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Abstract

Issues like structural breaks and misspecification biases make it difficult to find a term structure of interest rates forecast model
that dominates all competitors. Focusing on Brazilian data, this paper aims to identify the existence of combining methods that
provide superior performance than individual models. Empirical results confirm that it is not possible to determine an individual
model that consistently produces superior forecasts. Furthermore, the relative performance of these models may vary over time.
The problems of using individual models may be reduced by applying forecast combining schemes. The empirical results show
consistent forecast gains of combining schemes over time. In particular, the longer the forecast horizon, the greater the contribution
of forecast combination.
© 2013 National Association of Postgraduate Centers in Economics, ANPEC. Production and hosting by Elsevier B.V. All rights
reserved.
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Resumo

Problemas como quebras estruturais e vieses causados por má-especificação dificultam achar um modelo de previsão de estrutura
a termo de taxa de juros que domine todos os competidores. Esse artigo tem como objetivo identificar a existência de métodos
de combinação que produzam resultados de previsão superiores a modelos individuais no caso Brasileiro. Resultados empíricos
confirmam que não é possível determinar um modelo individual que consistentemente produza previsões superiores. Além disso,
o desempenho desses modelos varia temporalmente. Os problemas encontrados nos modelos individuais podem ser reduzidos
aplicando esquemas de combinação de previsão. Os resultados mostram consistentemente ganhos de previsão nos esquemas de
combinação para o período considerado. Em particular, quanto maior o horizonte de previsão, maior a contribuição do esquema.
© 2013 National Association of Postgraduate Centers in Economics, ANPEC. Production and hosting by Elsevier B.V. All rights
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. Introduction

The implementation of yield curve forecasting models for the Brazilian case is recent (Lima et al., 2006; Vereda
t al., 2008; Vicente and Tabak, 2008; Almeida et al., 2009; Cajueiro et al., 2009). The results show that there is no
ingle forecast model that dominates all competitors.1 This is due to the fact that different models outperform the
thers, depending on time horizon ahead, maturity and forecast period.

Based on this fact, this study sets out to verify whether forecast combining methods can result in more accurate
orecasts compared to individual models, focusing on the Brazilian market. In affirmative case, we analyze which
ombining schemes are adequate for different situations. For the forecasting of interest rates in Brazil there is no
vidence of studies applying combination schemes. Hence, our paper contributes to the literature by implementing
hose schemes and evaluating their effectiveness in forecasting the yield curve.

The term structure of interest rates is of crucial importance for a variety of economic agents. For central banks, the
ield curve helps to explain how monetary policy is implemented. For national treasuries, it indicates the yields for
hich public debt management should pay for issuing fixed rate bonds. For financial institutions, the term structure
etermines the allocation and exposure limits of different bonds maturities. For macroeconomists, it is an important
eading indicator of economic activity and inflation. For firms, the term structure affects investments decisions. For
ouseholds, the yield curve influences consuming and savings decisions.

In recent years studies in finance and in econometrics have tried to produce accurate forecasts of the term structure.
uffee (2002) uses the dynamic properties of affine models and concludes that his forecasts are dominated by the

andom walk model. The forecast underperformance of affine models stimulated Diebold and Li (2006) to adapt the
tatic Nelson and Siegel (1987) factor model into a dynamic variant. Their results show that the model can beat the
andom walk, with the exception of the 1-month ahead horizon.2

After Diebold and Li (2006), many authors have developed different dynamic approaches of Nelson–Siegel model
nd have reported improvements in forecasting. Pooter (2007) adds new factors. Koopman et al. (2007) introduce
ime-varying parameters. Diebold et al. (2008) extend the model to a global context, modeling a large set of country
ield curves in a framework that allows for both global and country-specific factors.

The interaction between macroeconomics and the yield curve has also generated promising results. Prominent
xamples are Evans and Marshall (1998), Ang and Piazzesi (2003), Hordahl et al. (2006), Diebold and Rudebush
2006), Moench (2008), Ludvingson and Ng (2009) and Pooter et al. (2010). It is important to point out that the use of
acroeconomic information is beyond the scope of this study.
Despite good statistical properties, the models based on Nelson–Siegel framework do not impose the arbitrage-free

estriction, which is a fundamental concept in the literature of bond pricing analysis. In order to solve this problem,
hristensen et al. (2010) have developed an affine model that maintain the factor structure of Nelson and Siegel (1987),

he so-called Arbitrage-Free Dynamic Nelson–Siegel. They conclude that improvements in predictive performance
re achieved from the imposition of the absence of arbitrage. However, Duffee (2011) argues that this restriction is
rrelevant for forecast gains and it only provides a mechanism to specify a functional form for risk compensation.

