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1 Introduction

The analysis of cointegration in non-stationary panels has been recently
rapidly expanding in two main directions. The first, urged by the nature of
the data actually used in empirical applications, is the effort to generalise
the tests to the case of dependent units, either by modelling the dependence
(inter alia, Gengenbach, Palm, Urbain, 2006) or reproducing it through the
bootstrap (Fachin, 2007, Westerlund and Edgerton, 2006). The second di-
rection follows steps already taken by the cointegration literature in the early
’90’s, tackling the issues of testing (i) cointegration allowing for breaks and
(ii) the stability of a cointegrating relationship. In this stream of the litera-
ture, the first problem seems to have received more attention (e.g., Banerjee
and Carrion-i-Silvestre, 2004 and 2006, Gutierrez, 2005, Westerlund, 2006)
than the second (to the best of our knowledge, only Emerson and Kao, 2001,
2005, for trend regressions, Kao and Chiang, 2000, for homogenous panel
regressions). This is somehow surprising, as stability tests with unknown
break points may have very low power with even medium sample sizes. For
instance, the rejection rates under H1 simulated by Gregory et al. (1996)
for T = 100 and medium speed of adjustment are only marginally higher
than Type I errors, and actually lower than the significance level. Coin-
tegration stability tests are thus natural candidates for panel extensions
hopefully able to grant power gains large enough to make them empirically
useful. A second surprising aspect of the current debate is that so far the
developments in the treatment of dependence across units seems to have
been largely ignored in the ”panel with breaks” literature1. The tests pro-
posed should thus be regarded essentially as a first step in the construction
of empirically relevant procedures, very much like the first generation panel
cointegration tests. On the contrary, in this paper we tackle the dependence
issue from the outset, proposing a panel generalisation of Hansen (1992) sta-
bility tests based on the stationary bootstrap which is completely robust to
cross-section dependence, and may thus be helpful for actual empirical work.
A fitting empirical illustration is the so-called Feldstein-Horioka (1980) puz-
zle, i.e. the widespread evidence supporting the existence of a long-run link
between the investment (I) and savings (S) to GDP (Y ) ratios in advanced
economies which should characterised by high capital mobility. The issue

1Noticeable exceptions include the panel cointegration tests with breaks by Banerjee
and Carrion-i-Silvestre (2004, 2006) and Westerlund (2006), which however leave many
questions open. Westerlund applies simple resampling to data which, provided cointegra-
tion holds, are weakly dependent, while Banerjee and Carrion-i-Silvestre’s (2004) proce-
dure implies fitting an AR model to a MA process with a unit root under no cointegration
(the same remark applies to Westerlund and Edgerton, 2006). Finally, Banerjee and
Carrion-i-Silvestre (2006) test appears to have very good properties, but since it is based
on Bai and Ng’s (2004) PANIC procedure it unfortunately requires rather large sam-
ple sizes (the smallest ones reported in Banerjee and Carrion-i-Silvestre’s simulations are
T=50, N=40).
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has been examined in a non-stationary panel set-up among others by Baner-
jee and Carrion-i-Silvestre (2004) and Di Iorio and Fachin (2007), who both
report findings are on the whole rather favourable to the cointegration-with-
break hypothesis. Indeed, as remarked e.g. by Frankel (1992), breaks are
to expected in view of the worldwide shift towards financial liberalisation of
the last 1980’s. Thus, it is of some interest to test if breaks actually place.

We shall now (section 2) introduce the set-up and outline the testing
procedure, then present the design and results of a Monte Carlo experiment
(section 3) and the empirical illustration (section 4). Some conclusions and
suggestions for future research are finally discussed (section 5).

2 Testing parameter stability in cointegrated pan-
els

2.1 Set-up

Consider a (k + 1)−dimensional I(1) random variable Z observed over N
units and T time periods (respectively indexed by i and t), naturally par-
titioned as Zit = [YitX1it . . .Xkit]

0 , with cointegration assumed to hold be-
tween Yit and X0it = [X1it . . .Xkit]

0. Then, as long as no long-run relation-
ships among the X 0s exist, we can estimate the N cointegrating vectors
(say, βi = [βi1βi2 . . .βik]) by applying some single-equation method (e.g.
FM-OLS) separately to each of the N time series. Hansen (1992) proposed
three tests for the hypothesis that the β’s are stable over time when no
a priori information on the location of the possible breaks tbi is available:
(i) the maximum of the Chow tests computed at all possible break points
(SupF ); (ii) their mean (MeanF ); (iii) a Lagrange-Multiplier test of the
hypothesis that the coefficients follow a martingale process of zero variance
(Lc). The panel extension along the lines of Pedroni’s (1999) group mean
test is in principle trivial, as it involves simply taking the mean (or some
robust statistic such as the median or an α−trimmed mean) of the statistics
computed for the individual units. Similarly to the case of panel cointe-
gration tests, the bootstrap is a natural candidate for solving the problem
of inference under the general set-up of dependent units. To this end, we
need to design a resampling scheme delivering pseudodata obeying the null
hypothesis of coefficient stability and reproducing both the autocorrelation
and cross-correlation properties of the data. Denoting by Si the stability
statistic of interest for unit i, we propose to estimate the p−value of the
group stability statistic S by the following algorithm:

