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We construct a Blanchard-style overlapping generations model consisting of long-lived individuals 
who have uninsurable idiosyncratic risk resulting from uncertain retirement periods and medical costs 
in retirement. Without social insurance, such individuals must save for these eventualities. We 
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1. Introduction 

Social insurance programs constitute the largest and most rapidly growing domestic spending 

programs in most industrialized economies.  In the United States, for example, the two main social 

insurance programs are Social Security and Medicare, both of which provide benefits to retirees 

financed by payroll taxes on working generations, a financing scheme commonly called pay-as-you-

go (PAYG).  In recent years, these programs have generated increasing interest among 

policymakers, mainly due to doubts about their long-run solvency, given present financing 

arrangements, but also to concerns about the impact that such programs may have on private saving 

and capital formation.  Ever since the pioneering work of Samuelson (1958), economists have used 

some form of overlapping generations model to analyze the impacts of these intergenerational tax-

transfer programs.  One difficulty with the Samuelson-style overlapping generations model has been 

its tractability.  In most cases, it is difficult to express aggregate savings in a transparent form that 

reveals the impact of social insurance policies in economies having realistic demographic 

characteristics, such as long and uncertain lifetimes for households.  Another has been the relative 

neglect of the risk-sharing aspects of programs such as Social Security and Medicare, in favor of 

their inter temporal and intergenerational consumption shifting aspects.1

In this paper we develop a tractable overlapping generations model based on the Blanchard 

(1985) finite horizon model.  This provides a convenient framework to analyze the impact of social 

insurance policies on saving and consumption rates, the level of wealth and its distribution, both by 

workers and retirees, as well as the corresponding economy-wide aggregates.  The model is also 

used to analyze welfare effects and to characterize optimal social insurance policies.  Unlike the 

standard version of the Blanchard model, where life-cycle saving motives are introduced by 

assuming that each worker’s earnings decline exponentially over time, we assume stochastic 

retirement (loss of human capital earnings) and the presence of uncertain medical expenses upon 

retirement.  Medical expenses and retirement consumption can be funded either by a PAYG social 

insurance program, or by private savings by workers.  All risks are idiosyncratic, so that an 

                                                 
1 The risk sharing aspects of social security have been analyzed by Bohn (1999), Rust (1999), Shiller (1998) and 
Storesletten et al (2004), among others. 
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important feature of the analysis is its integration of the risk-sharing aspects of social insurance 

policies with their life-cycle consumption-shifting properties. 

As in Blanchard (1985) and Yaari (1965), we assume that private insurance companies (an 

annuity industry) supply actuarially fair contracts that agents use to insure against the risk of 

uncertain lifetimes (mortality risk).  While this assumption is important for rendering such models 

tractable, it limits the scope for analyzing social insurance policies in a meaningful way because 

perfect annuities markets obviate the need for social security in the first place2.  In our model, 

however, workers still face an uncertain period of future retirement in which they will have no 

earnings, and they are unable to insure against this future loss of earnings or the uncertain retirement 

medical expenses.  Although such risks are idiosyncratic and can be fully pooled, we assume that 

unspecified insurance market failures prevent private insurance markets from mediating the risk of 

lost of future earnings and medical expenses.3

 Using a Constant Absolute Risk Aversion (CARA) preference function, we characterize 

equilibrium savings and consumption behavior by workers and retirees in terms of: (i) social 

insurance policy parameters, such as social security benefit and Medicare co-payment rates; (ii) 

demographic factors, such as the dependency rate, life-span, and the fraction of an average adult life 

spent in retirement; (iii) preference parameters, such as the degree of risk aversion/inter-temporal 

substitution; and (iv) economic variables, such as earnings and the real interest rate.  Our analysis 

leads to a number of findings that we summarize in a series of propositions.  First, individual savings 

and consumption levels, as well as their respective growth rates, fall upon retirement, except when 

social insurance is “complete”, in which case they remain unchanged.  Second, social insurance 

reduces the level of aggregate savings, and can do so by an amount that exceeds the additional dollar 

value of their benefits (that is, crowding out of private saving by social insurance can exceed 100%).  

Third, we characterize the optimal social insurance policy and show that a reduction in social 

insurance from the optimum increases wealth concentration in the economy.  However, after some 

                                                 
2 The assumption of a “real annuities” market in the Blanchard model contradicts one of the key welfare arguments for 
having social security—the absence (until the hedging arrangements made possible by the recent introduction of inflation 
indexed treasury bonds) of privately-provided real annuity financial instruments. 
3 One could construct such an argument in our model by having two or more classes of agents with different retirement 
risks.  If information about individual risk is private knowledge, adverse selection can lead to a missing market. 
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point, further reductions in social insurance can decrease wealth concentration.  Fourth, the optimal 

social insurance level is complete only at the golden rule point; if the rate of return on capital 

exceeds the population growth rate, optimal social insurance is incomplete. 

 Our approach differs from other contributions in the social insurance literature in several key 

respects.  Like Diamond and Mirrlees (1978, 1986), we allow for a variable and stochastic retirement 

period.  But Diamond and Mirrlees consider a two period model in which agents exercise some 

control over the risk of retirement in the second period, creating a social insurance moral hazard, a 

condition we preclude.  Like Auerbach and Kotlikoff (1987), we consider agents who have long and 

uncertain lifetimes.  However, the 55-period Samuelson-type overlapping-generations model they 

employ, while useful for simulating the effects of changes in social insurance policy, is intractable 

for deriving an exact decision rule that can be used to derive the impact of policy and other 

parameters on aggregate savings.  Gertler (1999) does incorporate stochastic retirement of the type 

used in this paper to analyze the effects of social insurance.  He assumes a recursive form of utility 

function and numerically simulates the effects of policy rather than deriving exact savings 

expressions, as we do using the CARA utility function.  Our paper also relates to other studies that 

explore features of the wealth distribution implied by savings motivated by life-cycle considerations 

(Huggett, 1996) and savings motivated by uninsured idiosyncratic risk (Aiyagari, 1994).  Combined 

life-cycle and uninsured idiosyncratic risk motives stimulate saving in our analysis, and we explore 

the impact of social insurance on the resulting wealth distribution.4

 The remainder of the paper proceeds as follows.  Section 2 lays out the stochastic 

environment.  In section 3, we derive the optimal consumption plans for members of retired and 

working cohorts, and consider the impact of social insurance policy – both public pension benefits 

and Medicare benefits – on individual consumption and saving.  Sections 4 to 6 then derive 

expressions for aggregate saving, wealth and consumptions levels in the economy, as well as for the 

distribution of wealth.  We determine the impact of changes in social insurance policy variables and 

demographic parameters on these variables.  In section 7, we derive expressions for optimal and 

                                                 
4 Huggett and Ventura (1999) analyze the distributional effects of social security reform on a variety of economic 
measures, including welfare and consumption. 
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Pareto improving social insurance policies. In section 8, we provide some brief conclusions and 

discuss some caveats.  Insofar as possible technical details are relegated to an Appendix. 

2. The Stochastic Environment 

 Our framework extends the well known Blanchard (1985) model to a situation in which each 

agent faces two sources of risk: (i) the probability of death, and (ii) the probability of losing his/her 

human capital earnings, either through retirement or through becoming permanently disabled. 

 As in Blanchard, the mortality hazard rate, denoted by p, is constant over time.  The 

probability density function, describing time until death, for an individual born at time v, is given by 

the exponential distribution function, ( )p t vpe− − .  Thus, the probability of dying in the time interval 

 is , implying that the probability of being alive at time t is ( , )v t ( ) (1
t p s v p t v

v
pe ds e− − − −= −∫ ) ( )p t ve− − . 

As mentioned, households are also at risk of losing their earnings (labor income), an event 

that we will refer to as “retirement”.  Analogous to Blanchard’s “perpetual youth” assumption, we 

assume that the retirement hazard rate, denoted π , is constant through life.  The probability density 

function describing time until retirement for an individual born at time v is , so that the 

probability of retiring in the time interval  is 

( )t ve ππ − −

( , )v t ( ) ( )1
t s v

v
e ds eππ t vπ− − −= −∫ − .  Thus, conditional on 

survival, the probability of being employed at time t is ( )t ve π− − . 

We assume that the two distributions generating p and π  are independent, hence the 

probability of being alive and working at time t is ( )( )p t ve π− + − .  An immediate consequence of these 

exponential distributions is that 1 p  is the individual’s expected lifetime, and 1
p π+

 is his/her 

expected working horizon, so that ( )( ) ( ) ( )( )1 1 1/ /p p p pπ π π− + = ⋅ +  measures the expected 

length of retirement for someone who has not yet retired.  Thus, if 0π > , every individual in the 

working phase expects a positive period of retirement where ( )/ pπ π+  is the fraction of the 

individual’s remaining life that he/she can expect to be retired. 

The specification of these survival probability distributions by the exponential function is not 

meant to capture reality, but, as Blanchard notes, is key to rendering the aggregation – a crucial 

element of the model – tractable.  Realistically, both mortality and retirement hazard rates would be 
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a function of the agent’s age, but such realistic demographic assumptions are intractable.  By 

interpreting π  as representing the average probability of losing human capital earnings, either 

through retirement or disability, the assumption that it is independent of age is perhaps more 

palatable.  On balance, we find the specification of random termination of employment by an 

exponential function to be no more objectionable than it is for mortality.  Overall, we subscribe to 

the view, effectively expressed by Blanchard, that the payoffs in terms of the ability to aggregate 

variables and the insights offered into the aggregate economy justify the obvious unrealism of the 

exponential function. 

3. Individual Behavior 

 Working individuals anticipate a life-cycle comprising two phases; in the first the individual 

is a worker, and the second, the individual is retired.5  We begin by determining the savings and 

consumption behavior of individual agents, proceeding sequentially.  We consider the behavior of 

retirees, and then, given their expected behavior in retirement, determine their decisions as workers.  

We assume that individuals maximize their expected lifetime utility with no bequests.  As in 

Blanchard, there is individual but no aggregate uncertainty with respect to population size, thus 

providing scope for insurance in the form of premium payments to the living from the estates of the 

dying, which raises the private rate of return on capital by the mortality rate. p. 

3.1  Retirees 

Consider an individual who retires at precisely time t, having accumulated financial assets 

(capital), , while employed.  These assets pay an instantaneous rate of return, , where r is 

the real rate of return on capital (assumed fixed) and p is the premium due to the presence of the 

insurance scheme.  Upon the termination of his/her employment, at time t, the individual begins to 

receive constant social security benefits, b, at each point of time.  We assume that the present value 

of medical expenses needed to maintain an individual’s health during retirement is stochastic, and 

denoted by the random variable   At the time they retire, individuals learn the state of their 

( )a t r p+

m%

                                                 
5 Nonetheless, some fraction of workers in the economy will die before retiring. 
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retirement health and thus learn their future medical expenses with certainty.6  We shall let [ ]0,1η∈  

denote the individual’s share of his/her retirement medical expenses. 