Bowsher and Meeks (2008) do not adopt the Nelson–Siegel framework. Instead, they introduce a factor model,
nown as Functional Signal Plus Noise with an Equilibrium Correction Model. Splines are used to model the yield
urve. Besides, they argue that the knots of these splines act as factors. The results indicate that this model outperforms
he random walk mainly at short-term horizons.

The concept of forecast combination was introduced in Bates and Granger (1969). They showed that combinations
f individual forecasts often outperform individual forecasts. One possible reason is that the combination of forecasts
dds value in the presence of structural breaks (Diebold and Pauly, 1987; Hendry and Clements, 2004). A number of
apers (Diebold and Lopez, 1996; Stock and Watson, 2004; Timmermann, 2006) also defends that individual forecast
odels may be subject to misspecification biases of unknown form.

The main empirical findings of this paper are: (1) It is not possible to determine an individual model that consistently

roduces superior forecasts; (2) The relative performance of the individual models may vary over time; (3) The
ifficulties of using individual models can be reduced by applying forecast combining schemes; (4) Combining methods

1 The same verification applies for U.S. data.
2 In this work the shorter horizons is defined as 1 and 3-months ahead, whereas the longer horizons corresponds to 6 and 12-months ahead.
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present consistent gains over time; (5) The longer the forecast horizon, the greater the contribution of the forecast
combining scheme.

The remainder of the paper is structured as follows. Section 2 presents the forecast models used in this paper.
Section 3 describes the alternative combining methods. Section 4 introduces the data. Section 5 presents the forecast
procedures and the evaluating criteria. Section 6 shows the main results of this paper. It evaluates the performance of
individual models and combining methods. Finally, Section 7 concludes the paper.

2. Individual forecast model

Let τ = 1, 2, 3, 6, 9, 12, 15, 18, 21, 24, 30 be the N = 11 maturities in months of discount bonds with face value of
$1. Let yt(τi) denote their yields to maturity from time t to t + τi, with i = 1, . . ., N. In addition, let h be the number of
months. The h-month ahead forecast of each maturity τi evaluated at time t is given by ŷt+h(τi).

In this work we consider models with different levels of complexity. The competing forecast models range from
models with linear specifications (random walk, autoregressive, and vector autoregressive) to models with factor
structures (Dynamic Nelson and Siegel and Functional Signal Plus Noise with an Equilibrium Correction Model). The
random walk is used as a benchmark for all competing models.

2.1. Random walk

Consider a random walk (RW) without drift for the yield of each individual maturity τi given by

yt(τi) = yt−1(τi) + εt(τi), (1)

where εt(τi) ∼ N(0, σ2(τi)) is a white noise process.
The h-period ahead yield forecast is given by

ŷt+h(τi) = yt(τi), (2)

i.e., it is equal to the most recent observed value of yt(τi).

2.2. Univariate autoregressive

In the forecast context, we consider two approaches of the first-order univariate autoregressive (AR) model. In the
iterated approach, we estimate the model

yt(τi) = c(τi) + φ(τi)yt−1(τi) + εt(τi), (3)

where εt(τi) ∼ N(0, σ2(τi)) and c(τi), φ(τi) and σ2(τi) are scalar parameters.
For each maturity, the h-months ahead forecast is produced by

ŷt+h(τi) = ĉ(τi) + φ̂(τi)ŷt+h−1(τi). (4)

On the other hand, in the direct approach, the estimated coefficients summarize the h-months ahead effect. In this
case, we estimate the model

yt(τi) = ch(τi) + φh(τi)yt−h(τi) + εt(τi), (5)

where εt(τi) ∼ N(0, σ2(τi)). To obtain the forecast, we regress yt directly on its past value yt−h as in

ŷt+h(τi) = ĉh(τi) + φ̂h(τi)ŷt(τi). (6)
Although we have also implemented the direct approach for the Brazilian case, we do not consider it in this work.
Similar to the findings of Carriero et al. (2010) for U.S. data, the forecast results produced by this approach were
inferior than those of the iterated approach.
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.3. Vector Autoregressive

The Vector Autoregressive (VAR) model presents the advantage that each maturity also uses the historical data of
he other maturities. In the present work, we use a VAR model with the following specification3