1. Obtain estimates bβ0i of the cointegrating vectors under H0 : coefficient
stability;
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2. Compute the individual stability statistics bSi and estimate break lo-
cations btbi ;

3. Compute the group stability statistic bS, e.g., bSm =PN
i=1

bSi/N , or bSme
= median(bS), where bS = hbS1, . . . , bSNi ;

4. Estimate models allowing for breaks at the periods etbi and store the
residuals bet = [be1t . . . beNt] ; the choice of the etb0i s, a key point of the
procedure, is discussed in some detail in Remark (i) below;

5. Since cointegration holds, in resampling the T×N matrix bE = [be1 . . .beT ]0
we only need to allow for short-run autocorrelation. Hence, we can ap-
ply the stationary bootstrap (Politis and Romano, 1994) and obtain
a matrix of pseudo-residuals E∗ = [e∗1 . . . e

∗
T ]
0 reproducing both the

short-run correlation over time and the cross-units correlation of the
estimated residuals;

6. Construct the pseudodata Y ∗it under H0 : coefficient stability by ap-

pending e∗it to bβ0iX0it;
7. Compute the group stability statistic S∗ for the pseudo-data set [Y ∗itX

0
it]
0 , i =

1, . . . , N, t = 1, . . . , T ;

8. Repeat steps (5)-(7) a large number (say, B) of times;

9. Compute the boostrap estimate of the p−value as p∗ = prop(S∗ > bS).
Three remarks are in order:

(i) As mentioned above, estimation of break points is a key point of the
procedure. An apparently appealing choice is btbi = argmax(Sup bFi),
so that break location is allowed to vary across units. In fact, this is
a good choice when there is a break in the data (for instance, in the
simulation reported in Fig. 1 the mean estimation error is 0.73 and the
median error 1), but not so much so whenH0 : no break holds. In these
circumstances in small time samples the break is often placed towards
either end of the sample (see Fig. 2), causing overfitting and spuriously
small estimated residuals. As a consequence of the latter, the boot-
strap pseudodata tend to exhibit spuriously high signal/noise ratios,
and the bootstrap stability tests to be severely oversized. Superior
results are obtained when the restriction of a common break located
at the median of the individual estimates of break periods is imposed
(i.e., etbi = median(btb), btb = £btb1btb2 . . .btbN¤ , and btbi = argmax(Sup bFi)
∀i).
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(ii) The hypothesis of partial (involving only some of the coefficients) sta-
bility is easily handled by modifying accordingly the equations esti-
mated in step (4) and the stability statistics adopted;

(iii) Although exploratory simulations showed the results to be quite robust
to the choice of block length, in principle this is a critical point of the
algorithm. Here for computational convenience we applied a simple
rule-of-thumb, fixing it at T/10. In future work we plan to implement
Politis and White’s (2003) algorithm.

Fig. 1. Distribution of the error in the estimation of the breakpointbtbi − tbi ,where btbi = argmax(Sup bFi) and tbi ∼ Uniform[0.5T − 3, 0.5T + 3]
with T = 50. 25% trimming at each sample end, pooled results from 500

Montecarlo replications for 40 units.
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Fig. 2. Distribution of btbi = argmax(Sup bFi), T = 50, 25% trimming at each
sample end, when there is no break in the cointegrating coefficients.

Pooled results from 500 Montecarlo replications for 40 units.

3 Monte Carlo Experiment

3.1 Design

The simulation experiment is based on the design adopted by Fachin (2007),
essentially a generalisation of the Engle and Granger (1987) classical Data
Generation Process (DGP) to the case of dependent panels (a similar design
in also employed by e.g. Kao, 1999). Considering for the sake of simplicity
the bivariate case Zit = [YitXit]0 the DGP can be summarised as follows.
Following Pesaran (2006), short-run dependence is induced by defining the
shocks driving Y and X (uj , j = x, y) as the sum of a idiosyncratic com-
ponent (²j , j = x, y) and a single stationary common factor (f jt , j = x, y);
long-run dependence is caused by an explanatory variable common across
units. Letting tb be the period in which the break takes place, we then have:

xit = −ayit + uxit (1)

yit =

½
μ0i + β0xit + u

y
it, t ≤ tbi

μ1i + β1xit + u
y
it, t > t

b
i

(2)

where i = 1, . . . , N , t = 1, . . . , T ; when a = 0 the right-hand side vari-
able xit is weakly exogeneous for the long-run parameter β. Since when weak
exogeneity does not hold a full information, rather than single-equation, ap-
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proach should be used we will fix a = 0 in all experiments with no loss of
generality.

