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Abstract: 
This paper provides a survey of three families of flexible parametric probability density functions (the 
skewed generalized t, the exponential generalized beta of the second kind, and the inverse hyperbolic 
sine distributions) which can be used in modeling a wide variety of econometric problems.  A figure, 
which can facilitate model selection, summarizing the admissible combinations of skewness and 
kurtosis spanned by the three distributional families is included.  Applications of these families to 
estimating regression models demonstrate that they may exhibit significant efficiency gains relative to 
conventional regression procedures, such as ordinary least squares estimation, when modeling non-
normal errors with skewness and/or leptokurtosis, without suffering large efficiency losses when 
errors are normally distributed.  A second example illustrates the application of flexible parametric 
density functions as conditional distributions in a GARCH formulation of the distribution of returns on 
the S&P500.  The skewed generalized t can be an important model for econometric analysis. 
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1.  Introduction 
 Assumptions about the distributions of economic variables are useful for much of economic 

modeling; however, it is important that the assumed models are consistent with the stylized facts.  

For example, selecting a normal distribution permits modeling two data characteristics–the mean 

and variance, but is not appropriate for data which are skewed or have thick tails.  Similarly the use 

of other distributions, such as the lognormal or Weibull distributions, is restricted to applications 

with admissible data characteristics.  Efforts to model more diverse data characteristics have led to a 

rapid development of alternative methodological approaches in economics.  Semiparametric 

procedures provide one approach which reduces the structure imposed in the modeling process.  

Because semiparametric procedures impose relatively little structure on the data, they have 

desirable large sample properties under quite general conditions. However, in specific applications, 

the use of semiparametric procedures requires the specification of user specified objects, such as a 

kernel and window width in kernel regression, and since little structure is assumed, the resulting 

models may not be parsimonious.  In addition, if the assumed structure in a parametric model is 

approximately correct, the resulting estimator will typically have superior properties to a 

semiparametric estimator.  Pagan and Ullah (1999) provide an excellent summary of these and 

related issues.   

 In this paper, we explore an intermediate position between the specification of a simple 

parametric form for the probability density function and semi-parametric estimation.  This approach 

is based on “flexible” parametric density functions that involve few parameters but can 

accommodate a wider range of data characteristics than are available with such commonly used 

distributions as the normal, lognormal, or the student t distribution.   Section 2 summarizes three  

alternative families of flexible probability density functions, some basic distributional 

characteristics, important special and limiting cases, and a visual representation of skewness and 

kurtosis combinations spanned by the respective distributions.  Section 3 considers two applications 

of these distributions in economics: quasi maximum likelihood estimation of regression models and 

GARCH modeling.    Concluding remarks are offered in Section 4.   

 

 

 



2.  Alternative Models 

 The normal and Laplace distributions are two of the first probability density functions to 

have been considered for model building in economics and statistics.  They are both symmetric and 

have kurtosis of 3 and 6 respectively and provide good models for many economic series, with the 

Laplace being able to model thicker-tailed distributions than the normal.  However, it is not 

uncommon to encounter data which is both skewed and heavy tailed in economics and finance 

applications.  In the following, we summarize three alternative families of distributions that may be 

used as models for possibly skewed and thick-tailed distributions. 

 

2.1 Skewed Generalized T distribution (SGT) 

     The skewed generalized t distribution (SGT) was obtained by Theodossiou (1998) and can be 

defined by 
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where is the beta function, m is the mode of y and the parameters p and q are both positive and 

control the height and tails of the density.  The parameter

( , )B ⋅ ⋅

φ is a positive scale parameter and λ, 

1 1λ− < < ,  determines degree of skewness with the area to the left of the mode equal to ( )1 /λ− 2 .  

Setting λ = 0 in the SGT yields the generalized t (GT) of McDonald and Newey (1988).  Similarly, 

setting p=2 yields the skewed t (ST) of Hansen (1994) which includes the student t distribution 

when λ = 0.  The  order moments of  thh ( )Y m−  can be shown to be given by 
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for 1h pq< ; hence, the SGT defines moments of order less than the degrees of freedom ( = pq).   n
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1 The results for the order moments about the mode can be used to derive expressions for moments about the mean 
using the binomial expansion.  

thh



The standardized values for skewness and kurtosis2 in the ranges (-∞,∞) and (1.8,∞), respectively, 

can be modeled with the SGT.  Thus, the SGT allows for significantly more flexibility in modeling 

skewness and kurtosis than the student t distribution which is symmetric and has kurtosis 3 + 6/( n -

4) for degrees of freedom exceeding four.    