Yt = c +�Yt−1 +Hεt(τ), (7)

here εt(τi) ∼ N(0, I), Yt = (yt(1), . . ., yt(30))′ is a vector (11 × 1) that contains the yields of different maturities, c is
vector (11 × 1), � is a matrix (11 × 11) and H is a matrix of residual variance containing (1/2)N(N + 1) = 66 free

arameters.
Due to the high number of parameters, we replace the vector Yt−1 by a 3-dimensional principal components vector.4

ence, we consider the model given by

Yt = c +�Ft−1 + εt(τ), (8)

here εt(τi) ∼ N(0, H) and � becomes a matrix (11 × 3). Then, we obtain the forecast from

Ŷt+h = ĉ + �̂F̂t+h−1. (9)

n order to calculate F̂t+h−1, we previously compute the principal component factor loadings using only data up to
onth t. Then, we multiply these loadings with the iterated forecasts.

.4. Dynamic Nelson and Siegel

The Dynamic Nelson–Siegel (DNS) model has as starting point the static Nelson and Siegel (1987), in which the
nstantaneous forward rate is defined as a polynomial multiplied by the exponential decay

ft(τ) = β1 + β2e
−λτ + β3λτe

−λτ. (10)

Nelson and Siegel (1987) affirm that the equation above can be interpreted as an approximation of a differential
quation solution. Furthermore, the authors argue that the expectations theory provides a heuristic motivation for the
tilization of this approach. More specifically, they defend that if the spot rate is generated by a differential equation,
hen forward rates, being forecasts, are the solutions of this equation. The correspondent term structure is given by5

yt(τi) = β1 + (β2 + β3)

(
1 − e−λτi
λτi

)
+ β3(−e−λτi ). (11)

In order to adequate the Nelson and Siegel (1987) framework to a model of latent factors with dynamic structure,
iebold and Li (2006) adopt a modern interpretation of Eq. (11). They assume that β1, β2 and β3 are time dependent
ariables, respectively, interpreted as level, slope and curvature as presented in

yt(τi) = β1t + β2t

(
1 − e−λτi
λτi

)
+ β3t

(
1 − e−λτi
λτi

− e−λτi
)
, (12)

here each term that multiplies the factors are known as factor loadings.6

The level factor β1t controls the long term maturities. The slope factor β2t commands the short term maturities. The

urvature factor β3t governs the medium term maturities. The parameter λ controls not only the speed of exponential
ecay of the factor loadings on β2t and β3t, but also the position in which the factor loading β3t achieves its maximum.

In this work, λ is fixed as in Diebold and Li (2006). Similar to Cajueiro et al. (2009), we consider the maturity of
2 months, which in turn corresponds to the middle point of the sector of the yield curve considered medium, with

3 The model specification of the VAR model used in this paper is similar to Pooter et al. (2010).
4 Similar to Litterman and Scheinkman (1991) and Pooter et al. (2010), the first three principal components explain almost 99.91% of yield curve
ariation and have the same interpretation: level, slope and curvature.
5 The relation between the forward rate and the yield curve is obtained by y(τ) = (1/τ)

∫ τ

0
ft(u)du.

6 Defined by Litterman and Scheinkman (1991) as the sensibility of the bond yield in relation to its respective factor.
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extremes in 6 and 18 months.7 Therefore, the value that maximizes the loading ((1 − e−λτ i )/λτi) − e−λτ i ) on τ = 12 is
0.14944.

Similar to Diebold and Li (2006), we assume that the factors follow a first-order autoregressive process given by

β̂jt+h = â0 + â1β̃jt, (13)

where β̃jt , for j = 1, 2, 3, are the Ordinary Least Squares (OLS) estimations for each date t using the data of all maturities
and Eq. (12). Furthermore, â0 and â1 are the coefficients of the regression of β̃jt on β̃j,t−h.

Once the β̂j are available in t + h, the yields forecasts can be generated from

ŷt+h(τi) = β̂1t+h + β̂2t+h
(

1 − e−λτi
λτi

)
+ β̂3t+h

(
1 − e−λτi
λτi

− e−λτi
)
. (14)

2.5. Functional Signal Plus Noise with an Equilibrium Correction Model

Bowsher and Meeks (2008) have proposed the so-called Functional Signal Plus Noise with an Equilibrium Correction
Model (FSN-ECM). This framework is based on an economic function (functional signal), in that case a latent yield
curve, which is observed with a measurement error (noise). In order to model the yield curve, the authors establish a
natural cubic spline (NCS), whose dynamic evolution is driven by a cointegrated VAR in the form of error correction
model (ECM). They argue that the FSN-ECM can be interpreted as a special type of dynamic factor model in which
the knots of the splines are the factors and the factor loadings are generated by the natural cubic spline.