Although at first sight the DGP equation for X does not appear to be
subject to breaks, substituting for yit and rearranging yields:

xit =

½
(1 + aβ0)

−1(uxit − au
y
it), t ≤ tbi

(1 + aβ1)
−1(uxit − au

y
it), t > t

b
i

(3)

which makes clear that in fact both DGP equations are breaking. Both
errors uj , j = x, y, are assumed to be the linear combination of a common
component, f j ∼ N(0, 1), j = x, y, and an idiosyncratic one, ²j , j = x, y :

½
uxit = γxi f

x
t + ²

x
it

uyit = γyi f
y
t + ²

y
it

(4)

½
²xit = e

x
it + θ

²yit = φi²
y
it−1 + e

y
it

(5)

The coefficients γji , j = x, y, are the factor loadings and determine the
strength of the short-run cross-correlation across units; here γji ∼ Uniform(−1, 6)
∀i, j, so that the cross-correlation is substantial (about 0.65). The structure
of the idiosyncratic component is:½

²xit =
Pt
j=1(e

x
it−j + θ)

²yit = φi²
y
it−1 + e

y
it

(6)

where φi ∼ Uniform(0.2, 0.4). Finally,½
exit ∼ N(0,σ2ix)
eyit ∼ N(0,σ2iy)

(7)

with σ2ij ∼ Uniform(0.5, 1.5), j = x, y, so to allow for some heterogene-
ity across units.

The DGP (??)-(7) is obviously quite complex. Rather than aiming at
the unfeasible task of a complete design2 we will define as a base case an
empirically relevant set-up and then explore a few interesting variations.
Considering that the simple bivariate DGP often used in simulation exper-
iments is clearly unrealistic, but in single-equation cointegration modelling
the number of explanatory variables is usually limited, we generally set k = 2
in both the DGP and estimated model. With no loss of generality we set

2The number of loops to be executed in each experiments grows geometrically with the
number of units, breakpoints, Monte Carlo replications and bootstrap redrawings. For
instance, with N = 40, 20 possible breakpoints, 500 Monte Carlo replications and 1000
bootstrap redrawings we have a total of 400 million loops.
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both constant and slopes to 3 before the break (the same value chosen by
Banerjee and Carrion- i-Silvestre, 2004, for the slope); after the break all
coefficients are halved.

Finally, a = 0, so that the X variables are exogenous.

Since Gregory et al. (1996) report a tendency to overrjection of the
asymptotic test in models with 3 or 4 explanatory variables we also run a
separate experiment with k = 4. Finally, a key point is that given the
rather short time series analysed in most experiments, in order to ensure
computational stability we fixed the trimming coefficient at 25%. The cases
considered are six altogether.

1. Base case: T = 50, N from 5 to 40; in the power simulations break
date Uniform over units in [0.5T ± 3] = [22, 28]. Since recursive sta-
bility tests assume rather large sample sizes we chose to fix the time
sample in all experiments except the following one to 50. This is ad-
mittedly a rather large sample in terms of annual data, but pretty
small if a quarterly frequency is assumed. It may thus be considered
relevant for actual empirical applications (note that it is much smaller
than those typically considered in simulation studies on stability tests,
where generally T ≥ 100).

2. Large T : T = 100, N = 3, 5; in the power simulations break date
Uniform over units in [0.5T ± 3]. Since the aim of this experiment is
checking the time-asymptotic behaviour of the tests, for computational
convenience only very small cross-section sample sizes are examined.

3. Late break : T = 50, N from 5 to 40; break date Uniform over units
in [0.75T ± 3], that is [35, 41]. Since 25% of the sample is trimmed at
each end, the estimation sample is [13, 38]: the break can thus fall very
close or even after the end of the estimation sample, a very demanding
set-up.

The bootstrap algorithm described above is based on residuals of coin-
tegrating regressions estimated for all units with a break at the median of
the individual estimated break points, which is intuitively acceptable if we
assume all units to be affected by breaks stemming from a common cause.
However, even assuming each unit to be affected by at most one break over
the period of interest, two rather different set-ups may arise: (i) the break
periods may be widely disperse over units, for instance because they stem
from different causes, each one relevant to only some units; (ii) some of the
units may be not affected by a break at all. The two following cases are
designed to investigate these two scenarios in turn:
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4. Twin breaks: as Base case, but in half of the units the break date is
Uniform in [0.3T ± 3] , and in the other half in [0.6T ± 3].

5. Partial break : T = 50, N from 10 to 40, break date Uniform in
[0.5T ± 3] over 0.7N units (the first seven in each block of ten), no
break in the remaining units. This case deserves some discussion. The
key question here is the following: what is the null hypothesis of the
panel stability test (say, HP

0 )? Let H
i
1 be that of the i− th individual

test; then, one possibility is to take HP
0 =

TN
i H

i
0, so that the panel

null hypothesis is ”stability in all units”. However, this appears far
too restrictive, especially in view of small sample applications where
outliers may have an heavy influence on individual cases. Following
Pedroni’s (2004) view of the meaning of panel cointegration tests, we
prefer the panel null HP

0 : ”stability in a large number of units” . In
other terms, the aim of the test is assessing if in the units examined
the cointegrating relationship is mostly, but not necessarily always,
stable. As in the set-up of this experiment the answer is negative (H0
holds only in 30% of the units) we would like to have high rejection
rates. Note that since this view of the test clearly requires fairly large
cross-section sample sizes we set N ≥ 10.