Another important class of flexible density functions corresponds to a limiting case of the 

SGT.  Letting q yields the skewed generalized error distribution (SGED) defined by  → ∞
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The parameter p in the SGED controls the height and tails of the density and λ controls the 

skewness.  The  order moments of  thh ( )Y m−  for the SGED can be shown to be given by 
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for all positive values of h.  The SGED is symmetric for λ = 0 and positively (negatively) skewed 

for positive (negative) values of λ.  The symmetric SGED, GED, is also known as the generalized 

power (Subbotin (1923)) distribution or the Box-Tiao (Box and Tiao (1962)) distribution. The 

SGED can easily be seen to include the skewed ( 0λ ≠ ) or symmetric ( 0λ =  ) Laplace or normal 

corresponding to p = 1 or 2, respectively.  Figure 1 provides a visual summary of the 

interrelationships between some of the pdf’s in the SGT family of distributions where “S” denotes 

the skewed generalization of the indicated pdf.  As the parameter p grows larger, the SGT pdf 

approaches the uniform pdf, for example SLaplace denotes the skewed Laplace pdf. 

 

                                                 

2 / 2( ) /[ ( ) ]h h
hK E Y E Yμ μ= − −2 The standardized skewness and kurtosis correspond to for h=3 and 4, 

respectively, where μ  denotes the mean of  Y.  
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Figure 1:  The SGT Distribution Family 

2.2 Exponential generalized beta of the second kind (EGB2) 

The four parameter EGB2 distribution is defined by the probability density function 
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where the parameters φ , p, and q are assumed to be positive, cf. McDonald and Xu (1995).  m and 

φ  are respectively location and scale parameters.  The parameters p and q are shape parameters.  

The EGB2 pdf is symmetric if and only if p and q are equal.  The normal distribution is a limiting 

case of the EGB2 where the parameters p and q are equal and grow indefinitely large.  The moment 

generating function for the EGB2 is  

( ) ( )
( )2

,
,

t

EGB

e B p t q t
M t

B p q

δ σ σ+ −
=  

from which the first four moments can be readily derived as 

Mean: ( ) ( )p qδ σ ψ ψ+ −⎡ ⎤⎣ ⎦  

Variance: ( ) ( )2 ' 'p qσ ψ ψ+⎡ ⎤⎣ ⎦  
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Skewness: ( ) ( )3 '' ''p qσ ψ ψ−⎡ ⎤⎣ ⎦  

Kurtosis: ( ) ( )4 ''' '''p qσ ψ ψ+⎡ ⎤⎣ ⎦  

where ( ).ψ denotes the derivative of the log of the gamma function.  The EGB2 may accommodate 

standardized values for skewness in the range (-2.0, 2.0) and standardized values of kurtosis in the 

range (3.0, 9.0).  

2.3  Inverse hyperbolic sine (IHS)  

 Johnson (1949, 1994) proposed three families of distributions of random variables that are 

transformations of normal variables.  These transformations allow modeling a wide range of values 

of skewness and kurtosis.  We consider the inverse hyperbolic sine (IHS) transformation which 

allows unbounded random variables.  For this paper we use a slightly different parameterization 

than used by Johnson (1949).  Specifically, we consider ( )sinh /y a b z k a bwλ= + + = +  where sinh 

is the hyperbolic sine, z is a standard normal, and a, b, λ, and k are scaling constants related 

respectively to the mean ( μ ), variance ( 2σ ), skewness, and kurtosis of the random variable Y.  The 

pdf of y is given by  
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where 

,u y μ δσ= − + ( ) 2.5
w w w=1/ ,  = / ,  .5 ,  k

w e e eλ λθ σ δ μ σ μ
−−= − ( ) ( )2 2 2.5 .5

2 2
w .5 2 1 ,k k ke e eλ λσ

− − −+ − += + + −  and 

  w and wμ σ denote the mean and standard deviation of ( )sinh /w λ= + z k .3  Negative values of 

λ generate negative skewness, positive values of λ generate positive skewness, and zero 

corresponds to symmetry.  Smaller values of k result in more leptokurtic distributions.  Given that 

the mean and variance for the IHS are given by mean μ  and 2σ ,  respectively, the standardized 

skewness and kurtosis are  
3

3 3 3SK A δ δ= − −  
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The IHS allows standardized skewness and kurtosis values in the range (-∞,∞) and (3,∞), 

respectively.  The IHS includes the normal as a limiting case where  with k → ∞ 0.λ =    

 

2.4  Partitioning the skewness-kurtosis space 

 While the SGT, EGB2, and IHS are all flexible distributions which can potentially 

accommodate a wide variety of skewed and leptokurtic data, they do not cover all cases which 

could arise in practice.  To illustrate the data characteristics consistent with each distribution, we 

plot the admissible skewness-kurtosis combinations in figure 2.  The solid and dotted U-shaped 

curves provide respectively the lower bound for the SGT and IHS permissible combinations of 

skewness and kurtosis, and the smile-like space provides the lower and upper bounds of the 

permissible skewness-kurtosis combinations for the EGB2.  As might be expected, the SGT clearly 

admits a larger range of skewness-kurtosis combinations than the other two distributions.  However, 

the coverage of the IHS is remarkably close to that of the SGT; and while the EGB2 space is limited 

in coverage in comparison to the other two distributions, it does cover many skewness-kurtosis 

combinations encountered in practice.   