Let Sγt (τ) = (Sγt (τ1), . . ., Sγt (τN ))′ be a dynamic NCS evaluated at the vector of observed maturities τ = (τ1, . . .,
τN) with dimension N. Let m be the number of knots of the NCS positioned at the latent maturities k = (1, k2, . . ., km),
which in turn are fixed over time. Consider γ t = (γ1t, . . ., γmt)′ the vector yields evaluated at the knots, i.e., Sγt (kjt ) = γjt
for j = 1, . . ., m, denominated the knot-yields of the spline. Therefore, Sγt (τ) is interpolated from γ t, being uniquely
determined by γ t. It is important to stress that the dimension of vector k is smaller than the dimension of vector τ, that
is, m < N.

The model for the observation vectors Yt(τ) = (yt(τ1), . . ., yt(τN))′ is given by

Yt(τ) = Sγt (τ) + εt(τ)

= W(k, τ)γt + εt(τ)


γt+1 = α(β′γt − μ) +�
γt + νt, (15)

where W(k, τ) corresponds to the interpolating matrix, depending only on τ and k. Sγt (τ) = W(k, τ)γt is given by
Lema B.1 of Bowsher and Meeks (2008). In addition, α is a full rank matrix m × (m − 1) and β is a matrix determined
uniquely by β′γt = (γj+1,t − γj,t)

m−1
j=1 .

The initial state (γ ′
1, γ

′
0)′ has first and second moments given by γ* e ω* respectively. The vector ut = (εt(τ)′, v′t)′

is a white noise process.
Eq. (15) describes the state equation of ECM using a cointegrated VAR. The process γ t is integrated of first-order,

I(1). The difference among the latent yields β′γ t are cointegrated and β′γ t −μ is a vector of stationary cointegrated
relations with zero mean. Then E[β′γ t] =μ is the stationary mean of the cointegrating relations and E[
γ t+1] = 0, hence
excluding deterministic trend.

Under the conditions defined above, Bowsher and Meeks (2008) argue that FSN-ECM model may be structured in a
linear state-space form. This representation form allows the use of the Kalman filter to implement both quasi-maximum
likehood estimation and 1-step ahead forecast.

Therefore, it is possible to define a model specification through FSN(m)-ECM(p), where m is the number of knots

and p is the maximum lag of γ t+1 that enters in Eq. (15). In this work, we only consider the case in which m = 5. On
one hand, smaller values of m may result in a very large mean residual sum of the squares (Bowsher and Meeks, 2008).
On the other hand, larger values of m may cause overfitting of the data used in the estimation step. In addition, we

7 In this study, the following definitions of maturities are considered: short maturities (up to 3 months), medium maturities (from 6 up to 12
months) and long maturities (above 18 months).
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se p = 2, since Bowsher and Meeks (2008) states that ECM(1) models provide forecasts with higher Mean Square
orecast Error (MSFE) than ECM(2) models do.

In order to proceed with the estimation, additional restrictions are imposed in the terms of the non-singular matrix
, where ϕ = Qγ t is the following transformed state vector, which contains the latent short rate and inter-knot latent
ield spreads

ϕt = (γ1,t , γ2,t − γ1,t , . . ., γm,t − γm−1,t)
′ =

[
1 01×(m−1)

β′

]
γt = Qγt. (16)

The state equation can be written as the VAR


ϕt+1 = Qα(β′Q−1ϕt − μs) +Q�Q−1
ϕt + ηt, (17)

here ηt = Qvt e �η = var[ηt] = Q�vQ
′. Both covariance matrices �η and �ε = σ2

ε IN are diagonal as in Bowsher
nd Meeks (2008).8 The Kalman Filter is initialized by using (γ ′

1, γ
′
0) = (μ∗, �∗), where �*=0 and μ is set equal to

y0(k)′, y−1(k)′)′.
For computational purposes,9 we write Eq. (17) as


ϕt+1 =
[
I +Qαβ′Q−1 +Q�Q−1

]
ϕt +Q�Q−1ϕt−1 +Qαμs +Qνt. (18)

We define vector Xt as

Xt =

⎡⎢⎢⎣
ϕt

ϕt−1

1

⎤⎥⎥⎦ . (19)

Therefore, the state-space representation becomes

Xt+1 =

⎡⎢⎢⎢⎣
A B C̄

I 0 0

0 0 I

⎤⎥⎥⎥⎦Xt +
⎡⎢⎣Q0

0

⎤⎥⎦ νt, (20)

hereA = [
I +Qαβ′Q−1 +Q�Q−1

]
, B = Q�Q−1 and C̄ = −Qαμs. While matrix A is fully estimated, we assume

hat matrix B is a diagonal matrix10 when m ≤ 5, as in Bowsher and Meeks (2008) and Cajueiro et al. (2009).

