i 6= 0.
Then, we have a V -structure on the set {xi, xk+1, xk+2} as shown

xi xk+1

↘
y

xk+2

⇒
xi xk+1

↘
x

xk+2

,

which is changed after interchange. It contradicts to the maintain of the
V -structure. So the positions of zeros in these two rows have to be the same.
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