Conditional upon retirement at time t, and the realization of known future certain medical 

expenses, m, an individual chooses a retirement consumption path to maximize 

 ( ){ } ( ) ( )( )( , p z tR R

t
E U t U c z t e dzδ∞ − + −= ⋅∫   0δ >      (1a) 

subject to the accumulation equation 

( ) ( ) ( )( , ) ( , ) ,R Ra z t r p a z t m b c z tη= + ⋅ − ⋅ + −& R

t  den

     (1b) 

where denotes the assets and ( ,Rc z otes the consumption at time z t≥  of an individual 

who retires at time t.

( , )Ra z t  )

7  Note that uncertainty about future consumption for a retiree comes solely 

from the probability of death, and for the exponential distribution this is incorporated by augmenting 

the agent’s time discount rate from δ  to pδ +  a).  Note further, that in writing the 

accumulation equation, we let 

in (1

( , ) ( , )R Ra z t a z t z≡ ∂ ∂& and ( )r p mη+ ⋅ ⋅  denotes the (constant) known 

flow of private retirement medical expenses. 

Maximizing (1a) subject to (1b) with respect to  and , yields the conventional 

optimality conditions  

( , )Rc z t ( , )Ra z t

   ( )RU c Rλ′ =         (2a) 

   
R

Rr λδ
λ

= −
&

        (2b) 

where ( , )R z tλ  is the shadow value of wealth to a retiree.  In addition, the transversality condition 
 must hold.  Equations (2a) and (2b) can be combined to yield( )( )lim ( , ) ( , ) 0R R p z t

z
z t a z t e δλ − + −

→∞
= 8

( )( )
( )( ) ( )

,
,

,

R
R

R

U c z t
c z t r

U c z t
δ

′′−
⋅ =

′
& − .        (3) 

where ( , ) ( , )R Rc z t c z t z≡ ∂ ∂& .   

                                                 
6 Prior to retirement, we assume all medical expenses were covered by an employer-paid medical plan. 
7 The superscript R refers to “retirement” 
8 Equation (2a) equates the marginal utility of consumption to the shadow value of wealth, while (2b) equates the rate of 
return on capital to the rate of return on consumption.  We assume r δ≥ , thus ensuring non-negative savings. 
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Henceforth, we shall restrict ourselves to the CARA utility function, cU e γβ −= − , where γ  is 

the constant coefficient of absolute risk aversion.9  In this case (3) simplifies to: 

   ( ),R rc z t δ
γ
−

=&        (3’) 

the solution to which is  

  ( ), ( , ) (R R rc z t c t t z t)δ
γ
−

= + − .      (4) 

Thus, during the retirement phase of an individual’s life-cycle, consumption grows at the linear rate 

( )r δ γ−  per unit of time.  Substituting (4) into the accumulation equation, (1b), integrating over z, 

and invoking the transversality condition, we find that the optimal path for  is ( , )Ra z t

  ( , ) ( , ) ( )
( )

R R ra z t a t t z t
r p
δ

γ
−

= + −
+

      (5) z t≥

z t= ), the retirement consumption must satisfy where, at the instant of retirement (

( ) ( ) ( )( ) ( )
, ,R R rc t t r p a t t m b

r p
δη

γ
⎛ ⎞−

= + ⋅ − ⋅ + − ⎜⎜ +⎝ ⎠
⎟⎟     (6) 

and .  Combining equations (4) to (6) yields  ( , ) ( )Ra t t a t≡

 ( ) ( ) ( )( ) ( )
, ,R R rc z t r p a z t m b

r p
δη

γ
⎛ ⎞−

= + ⋅ − ⋅ + − ⎜⎜ ⋅ +⎝ ⎠
⎟⎟  for all z t≥   (7) 

which implies that the retirement benefit and medicare policies affect the level of retirement 

consumption, but not its (linear) growth rate. 

 The quantity ( ) [ ( )] ( ,Rs r r p a z tδ γ≡ − + = & )R  is the equilibrium savings rate (per unit of 

time) by each retiree.  This is independent of both the date of retirement and current time, and is 

therefore the same for all retirees.  It is also independent of retirement benefits, which are fully 

reflected in the level of consumption.  As expected, retirement savings vary positively with expected 

lifetime 1 p .  Finally, the retirement savings rate is zero if and only if r δ= , in which case 

                                                 
9 We choose the CARA utility function over the more common CRRA utility function for reasons of analytical 
tractability, in that it combines very conveniently with the exponential distribution function.  As for the CRRA function, 
the parameter γ  reflects both (absolute) risk aversion and intertemporal substitution.  Analogous to the CARA, an 
increase in γ  reflects a higher degree of risk aversion and a lower degree of intertemporal substitution. 
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consumption during retirement remains constant.   

Substituting (4) into the retiree’s utility function yields the maximized expected retirement 
utility, conditional on retiring at time t with financial wealth, ( ) ( , )Ra t a t t≡ , and realized (known 

future) medical costs m: 

( )( ) ( ) ( )( )| ,
Rr p a t m b sRW a t t m e

r p
γ ηβ ⎡ ⎤− + ⋅ − ⋅ + −⎣ ⎦−

= ⋅
+

     (8) 

For notational convenience we denote the retiree’s flow of medical costs by ( )r p mμ η≡ +% % , and the 

probability distribution determining μ%  by ( )P μ% .  Thus, prior to the revelation of private medical 

costs, m, the expected maximized utility to an individual retiring at time t with financial assets ( )a t  

is 

( )( ){ } ( ) ( ) ( )| ,
Rr p a t b sRE W a t t e

r p
γ

μ

βμ μ
⎡ ⎤− + ⋅ + −⎣ ⎦−

= ⋅ Ψ
+%

% %      (8’) 

where the expected value, ( ) ( )P e dγ μ

μ
μ μ ⋅Ψ ≡ ⋅∫ %

%
% μ% , adjusts utility for the retiree’s flow of medical 

co-payments.  We assume that  is distributed uniformly over the interval m% [ ],m M m M− + , where 

m  is the mean of , in which case m% ( ) ( )ˆe Dγ μμ μ⋅Ψ = ⋅ , where ( ) 0r p mμ η≡ ⋅ + ⋅ > , is the retiree’s 

average co-payment, , and ( )ˆ r p Mμ η≡ ⋅ + ⋅ ( ) ( )ˆ ˆˆ ˆ( ) (2 )D e eγμ γμμ γ− 1μ≡ − ≥ , with ( )0D 1= .  We 

can thus express the expected maximum retirement utility, prior to the revelation of medical costs as 

( )( ){ } ( ) ( ) ( )ˆ| ,
Rr p a t b sRE W a t t e D

r p
γ μ

μ

βμ μ
⎡ ⎤− + ⋅ + − −⎣ ⎦−

= ⋅
+%

% .    (8”) 

Expected retirement utility increases with benefits, b, but is reduced by both an increase in the 

average private retirement medical expenses μ  and an increase in μ̂ , which corresponds to an 

increase in the variance of the retiree’s private medical expenses. 10

3.2 Workers 

Consider now an individual entering the economy at time v.  We refer to such individuals as 

having “vintage v” or “belonging to cohort v”.  They maximize their expected lifetime utility  

                                                 
10 Note further that ( )ˆ 3 Vμ μ= ⋅ %  where ( )V μ%  is the variance of the retiree’s medical expenses. 
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( ){ } ( ) ( ) ( ) ( ) ( )( ),, 1 ˆ|
E RE r p a t v b sc t v p t vE U v v e e D e dt

r p
γ μγ δ π

ν
β π μ

∞ ⎡ ⎤− + ⋅ + − −− ⋅ − + + −⎣ ⎦⎡ ⎤
= − + ⋅⎢ ⎥+⎣ ⎦
∫  (9a) 

subject to the accumulation equation while employed11

( ) ( ) ( ) ( ), ,E Ea t v r p a t v h c t vτ= + ⋅ + − −& ,E         (9b) 

where now ( , ) ( , )E Ea t v a t v t≡ ∂ ∂& , ( , ) ( , )E Ec t v c t v t≡ ∂& ∂  and we are assuming the CARA utility 

function throughout the individual’s lifetime.  The first term in the integral in (9a) refers to utility 

conditional on being employed at time t, while the second is the expected maximized utility after 

retirement, (8”), assuming that retirement occurs precisely at t.  This component incorporates the 

accumulation of financial assets after retirement, as described by (1b).  Both components are 

conditional on survival to time t.  In the budget constraint, (9b), h denotes human capital earnings, 

which are assumed constant and exogenous, while τ  is the lump-sum tax imposed (on workers only) 

to finance the social insurance programs. 

Optimizing now with respect to yields the first order conditions during 

the employment phase of an individual’s life-cycle, 

( , ) and ( , )E Ec t v a t v

  
Ece γ Eβγ − = λ          (10a) 

  
( ) ( ) ( ), ˆ

E Rr p a t v b s E

E

e D
r

γ μ
βγ μ

E

λπ δ π
λ λ

⎡ ⎤⎡ ⎤− + ⋅ − + −⎣ ⎦⎣ ⎦

+
&

= + −     (10b) 

where Eλ  denotes the shadow value of capital to workers, together with the transversality condition.  

Equation (10a) is analogous to (2a), while (10b) equates the expected rate of return on capital to the 

expected rate of return on consumption.  In addition to r, the former reflects the fact that investment 

augments the stock of financial assets at the time of retirement, upon which the subsequent 

consumption level during retirement depends.  The return to consumption includes the retirement 

risk, as reflected by its hazard rate.  Differentiating (10a) with respect to t and using (10b), yields 

( ) ( ) ( ) ( )

( )

,

,

ˆ
, 1

E R

E

r p a t v b s
E

c t v

D erc t v
e

γ μ

γ

μδ π
γ γ

⎡ ⎤− + ⋅ + − −⎣ ⎦

− ⋅

⎡ ⎤⋅− ⎢= − ⋅ −
⎢ ⎥
⎣ ⎦

& ⎥

                                                

.      (11) 

 To derive the equilibrium savings and consumption rates during employment, we proceed as 

 
11 The superscript E refers to employment. 
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follows.  First, we rewrite the budget constraint, (9b), as  

( ) ( ) ( ), ,E Ec t v r p a t v h s t vτ= + ⋅ + − − ( , )E

, )

      (12) 

where  is the level of saving of an individual at time t for an individual of vintage v 

who remains employed at time t.  Taking the time derivative of (12), yields 

( ), (E Es t v a t v≡ &

( ) ( ) ( ) ( ), ,E Ec t v r p s t v s t v= + ⋅ −& ,E&        (13) 

Combining equations (11), (12), and (13) implies that the savings rate at time t of an individual of 

vintage v follows the differential equation 

( ) ( )( ),ˆ( , ) ( ) ( , ) 1 ( )
R Eh b s s t vE E Rs t v r p s t v s D eγ τ μπ μ

γ
⎡ ⎤− − + + −⎣ ⎦= + − + −&    (14) 

where we recall ( ) [ (Rs r r pδ γ≡ − + )] .  Equation (14) is seen to be of the form 