6. Larger model : T = 50, N from 5 to 40, k = 4; break date Uniform
over units in [0.5T ± 3]. This case is designed exactly like the Base
case, except the number of explanatory variables in both the DGP
and estimated model.

To evaluate the improvements (in terms of both power gains and re-
duction in size bias) which could be expected by moving from a standard
time series to a panel set-up we also computed the average rejection rates
of the asymptotic tests based on Hansen (1992) asymptotic critical values
computed for all individual units involved in each experiment3. Note that
the comparison between the average performance of the asymptotic test on
individual series and that of the panel tests with a smaller number of units
(e.g., 5, 10 and 20 in the base case or 3 in the ”Large T” case) should be
taken as merely suggestive of a pattern, as the units involved are not the
same.

Finally, after some experimentation with different options we decided to
fix the number of Monte Carlo replications at 500 and that of bootstrap
redrawings at 1000. Higher numbers of either would have delivered a small
increase in the precision of the results not worth the large increase of the

3Except the ”Partial break” case, where they will simply be a weighted average of the
size and power of the test with weights respectively given by the fractions of non-breaking
and breaking units.
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cost and time scale of the experiment (which, because of the recursive nature
of the statistics evaluated, is computationally very demanding).

3.2 Results

The results are reported in Tables 1A-6B below. In the Base case (T = 50,
N from 5 to 40) the Type I errors (Table 1A) of the bootstrap panel tests
have some positive size bias for N = 5 but converge fairly closely to nominal
significance levels as N increases. The asymptotic tests on individual series
deliver variable performances: the Lc test is slightly oversized, while both
the MeanF and the SupF appear to be conservative (more the latter than
the former). The power gains offered by the panel tests are remarkable.
Consistently with a priori expectations, the asymptotic tests have negligible
power, while that of the panel tests is generally acceptable and definitely
good for α = 10% and N ≥ 10 (e.g., 92% for N = 40, with Type I error 11%;
Table 1B). Hence, using the panel tests grants considerable improvements
with respect to aggregate tests in terms of both reduction of size bias and
increase in power. In fact, with this time sample a panel approach seems
to be the only viable option. In comparative terms, we find the Type I
errors to be very similar for all the three tests, while the SupF test appears
to be somehow marginally less powerful than the Lc and MeanF. The
results of the mean and median panel tests also appear very similar. Since
these findings hold approximately in all the cases examined the following
comments are mostly expressed in general terms, with no reference to the
specific tests.

Allowing for the different speed of adjustment of the DGP’s employed,
the ”Large T” results (Tables 2A-2B) for the asymptotic tests are fully
consistent with Gregory et al. (1996): as we can see, the size bias is still
noticeable, and power very poor. On the other hand, the Type I errors of
the bootstrap panel tests essentially converge to nominal significance levels,
and their power approaches 100% even with extremely smallN . Hence, even
with a rather large time sample a panel approach seems preferable.

When T = 50 and breaks around 3/4 of the time sample (Table 3) power
falls dramatically, rarely reaching 50% for the mean test; the performance
of the median test, although not brilliant, appear somehow more robust.
Since the upper extreme of the break interval (t = 41) falls after the end of
the actual estimation sample (t = 38) these findings are not surprising, and
make clear the great care necessary in using recursive stability tests.

The two experiments designed to check the robustness of the bootstrap
procedure with respect to the nature of the breaks deliver comforting results.
When the breaks come from two distributions, centred at the opposite ends
of the sample (but not so close to them as in the previous case) the power
loss caused by the misspecification of the cointegrating equation used to
estimate the residuals to be bootstrapped is very small (Table 4). On the
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other hand, when 70% of the units are affected by the break it is interesting
to see (Table 5) that the rejection rates seem to fall approximately in the
same proportion (e.g., for N = 40 and α = 10% from 92.2% to 66.8%),
so that if H0 does not hold in the majority of the units it is likely to be
rejected by the panel test as well. Somehow contrary to our expectations,
in this set-up the mean and median tests deliver very similar results.

In a larger model with four explanatory variables (Tables 6A-B) we notice
that the performance of the asymptotic tests is even worst than in the Base
case. The Type I errors of the panel tests appear similar to the base case
with only two variables, but unfortunately their power somehow smaller,
possibly because the coefficient are estimated less precisely.