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                  
w and =bwa bμ = μ σ σ+ . 3 The mean and variance of y are related to the corresponding moments of w by 
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3. Applications 
The flexible pdf’s summarized in Section 3 have many applications in economic modeling 

where a normality assumption may be unnecessarily restrictive.  We consider two applications in 

this section: (1) partially adaptive or robust estimation of regression models and (2) estimating 

models characterized by generalized autoregressive conditional heteroskedasticity (GARCH).   

  

3.1 Regression Models:  A Simulation Example 

 We use a Monte Carlo simulation to illustrate the potential usefulness and efficiency gains 

available from the application of the flexible distributions discussed above in regression modeling.  

Following Hsieh and Manski(1984), Newey(1988), McDonald and White(1994), and Ramirez, 

Misra, and Nelson (2003), we simulate data from the model or data generating process (DGP) 

 Yt = -1 +  Xt +  ut       for t = 1,…,T  

where the Xt’s are drawn from a Bernoulli distribution with Prob(X=1) = 0.5.  We consider three 

different error distributions, each with a zero mean and unit variance.  One error distribution is the 

standard normal, another is a thick tailed variance mixture or contaminated distribution, and the 

third corresponds to a skewed error distribution.4  We consider samples of size of fifty and one 

hundred with one thousand replications.  For each model, we estimate the slope and intercept 

parameters using ordinary least squares (OLS)5 and least absolute deviations (LAD)6 as 

benchmarks and also estimate the parameters7 using partially adaptive estimation based on the error 

distributions summarized in Section 2.   Comparing the standardized skewness and kurtosis 
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)

4 Thus, the first error distribution is merely the unit normal, Z 1 = N[0,1].  The thick-tailed variance contaminated 
distribution is generated as a mixture by Z 2 = U*N[0, 1/9] + (1-U)*N[0,9] where U is 1 with probability .9 and 0 
otherwise.  Z 2 is symmetrically distributed with kurtosis of 24.3.  The skewed distribution is generated by 

( ) (.5 13 /Z Y e e e= − −  where Y is LN[0,1].  3Z  has standardized skewness and kurtosis values  of 6.185 and 

113.94, respectively. 
5  The expected standard deviation for the OLS slope estimator for this data generating process is 2 / T  which is 
approximately .28 and .20 for T=50, 100, respectively.   
 
6 The asymptotic variances for the LAD estimator are given by ( ) ( )( )21' / 2X X f median−

which yields slope 

RMSE’s of .354, .130, and .164 for the normal, mixture, and lognormal error distributions with .  

Corresponding results for are obtained by multiplying the 

50T =
100T = 50T = results by ( )50 /100 = .707. 

7 For the possibly asymmetric QMLE the intercept term was adjusted so that the expected error was zero.   



(SK,KU) for the normal (0, 3), mixed normal (0, 24.3), and lognormal (6.185, 113.9) error 

distributions with Figure 2 suggests the IHS and SGT-estimation would be compatible with the 

data; whereas the EGB2 estimators would not.  Ramirez, Misra, and Nelson (2003) and McDonald 

and White(1994) applied the IHS and GT and EGB2 partially adaptive estimators to this DGP.  

Adaptive maximum likelihood (AML) estimation, based on a normal kernel, following Hsieh and 

Manski (1984), and generalized method of moments (GMM) estimation, as outlined in Newey 

(1988)8, are performed to provide additional benchmarks which are independent of the assumption 

of any particular distribution or family of distributions.   In this Monte Carlo study, the performance 

of the ST, SGED, and SGT are considered and compared with results of previous research.   
 The root mean squared errors (RMSE) for the estimated slope parameters, using each of the 

previously mentioned methods, are reported in Table 1.  Since each of the flexible pdf’s considered 

includes the normal as a special or limiting case, one would expect partially adaptive estimators to 

perform similarly to OLS for normally distributed errors, but not necessarily for the mixture or 

skewed error distributions.  This intuition seems to be confirmed based on the results reported in 

Table 1 where we also observe that there appears to be relatively little efficiency loss for the 

partially adaptive estimators relative to the OLS estimator for the data generating process with 

normally distributed error terms.  The DGP for each error distribution satisfies the Gauss Markov 

assumptions with OLS yielding the most efficient linear unbiased estimators, but with the normality 

assumption OLS is also the most efficient of all unbiased (linear and nonlinear) estimators.  The 

contaminated normal and lognormal error distributions are examples in which the OLS estimator 

will be the minimum variance unbiased linear estimator, but there will be nonlinear estimators 

which provide significant improvements in estimator efficiency.   Comparing the two panels ( T=50 

and T=100) in Table 1, the results appear to be generally consistence with T  convergence.   