  ( )( , ) ( , ) ,      0E Es t v f s t v f ′= >&  

This relationship implies that ( ),Es t v  diverges to plus or minus infinity (with t) at an increasing 

rate, unless .  Using the relationship ( ),Es t v ≡& 0 ( ), (E Es t v a t v≡ & , )  this can be shown to violate the 

transversality condition to the agent’s optimization problem.  Thus the only viable solution is for the 

savings rate of every worker to remain constant over time.  Setting  in (14) the solution 

for the constant savings level of each worker can be expressed as 

( , ) 0Es t v =&

 ( ) (ˆ( ) 1 (.) 1
( ) ( )

R Eh b s sE R Rs s D e s
r p r p

γ τ μ )π πμ χ
γ γ

⎡ ⎤− − + + −⎣ ⎦= + − = + ⋅ −
+ +

  (15) 

where ˆ(.) ( )
R Eh b s sD eγ τ μχ μ

⎡ − − + + −⎣≡
⎤
⎦ .12  The quantity (.)χ  is a measure of the household’s risk that is 

uninsured by government policy, which increases the level of saving due to both the life-cycle and 

precautionary motives.13  If the household is fully insured (.) 1χ =  and E Rs s= .  Incomplete 

                                                 
12 In Section 7 we show that the optimal insurance policy can be expressed in terms of  and κ χ , enabling us to 
characterize the change in the working-period and retirement savings rate in terms of the optimal insurance policy. 
13 This model relates to the literature on precautionary saving, which makes use of the CARA utility function for the 
same tractability reasons we invoke in this paper; see Blanchard and Mankiw (1988).  The precautionary savings motive 
relates to the uncertainty of future income relative to that of future expenses, and an increase in such uncertainty 
increases saving as long as the third derivative of the utility function is positive, as it is with the CARA form.  In our 
model, uncertainty about retirement and death are described by exponential distributions, which are summarized by 
single parameters, p  and π  respectively.  An increase in either parameter increases the waiting time and the variance, 
making it difficult to disentangle life-cycle saving effects from precautionary saving effects.  In contrast, medical 
expenses are parameterized by two parameters, μ  and μ̂ , reflecting the mean and variance of future medical expenses, 
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insurance of lost earnings ( 0h bτ− − > ) or uncertain medical co-payments in retirement 

( ˆ0, 0μ μ> > ) implies that (.) 1χ >  so E Rs s>  and saving falls upon retirement. 

 Equation (15) plays a fundamental role in our analysis of the impact of social insurance 

policy on savings and consumption behavior.  Given the stationarity of the exponential distribution, 

the consumption-savings plan chosen by the individual at time v remains optimal as long as the 

individual works.  Hence,  as determined in (15) is the savings function for any worker, and is 

independent of both current time and the time the person entered the labor force.  Equation (15) 

defines an implicit function for , and solving, the constant savings rate of workers can be 

expressed in the following form  

Es

Es

ˆ( ), ,E Rs s D h b
r p
πϕ μ τ μ

⎛
= + − − +⎜ +⎝ ⎠

⎞
⎟

b

.    (16) 

This emphasizes that the change in savings rate at retirement depends upon the extent of income 

insurance, as measured by the difference between the net before-retirement earnings rate and the 

after-retirement benefit rate ( h τ− − ) and the mean and variance of retirement medical co-

payments.   

We summarize these results in: 

Proposition 1: (Working-period and retirement individual savings behavior) 

(i) As 0π →  so that the probability of retirement declines, , and the 

savings rate tends to remain unchanged at all times. 

Es s→ R

b(ii) If h τ− =   (full insurance of the loss of earnings) and 0μ = and ( )ˆ 1D μ =  

(no medical co-payments in retirement), Es sR= , and the savings rate is the same in 

the employment and retirement phases of the lifecyle. 

(iii) More generally, if h bτ− >  (incomplete insurance of earnings), 0μ >  and/or 

 (some medical co-payments in retirement), then  and the 

individual’s savings level drops upon retirement. 

( )ˆ 1D μ > Es s> R

                                                                                                                                                                   
ˆrespectively.  An increase in current savings in response to an increase in μ  can be interpreted as being a pure 

precautionary savings effect. 
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Differentiating (15), we can derive the effect of the level of earnings, h, and the social 
insurance policy variables ( ˆ, , ,b )τ μ μ  on the level of savings of workers: 

( )
( )

( )
( )

ˆ .
0

ˆ ˆ' 1

E E E E EDs s s s s
h b D

γ μ κ
τ μ μ μ κ

⋅∂ ∂ ∂ ∂ ∂
= − = − = = ⋅ = >

∂ ∂ ∂ ∂ ∂ + .
   (17a) 

where for notational convenience we let ( )(.) ( ) (.)r pκ π≡ + χ .  We can further show 

( )
0

(1 . )

E E R Rs s s s
π π κ π

∂ −
= > =

∂ + ∂
∂ ; 

( )2 2

( ) ( ) ( ) 0
( ) (1 . )( ) ( )

E E R Rs r s s r s
p r p r p r p p

δ δ
γ κ γ

∂ − − − ∂
= − − < − = <

∂ + + + + ∂
 (17b) 

and summarize these results in 

 

Proposition 2: (Policy and demographic effects on individual savings behavior) 

(i) The retirement individual savings rate is independent of retirement/insurance 

policy, whereas the working-period individual savings rate increases partially with h, 

μ , and μ̂ , but decreases with τ  and b.   

(ii) An increase in retirement risk, π , raises the working-period savings rate, but 

leaves the retirement savings rate unaffected.  An increase in mortality risk reduces 

both the working-period and retirement savings rates. 

The intuition for these results is as follows.  First, an increase in earnings induces more 

savings from workers, while higher social insurance payments and higher expected retirement 

benefits have the opposite effect.  In addition, higher expected, and more uncertain, retirement 

medical expenses encourage more savings by workers.  Second, given p, an increase in π  reduces 

the expected working period and increases the expected retirement period, thus inducing higher 

savings by workers.  Given π , an increase in p reduces both life expectancy and the expected 

retirement length, reducing the need to save while working.  Since it also reduces life expectancy of 

retirees, the reduction in p also reduces the retirement savings rate, though by a lesser amount. 

3.3 Individual Consumption and Consumption Growth 

 We now consider what happens to the individual’s consumption level and its growth rate 
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upon retirement.  Suppose an individual of vintage ν  retires at time T.  At that time, his/her 

consumption level, when employed, would be 

 .      (18a) ( ) ( ) ( ), ,E Ec T v r p a T v h sτ= + ⋅ + − − E

Immediately upon retirement, (6) implies that the consumption level becomes 

 ( ) ( ) ( ), ,R Rc T T r p a T T b sμ= + − + − R .      (18b) 

Because wealth accumulation occurs continuously, , and subtracting (18b) 

from (18a) we obtain 

( , ) ( , ) ( )E Ra T v a T T a T= ≡

 ( )( , ) ( , ) ( )R E Rc T T c T v h b s sμ τ− = − − − − − − E

b

.     (19) 

With full insurance of the loss of earnings ( h τ− = ) and no medical co-payments ( )0μ = , E Rs s=  

and consumption is unchanged upon retirement.  That is, .  However, medical co-

payments and/or incomplete insurance of earnings cause income loss upon retirement.  The 

responses summarized in (17) imply that the fall in savings upon retirement is less than the fall in 

income, thus  and consumption drops at the retirement date T. 

( , ) ( , )R Ec T T c T v=

( , ) ( , )R Ec T T c T v<

 This finding relates to the so-called “retirement consumption puzzle”.  While a systematic 

fall in consumption on a fully expected retirement date contradicts optimizing behavior over an 

individual’s life-cycle, a fall in consumption when retirement is unexpected does not contradict the 

life-cycle model.  Stephens and Haider (2003) find that some part of the retirement consumption 

drop can be explained by unexpected retirement.  However, they also find that consumption falls, 

even for individuals who retire when they expect to (leaving the retirement consumption puzzle 

intact).  In our model, all retirement is unexpected and this is reflected in the drop in consumption at 

that instant. 

 Recalling (13), and (3) individual consumption growth rates before and after retirement are  

        (13’) ( ) ( ) ( ), , (E Ec t v r p s t v r p s= + ⋅ = +& ) E

 ( ), (R rc z t r p s) Rδ
γ
−

= = +&         (3’) 
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respectively, and subtracting yields 

         (20) ( )(R E R Ec c r p s s− = + −& & )

so that the individual’s consumption growth rate declines upon retirement.  Greater social insurance 

reduces both the drop in consumption and the drop in the consumption growth rate upon retirement. 

 We can summarize consumption behavior upon retirement as follows. 

Proposition 3:  (Working-period and retirement individual consumption behavior) 

(i) With stochastic retirement, in the absence of full social insurance, individual 

consumption levels and rates of growth drop upon retirement. 

(ii) An increase in retirement benefit b leads to a partial increase in working-

period consumption, together with a full increase in retirement consumption. 

(iii) An increase in worker tax τ  leads to a partial (1 (1 (.))κ+ ) decrease in 

working-period consumption, but has no effect on retirement consumption (other than 

through the cumulative impact on wealth). 

(iv) An increase in earnings  leads to a partial (h 1 (1 (.))κ+ ) increase in working-

period consumption, and no effect on retirement consumption (other than through the 

cumulative impact on wealth). 

(v) The change in the consumption growth rate at the time of retirement resulting 

from changes in ˆ, , , ,h bτ μ μ  is brought about entirely by its impact on the working-

period growth rate. 