The overall conclusions to be drawn are now rather clear: consistently
with Gregory et al. (1996) our experiments suggest that with a small or
moderately large sample size (T ≤ 100) Hansen (1992) asymptotic test has
power ranging from very low to close to zero. A fairly general solution to
this serious empirical shortcoming seems to be provided by a panel approach
based on the bootstrap: in out experiments the Type I errors turned out to
be generally close to nominal sizes and converging rather rapidly over both
over T andN to nominal levels, and power from acceptable to good with α =
10% when the break is located around the middle of the sample. Although
tests power does not appear to be much affected by a wide dispersion of
the breaks across units and to be (correctly) roughly proportional to the
fraction of breaking units, it is important to keep in mind that it can be
disappointing if the breaks fall towards the end of the sample (which is not
surprising, since with a small time sample the marginal information becomes
very small).
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Table 1A: Base Case: T = 50, N from 5 to 40 − Size
(Rejection Rates×100)

N
1 5 10 20 40 5 10 20 40

α Asya Boot-Meanb Boot-Medianc

A. Lc
1.0 3.9 1.6 0.0 0.0 0.0 0.8 0.0 0.0 0.0
5.0 12.1 10.4 0.8 0.8 2.4 8.8 1.6 3.2 4.0
10.0 19.3 20.8 4.0 4.0 11.2 23.2 6.4 9.6 11.2

B. MeanF
1.0 0.5 0.8 0.0 0.0 0.0 2.4 0.0 0.0 0.0
5.0 3.1 10.4 1.6 0.8 3.2 13.6 2.4 0.8 1.6
10.0 6.2 16.0 4.8 6.4 9.6 24.8 7.2 8.0 15.2

C. SupF
1.0 0.0 2.4 0.0 0.8 0.0 2.4 0.0 0.0 0.0
5.0 0.2 11.2 1.6 2.4 2.4 13.6 1.6 0.0 1.6
10.0 0.5 20.8 7.2 5.6 8.8 24.0 5.6 6.4 12.8

DGP: No Break;
H 0: No break;
(a) Asy: average rejection rates of invidual tests over all 40 units,
Hansen (1992) asymptotic critical values;
(b,c) Boot-mean/median: bootstrap test on the mean/median across
units of the stability statistics;
Bootstrap: 1000 redrawings, block size T/10;
Montecarlo: 500 replications.
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Table 1B : Base Case: T = 50, N from 5 to 40 − Power
(Rejection Rates×100)

N
1 5 10 20 40 5 10 20 40

α Asy Boot-Mean Boot-Median
A. Lc

1.0 3.5 6.6 5.6 6.4 5.2 7.4 10.6 11.6 10.0
5.0 11.5 36.4 39.8 55.0 59.4 41.0 44.4 55.0 58.6
10.0 19.3 57.0 73.2 87.6 92.2 62.0 70.2 77.6 84.8

B. MeanF
1.0 0.8 6.8 7.0 9.6 6.8 5.4 9.8 14.8 11.4
5.0 3.6 35.8 48.0 61.8 62.8 37.6 51.6 61.2 62.8
10.0 6.9 61.4 80.2 87.4 92.8 61.2 78.2 86.6 90.0

C. SupF
1.0 0.1 2.4 2.0 4.4 1.8 2.0 3.0 7.6 3.8
5.0 0.7 21.8 28.2 35.6 29.2 24.4 29.8 37.2 39.6
10.0 1.8 48.6 63.0 62.0 67.2 42.4 59.8 66.2 70.2

DGP: Break Uniform in [0.5T ± 3] = [22, 28];
H 0: No break;
All abbreviations and definitions: see table 1A.

13



Table 2A: Large T: T = 100, N = 3, 5− Size
(Rejection Rates×100)

N
1 3 5 3 5

α Asya Boot-Mean Boot-Median
A. Lc

1.0 2.9 1.0 2.0 2.2 2.6
5.0 10.9 4.8 5.4 5.0 6.2
10.0 20.5 9.0 8.8 9.8 11.0

B. MeanF
1.0 0.4 1.4 1.6 1.4 2.4
5.0 3.8 4.6 4.4 5.4 5.6
10.0 8.8 8.0 8.6 8.8 10.4

C. SupF
1.0 0.3 1.4 1.2 1.4 1.6
5.0 2.3 5.0 4.8 6.0 5.2
10.0 3.9 10.8 10.4 10.2 10.8

DGP: No break;
H 0: No break.
(a) Asy: average rejection rates of invidual tests over all
5 units, Hansen (1992) asymptotic critical values;
All other abbreviations and definitions: see table 1A.
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Table 2B : Large T: T = 100, N = 3, 5− Power
(Rejection Rates×100)

N
1 3 5 3 5

α Asya Boot-Mean Boot-Median
A. Lc

1.0 13.5 88.6 95.4 71.8 77.0
5.0 33.0 99.0 99.8 88.8 91.0
10.0 44.0 99.8 100.0 94.2 96.0

B. MeanF
1.0 7.9 96.2 99.6 86.8 90.6
5.0 24.2 99.8 100.0 96.6 98.8
10.0 33.9 100.0 100.0 98.8 99.8

C. SupF
1.0 3.1 95.2 98.8 90.2 93.4
5.0 10.6 99.6 100.0 98.6 99.6
10.0 17.9 99.8 100.0 99.2 100.0

DGP: Break Uniform in [0.5T ± 3];
H 0: No break.
(a) Asy: average rejection rates of invidual tests over all
5 units, Hansen (1992) asymptotic critical values;
All other abbreviations and definitions: see table 1A.
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Table 3 : Late break: T = 50, N from 5 to 40
(Rejection Rates×100)