. Forecast combining methods

In this section we implement ten combining methods organized into four classes: simple (simple mean, median and
rimmed mean), Inverted Mean Square Forecast Error (Inverted MSFE), weighted least squares (WLS) and via Model
onfidence Set (MCS). In this last class, we apply all previous methods after excluding the worst performance forecast
odels.
In order to test the predictive capacity of the models, we split the data into in-sample (the first R observations) and

ut-of-sample (the last P observations). Furthermore, in some schemes, namely inverted MSFE, WLS and combining
ia MCS, we need an extra out-of-sample period (training period) for computing the weights of the individual forecast
odels. In this case, we use the first P0 out-of-sample observations. More specifically, we calculate the weights using{ }t−h { }t−h
he individual out-of-sample forecasts, ŷt+h|t(τi) t=R+P0

, and the observations, yt+h|t(τi) t=R+P0
, both available

rom the beginning of the training out-of-sample period to time t. In turn, we use the P1 post-training out-of-sample
bservations to compare the forecast performance of the individual models and combining schemes.

8 While the diagonality �ε may be justified by the assumption of the independence of the shocks, the diagonality of �η is clearly imposed as a
implification of the estimation framework.
9 See in Cajueiro et al. (2009).

10 This is a simplification meaning that only own lagged changes of the spreads matters for each equation of the system (17).
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Let C be the number of forecast models to be combined. The combined h-months ahead forecast for the yield with
maturity τi is given by

ŷt+h|t(τi) = f (ŷt+h|t(τi); wt+h|t(τi)), (21)

where ŷt+h|t(τi) indicates the C-dimensional vector of forecast models and wt+h|t(τi) denotes the parameters or weights
associated with the combination. In addition, the function f transforms the vector ŷt+h|t(τi) into the summary measure
ŷt+h|t(τi).

3.1. Simple combinations

We consider three simple combining methods of individual forecasts: simple mean (SM), median (MED) and
trimmed mean (TM).

Simple mean: It gives the same weights for all individual models, i.e. wt+h|t,c(τi) = 1/C. Then, the combined
forecast is given by

ŷt+h|t(τi) =
C∑
c=1

1

C
ŷt+h|t,c(τi). (22)

Median: It uses the sample median of individual models. Thus, the combined forecast is

ŷt+h|t(τi) = median of
{
ŷt+h|t,c

}C
c=1. (23)

Trimmed mean: It makes the weights of individual forecast models that produce the largest and smallest forecast
values equal to zero (wt+h|t,c(τi) = 0). For the other models, we assign wt+h|t,c(τi) = 1/(C − 2) and evaluate the
forecast as the simple mean that uses only these C − 2 remaining individual models as in

ŷt+h|t(τi) =
C−2∑
c=1

1

C − 2
ŷt+h|t,c(τi). (24)

3.2. Inverted Mean Square Forecast Error

In this combining class, the weights in Eq. (21) are inversely proportional to the MSFE of each individual model,
computed over a window of the 24 previous months11 using

wt+h|t,c(τi) = 1/MSFE(τi)
h|t,c

C∑
c=1

1/MSFE(τi)
h|t,c

,

where wt+h|t,c(τi) denotes the weight assigned to period t forecast of the cth model (ŷt+h|t,c) and MSFE(τi)
h|t,c =

(1/24)
∑24
p0=1(ŷ(τi)

t−p0+1|t−h−p0+1,c − y(τi)
t−p0+1)2. Therefore, the combined forecast is given by

ŷt+h|t(τi) =
C∑
wt+h|t,c(τi)ŷt+h|t,c(τi). (25)
c=1

11 This is the same window that is considered in the training period used for the computation of the weights. This window is also used in the WLS
and MCS combinations.
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.3. Weighted Least Squares

In order to compute the initial WLS combined forecast for the observation yR+P0+h(τi), we regress the previous
bservations {ys+h(τi)}R+P0−h

s=R on a constant and
{
ŷc,s+h|s(τi)