4. Aggregate Savings and Social Insurance 

 We now consider the level of aggregate savings and how it is impacted by changes in social 

insurance policy.  We shall subsequently discuss the analogous consequences for aggregate wealth, 

and consumption.14

                                                 
14 In general, when analyzing the impacts of changes in a social security policy parameters on aggregate variables, we 
conduct “comparative economies” and consider only long-run impacts.  That is, we are consider how aggregate values 
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Let n denote the constant rate of growth in the effective labor supply, which is taken to be 

exogenous.  We normalize units so that the initial cohort size is ( )n p+ .  The population at time t is 

obtained by aggregating over the surviving members of all cohorts, namely 

( ) ( )( )
t p tnN t n p e e dv eνν − ⋅ −⋅

−∞
= + =∫ nt .       (21a) 

Similarly, the labor force and the number of retirees at time t are respectively 

 ( ) ( ) ( ) ( )t p tn n p ntE t n p e e dv
n p

π νν

π
− + ⋅ −⋅

−∞
e+

= + = ⋅
+ +∫      (21b) 

and  

 ( ) ( ) ( ) ntR t N t E t e
n p

π
π

= − = ⋅
+ +

.       (21c) 

For notational convenience we let 

  ,  1E Rn p
n p n p

Eπθ θ θ
π π

+
≡ ≡ =

+ + + +
−  

denote the fractions of the population employed and retired, respectively.  As an empirical fact we 

assume that the number of workers exceeds the number of retirees so that n p π+ > .  The ratio of 

retirees to workers, (/R E n pθ θ π= + ) , which we will denote by θ , is commonly called the 

dependency rate in the social insurance literature.  In the U.S., the dependency rate is currently 

around 1 3.15

With all workers and retirees having the same respective savings rates, ( ), total 

savings by the two groups are 

 and Es Rs

nt

nt

   ( ) ( )E E E ES t s E t s eθ= =

   ( ) ( )R R R RS t s R t s eθ= =

Aggregate private saving in the economy at time t is thus equal to ( ) ntS t s e= ⋅ where s, the average 

per capita savings in the economy, is given by 
                                                                                                                                                                   
differ for two economies that are identical in all respects except the policy parameters.  Equivalently, we are examining 
the policy impacts in the “long-run”.  These impacts are approached asymptotically in this economy.  When examining 
the impact on aggregate consumption, we do explicitly consider both the short- and long-run impacts. 
15 We may observe that the dependency rate depends only upon demographic factors and is independent of all macro 
policy instruments. The dependency rate 1/ 3θ =  implies 3n p π+ = .   
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ˆ( ), ,R R E E R Es s s s D h b
r p
πθ θ θ ϕ μ τ μ

⎡ ⎤⎡ ⎤⎡ ⎤= + = + − − +⎢ ⎥⎢ ⎥⎣ ⎦ +⎣ ⎦⎣ ⎦
.   (22) 

Note that social insurance policies affect aggregate savings entirely through their impacts on the 

savings of workers.  Thus (17a) implies 

   ˆ,   , , , ,
E

Es s x h b
x x

θ τ μ∂ ∂
= =

∂ ∂
μ . 

We can also compute: ,s s pπ∂ ∂ ∂ ∂  and analyze the effect of demographic structure on the average 

savings rate.  An increase in π , for example, has two offsetting effects.  It raises the savings rate of 

workers, but it also raises the number of retired people, who have a lower savings rate.  Using (15), 

the net effect is 

( ) 1
(1 ) 1 (.) 1

E Rs s s θ
π π θ κ θ

⎛∂ −
= ⎜∂ + + +⎝ ⎠

⎞
− ⎟ .      (23) 

The smaller the dependency rate θ  and the greater the return on capital r, the more likely is the 

positive effect due to the increased savings of workers likely to dominate, and vice versa.16   

We now consider the effect of a PAYG social insurance scheme on aggregate private savings   

and its distribution.  For PAYG, the revenues raised by taxing workers must just finance the 

retirement and net medical benefits.  That is, 

( ) ( ) ( )E t R t b r p mτ μ= + + −⎡⎣ ⎤⎦       (24) 

implying 

( ( )b r p m )τ θ= + + − μ        (25) 

where ( )r p m μ+ −  is the government’s share of the cost of a retiree’s average flow of medical 

expenses, and ( )r p mμ η= +  where η  is the medical expense co-payment rate.17

 Suppose the government raises the rate of social security benefits per retiree, .  This 

requires an increase in the per capita (lump-sum) tax rate, 

db

d dbτ θ= ⋅ .  The total effect on average 

                                                 
16 As we shall show in Section 7, setting social security optimally implies (.)κ θ= , in which case (23) is positive. 
17It is assumed that all individual risk is independently distributed and the population is sufficiently large so that only 
average benefits and taxes affect the government budget. 
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per capita savings in the economy is thus: 

  1 1 (.) 1
1 1 1 (.)

E E Eds ds s s d
db db b db

τ κ
θ θ τ κ

⎛ ⎞∂ ∂
= = ⋅ + = −⎜ ⎟+ + ∂ ∂ +⎝ ⎠

> − .   (26) 

That is, an increase in the individual retirement benefit reduces per capita saving partially. 

We can also derive an analogous relationship in terms of aggregate quantities.  Denoting 
aggregate social security benefits by ( ) R ntB t b eθ= ⋅ , and aggregate social insurance taxes by 

, we obtain  ( ) E ntT t eτ θ= ⋅

  ( ) (.)( ) 1 1 (.)
( ) 1 (.) (.)

n pdS t ds
dB t db r p

π χθ θ κ
θ θ κ π

+ ++ +
= ⋅ = − ⋅ = −

+ + + χ
.   (27) 

In general, a PAYG funded increase in social security benefits decreases aggregate private saving, 

and the decrease may be greater or less than dollar for dollar (i.e. 1− ).  With “full social insurance”, 

(.) 1χ = , and ( ) ( ) 1dS t dB t ≥ −  if and only if .  In Section 7, we shall show that optimal social 

security requires , in which case, 

r n≥

(.)κ =θ ( ) ( ) 1dS t dB t = − .  We shall also show that for optimal 

social insurance policies, * ( ) (r p n pχ = + + ) .  If *χ χ>  then ( ) ( ) 1dS t dB t ≤ − .18  

Proposition 4:  (The effect of social security on aggregate private savings) 

In general, a PAYG funded increase in social security benefits leads to a reduction in 

aggregate private savings which may be greater or smaller than the increment in 

benefits.  When social insurance is set optimally, an incremental dollar of social 

security benefits leads to exactly a dollar fall in aggregate private savings.  But if 

social insurance is incomplete, an incremental dollar of social security benefits will 

lead to a drop in saving of more than one dollar. 

The effect of an increase in medical insurance benefits takes into account the effects of the 

reductions in both μ  and μ̂  on saving.  We consider a change in the Medicare co-payment rate η  

which implies that ˆd dμ μ= , in which case 

                                                 
18 Noting the relationships ( ( ) ,  ( )r p n pκ π χ θ π= + = +  immediately yields the expression for *χ . 
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ˆ( ) ( ) 1 '( ) (.)
ˆ( ) ( ) ( ) 1 (.)

dS t dS t D
dM t dB t D

μ κ
θ γ μ κ

= − ⋅ ⋅
+

.      (28) 

Hence the fall in saving from an increase in Medicare benefits financed by PAYG must be 

greater than the fall in saving from an equal dollar increase in Social Security benefits.  This 

reflects the precautionary saving motive attached to uncertain future medical expenses. 

Proposition 4a:  (The effect of Medicare on aggregate private savings) 

In general, a PAYG funded increase in Medicare benefits causes a larger reduction in 

private savings than an equal increase in social security benefits.  If Medicare fully 

insures deviations from average medical expenses across consumers so ˆ 0μ = , 

changes in Medicare benefits have the same impact on aggregate private savings as 

an equal value change in Social Security benefits. 

5. Aggregate Wealth  

The aggregation needed to derive total wealth and its allocation are more complex, due to the 

fact that each individual’s wealth depends on age, years worked, and in the case of retirees, years 

retired.  Here we simply provide the key relationships, with the details provided in Appendix, A.1.   

5.1 Wealth Levels 

We assume that all individuals receive the same initial endowment of wealth, , (possibly 

zero).  The wealth of a worker of cohort v at time t is 

0a

  0( , ) ( )E Ea t v a s t v= + ⋅ − ,        (29) 

Aggregating over individuals of each cohort, we find that the total wealth of workers at time t is 

( )( )E EA t E t a= ⋅ , where , the average per-capita wealth of workers is a constant over time and 

given by 

Ea

  0

E
E sa a

p n π
= +

+ +
        (30) 

Comparing (29) to (30) we see that 1 ( )n p π+ +  is equivalent to the average number of years 
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worked and can be interpreted as being the average working horizon of workers. 

Turning to retirees, the wealth at time t of a retiree of vintage v who worked y units of time 

before retiring is 

( ) ( )0, ,R E Ra t y v a s y s t y v= + ⋅ + ⋅ − − .     (31) 

This reflects the fact that during y years of working, the individual saved at the rate , while for the 

 years of retirement he/she saved at .  Aggregating over all retirees by cohort and length 

of time worked, we show that the wealth of all retirees at time t, 

Es

(t y v− − )
R

Rs

( )( )RA t R t a= ⋅ , where , the 

average per-capita wealth of all retirees, is constant over time and given by 

Ra

 0

E R
R s sa a

p n pπ
= + +

+ + + n
.        (32) 

Comparing (32) with (30), we see ( )R E Ra a s p n aE= + + > , so that average retiree’s wealth 

exceeds the average worker’s wealth.  

The wealth of workers and retirees combined is ( ) ( ) ( )E RA t A t A t= + .19  Thus, overall per 

capita wealth at time t is 

 0
( )
( )

E R R
E E R RA t s sa a a a

N t p n p n
θθ θ

π
= = + = + +

+ + 0
1a s

p n
= +

+
.   (33) 

+

The average per capita wealth can be computed by simply adding the average savings rate times a 

“multiplier” 1 ( )p n+  to the initial endowment.  In the absence of population growth the multipier is 

simply the life expectancy, but with growing population it is smaller because part of the 

accumulating wealth must be set aside for the growing population.  From these relationships we can 

derive 

Proposition 5:  (The effect of social insurance on per capita private wealth) 

A PAYG increase in social security reduces the per capita wealth of both workers and 

retirees by the same absolute amount.  Since retirees have higher average wealth, this 
                                                 
19 We can also easily show E E R RA A A A A A= =& & & n= .  Note also that we can express aggregate savings 

.  That is, aggregate accumulation of annuity wealth by living households at each 
instant is equal to net new annuity wealth, which is determined by the population growth rate, plus the purchase of 
annuity contracts by living households from households who die, consistent with Blanchard (1985). 

( ) ( ) ( ) ( ) ( )S t n p A t A t p A t= + ⋅ = + ⋅&
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causes the relative share of wealth of retirees, ( ) ( )RA t A t , to increase.20

5.2 Distribution of Wealth 

An important issue concerns the distributional consequences of social security, particularly 

on wealth.  The effect of social security on wealth inequality among retirees has received some 

attention recently; see Gokhale (2001) and Gokhale and Kotlikoff (2002).  Accordingly, we now 

derive expressions describing the distribution wealth in this economy.  To do this we determine the 

fraction of the population at time t that holds wealth less than a particular value .  The 

computational details are found in the Appendix, A.2. 

â

We first consider the distribution of wealth among workers.  In the Appendix we show that 
the number of workers with wealth less than or equal to  isâ ( ) ( ) (ˆ ˆ, EE t a a E t a aν )≤ = ⋅ ≤  where 

( )
( ) ˆ

ˆ 1 E
an pE sa a e

π
ν

− + + ⋅
≤ = −        (34) 

is the fraction of worker population with wealth less than or equal to .  Hence, the cumulative 

distribution of wealth among workers is exponential with mean 

â

(Es n p )π+ +  and variance 

( 2
(Es n p ))π+ + .  The conventional measure of concentration in a distribution is the Gini ratio.  

The Gini ratio for the exponential distribution is exactly ½, so that social insurance has no impact on 

the concentration of wealth among workers. 