N

1 5 10 20 40 5 10 20 40
α Asy Boot-Mean Boot-Median

A. Lc
1.0 3.5 2.4 0.8 0.6 0.2 6.4 1.6 4.2 0.8
5.0 11.4 25.0 16.0 24.2 15.0 31.8 19.6 37.0 33.2
10.0 20.8 47.6 38.6 61.6 50.2 49.2 42.4 66.4 63.0

B. MeanF
1.0 0.8 2.4 0.4 0.6 0.2 6.4 1.0 3.4 1.8
5.0 3.6 23.8 13.2 20.8 18.6 31.6 17.4 37.8 40.4
10.0 6.9 45.8 38.4 56.4 58.2 49.6 46.4 67.8 75.6

C. SupF
1.0 0.1 2.2 0.8 1.0 0.6 3.0 0.6 2.0 1.0
5.0 0.7 18.6 12.2 19.0 20.0 20.8 15.4 27.8 30.2
10.0 1.8 37.4 35.4 45.8 55.0 39.4 42.2 54.4 62.2

DGP: Break Uniform in [0.75T ± 3] = [35, 41];
H 0: No break;
All abbreviations and definitions: see table 1A.
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Table 4 : Twin breaks: T = 50, N from 5 to 40
Rejection Rates×100

N

5 10 20 40 5 10 20 40
α Boot-Mean Boot-Median

A. Lc
1.0 6.4 10.0 7.4 11.6 7.2 15.2 23.6 41.8
5.0 20.2 38.0 36.8 56.2 30.0 45.4 58.2 77.0
10.0 40.0 59.2 65.6 82.8 45.0 61.8 76.8 85.4

B. MeanF
1.0 5.0 10.4 6.0 7.6 7.8 17.4 19.6 35.2
5.0 21.2 37.4 32.2 46.2 30.4 43.8 56.4 73.8
10.0 40.0 55.4 63.0 77.0 44.2 58.4 73.2 86.2

C. SupF
1.0 5.6 10.4 8.6 7.0 5.2 13.6 14.4 23.0
5.0 22.8 34.2 31.4 34.8 23.8 41.0 44.4 60.6
10.0 38.6 53.6 54.2 65.0 39.4 55.0 63.2 77.6

DGP: Units 1, 3, . . . , N − 1 break Uniform in [0.3T ± 3],
Units 2, 4, . . . ,N break Uniform in [0.6T ± 3];
H 0: No break;
All abbreviations and definitions: see table 1A.
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Table 5 : Partial break: T = 50, N from 10 to 40
(Rejection Rates×100)

N
10 20 40 10 20 40

α Boot-Mean Boot-Median
A. Lc

1.0 0.8 2.4 2.2 4.4 6.0 2.0
5.0 20.2 28.6 28.4 30.4 35.0 26.4
10.0 45.8 59.8 66.8 50.0 55.0 55.8

B. MeanF
1.0 2.4 3.4 2.6 3.2 4.8 2.8
5.0 22.8 35.4 33.4 29.2 36.6 32.6
10.0 50.8 67.8 74.6 54.8 64.0 62.4

C. SupF
1.0 0.8 1.4 0.6 0.8 3.0 1.4
5.0 16.4 21.2 18.6 18.6 25.4 23.0
10.0 39.0 48.6 48.8 41.2 49.8 47.2

DGP: Break Uniform in [0.5T ± 3] in
0.7N units (the first seven in each block of ten);
H 0: No break;
All other abbreviations and definitions: see table 1A.
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Table 6A: Larger model: T = 50, N from 5 to 40− Size
(Rejection Rates×100)

N
1 5 10 20 40 5 10 20 40

α Asy Boot-Mean Boot-Median
A. Lc

1.0 1.3 1.0 0.2 0.2 0.4 0.6 0.2 0.0 0.0
5.0 8.9 5.0 1.4 1.8 2.0 6.2 0.8 3.2 1.8
10.0 17.2 11.2 4.6 7.0 5.6 11.8 4.4 8.0 5.2

B. MeanF
1.0 0.1 0.6 0.0 0.0 0.2 0.6 0.0 0.2 0.0
5.0 1.2 5.4 1.4 2.4 2.2 5.6 0.8 2.0 0.8
10.0 3.6 10.0 4.6 6.4 6.4 10.4 4.0 7.8 6.2

C. SupF
1.0 0.0 0.8 0.2 0.2 0.0 0.6 0.2 0.0 0.0
5.0 0.0 4.4 1.6 2.4 1.8 4.0 1.0 2.0 1.6
10.0 0.1 10.4 5.0 5.8 6.4 10.8 3.6 7.2 5.4

DGP: No break, four explanatory variables;
H 0: No break;
All abbreviations and definitions: see table 1A.
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Table 6B : Larger model: T = 50, N from 5 to 40− Power
(Rejection Rates×100)