}R+P0−h
s=R for c = 1, . . ., C. The weight of each model is

et equal to the WLS estimator

β̂MQP = (X′W−1X)
−1
X′W−1y,

here W is the weighted mean matrix (T × T). To obtain the second forecast for the observation yhR+P0+h+1(τi), we

stimate the weights by regressing
{
yhs+h(τi)

}R+P0−h+1
s=R+1 on a constant and

{
ŷc,s+h|s(τi)

}R+P0−h+1
s=R+1 , for c = 1, . . ., C.

his procedure is repeated until the end of the out-of-sample period. Then, we use the WLS coefficients as weights in
he combined forecast equation

ŷt+h|t(τi) = w0,t +
C∑
c=1

wt+h|t,c(τi)ŷt+h|t,c(τi). (26)

Diebold and Pauly (1987) recommend the use of a diagonal matrix W = diag[ψtt] = ktλ, where t = 1, . . ., T and T is
he number of observations used in the WLS regression. Hence, the weights may be declining at an increasing rate,
t a decreasing rate or at a constant rate, depending on the signal of (λ− 1). Similar to the case of the inverted MSFE
ethod, T is fixed and equal to 24. Furthermore, λ and k used in this work are equal to 1, that is, the weights of

lder observations decrease linearly. Finally, it is worth emphasizing that the WLS is the only unrestricted combining
ethod, i.e., the weights assigned to each individual model can assume any value. In other cases, the weights vary

etween 0 and 1, with the sum of them equal to 1.

.4. Combining via Model Confidence Set

In this combining scheme, we remove the models with the worst forecasting performances as considered in Hansen
t al. (2003) and Hansen et al. (2011). Then, we combine the forecasts of the remaining models by the simple
ombinations, the inverted MSFE and the WLS.

Given a forecast model set C0 (the set that contains all individual forecast models), the MCS procedure identifies

Ĉ∗
α ⊂ C0

here Ĉ∗
α is the subset that contains the best forecast models given a confidence level (1 −α).

Starting with C = C0 and a forecast vector P0,12 the MCS procedure repetitively tests the null hypothesis of forecast
ccuracy:

H0,C : E[dij,t] = 0,∀i, j ∈ C,
here dij,t = Li,t − Lj,t is the differential loss between models i and j and L is the loss function. The MCS procedure

equentially eliminates the model with the worst performance, as long as the null hypothesis is rejected. We repeat the
rocedure until the null hypothesis is no longer rejected, in which case the remaining set is Ĉ∗

α. In order to proceed
ith the test, we use the semi-quadratic statistic

TSQ ≡
∑
i,j∈C

t2i,j,

here ti,j = (d̄i,j/
√

ˆvar(d̄i,j)) for i, j ∈ C and d̄i,j = (1/P0)
∑P0 dij,t .
t=1

Therefore, to obtain a h-months ahead combined forecast, we use the statistic TSQ to construct Ĉ∗
0.25, with a

onfidence level of (1−α) = 75 %13 as in Pooter et al. (2010). To generate the probability distribution under the null

12 In this case P0=24.
13 The set of models are based on the significance level of 75%, since in many cases the forecast error differences are relatively small. Thus,
raditional significance levels (such as 5%) are not very informative, since no model may be excluded of the MCS.
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Fig. 1. Evolution of interest rates.
Source: BM&FBovespa.

hypothesis, we use a bootstrap implementation through stationary blocks,14 with 1000 resamples, average block length
of 2015 and the MSFE as the loss function.

4. Yield data

We have obtained the data employed for the yield curve construction from the interest rates swaps traded at
BM&FBovespa futures and stocks exchange.16 In these contracts, a party pays a fixed rate and in exchange receives a
floating rate. The reverse occurs with the counterparty of the contract. The resulting cash flow exchange is computed
over the same notional value. In turn, by acting as a central counterpart, BM&FBovespa guarantees these contracts.
Therefore, those interest rates may be seen as proxies for default-free interest rates.17

We have considered the following maturities of the swaps contracts: 1, 2, 3, 6, 9, 12, 15, 18, 21, 24 and 30 months.
The data begins in December 1997 and ends in July 2010. Each swap is daily observed (3112 samples), with the

monthly data constructed from the daily averages (152 samples).

Fig. 1 presents the dynamic evolution of the data. After a period of many crises that affected Brazil (from 1997 to
2002), we observe a long run tendency of level reduction of the yield curve. This phenomenon may be justified by the
improvement of macroeconomic conditions verified in Brazil from 2003 until the end of the sample period.