 Similarly, let ( ) ( )ˆ, ( ) R ˆR t a a R t a aν≤ = ⋅ ≤  be the number of retirees with wealth less than or 

equal to  where R(t) is the number of retirees at time t and â ( )ˆR a aν ≤  is the fraction of the retiree 

population of retirees with wealth less than or equal to .  In the Appendix, we show that this 

fraction is described by the mixed exponential distribution 

â

( )
( ) ( ) ( )ˆ ˆ

ˆ 1 1 1E
a an p n pR R Rsv a a e e

π
ξ ξ

− + + ⋅ − + ⋅⎛ ⎞ ⎛
≤ = ⋅ − + − ⋅ −⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝

Rs
⎞
⎟⎟
⎠

   (35) 

where ( ) (R E E E E Rs s sξ θ θ≡ − )

                                                

. 

 
20 The result that the wealth of workers and retirees falls by the same absolute amount is a consequence of the CARA 
assumption.  We should also note that the amount of the drop depends upon the degree of risk aversion (intertemporal 
substitution) as reflected in γ .  The impact of this effect on the jump can be computed from equation (15) in conjunction 
with (17a). 
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 In the Appendix, we show that the Gini ratio for the distribution of wealth among retirees is 

( )2
1 1
2 1

RG σ
σ

⎧ ⎫⎪= +⎨
+⎪ ⎪⎩ ⎭

⎪
⎬ .       (36) 

where (R E Es sσ θ≡ ) .  First, we find that, providing , 0Rs > 0σ >  so .  Thus, wealth 

concentration is greater among retirees than among workers.  Second, an increase in social insurance 

benefits decreases and increases 

1/ 2RG >

Es σ , while ( )0RG σ∂ ∂ > <  as 1 ( )0σ− > < . When social insurance 

is complete,  and Es s= R 1 1 1 Eσ θ− = − < 0

0

. Thus, a decrease in social insurance benefits increases 

wealth concentration among retirees.  However, the relationship between social insurance and wealth 

concentration among retirees is not monotonic.  With incomplete social insurance, it is possible for 

, so 1E E Rs sθ > σ− > .  In this case, a decrease in social insurance can decrease the level of wealth 

concentration among retirees.  An explanation for this non-monotonicity is provided after we derive 

the wealth distribution for the whole population. 

Combining (34) and (35) we can determine the distribution of wealth across the whole 
population from the relationship ( ) ( ) ( ) ( ) (ˆ ˆ ˆ ˆ, , , NN t a a E t a a R t a a a a N tν≤ = ≤ + ≤ = ≤ ⋅ ) , where 

 ( )
( ) ( ) ( )ˆ ˆ

ˆ 1 1 1E
a an p n pN N Nsa a e e

π Rsν ξ ξ
− + + ⋅ − + ⋅⎡ ⎤ ⎡

≤ = ⋅ − + − ⋅ −⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥⎦

    (37) 

is the fraction of the population that has wealth less than , andâ ( ) ( )( )N E E R E E Rs s s sξ θ θ≡ − − .  

The population wealth distribution is also a mixed exponential distribution.  It reduces to the pure 

exponential form in two cases, if: (i) 0Rs = , implying 1Nξ = , or (ii) 0E Rs s= ≠  implying 0Nξ = . 

 The mean per capita wealth for this mixed distribution can be expressed as ( )( )a s n p= + , 

where  is average per capita saving, while the variance,  can be written as E E R Rs s sθ θ≡ + ( )V a

( ) ( )2 2( ) 2 ( ) (E R RV a s n p s s s n pθ= + − ⋅ − + ) .  Since an increase in social insurance benefits causes 

s to decline, this causes both the mean and variance of the wealth distribution to decline as well.  

 In the Appendix, we derive the Gini coefficient for the mixed exponential distribution of 

wealth across the whole population, namely: 

  1 (1
2 ( )

R R R
N

R E

s s sG
s s s
θ

θ
)⎡ ⎤−

= +⎢ ⎥+⎣ ⎦
       (38) 

 21



from which it follows immediately that 1 2NG ≥  since  as .Rs s≥ Es s≥ R

R

21,22  In the case where 

, the distribution of wealth in the economy is a pure exponential function, and the Gini 

ratio for the population is exactly equal to one-half.

Es s s= =

23

Since decreasing social insurance increases s, we can examine the effect of social security on 

wealth inequality by evaluating G s∂ ∂ , the qualitative effect of which is given by 

( ) ( )( )22sgn sgn sgn ( ) 1
( )

R
R R E

R E

G s s s s s
s s s s s

θ
θ

⎛ ⎞⎛ ⎞∂ ∂ −⎛ ⎞ = = − − +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ +⎝ ⎠ ⎝ ⎠⎝ ⎠
+ .  (38’) 

From this expression we see that, given 0Rs ≠ , when  is close to s, Rs 0NG s∂ ∂ > .  Thus, a 

decrease in social insurance from the full insurance point, Es s sR= = , increases wealth inequality.  

But when insurance is very incomplete,  and the negative term  can dominate, 

implying 

Rs s> 2( Rs s− − )

0NG s∂ ∂ < .  In other words, when social insurance is very incomplete, reducing it further 

can reduce wealth concentration.  Thus we see that the relationship between social insurance and 

wealth inequality for the population as a whole is non-monotonic.   

 The causes of wealth inequality in this economy are as follows.  There are two independent 

savings motives in this economy, the first described by , and the second by the excess of  over 

, which we may refer to as the “lifecycle and precautionary motive for saving”.  The two motives 

vary across the population, with the first causing wealth disparities according to age, and the second 

causing wealth disparities according to years worked (retention of human capital).  When the two 

saving rates are the same, or only one is operative, wealth is distributed according to a pure 

exponential distribution and the Gini ratio is ½ for the whole population.  When savings rates are not 

the same, which occurs when  and  (because social insurance is incomplete), the 

disparity in years worked as well as age adds to disparity in wealth levels, increasing the Gini ratio. 

Rs Es
Rs

0Rs ≠ Es s> R

                                                

 The non-monotonicity of (38’) arises for the following reason.  When social insurance is 

 
21 We may note that the fact that  is consistent with empirical evidence.  While in the US, for example, the Gini 
coefficient for income inequality is something greater than 0.4, the corresponding wealth coefficient is much higher, 
around 0.8 by some estimates; see e.g. Wolf (1996). 

1/ 2NG >

22 Comparing (36) and (38) we can easily show that R NG G>  so that wealth inequality among retirees exceeds that of 
the total population, and in turn that of workers (1/2). 
23 Paradoxically,  for retirees in this case (unless 1/ 2RG > 0Rs = ).  This seemingly counter-intuitive result is explained 
by the fact that, in this model, age disparities across the retiree population are greater than for the whole population. 
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complete or nearly so, the lifecycle motive for saving is small or zero, so everyone in the economy 

accumulates wealth at the same rate.  In this case, wealth concentration is determined solely by age, 

which is distributed exponentially.  When lifecycle saving is present, decreasing social insurance 

increases the saving rate of workers, so disparity in accumulation depends also on years worked, and 

wealth concentration initially increases.  However, if social insurance is very incomplete, the 

lifecycle motive for saving dominates the first motive, and disparity in accumulation is reduced by 

further decreases in social insurance. 

We now summarize our findings on the effect of social insurance on wealth concentration. 

Proposition 6: (The effect of social insurance on wealth concentration) 

If households save for reasons in addition to lifecycle reasons, wealth concentration is 

greater among retirees than among the whole population, which in turn is greater than 

among workers.  If lifecycle motives are the only motive for saving, social insurance 

increases both the mean and variance of the wealth distribution, but has no impact on 

the degree of wealth concentration.  Decreases in social insurance at the full insurance 

point will increase wealth concentration across the retiree and whole populations.  If 

social insurance is very incomplete to begin with, decreases in social insurance may 

decrease wealth concentration across these populations. 

6. Aggregate Consumption 

 Having derived savings and wealth behavior for various categories of agents, it is 

straightforward to determine the consequences for aggregate consumption.  Again the details of the 

aggregation are provided in the Appendix, A.3. 

Recalling (12) and (29), the equilibrium consumption of a worker of cohort v at time t is  

        (39) ( ) ( ) 0, ( ( ))E Ec t v r p a s t v h sτ= + ⋅ + − + − − E

where  is given by (15).  The aggregate consumption of all workers,  where , 

the average per capita consumption of workers, is 

Es ( ) ( )E EC t E t c= ⋅ Ec
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0( ) ( ) ( ) (
E

E Esc r p a h s r p a h s
p n

τ
π

⎛ ⎞
= + + + − − = + + − −⎜ ⎟+ +⎝ ⎠

)E Eτ

R

.  (40) 

Recalling (5’), and summing over cohorts and working horizons, the aggregate consumption 
of all retirees is  where , per capita consumption of retirees, is ( ) ( )RC t R t c= ⋅ Rc

( ) ( )0

E R
R Rs sc r p a b s r p a b s

p n n p
R Rμ μ

π
⎡ ⎤

= + ⋅ + + + − − = + + − −⎢ ⎥+ + +⎣ ⎦
  (41) 

Using the fact that aggregate consumption, , average per capita consumption is 

simply the weighted average, , and can be derived immediately from (40) and (41). 

( ) ( ) ( )E RC t C t C t= +

E E R Rc c cθ θ= +

An important issue concerns the impact of social insurance on working-period and retirement 

consumption.  Proper assessment of this requires care.  From (40) and (41) we see that social 

insurance policy affects per capita consumption of different groups through its impact on the savings 

rate, .  This affects consumption in two ways, first through its impact on accumulated wealth 

(wealth effect), second through its impact on resources available for consumption from current 

income (income effect).  If, when computing quantities such as 

Es

Ec s∂ ∂ , we allow both components 

to change, we are comparing the structure of two economies, after the full impact on wealth 

accumulation has taken place.  This is, in effect, a long-run comparison.   

 In the Appendix we show that a PAYG increase in social insurance changes the short-run and 

long-run per capita consumption (denoted by the respective subscripts s, l) of workers by24

( ) (.) (.)1
1 (.) 1 (.)

E

s

dc
db

κ κθ θ
κ κ

θ−
= + − =

+ +
      (42a)

 
( )( ) 1 (.)