N
1 5 10 20 40 5 10 20 40

α Asy Boot-Mean Boot-Median
A. Lc

1.0 1.2 2.0 2.4 2.4 5.8 2.0 2.2 5.6 5.2
5.0 6.2 11.6 23.8 37.0 57.8 8.8 27.4 42.2 36.0
10.0 12.2 25.0 53.0 71.8 87.2 17.2 59.0 64.0 60.4

B. MeanF
1.0 0.1 4.0 2.8 6.2 9.0 4.0 2.6 7.4 7.2
5.0 1.4 22.6 31.6 48.0 66.8 15.6 28.6 40.0 40.6
10.0 3.2 32.6 62.4 80.4 93.6 27.4 57.8 65.8 64.8

C. SupF
1.0 0.0 1.0 0.4 0.4 0.4 0.8 0.8 1.2 1.8
5.0 0.1 7.2 6.8 8.6 18.8 8.0 11.2 13.8 14.2
10.0 0.4 15.4 19.6 29.6 49.2 15.8 26.4 29.6 30.8

DGP: Break Uniform in [0.5T ± 3], k = 4;
H 0: No break;
All abbreviations and definitions: see table 1A.

4 Empirical illustration: the Feldstein-Horioka Puz-
zle

As discussed in the Introduction, the apparent existence of a long-run link
between the investment and savings in advanced economies, where high cap-
ital mobility may allow the current account to be unbalanced for long peri-
ods, is one the major empirical puzzles of contemporary macroeconomics (six
altogether according to Obstfeld and Rogoff, 2000). Banerjee and Carrion-
i-Silvestre (2004) and Di Iorio and Fachin (2007) investigated the issue on
a data set including 14 European economies (Austria, Belgium, Denmark,
Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal,
Spain, Sweden, UK) over the period 1960-2002 using panel cointegration
tests allowing for a single break in the cointegrating coefficients (either level
only and both level and slope, which in the literature is referred to as ”reten-
tion ratio”). Here we shall examine a subset of this panel, as in Finland and
Portugal the Savings/GDP ratio was found to be stationary in our previous
work.

From the plots reported in Fig. 3A-B the existence of a long-run relation-
ship with coefficients shifts appears plausible. Indeed, although Gregory-
Hansen cointegration tests with breaks on individual economies generally
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fail to reject the null of no cointegration, their panel bootstrap versions do,
suggesting the failure to reject to be merely due to low power. Hence, in the
panel as a whole investment and saving do appear to cointegrate if breaks
are allowed. The tests developed in this paper may help answering the next
question, which is if a break actually took place.

Recalling that the choice of the trimming coefficient may affect consider-
ably the results we computed all tests with both 25% and 12.5% trimming,
obtaining always very similar results. Examining the individual statistics
(Table 7; to save space we report only the results for 12.5% trimming) we
find extremely strong evidence of instability in Belgium, while most of the
remaining statistics are not significant. The failure of the asymptotic tests
to reject the hypothesis of stability for the individual countries is puzzling
in view of the the graphical evidence, and the natural suspicion is that it
may be merely due to the extremely low power to be expected from the tests
with such a small sample size. In fact, moving to the panel tests we can see
(Table 8) that the means of all statistics suggest strong rejection of the null
hypothesis of stability, with p-values smaller than 5% (actually zero for the
MeanF and SupF statistics). Since this outcome may be due to the strong
evidence for instability in Belgium it is important to look also at the medi-
ans. Here the evidence for rejection is weaker, with p-values between 10%
and 15% for the Lc andMeanF. However, recalling (cf. Table 1B) that with
a panel of 12 units power must be expected to be rather low, such p-values
should nevertheless be regarded as small enough to grant rejection. We can
thus appreciate how applying the panel procedure does grant a power gain
with respect to the individual tests, allowing to reach the more plausible
conclusion that in this group of countries investment and savings do seem to
be linked by a long-run relationship, but this is likely to have changed over
time at least once. The next natural step is to estimate models allowing for
coefficient breaks at the estimated breakpoints btbi = argmax(Sup bFi). Given
the small time sample available these estimates should clearly be taken with
great care. This is especially true when the break falls near the extremes of
the sample, although for robustness sake break estimates under 25% trim-
ming have been used (hence, the break estimates are constrained to fall in
the interval 1971-1992). The results (reported in table 9) are indeed of some
interest. In seven countries (Austria, Belgium, Germany, France, Ireland and
Sweden, thus including two of the largest continental European economies),
the retention ratio falls significantly after the break, consistently with the
expectations of a progressive weakening of the long-run link between invest-
ments and savings in the advanced economies (Frankel, 1992). In the case
of the United Kingdom the results are peculiar, as the retention ratio is
negative before 1977 and turns positive afterwards. However, neither esti-
mates are significant, suggesting that in this case there may not be an actual
causal link of any relevance running from domestic savings to investment.
This hypothesis is consistent with Kejriwal (2007), who using quarterly data
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over the 1957:1-2006:1 found no evidence for cointegration for this country.
Finally, in the four remaining cases (Italy, Spain, Greece, Denmark), con-
trary to expectations, the retention ratio seems to increase. However, two
remarks are in order: first, the associated coefficient is never significant (nor
the individual stability statistics, with the exception of Greece); second, in
two cases (Italy and Spain) the estimated break points falls at the extremes
of the interval in which they are constrained to lie (respectively, 1970 and
1991). From Fig. 2 we know that this is typical of cases when no break
actually took place. Unfortunately, with the available sample size no reli-
able conclusions for individual cases can be reached, so it is impossible to
shed more light on the issue. Clearly, the great care invoked above is fully
necessary.
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Fig. 3A. Savings (S) and Investments (I) to GDP (Y ) ratios dynamics,
1960-2002. Top to bottom: Austria, Belgium, Denmark, France, Germany,
Greece. Left Column: S/Y (solid line) and I/Y (dotted line). Right