14 Developed by Politis and Romano (1994).
15 The choice of block size 20 can be justified by a trade off between the preservation of the dependence structure of the data and the variation of

the bootstrap sample (small variations may result in poor approximations).
16 On the contrary to what occurs in the U.S., where the prices of the bonds are observed, in the Brazilian market the interest rates are the ones that

are directly traded. Hence, it is not necessary to estimate the Brazilian term structure from the bonds prices.
17 Although international literature uses government bond yields as reference, the use of interest rates swaps is justified for some reasons: (1) there

are not enough old data for government bonds; (2) interest rates swaps are more liquid and are highly correlated with government bonds yields.
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Table 1
Descriptive statistics of interest rates.

Maturity Mean StdDev Min Max ρ(1) ρ(12) ρ(24)

1m 17.81 6.67 8.61 43.95 0.92 0.40 0.14
2m 17.84 6.57 8.62 43.59 0.92 0.41 0.16
3m 17.93 6.56 8.62 44.86 0.92 0.42 0.17
6m 18.27 6.66 8.69 44.88 0.93 0.46 0.20
9m 18.59 6.87 8.84 45.01 0.93 0.47 0.20
12m 18.83 7.02 9.10 45.64 0.93 0.47 0.20
15m 19.14 7.26 9.47 46.19 0.93 0.47 0.20
18m 19.39 7.45 9.82 46.92 0.94 0.47 0.19
21m 19.58 7.60 10.10 47.23 0.94 0.47 0.18
24m 19.75 7.73 10.37 47.37 0.94 0.47 0.18
30m 20.04 7.95 10.43 47.43 0.94 0.48 0.18

Note: The last three columns present the sample autocorrelations for 1, 12 and 24 months.

Table 2
(Trace) Relative Root Mean Squared Forecast Error, 1-month horizon.

Models (T)RMSFE 1m 2m 3m 6m 9m 12m 15m 18m 21m 24m 30m

RW 0.54 0.39 0.39 0.40 0.43 0.48 0.53 0.57 0.60 0.63 0.66 0.70
(0.00) (0.00) (0.07) (0.10) (0.05) (0.05) (0.07) (0.07) (0.12) (0.22) (0.20)

Panel A: Individual models
AR 0.75 0.78 0.71 0.69 0.74* 0.75* 0.76* 0.76* 0.76* 0.76* 0.76* 0.76*

(0.00) (0.02) (0.34) (0.34) (0.56) (0.66) (0.66) (0.68) (0.66) (0.66) (0.76)
VAR 0.90 0.50 0.46* 0.51* 0.80 0.97 1.02 1.02 0.99 0.95 0.92 0.91

(0.56) (0.63) (0.54) (0.02) (0.02) (0.07) (0.15) (0.17) (0.17) (0.27) (0.07)
DNS 0.85 1.00 0.91 0.87 0.84 0.86 0.88 0.88 0.86 0.82 0.79 0.79

(0.24) (0.44) (0.56) (0.61) (0.56) (0.51) (0.59) (0.59) (0.68) (0.71) (0.83)
FSN-ECM 0.82 0.44* 0.48 0.54* 0.74* 0.86 0.92 0.91 0.89 0.86 0.85 0.87

(0.73) (0.37) (0.27) (0.17) (0.12) (0.07) (0.07) (0.07) (0.12) (0.12) (0.12)

Panel B: Combining methods
SM 0.79 0.67 0.63 0.64 0.75 0.81 0.84 0.85 0.84 0.81 0.80 0.80
MED 0.76 0.66 0.62 0.62 0.74 0.78 0.80 0.79 0.79 0.77 0.77 0.78
TM 0.77 0.65 0.61 0.62 0.73 0.78 0.82 0.82 0.81 0.79 0.78 0.79
MSFE 0.77 0.55 0.54 0.58 0.73 0.80 0.83 0.83 0.83 0.80 0.79 0.79
WLS 0.91 0.53 0.60 0.55 0.73 0.85 0.98 0.94 0.98 0.95 0.97 1.08

Panel C: Combining via MCS
MCS-SM 0.75 0.49 0.47 0.56 0.69 0.76 0.80 0.84 0.81 0.78 0.79 0.79
MCS-MED 0.75 0.48 0.47 0.57 0.70 0.76 0.78 0.82 0.81 0.77 0.78 0.79
MCS-TM 0.75 0.48 0.47 0.57 0.70 0.76 0.78 0.82 0.81 0.77 0.78 0.79
MCS-MSFE 0.75 0.49 0.47 0.56 0.69 0.76 0.80 0.83 0.81 0.78 0.79 0.79
MCS-WLS 0.77 0.59 0.62 0.68 0.71 0.92 0.84 0.65 0.73 0.75 0.79 0.87