Not surprisingly, OLS has the largest RMSE of any of the estimators considered for the 

mixture (thick-tailed and symmetric) distribution considered.  However, AML, GMM, and the 

                                                 
8 The normal kernel estimate of the error density is ( )

1

ˆ1 T

i

u uf u
sT s

φ
=

−⎛ ⎞ ⎛= ⎜ ⎟ ⎜
⎝ ⎠ ⎝

∑
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⎞
⎟
⎠

 where φ  and , respectively, 

denote the standard normal density function and the least squares residuals. Bootstrapping was used to select the value 
of the smoothing parameter ( ) to minimize the RMSE of the slope parameter.    The GMM estimators are the 

transformed GMM estimators based minimizing the correlations between 

û

s

( )/ 1
j

u u⎡ ⎤+⎣ ⎦ and the regressors for 

moments, j =1, 2…, J.  J=4 was used in this simulation.    



partially adaptive estimators (GED, SGED, ST, GT, SGT, EGB2, and IHS) do much better than 

OLS and have very similar RMSE’s.9    

 In the case of the skewed and thick tailed error distribution, OLS again performs the worst 

for estimating the slope.  The partially adaptive estimators offer substantial efficiency gains relative 

to both OLS and LAD.  The AML and GMM estimators perform similarly to the partially adaptive 

estimators for thick-tailed and symmetric distribution GT; however, the RMSE for the possibly 

skewed partially adaptive estimators (SGED, ST, SGT, EGB2, and IHS) appear to outperform AML 

and GMM for both sample sizes.  The performance of the EGB2 and IHS for the skewed error 

distributions is particularly impressive. The strong performance of the EGB2 may be surprising 

since the moments of the true underlying error distribution do not lie in the portion of the moment 

space covered by the EGB2 as illustrated in Figure 2.  In this sense, it appears that accounting for 

the some potential skewness and kurtosis may be more important than capturing it exactly when 

estimating parameters characterizing the mean.  Of course, if we were interested in estimating other 

features of the distribution, we would expect the performance of the EGB2 to deteriorate.   

 

3.2 GARCH Models 

 Many economic time series involving financial or macroeconomic data are characterized by 

volatility clustering, that is, the tendency of large residuals (deviations of the series from the mean) 

to be followed by large residuals and small residuals by small residuals of unpredictable sign.  

Engle’s (1982) Autoregressive Conditional Heteroskedastic (ARCH) models attempt to model this 

behavior by expressing the conditional variance of the error as a function of the squares of previous 

errors 

( ) ( )2 2
1, 1,... 1var t t t t tLε ε ε σ ω α ε− − −= = + , 

where ( )Lα denotes a polynomial in the lag operator (L), t tyε μ= −  is the residual and μ  is the 

mean of the data series ty .  Bollerslev (1986) generalizes Engle’s ARCH model with the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model defined by  

( ) ( )2 2
1 1t tL L 2

tσ ω α ε β σ− −= + + , 
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9 Some convergence problems existed for a few of the GED, SGED, and SGT cases; hence, the reported results 
correspond to constrained optimization with p > 1.   



where ( )Lβ is a polynomial in the lag operator.  The GARCH model can often model high order 

ARCH models with fewer parameters.   

ARCH and GARCH models build on the standardized process  defined by  tz

t
t

t

z ε
σ

=  

which is assumed to have a conditional mean zero and unitary conditional variance.  The 

distribution of determines the conditional distribution of the original seriestz ty .  The most 

common conditional distribution used in the estimation of GARCH models has been the standard 

normal.  

 The standard normal leads to an unconditional distribution with leptokurtosis, but does not 

capture all the leptokurtosis present in high frequency speculative prices (Bollerslev, Engle, and 

Nelson 1994, p. 2979).  In an attempt to better model leptokurtosis Bollersllev (1987) proposed 

using the standardized t-distribution.  Nelson (1991) used the GED and Bollerslev et al. (1994) 

applied the GT.  It was found that the “generalized t-distribution is a marked improvement over the 

GED, though perhaps not over the usual student’s t distribution.  Nevertheless the generalized t is 

not entirely adequate, as it does not account for the fairly small skewness in the fitted ’s and also 

appears to have insufficiently thick tails for the S&P500 data.”  Wang et al. (2001) and Ramierez 

(2001) apply the EGB2 and IHS to GARCH models, respectively. 