Column: Current Account/GDP = (S − I)/Y (solid line) and zero (dotted
line).
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Fig. 3B. Savings (S) and Investments (I) to GDP (Y ) ratios dynamics,
1960-2002. Top to bottom: Ireland, Italy, Netherlands, Spain, Sweden,
UK.Left Column: S/Y (solid line) and I/Y (dotted line). Right Column:
Current Account/GDP = (S − I)/Y (solid line) and zero (dotted line).
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Table 7
Individual stability tests of the investment-savings

long-run relationship, 1960-2002

Austria Belgium Denmark France Germany Greece
Lc 0.27 1.28∗∗∗ 0.12 0.08 0.26 0.35
MeanF 2.19 45.15∗∗∗ 0.75 0.53 2.48 5.12∗∗

SupF 4.07 163.34∗∗∗ 1.65 1.18 10.94 27.52∗∗∗

Ireland Italy Netherlands Spain Sweden UK
Lc 0.25 0.19 0.22 0.17 0.17 0.05
MeanF 3.17 1.23 1.86 1.51 4.90 0.75
SupF 14.57∗∗ 6.80 3.19 5.63 12.50 12.36

trimming: 12.5%;
*: significant at 10%; **: 5%;***: 1%.

Table 8
Panel tests of stability of the investment-savings

long-run relationship, 1960-2002
p-values ×100

mean median
Trimming Lc MeanF SupF Lc MeanF SupF
25% 3.1 0.0 0.0 14.4 12.1 44.7
12.5% 3.4 0.0 0.0 16.7 14.9 0.2

panel : Austria, Belgium, Denmark, France, Germany, Greece,
Ireland, Italy, Netherlands, Spain, Sweden, UK;
bootstrap: 1000 redrawings.
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Table 9
The investment-savings long-run relationship, 1960-2002

FM-OLS estimates

β0 β1 θ0 θ1 break

Austria 0.93
[0.10]

−1.07
[0.49]

0.45
[0.55]

3.18
[1.58]

1991

Belgium 0.71
[0.15]

−0.75
[1.15]

0.94
[0.47]

2.21
[3.70]

1989

Denmark 0.67
[0.05]

0.19
[0.20]

1.09
[0.14]

−0.76
[0.60]

1974

France 0.59
[0.05]

−0.23
[0.18]

1.32
[0.15]

0.58
[0.55]

1975

Germany 0.92
[0.36]

−0.72
[0.39]

0.17
[1.19]

2.26
[1.28]

1972

Greece 0.72
[0.15]

0.11
[0.20]

0.79
[0.48]

−0.21
[0.64]

1989

Ireland 1.03
[1.51]

−0.83
[1.54]

0.04
[4.33]

2.44
[4.42]

1970

Italy 0.80
[0.52]

0.45
[0.56]

0.74
[1.63]

−1.53
[1.75]

1970

Netherlands 0.89
[0.18]

−1.07
[0.49]

0.45
[0.55]

3.18
[1.58]

1985

Spain 0.67
[0.24]

0.27
[0.31]

1.08
[0.74]

−0.84
[0.96]

1991

Sweden 0.75
[1.85]

−1.66
[1.89]

0.83
[5.84]

4.82
[5.97]

1974

UK −0.25
[0.48]

−0.47
[0.57]

3.72
[1.44]

−1.49
[1.68]

1977

model: ln(I/Y )t = β0ln(S/Y )t + β1ln(S/Y )tDt + θ0 + θ1Dt + ²t,
Dt = 1 if t > break, 0 else;
standard errors in brackets.

5 Conclusions

Our overall conclusion is that the proposed panel stability tests may grant
considerable advantages. With time sample sizes rather common in macroe-
conomic datasets (e.g., 50 observations) the asymptotic tests appear to be
essentially of no use, while the proposed panel bootstrap tests have Type I
errors close to nominal sizes and acceptable power. An empirical illustration
on the Feldstein-Horioka puzzle for a panel of 12 economies over the period
1960-2002 shows how the bootstrap panel stability tests lead to a more plau-
sible conclusion (cointegration with at least one break) than the asymptotic
tests applied to each individual country (which, with a few exceptions, do
not reject stability). Among the points on our research agenda we can men-
tion generalising our procedures to tests of the hypothesis of breaks limited
to only some of the variables, implementing some block-length selection al-
gorithm, and exploring the use of the Bewley (1979) transform.
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