1 .l

dc r n
db

θ κ
πκ

⎡ − ⎤⎛ ⎞= − + <⎜ ⎟⎢+ ⎝ ⎠⎣ ⎦
0

E

⎥

θ

θ

                                                

     (42b) 

As we shall show in Section 7, the optimal social insurance system requires , in which case 

an increase in the social security benefit has no effect on the short-run consumption of workers; their 

reduction in savings will exactly offset their higher tax rate.  If social insurance is less than optimal, 

, and a dollar increase in social security benefits causes workers to reduce their savings by 

more than a dollar, thus raising their short-run consumption.  In the long run wealth declines and 

(.)κ =

(.)κ >

 
24 We rule out dynamic inefficiency so that . r n≥
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overall consumption declines provided . r n≥

Similarly, from (41) we see that the short-run and long-run effects of a PAYG increase in 

social insurance on the per capita consumption of retirees is 

  1
R

s

dc
db

=          (43a) 

  1
1

R

l

dc r p
db n p

κ
κ

+⎛ ⎞= − ⋅⎜ ⎟+ +⎝ ⎠
       (43b) 

In the short-run, consumption by retirees increases by the increase in benefits, while the long run 

consumption increases providing the level of social insurance is not very incomplete.25

The short-run and long-run effects on total per capita consumption of social insurance are 

(.) 0
1 (.)s

dc
db

κ
κ

=
+

>         (44a)    

  0
1l

dc r n
db

κ
κ π

−⎛ ⎞= − ⋅ ≤⎜ ⎟+⎝ ⎠
 as .      (44b) r n≥

Thus total per capita consumption rises in the short run, but fall over time as long as long as . r n≥

We summarize these results as follows 

Proposition 7:  (Effect of social insurance on aggregate consumption) 

In the short run, a PAYG increase in social insurance raises the consumption of 

retirees.  While its effect on the consumption of workers is ambiguous, depending 

upon the level of social insurance relative to the optimum, overall per capita 

consumption rises.  In the long run, the effect on the consumption of retirees is 

ambiguous, but this is dominated by the negative effect on workers so that overall per 

capita consumption declines.   

                                                 
25 The formal condition is that ( ) ( (r p r n))χ θ< + − .   
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7. Optimal Policy 

We now use the results obtained thus far to derive the optimal level of social insurance.  To 

do so, we recall the expected utility of a new household of vintage t , given by equation (9a).  

Substituting for  from equation (12), and for  from equation (29), (where z is the time 

index), and integrating (recalling that the optimal  and  are constants) we obtain 

( , )Ec z t ( , )Ea z t

Es Rs

( ) ( ) ( )

( )

0ˆ1
( )

R E Eh b s s r p a h s

E

D e e
r p

E u t t
p r p s

γ τ μ γ τπβ μ

δ π γ

⎡ ⎤⋅ − + + + − − ⋅ + ⋅ + − −⎣ ⎦⎧ ⎫
− ⋅ + ⋅ ⋅ ⋅⎨ ⎬+⎩ ⎭⎡ ⎤ =⎣ ⎦ + + + +

.    (45) 

Finally, substituting for  and for  from (15) into Rs Es ( )E u t t⎡ ⎤⎣ ⎦ , we can express (45) as  

 ( )
( ) ( )0 ˆ, ( ), , ( )

* ˆ, , ,
E Rr p a h s s D h b r p

eW b
r p

γ τ μ τ μ π
βτ μ μ

⎡ ⎤− ⋅ + ⋅ + − − − − + +⎣ ⎦− ⋅
=

+
.    (46) 

This expression is the maximum value of the expected lifetime utility of a new household of 

vintage, t, at that same initial instant, t.  Note that it is independent of the vintage, t.  It is clear that 
maximizing (* ˆ, , ,W b )τ μ μ  is equivalent to maximizing the expression in square brackets in the 

exponent of (46).  This quantity is the agent’s initial rate of consumption.  Equation (46) states that 

the maximum utility is the utility associated with this consumption level, capitalized at the interest 

rate adjusted for mortality risk.  Thus, social insurance policy affects lifetime expected utility 

through its effect on initial consumption, and through the savings rate chosen at that time. 

We now consider social insurance policies that are optimal in the sense of maximizing the 

expected lifetime utility of a new household entering the economy.  We can show that this ex ante 

optimality is also Pareto improving starting from the no-policy state of the world.  All policies are 

subject to the government budget constraint.  Substituting for (25), we see that maximizing 

(* ˆ, , ,W b )τ μ μ  is equivalent to maximizing: 

( ) ( ) ( ) ( )( )0 0(.) (.)E Ec t r p a h s r p a h b r p m sτ θ= + ⋅ + − − = + ⋅ + − ⋅ + + ⋅ − −μ  

where ( ) ( ) ( ) ( )ˆ. , ( ), 1 ,E E Rs s s D h b r p m
r p
πμ θ μ θ

⎛ ⎞
= − + ⋅ − − ⋅ + ⋅⎜ ⎟+⎝ ⎠

. 
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Using (17a), the optimal PAYG social security policy requires26

  ( ) ( ) (.)1 0
1 (.)

dc t
db

κθ θ
κ

= − + + ⋅ =
+

 

which implies  

  ( )
( )

.
1 . 1
κ θ
κ θ

=
+ +

,    or   ( ).κ θ= .        (47) 

Recalling the relation ( )(.) ( ) (.)r pκ π χ= + , (47) can be expressed in the equivalent form 

   (.) r p
n p

χ +
=

+
        (48) 

 Equations (47) and (48) provide two perspectives on the optimal social security policy.  First, 

we see from (9a’) that  measures the expected present value of retirement utility at a point in 

time relative to the flow utility from consumption while employed at that point in time.  Equation 

(47) states that the optimal social insurance scheme requires that this utility ratio be equal to the ratio 

of retirees to workers (the dependency rate) in the economy

(.)κ

27.  Alternatively, (48) states that the 

optimal policy risk should be equated to the return to capital relative to that of social security, both 

adjusted by mortality risk. 

Substituting (48) into (15) yields the corresponding optimal savings rate for workers, 

  ( )
( )

( )
( )( )

E R Rr n r n
s s s

r p n p r p
θ π
γ γ

− −
= + ⋅ = + ⋅

+ + +
.    (49) 

Optimal Medicare policy requires setting ˆ( ) ( ) 0c t c tμ μ∂ ∂ = ∂ ∂ = .  Note that ( ) 0c t μ∂ ∂ =  

requires (47) [or (48)] so this condition is redundant when social security is set optimally, and vice 
versa.  Further, ˆ( ) 0c t μ∂ ∂ =  requires ˆ 0μ = , which minimizes ( )ˆD μ  at unity.  Note that changes in 

μ̂  have no budgetary consequences because deviations of medical expenses from the mean are 

independent across households and can be fully pooled.28

 We now derive the optimal benefit itself, finding it convenient to focus on two cases. 

                                                 
26 We can also easily verify that the second order condition is met, so that (47) does indeed determine a maximum. 
27 More generally, optimal social insurance requires the ratio of the respective marginal utilities be equal to the 
dependency rate.  The ratio can be expressed in terms of total utilities only in the CARA case. 
28 As a consequence, (49) is independent of μ̂ .   
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7.1  The case r=n (Golden Rule). 

If , then .  That is, working households do not save for retirement because social 

security is complete.  To obtain an expression for the optimal social security benefit, note that 
 implies 

r n= Es s= R

REs s= ( ) [ ]ˆ(.) 1h bD eγ τ μχ μ − − +≡ ⋅ = , or taking logarithms 

( ) ( )( )1 ˆlnb h Dτ μ μ
γ

− − = + . 

The left-hand side is the excess of the social security benefit over the loss in after-tax earnings.  The 

second term on the right-hand side is positive if ˆ 0μ > (private retirement medical expenses are 

variable).  Hence, with optimal social security, the benefit should exceed the loss in earnings by the 

average private medical expense of the retiree, plus a premium for any medical cost variability.   

Substituting the government budget constraint, we can express the optimal social security 

benefit when  as r n=

( ) ( )* 1 ˆln
1

b h r p m D1θ μ
θ γ

⎛
⎡ ⎤= ⋅ − ⋅ + ⋅ − +⎜ ⎣ ⎦+ ⎝ ⎠

μ ⎞
⎟ .     (50a) 

The optimal social security benefit increases in human capital earnings, h, decreases with the 

dependency rate, θ , decreases with average (social) medical costs per capita, m , and increases with 

mean and variance of medical expenses borne by the retiree, ( )ˆ,μ μ .  If Medicare is set optimally, 

ˆ 0μ μ= =  and ( ) ( )(* 1 (1 )b h rθ θ= + − + )p m .  Together, optimal Social Security and optimal 

Medicare fully insure consumption levels of agents so that R Ec c= . 

7.2 The case r>n. 

To sharpen results, we consider the case of no retirement medical expenses so that 

ˆ 0mμ μ= = = .  Now (49) implies , so social security should not fully insure retirement 

consumption when . Further, in the absence of medical expenses, the optimality condition (48) 

simplifies to 

Es s> R

r n>

( )
( )
r n

h b
r p r pe

n p

θ
γ τ

γ
⎛ ⎞⋅ −
− − −⎜ ⎟⎜ ⎟⋅ +⎝ ⎠ +

=
+

.  

Taking logarithms and using the government budget constraint, (25), we can express the optimal 
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social security benefit as 

 
( )

* 1 1 ( )ln
1

r p r nb h
n p r p

θ
θ γ

⎡ ⎤⎛ ⎞⎛ ⎞+ −
= ⋅ − ⋅ + ⋅⎢ ⎜ ⎜ ⎟⎜+ +⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

⎥⎟⎟+
.       (50b) 

For r p
n p
+
+

 near unity, ln r p r n
n p n p

⎛ ⎞+
≅⎜ ⎟+ +⎝ ⎠

− , and the optimal insurance benefit can be approximated by  

  
( )

( )

* ( ) 1 ( ) 1
1 (1 ) 1 1

( )
1

h r n h r n r pb
n p r p r p n p

h r n
r p

θ θ
θ γ θ θ γ θ

θ γ

⎡ ⎤ ⎡− −
≅ − ⋅ + = − ⋅ +

⎤+
⎢ ⎥ ⎢+ + + + + + + + ⎥
⎣ ⎦ ⎣

−
≅ −

+ +

⎦ .  (50b’) 

We saw that if r=n and there are no medical expenses, then optimal social security insurance 

would be complete and household consumption would not change upon retirement.  With r>n, 

optimal social security is incomplete, so consumption falls upon retirement.  The fall in consumption 

upon retirement will be greater the smaller is the coefficient of risk aversion γ  (or, equivalently, the 

larger is the degree of intertemporal substitution).  Note from equation (50b’) that the amount by 

which the optimal insurance level falls short of the complete insurance level is equal to the excess of 

the rate of return on capital over the population growth rate (the so-called “biological” interest rate) 

discounted by the risk adjusted rate of return on annuity assets.  This term, which represents the 

value of the extra private saving generated by a reduction in social insurance, is larger the higher is 

the rate of return on capital, and the lower is the population growth rate, mortality rate, and degree of 

risk aversion. 

Proposition 8:  (Optimal social insurance policies) 

In an economy where r  and the risk of human capital loss and medical expenses 

are independent across households and no moral hazard exists, the expected lifetime 

utility of a household entering the economy is maximized by policies that fully insure 

the individual’s consumption.  This requires fully insuring retirement medical 

expenses and providing a sufficient social security benefit.  If , complete social 

insurance is not optimal.  The optimal social insurance benefit increases with human 

n=

r n>
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capital earnings (fractionally), the degree of risk aversion, the population growth rate, 

the mortality rate, and the mean and variance of retirement medical expenses.  It 

decreases with the dependency rate and the real interest rate. 