tz

 To illustrate the application of the SGT distribution family in estimating GARCH models, 

we report the results of fitting representative SGT–GARCH, EGB2-GARCH, and IHS-GARCH 

specifications10 to the Standard and Poor’s 500 stock market index (S&P500).  The data analyzed 

were computed using , where  denotes the daily level for each series at 

time t.  The data cover the period from January 1992 through December 2001 (10 years) and Table 

2 reports sample characteristics.  The Dickey-Fuller tests provide support for the hypothesis that the 

series of logarithmic changes are stationary.  The S&P500 data are characterized by thick tails and 

negative skewness.  Based on the estimated skewness, kurtosis, Jarque-Bera, and chi-square 

goodness of fit statistics, the assumption of normality is rejected.  Comparing the sample skewness 

and kurtosis values with the feasible combinations in Figure 1 we note that for the unconditional 

( 1100 ln /t tz S S −= ⎡ ⎤⎣ ⎦)t

                                                

tS

 

 11
10 The conditional distributions are constrained to have a zero mean and unitary variance.  



distributions the IHS and SGT are consistent with the data, but the EGB2 is not.  This does not 

imply that the same could be said for the GARCH specifications.    

 MATLAB was used to obtain partially adaptive or quasi-maximum likelihood estimates 

(QMLE) of the unknown distributional and GARCH parameters for each of the models indicated in 

Table 3, both with and without GARCH effects.  Given that QMLE was used rather than method of 

moments, sample and theoretical moments may differ.  Since the GARCH formulations provide a 

statistically significant improvement over a non-GARCH specification only the estimated GARCH 

formulations, their estimated parameters and robust standard errors, and conditional distributions 

are reported.  The sample standardized skewness and kurtosis for the estimated GARCH residuals 

and corresponding theoretical skewness and kurtosis are also reported.   

 The last six rows of Table 3 present goodness-of-fit statistics for the models.  Specifically, 

LR GARCH−  tests the significance of the GARCH effects in each of the models.  It is calculated 

using the formula , where (( 2 *LR GARCH− = −l l )) l and , respectively, denote the optimized 

log-likelihood values for the GARCH and non-GARCH formulations.  This test statistic has an 

asymptotic chi square (

*l

2χ ) distribution with 2 degrees of freedom (d.f.), where the d.f. are equal to 

the number of additional estimated GARCH parameters of  α  and β  in the GARCH(1,1) 

specification, which is a common specification in these applications. The LR-Normal statistic is 

calculated as ( )2 A N−l l  where  and  represent the log-likelihood values for the GARCH-

normal distribution and the alternative GARCH specification.

Nl Al

 11  Since the normal distribution is a 

limiting/special case of each of the alternative specifications, a chi-square distribution with m d.f.  

equal to the number of additional parameters will be used to test the hypothesis.    Specifically, for 

T, GED, EGB2* (symmetric EGB2 with p = q), m=1; for GT, SGED, EGB2, and IHS, m=2; and for 

SGT, m=3.   

 Since the LR-GARCH statistic is significant at the 5% level for all models, there is strong 

support for the GARCH specification.  Similarly, all of the LR-Normal test statistics are significant 

at the 5% level; hence, providing the basis for rejecting the normal specification for each model for 

the S&P500 data.  The last row in Table 4 reports LR tests comparing several skewed pdf’s with 

                                                 
11 The asymptotic 2χ  may not be appropriate in comparing nested models in which the parameters of the constrained 

model lie on the boundary of the parameter space, where the asymptotic distribution may be a mixture of 2χ ’s.     
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their corresponding symmetric special cases, GT vs. SGT, T vs. SGT, GED vs. SGED, and the 

EGB2* vs. EGB2.  Statistical significance on arises in the case of the EGB2; hence, compelling 

evidence of asymmetry in the conditional pdf’s for the S&P500 is lacking.        

 The sum of squared errors (SSE), sum of absolute errors (SAE), and chi-squared goodness 

of fit ( 2χ ) provide a basis for comparing non-nested specifications.  The 2χ  statistic is 

asymptotically distributed as chi-square with degrees of freedom one less than the difference 

between the number of groups and estimated parameters.12  The 2χ  goodness of fit statistic fails to 

reject the symmetric EGB2 (EGB2*), GT, EGB2, IHS, and SGT at the 5% level of significance.   

Looking across all specifications, based on the SSE, SAE, and 2χ criteria, the GT appears to 

provide the best fit.   

 In summary, the S&P500 data provides an example of the importance of using parametric 

specifications which are flexible enough to accommodate observed data characteristics.  In each 

case considered the GARCH effects are statistically significant and yield conditional distributions 

for the standardized residuals with different characteristics than for the unconditional residuals.  

That is, the distributions for the standardized residuals exhibit higher (lower) levels of skewness    

(leptokurtosis) than the non-standardized ones.  Nevertheless, the conditional heteroskedasticity 

itself cannot fully account for the non-normality of the log-return series. 

 

4.  Summary and conclusions 

 This paper has reviewed three families of flexible parametric probability density functions:  

the skewed generalized t distribution, the exponential generalized beta of the second kind, and the 

inverse hyperbolic sine distribution.  These distributional families include as limiting or special 

cases many common parametric distributions, including the normal.  They allow one to quite 

flexibly model the first four moments of a distribution while maintaining the parsimony of a 

completely specified parametric model as is summarized in Figure 2.   

 These models can provide the basis for partially adaptive or QML estimation of many 
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12 The SAE, SSE, and  2χ  are calculated by comparing the observed frequencies ( )/in n  with the predicted 

frequencies where and n , respectively, denote the number of observations in the of g groups and n is the sample 
size.  Twenty equal probability intervals were used in calculating the goodness of fit measures.  

in thi
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economic models.  To illustrate the potential usefulness of these methods, a simulation study was 

performed in which the parameters of a simple linear regression model were estimated using 

partially adaptive estimators based on the flexible parametric error distributions.  In the simulations, 

partially adaptive estimators were associated with modest efficiency loss with normal errors and 

demonstrated the potential for significantly improved estimator performance when the error 

distribution was skewed and thick-tailed.    The simulations for the SGED, ST, and SGT add to 

previous results for the IHS, EGB2, and GT.   

The use of the flexible distributions to model GARCH specifications was illustrated using 

S&P500 stock return data.  For this data set, the SGT, IHS, and EGB2-GARCH specifications 

provided statistically significant improvements relative to normal-GARCH specifications and with 

respect to non-GARCH specifications.   



 15

References 
Bollerslev, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity.  Journal of 
Econometrics 31, 307-321. 
 
Bollerslev. T. 1987.  A Conditional Heteroskedastic Time Series Model for Speculative Prices and 
Rates of Return.  Review of Economics and Statistics 69, 542-547.   
 
Bollerslev, T., R. F. Engle, and D. B. Nelson, 1994.  ARCH Models.  Handbook of Econometrics, 
Vol. IV. Edited by R. F. Engle and D. L. McFadden, Amsterdam: Elsevier Science B. V., 2959-
3038. 
 
Box, G. E. P. and Tiao, G. C., 1962.  A Further Look at Robustness Via Bayes Theorem. 
Biometrika 49, 419-432. Further information
 
Cox, D. R. and D. V. Hinkley, 1974.  Theoretical Statistics, London: Chapman and Hall.  
 
Engle, R. 1982.  Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of 
United Kingdom Inflations. Econometrica 50, 987-1008. 
 
Hansen, B. E., 1994. Autoregressive Conditional Density Estimation. International Economic 
Review 35 (3), 705-730. Further information in IDEAS/RePEc
 
Hsieh, D. A. and Manski, C. F., 1987.  Monte Carlo Evidence on Adaptive Maximum Likelihood 
Estimation of a Regression. Annals of Statistics 15, 541-551. 
 
Johnson, N. L., 1949. Systems of Frequency Curves Generated by Methods of Translation. 
Biometrika 36, 149-176. Further information
 
Johnson, N. L., S. Kotz, S. Balakrishnan, N., 1994. Continuous Univariate Distributions, Volume 1, 
Second Edition. New York: John Wiley & Sons, New York. Further information
 
McDonald, J. B. and Newey, W. K., 1988.  Partially Adaptive Estimation of Regression Models Via 
the Generalized t Distribution.   Econometric Theory  4, 428-457. 
 
McDonald, J. B. and White, S. B., 1993.  A Comparison of Some Robust, Adaptive, and Partially 
Adaptive Estimators of Regression Models.  Econometric Reviews 12 (1), 103-124. 
 
McDonald, J. B. and Xu, Y.J., 1995. A Generalization of the Beta Distribution with 
Applications,” Journal of Econometrics 66, 133-152.  Errata 69(1995), 427-428.  
Further information in IDEAS/RePEc
 
Nelson, D. 1991.  Conditional Heteroskedasticity in Asset Returns: A New Approach.  
Econometrica 59, 347-370. 
 

http://biomet.oxfordjournals.org/cgi/reprint/49/3-4/419.pdf
http://ideas.repec.org/a/ier/iecrev/v35y1994i3p705-30.html
http://biomet.oxfordjournals.org/cgi/reprint/69/2/461.pdf
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471584959.html
http://ideas.repec.org/a/eee/econom/v66y1995i1-2p133-152.html


 16

Newey, W. K., 1988.  Adaptive Estimation of Regression Models Via Moment Restrictions.  
Journal of Econometrics 38, 301-339. Further information in IDEAS/RePEc
 
Pagan, A. and A. Ullah, 1999. Nonparametric Econometrics.  Cambridge University Press, 
Cambridge. Further information
 
Ramirez, O. A. 2001.  Autoregressive Conditional Heteroskedasticity under Error Term Non-
Normality, working paper, Texas Tech University, Lubbock Texas.  
 