7.3 Pareto Optimality 

The above analysis considers optimal policy from the point of view of a new entrant into 

society.  Beginning from the state where *b b<  and Medicare is incomplete, such policies are also 

Pareto optimal and so there is no generational conflict.  Using expression (46), the maximum 

expected lifetime utility of another worker of arbitrary generation v t<  is equal to 

( )
( ) ( )

( ) ( ) ( )
ˆ, , ( ), ,

* *,

E R

E

r p a t v h s s D h b
r p

r p s t veW t v e W t
r p

πγ τ μ τ μ

γβ
⎡ ⎤⎛ ⎞

− ⋅ + ⋅ + − − − − +⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦ ⎡ ⎤− ⋅ + ⋅ ⋅ −⎣ ⎦− ⋅
= =

+
  (46’) 

using ( ) (0, Ea t v a s t v= + ⋅ − ) .  The bar over sE indicates that saving before time t is fixed.  Hence, 

at time t the expected maximum utilities of workers born earlier than t are proportional to the 

expected maximum utility of a new entrant, so the policies are optimal for all workers.  These 

policies maximize the utilities of households who enter the economy later than t also.29

The maximum expected lifetime utility for a retired worker of arbitrary generation v and who 

retired at an arbitrary date  is given by: v y t≤ ≤

( )( ) ( ) ( ), ,, ,
R Rr p a t y v b sRW a t y v e

r p
γ μβ ⎡− + ⋅ + − −⎣−

= ⋅
+

⎤
⎦       (46’’) 

Any increase in b or reduction in μ  is a windfall gain for an existing retiree.  Hence the adoption of 

optimal policy instruments, starting from a state of the world where  and Medicare is 

incomplete, must increase the utility of retirees.  Thus we can conclude that there is no generational 

conflict in adopting optimal policies; such policies are therefore Pareto improving.  Note that 

increasing b beyond  at time t increases the welfare of retirees but decreases the welfare of 

workers and future generations.  While such policies may increase social welfare as defined by a 

social welfare function, they involve generational conflict and are not Pareto improving. 

*b b<

*b

                                                 
29 This statement is conditional on taxes and benefits being the same for all generations.  Clearly, living generations can 
be made better off at the expense of future generations through deficit policies that grant benefits to current generations 
at the expense of higher taxes on future generations. 
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This result relates to the current debate over the welfare effects of “investment-based” social 

security systems over PAYG systems.  Feldstein and Liebman (2002, p. 2258) argue that PAYG 

social security is not Pareto improving if the rate of return on capital exceeds the implicit rate of 

return (the growth rate) on PAYG social security, and that this case underlies the welfare gain to 

“investment-based” social security (compulsory retirement savings accounts to replace social 

insurance).  In our model, there is no need for “investment-based” social security because 

individuals save on their own accord whenever social insurance is absent, or when it offers less than 

the optimal benefit.30

Moreover, it is never optimal in our model to substitute saving, compulsory or otherwise, for 

PAYG social security when the benefit level is less than its optimal value .  If the rate of return on 

capital exceeds the growth rate, the correct implication is that the optimal social security insurance 

program should not fully insure the loss of earnings and that private saving should be positive.  The 

condition that  does not imply that the optimal PAYG benefit is zero and that social security 

should be investment-based (private saving should be substituted for social insurance).  The reason 

we can draw this conclusion is that in our model, unlike models that treat social security strictly as 

rate of return on saving issue, social security performs an important insurance function.  It insures 

people against an unexpectedly long period of retirement for which they will have inadequate 

resources, or an unexpectedly short period of retirement for which individuals will have over-saved.  

Such risk is idiosyncratic to the individual, so there is a welfare benefit to pooling it through a 

PAYG system.  This pooling benefit is not available through an investment-based system, at least 

one that is based on personal accounts.  Other authors, notably Rust (1999), Shiller (1998) and 

Storesletten et al (2004), have also emphasized the risk sharing aspects of social security.

*b

r n>
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30 Feldstein and others often assume a form of Samaritan’s dilemma to justify the need for a compulsory saving plan. 
31 Both intra- and intergenerational risks can be shared.  In the exponential hazard model of this paper, all risk is 
independent so the distinction is not important.  Ball and Mankiw (2001) consider the design of social security in the 
context of the optimal allocation of intergenerational risk in an over-lapping generations economy.  Soares (2005) argues 
that actuarially fair calculations of the benefits of risk sharing through social security can be misleading when 
households are borrowing-constrained. 
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8. Conclusion 

 The main contribution of this paper is to develop a tractable model of overlapping 

generations in which working households face the risks of uncertain retirement periods and medical 

costs in the future.  Like the Blanchard model, the key to the model’s tractability is the assumption 

that the hazard rate for retirement, like death, is constant over the household’s life and the same for 

all households at risk.  An advantage of the model is the fact that both the life-cycle consumption 

shifting and the idiosyncratic risk sharing features of PAYG social insurance policies are 

represented.  Despite the unrealism of the constant hazard rates, the model can replicate realistic 

demographic features of the economy. 

 Savings motives in the economy reflect life-cycle consumption smoothing, precautionary 

saving, and the productivity of capital.  Demographic, economic, and policy variables affect 

individual saving rates in plausible ways.  Simple expressions for optimal PAYG social insurance 

policies that relate the optimal values of policy variables to demographic and economic parameters 

are derived.  Aggregate values of saving, wealth and consumption are readily obtained, and the 

effects of social insurance on the aggregate variables are easily analyzed.  Crowding out of aggregate 

saving by PAYG social insurance is typically complete or more than complete.  The model is also 

used to derive wealth distributions.  Social insurance is found to decrease wealth concentration in the 

population as a whole, and among retirees. 

 Finally, we conclude with two caveats.  First, the model is obviously stylized.  This has the 

advantage of transparency, enabling us to obtain strong analytical results that provide insights into 

the impact of social insurance on consumption and savings behavior.  While these results must be 

viewed with caution, they serve as useful benchmarks for more realistic models which, with their 

added complexity, must be analyzed using numerical simulation methods.  Second, by taking the 

rate of return on capital as given, the model abstracts from the production side of the economy.  

Clearly it is important to extend the model to include production and capital accumulation, enabling 

us to analyze the relationship between social security and economic growth. 
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Appendix 

 In this Appendix we provide the details underlying the derivations in Sections 5 and 6. 

A.1 Aggregate and Per Capita Wealth 

Workers 

At time t there are ( )(( , ) ( ) nv p t vE t v n p e e π )− + −≡ +  households belonging to cohort v. Given 

initial wealth  and savings rate , at time t a cohort v worker has accumulated wealth  0a Es

0( , ) ( )E Ea t v a s t v= + − .         (A.1) 

Total wealth of all cohort v workers at time t is 

( )( )( )
0( , ) ( , ) ( , ) ( ) ( )E E nv p t v EA t v E t v a t v n p e e a s t vπ− + −= = + + −  

and total wealth of all workers at time t is 

 0 0( ) ( , ) ( )
E EtE E E nt s sA t A t v dv e a E t a

p n p n
θ

π π−∞

⎛ ⎞ ⎛ ⎞
= = + = +⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠
∫ . 

Average per-capita wealth of workers is thus constant, given by 

 0
( )

( )

E E
EA t sa a

E t p n π
≡ = +

+ +
.        (A.2) 

Retirees 

The number of retirees at time t of vintage v who worked y units of time is  

( ) ( ) ( ) ( ) ( ) ( ), , p y p t v y p t vnv nv yR t y v n p e e e n p e e eπ ππ π− + ⋅ − ⋅ − − − ⋅ −−= ⋅ + ⋅ ⋅ ⋅ = ⋅ + ⋅ ⋅ ⋅  

and each has accumulated wealth 

( ) (0, ,R E Ra t y v a s y s t y v= + ⋅ + ⋅ − − ) .      (A.3) 

The total wealth of this group is ( , , ) ( , , ) ( , , )R RA t y v a t y v R t y v= ⋅ , and the wealth of retirees of all 

cohorts who worked y units of time is 

 (
0( , ) ( , , )

Rt yR R E nt nsA t y A t y v dv a s y e e
n p

ππ
− − + +

−∞

⎡ ⎤
= = + +⎢ ⎥+⎣ ⎦
∫ )p y .   (A.4) 
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Per capita wealth of the average retiree in this group is 

 0
( , ) ( )

( , )

R R
R EA t y sa y a s y

R t y n p
⎡

= = + +⎢ +⎣ ⎦

⎤
⎥

)

      (A.5) 

where  is the number of retirees of all vintages who work 

exactly y units of time.  Aggregating over y, the wealth of all retirees at time t is 

(( , ) ( , , )
t y nt n p yR t y R t y v dv e e ππ
− − + +

−∞
= =∫

 00
( ) ( , ) ( )

E R
R R s sA t A t y dy R t a

p n pπ
∞ ⎛ ⎞

= = + +⎜ n ⎟+ + +⎝ ⎠
∫     (A.6) 

and the average per-capita wealth of retirees is a constant 

 0
( )

( )

R E
RA t s sa a

R

R t p n π
≡ = + +

+ + +p n
.       (A.7) 

Total Population 

Total wealth of both workers and retirees is ( ) ( ) ( )E RA t A t A t= + . Per capita wealth at t is 

 0
( )
( )

E R R
E E R RA t s sa a a a

N t p n p n
θθ θ

π
= = + = + +

+ + 0
1a s

p n
= +

+
.   (A.8) 

+

The share of all wealth held by retirees, obtained by dividing (A.7) by (A.8), is 

 
0

0

( )
( )

E R

R
R

E R

s sa
A t

R
p n p

s sA t a

n

p n p

πθ
θ

π

⎛ ⎞
+ +⎜ ⎟+ + +⎜=

⎜ ⎟+ +⎜ ⎟+ + +⎝ ⎠n

⎟

â ˆ
E ( )a a

.       (A.9) 

A.2 Distribution of Wealth 

We now derive expressions describing the distribution of wealth, reported in Section 5.2.  A 

worker at time t has wealth less than or equal to  if he or she is born at time v  or later, where 

.  Aggregating over cohorts, the number of such workers, denoted by ˆ ˆ /v t a s= − ˆ,E t ≤ , is 

( ) ( ) ( ) ( ) ( ) ( )
ˆ

ˆ ˆ,
t p t vn v E

v
E t a a n p e e dv E t a aπ ν− + ⋅ −⋅≤ = + ⋅ ⋅ = ⋅ ≤∫     (A.10) 

where ( )E t  is the number of workers at time t and ( )
( ) ˆ

ˆ 1 E
an pE sa a e

π
ν

− + + ⋅
≤ = −  is the fraction of the 

worker population having wealth less than, or equal to, . â
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A retiree at time t who retired at  has wealth less than or equal to  if he/she was 

born on or later than 

ˆ / Rz t a s≥ − â

ˆˆ 1
R R

E E

s sv z t
s s

⎛ ⎞
= − ⋅ + ⋅ −⎜ ⎟
⎝ ⎠

E

a
s

. (We ignore households who retired before 

 because their wealth exceeds  from retirement saving alone.)  The number of such 

retirees denoted 

ˆ / Rz t a s= − â

( )ˆ, ,R t z a a≤  is 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

ˆ

ˆ

ˆ, ,

1
R

E E

z p z v p t znv

v

s an p t z
n p t z s s

R t z a a n p e e e dv

n p R t e e

π

π

π − + ⋅ − − ⋅ −

⎡ ⎤
+ + ⋅ ⋅ − −⎢ ⎥

− + ⋅ − ⎢ ⎥⎣ ⎦

≤ = ⋅ + ⋅ ⋅ ⋅

⎡ ⎤
⎢ ⎥= + ⋅ ⋅ ⋅ −
⎢ ⎥
⎣ ⎦

∫
   (A.11) 

where ( )R t  is the total number of retirees at time t.  The total number of retirees at time t, with 

wealth less than or equal to , denoted by â ( )ˆ,R t a a≤ , is 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