Ramirez, O. A., Misra, S. K., and Nelson, J., 2003.  Efficient Estimation of Agricultural Time 
Series Models with Nonnormal Dependent Variables.  American Journal of Agricultural 
Economics 85 (4), 1029-1040. Further information in IDEAS/RePEc
 
Subbotin, M. T., 1923. On the Law of Frequency of Error,” Mathematicheskii Sbornik 31, 296-
301.  
 
Theodossiou, P., 1998. “Financial Data and the Skewed Generalized t Distribution,” Management 
Science 44, 1650-1661. Further information
 
Wang, K. L., C. Fawson, C. Barrett, and J. B. McDonald 2001.  A Flexible Parametric GARCH 
Model with an Application to Exchange Rates.  Journal of Applied Econometrics 16, 521-526.  
 
 

http://ideas.repec.org/a/eee/econom/v38y1988i3p301-339.html
http://books.google.de/books?vid=ISBN0521586119&id=riQDZkuICWQC&pg=PP1&lpg=PP1&ots=K_zEbsbJsr&dq=Nonparametric+Econometrics&sig=9OnE_F4tzgVa4jZZKcqB-t5pm_0
http://ideas.repec.org/a/bla/ajagec/v85y2003i4p1029-1040.html
http://portal.acm.org/citation.cfm?id=767661.767953&coll=&dl=acm&CFID=15151515&CFTOKEN=6184618


-3 -2 -1 0 1 2 3
0

2

4

6

8

10

12

14

16

18

Skewness

K
ur

to
si

s

SGT

IHS

EGB2

Figure 2.  Admissible combinations of skewness and kurtosis 
 
This figure illustrates the admissible combinations of the standardized values of skewness and kurtosis for the SGT, 
IHS, and EGB2.  The regions for the SGT and IHS are given by the areas above corresponding curves (solid line for 
SGT, -. for IHS).  For the EGB2 the set of admissible values is given by the area within the dashed curve.  The 

orizontal axis corresponds to values for skewness, and the ertical axis corresponds to values for kurtosis. 
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Table 1.   RMSE Slope Simulation Results 
 

 T=50 T=100 
 Normal Mixture Skewed Normal Mixture Skewed 
OLS .275 .287 .280 .201 .210 .201 
LAD .332 .122 .159 .248 .091 .117 
GED .301 .122 .158 .207 .091 .118 
SGED .335 .128 .060 .213 .090 .038 
ST .293 .112 .054 .204 .080 .037 
GT .314 .133 .135 .211 .085 .085 
SGT .335 .125 .073 .216 .085 .041 
EGB2 .287 .125 .049 .203 .088 .033 
IHS .285 .119 .054 .202 .085 .034 
AML .285 .114 .128 .201 .081 .087 
GMM .319 .115 .088 .209 .082 .060 

 
This table gives root mean squared errors for estimates of the slope parameters from the simulation example defined in Section 3.1.   
Columns labeled normal are results for the model where the errors are drawn from a standard normal distribution.  Columns labeled 
mixture have errors drawn from a symmetric, leptokurtotic mixture of normals.  Columns labeled skewed have errors drawn from a 
LN(0,1) distribution which are scaled and centered to have mean zero and variance one.  Each row corresponds to a different 
estimation procedure as discussed in the text. 
 

Table 2.  S&P 500 Data Characteristics 
 
Dates 1/2/1992 – 12/31/2001 
Sample size 2523 
Dickey-Fuller F-value for  ( )ln tS .703 

28.23* Dickey-Fuller F-value for  tS
SK-returns -.294* 
 (0.049) 
KU-returns 7.823* 
 (0.097) 
Jarque-Bera 2469.6* 

334.3* 2χ  goodness of fit 
 
Notes:  Series are expressed as continuously compounded daily returns (logarithmic changes).  Standard errors for the estimates are 
included in parentheses.  The Dickey-Fuller F-value is for testing the null hypothesis that a series is a random walk with a trend.  The 
Dickey-Fuller critical values at the five and one-percent levels of significance are 6.25 and 8.27, respectively.  SK-returns and KU-

returns are the sample skewness and kurtosis for the log-changes computed using the formulas   and 

, where  denotes the sample estimate of the  moment about the mean.  The Jarque-Bera (JB) statistic is 

used for testing for normality and is asymptotically distributed as  

3/ 2
1 3 2/b m m=

( )2
2 4 2/b m m= im thi

( )2 2χ .  The chi-square goodness of fit statistic also tests for 
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normality and is asymptotically distributed as ( )2 57χ .   The five percent critical values for the JB and chi-square goodness of fit 

tests are 5.99 and 75.6, respectively  



Table 3.  Parameter Estimates for the S&P500 Stock Market Log-returns 
 
 4 parameters  5 parameters          6 parameters                    7 parameters 
        
Models NORMAL T GED EGB2* GT SGED EGB2 IHS SGT 
 
μ 0.05551* 0.06046* 0.05268* 0.05825* 0.05812* 0.04334* 0.04705* 0.04906* 0.05053* 
 (0.01458) (0.01349) (0.01481) (0.01347) (0.01473) (0.01473) (0.01445) (0.01442) (0.01576) 
ω 0.00611* 0.00365* 0.00425* 0.00372* 0.00377* 0.00452* 0.00414* 0.00406* 0.00402* 
 (0.00216) (0.00149) (0.00165) (0.00153) (0.00151) (0.00166) (0.00160) (0.00155) (0.00155) 
α 0.07109* 0.05430* 0.05941* 0.05551* 0.05524* 0.06057* 0.05730* 0.05636* 0.05646* 
 (0.00607) (0.00404) (0.00431) (0.00395) (0.00436) (0.00432) (0.00602) (0.00402) (0.00434) 
β 0.92532* 0.94412* 0.93798* 0.94243* 0.94270* 0.93620* 0.93975* 0.94097* 0.94095* 
 (0.00076) (0.00032) (0.00048) (0.00038) (0.00037) (0.00058) (0.00233) (0.00042) (0.00040) 
n=pq – 6.16687* – – 8.43547 – – – 8.88999 
 – (0.98091) – – (7.90869) – – – (8.82280) 
k or p – – 1.34526* 0.69446* 1.75634* 1.36871* 0.71637 1.85989* 1.75400* 
 – – (0.06729) (0.15912) (0.45958) (0.07057) (1.01237) (0.18781) (0.46069) 
λ or q – – – – – –0.05036 0.84344 –0.18637* –0.04184 
 – – – – – (0.04238) (1.36552) (0.08517) (0.02725) 
 
SK-Residuals –0.48 –0.48 –0.48 –0.48 –0.48 –0.48 –0.48 –0.48 –0.48 
SK 0.00 0.00 0.00 0.00 0.00 –0.14 –0.21 –0.22 –0.13 
KU-Residuals 5.12 5.22 5.19 5.21 5.21 5.19 5.20 5.21 5.21 
KU 3.00 5.77 4.18 4.62 4.99 4.12 4.54 4.94 4.85 
 
ℓ –3210.89 –3147.58 –3151.96 –3147.78 –3146.63 –3150.12 –3144.98 –3144.80 –3145.46 
 
LR-GARCH 705.19* 444.31* 435.34* 437.23* 433.67* 439.03* 442.43* 441.27* 435.94* 
LR-Normal 0.00 126.61* 117.85* 126.22* 128.52* 121.55* 131.81* 132.17* 130.86* 
SSE 0.00128 0.00102 0.00049 0.00030 0.00028 0.00043 0.00035 0.00037 0.00033 
SAE 0.1359 0.1163 0.0818 0.0662 0.0621 0.0702 0.0685 0.0748 0.0670 
χ2 64.0* 48.6* 24.4* 15.2 14.0 21.8 17.5 18.7 16.7 
 
LR-pdf: LR(GT vs. SGT)= 2.35*, LR(T vs. SGT)= 4.25*,  LR(SGED vs. GED)= 3.69#, LR(EGB2* vs. EGB2)= 5.58  
 

 20

,t taσ ω ε βσNotes: The estimated GARCH model is 1t
2 2 2

1− −= + + where εt = yt – μ. Parentheses include robust standard errors for the estimates. SK-Residuals and KU-Residuals are the 

standardized sample skewness and  kurtosis for the GARCH residuals computed as in Table 1. SK and KU are the theoretical skewness and kurtosis computed using the formulas 
in the Appendix. LR-GARCH is a log-likelihood ratio statistics for testing the significance of the GARCH specifications. It follows the χ2 distribution with 2 d.f. LR-normal is a 
log-likelihood ratio statistic for testing the normal against the remaining eight probability specifications. It follows the χ2  distribution with m d.f. (m = 1 for the T, GED and 
EGB2*, m = 2, for the GT, SGED, EGB2 and IHS, and m = 3, for the SGT). The last row presents the LR statistics for testing the T, GT and SGED against the SGT, the GED 
against the SGED, and the EGB2* against the EGB2. SSE is the sum of squared errors, SAE is the sum of absolute errors, and χ2 is the chi-square goodness of fit. *Statistically 
significant at the 5% level.  Critical values for the χ2 distribution at the 5% are for 3.84, 5.99, 7.81, 21.03, 22.36, 23.68, and 25.00 for 1,2, 3, 12, 13, 14, and 15 d.f., respectively. 
 