ˆ

ˆ

ˆ

ˆ ˆ, , ,

1

ˆ( )

R

R

E

R

t
at
s

s an p t z n pt n p t z s s
at
s

R

R t a a R t z a a dz

n p R t e e e dz

R t a a

π π

ν

−

+ + ⋅ ⋅ − − + + ⋅− + ⋅ −

−

≤ = ≤ ⋅

⎡ ⎤
= + ⋅ ⋅ − ⋅ ⋅⎢

⎢ ⎥⎣ ⎦
= ⋅ ≤

∫

∫
E ⎥    (A.12) 

where  

( )
( ) ( ) ( )ˆ ˆ

ˆ 1 1 1E
a an p n pR R Rsa a e e

π Rsν ξ ξ
− + + ⋅ − + ⋅⎛ ⎞ ⎛

≤ = ⋅ − + − ⋅ −⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟⎟
⎠

    (A.13) 

is the fraction of the retiree population with wealth less than or equal to , and â
E E

R
E E R

s
s s
θξ

θ
≡

−
. 

The total population having wealth less than or equal to , can be expressed in the form â

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, , , NN t a a E t a a R t a a a a N tν≤ = ≤ + ≤ = ≤ ⋅  where 

 ( )
( ) ( ) ( )ˆ ˆ

ˆ 1 1 1E
a an p n pN N Nsa a e e

π Rsν ξ ξ
− + + ⋅ − + ⋅⎡ ⎤ ⎡

≤ = ⋅ − + − ⋅ −⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥
⎥⎦

    (A.14) 

is the fraction of the population with wealth less than or equal to , and â ( )
( )

E E R
N

E E R

s s
s s

θξ
θ

−
≡

−
. 

The expression for the Gini coefficient for a continuous distribution can be obtained from 

Atkinson (1970).  Normalizing the population to unity, we can derive the expression for the Gini 
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coefficient of wealth concentration in this economy as follows. For the mixed distribution 

( ) ( ) ( ) ( )1 21a a aν ξ ν ξ ν= ⋅ + − ⋅ , where ξ  is a constant and ( )
0

'A a a dν
∞

a= ⋅ ⋅∫ , let  

( )( ) ( ) ( ) ( ) ( )
ˆ ˆ

1 20 0

1ˆ ' ' 1
a a

'f a a a da a a v a
A

ν ν ξ ν ξ= ⋅ ⋅ = ⋅ ⋅ ⋅ + − ⋅ ⋅⎡⎣∫ ∫ da⎤⎦   (A.15) 

denote the fraction of total wealth held by households with wealth less than or equal to .  The 

fraction of the population holding this wealth is 

â

( )âν .  The area under the Lorenz curve with 

ordinate ( ).f is denoted L and is equal to 

( )( ) ( )
1

0 0
ˆ ˆ( ) ' ˆL f v d f a a daν ν ν

∞
= ⋅ = ⋅ ⋅∫ ∫ .      (A.16) 

The Gini coefficient is . 1 2G L= − ⋅

Let ( ) 1 ig a
i a eν − ⋅= −  and ( )' ig a

i ia g eν − ⋅= ⋅  for i=1,2, where  and ( )1 / Eg n p sπ= + +

( )2 / Rg n p s= + .  Now, ( )1 RE ssA
n p n p

ξξ
π

− ⋅⋅
= +

+ + +
, and we can integrate (A.15) and (A.16) to 

obtain 

( )( )
( ) ( )

( )
( ) ( )( )2 1

1 2 1 2
1 2

4g g

ˆ ˆ1 1 3 ˆ ˆ1 1 1 1
g g

L g g g
ξ ξ ξ ξ

ξ ξ ξ ξ
⋅ − ⋅ − − ⋅ ⋅

= − + + ⋅ − ⋅ ⋅ − − ⋅ −  (A.17) 
+

where 1
ˆ / A gξ ξ≡ ⋅ .  After substitution and some manipulation, the Gini coefficient for the mixed 

exponential distribution function can be expressed in the form: 

( )
( )

211 (1
2 1 (1 )

G
ξ ξ σ

ξ ξ σ σ
⎧ ⎫⋅ − ⎡ ⎤−⎪ ⎪= − ⋅⎨ ⎬⎢ ⎥+ − ⋅ +⎪ ⎪⎣ ⎦⎩ ⎭

1 )        (A.18) 

where 
R

E E

s
s

σ
θ

=
⋅

. 

In the case of the retiree population, 1
1

E E
R

E E R

s
s s

θξ ξ
θ σ

⋅
= = =

⋅ − −
 and we can derive the Gini 

ratio 
( )
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211 (1
2 (1

R R
R

R R
G

ξ ξ σ
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1 )
1 )

, which simplifies to 

( )2
1 1
2 1

RG σ
σ

⎧ ⎫⎪ ⎪= +⎨ ⎬
+⎪ ⎪⎩ ⎭

.        (A.19) 
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For the whole population, 
( ) 1

1

E E R E
N

E E R

s s
s s

θ θ σξ ξ
θ σ

⋅ − − ⋅
= = =

⋅ − −
 and we can derive the Gini 

ratio 
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    (A.20) 

where . E E R Rs sθ θ= + s

E

A.3 Aggregate and Average Consumption Levels, and the Effects of Social Insurance 

Workers 

The equilibrium of a worker of cohort v at time t is  

        (A.21) ( ) ( ) 0, ( ( ))E Ec t v r p a s t v h sτ= + ⋅ + − + − −

so total consumption of all workers of cohort ν  at time t is 

 .     ( ) ( )0( , ) ( ) ( ) ( , )E EC t v r p a s t v h s E t vτ⎡= + ⋅ + − + − −⎣
E ⎤⎦

Total consumption of all workers is 

 ( ) ( ),
tE EC t C t v dv
−∞

= ∫ 0( ) ( ) (
E

Esr p a h s E t
p n

τ
π

⎡ ⎤⎛ ⎞
= + + + − −⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

)   (A.22) 

and per capita consumption of the average worker is 

 0
( ) ( ) ( ) ( ) (

( )

E E
E EC t sc r p a h s r p a h s

E t p n
τ

π
⎛ ⎞

≡ = + + + − − = + + − −⎜ ⎟+ +⎝ ⎠
)E Eτ

R

. (A.23) 

Retirees 

The consumption at time t of a retiree of cohort v who worked exactly y years is 

       (A.24) ( ) ( ) ( ), , , ,R Rc t y v r p a t y v b sμ= + ⋅ − + −

so the consumption of all retirees of cohort v who work y years is 

 ( ) ( ) ( ), , , , ( , , ) ( ) ( , , )R R RC t y v r p A t y v R t y v b s R t y vμ= + ⋅ − ⋅ + −  
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where μ  is average medical payments.  Summing over cohorts and years worked, we obtain the 

total consumption by retirees as 

 ( ) 0( ) ( ) ( )
E R

R Rs sC t r p a b s R t
p n n p

μ
π

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤= + ⋅ + + + − −⎨ ⎬⎢ ⎥ ⎣ ⎦+ + +⎪ ⎪⎣ ⎦⎩ ⎭
   (A.24) 

and per capita consumption by the average retiree as 

( ) ( )0
( ) ( ) ( )

( )

R E R
R RC t s sc r p a b s r p a b s

R t p n n p
R Rμ μ

π
⎡ ⎤
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. (A.25) 

Total Population 

Total consumption ( )( ) ( ) ( )E RC t C t C t c N t= + = ⋅  where 

0( )
E R Rs sc r p a

p n p
θ

π
⎡ ⎛ ⎞

= + + +⎢ ⎜ ⎟+ + +⎝ ⎠⎣ n
( ) ( )E E R Rh s b sτ θ μ θ ⎤+ − − ⋅ + − − ⋅ ⎦   (A.26) 

is average per capita consumption and is constant. 

Changes in Social Insurance Levels 

Consider the impact of a change in social insurance on workers.  Suppose the change in 

policy causes  to change by   at time T.  The wealth of a worker at time t  is: Es Eds 2 1
Es s≡ − E

)

T>

  0 1 2( ) (E Ea s T v s t T+ − + − v T<        (A.27) 

           (A.27’) 0 2 ( )Ea s t v+ − v T≥

Workers born before T accumulate at  until T and at  thereafter, while workers born after T 

accumulate only at .  The total wealth of workers is 

1
Es 2

Es

2
Es

 ( )( )
0 1 2( , ) ( ) ( ) ( )

TE nv p t v E EA t v n p e e a s T v s t T dvπ− + −

−∞
⎡ ⎤= + + − + −⎣ ⎦∫  

   ( )( )
0 2( ) ( )

t nv p t v E

T
n p e e a s t v dvπ− + − ⎡ ⎤+ + + −⎣ ⎦∫ . 

Evaluating these integrals, the per capita wealth of the average worker is 

 ( )( )( ) ( )( )
0 2

( ) 1 1
( )

E
E n p t T E nA t a a e s e s

E t n p
π π

π
− + + − − + + −⎡ ⎤≡ = + − +⎣ ⎦+ + 1

p t T E .   (A.28) 

When , (A.28) reduces to  t T=
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0

( )
( )

EE
E sA t a a

E t n p π
≡ = +

+ +
 

and as t  →∞

 2
0

( )
( )

EE
E sA t a a

E t n p π
≡ = +

+ +
 

Similarly, the per-capita wealth of the average retiree is: 

 ( )( )( ) ( )( )
0 2

( ) 1 1
( )
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R n p t T E n p t TA t sa a e s e s1
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R t n p
π π

π
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.  (A.29) 

 Equations (A.28) and (A.29) are used to derive the short-run and the long-run effects of 

social insurance on consumption.  From (A.23) and (A.28), (evaluated as ), and (25) of 

the text, we see that a PAYG increase in social insurance changes the short-run and long-run per 

capita consumption (denoted by the respective subscripts s, l) of employed workers by 

,t T t→ →
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c
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κ θ
θ κ
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Similarly, from (A.25) and (A.29) we see that the short-run and long-run effects of a fully funded 

increase in social security on the per capita consumption of retirees is 
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b

∂
=
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          (A.31a) 
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        (A.31b) 

The short-run and long-run effects on total per capita consumption of social security are 

1 0
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