Note: The out-of-sample period for 1-month horizon used in the table is 2006.4–2009.8. The training period used in the combining methods contains
a 24-months rolling window, beginning in 2004.4–2006.3 and ending in 2007.8–2009.7. The individual models parameters are estimated using a
76-months rolling window, beginning in 1997.12–2004.3 and ending in 2001.4–2007.7. We use the following abbreviations: RW stands for the
Random Walk, AR for Autoregressive, VAR for Vector Autoregressive, DNS for Dynamic Nelson Siegel, FSN-ECM for Functional Signal Plus
Noise with an Equilibrium Correction Model, SM for Simple Mean, MED for Median, TM for Trimmed Mean, MSFE for Mean Squared Forecast
Error, WLS for Weighted Least Squares. The prefix “MCS” in Panel C indicates that the combining methods of Panel B are applied after excluding
t
he worst performing forecast models according to Ĉ∗

0.25.
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Table 3
(Trace) Relative Root Mean Squared Forecast Error, 3-months horizon.

Models (T)RMSFE 1m 2m 3m 6m 9m 12m 15m 18m 21m 24m 30m

RW 1.29 1.09 1.10* 1.12* 1.18* 1.25* 1.31* 1.37* 1.39* 1.41* 1.42* 1.46*
(0.63) (0.44) (0.49) (0.76) (0.83) (0.85) (0.83) (0.83) (0.83) (0.83) (0.83)

Panel A: Individual models
AR 1.06 1.15 1.09 1.07* 1.10* 1.08* 1.07* 1.05* 1.04* 1.04* 1.03* 1.03*

(0.00) (0.02) (0.34) (0.46) (0.61) (0.66) (0.66) (0.68) (0.66) (0.66) (0.85)
VAR 1.48 0.81 0.91* 1.02* 1.34 1.49 1.56 1.59 1.63 1.65 1.67 1.70

(0.59) (0.68) (0.61) (0.10) (0.02) (0.07) (0.15) (0.17) (0.17) (0.27) (0.07)
DNS 1.17 1.34 1.31 1.28* 1.24* 1.20* 1.17 1.14 1.12 1.10 1.08 1.07*

(0.78) (0.80) (0.83) (0.88) (0.80) (0.73) (0.78) (0.71) (0.73) (0.78) (0.83)
FSN-ECM 1.44 0.78* 0.91* 1.03* 1.30* 1.45 1.53 1.55 1.57 1.58 1.61 1.64

(0.76) (0.37) (0.27) (0.17) (0.12) (0.07) (0.07) (0.07) (0.12) (0.12) (0.12)

Panel B: Combining methods
SM 1.12 0.91 0.94 0.98 1.09 1.14 1.16 1.16 1.17 1.17 1.17 1.18
MED 1.05 0.97 1.04 1.06 1.11 1.09 1.08 1.06 1.05 1.04 1.04 1.03
TM 1.11 0.89 0.94 0.98 1.09 1.13 1.15 1.15 1.15 1.15 1.15 1.16
MSFE 1.03 0.85 0.91 0.96 1.05 1.07 1.08 1.07 1.07 1.06 1.06 1.05
WLS 1.25 0.89 0.80 0.74 0.94 1.31 1.39 1.41 1.40 1.33 1.34 1.42

Panel C: Combining via MCS
MCS-SM 0.97 0.83 0.83 0.92 1.04 0.99 0.99 1.00 0.99 0.99 0.99 0.99
MCS-MED 0.96 0.83 0.84 0.89 1.03 0.99 0.98 1.00 0.99 0.99 0.98 0.98
MCS-TM 0.96 0.83 0.84 0.89 1.03 0.99 0.98 1.00 0.99 0.99 0.98 0.98
MCS-MSFE 0.97 0.83 0.83 0.91 1.03 0.99 0.99 1.00 0.99 0.99 0.99 0.99
MCS-WLS 1.10 0.92 0.73 0.82 1.01 1.25 1.24 1.19 1.13 1.10 1.12 1.19

Note: The out-of-sample period for 3-months horizon used in the table is 2006.6–2009.10. The training period used in the combining methods
contains a 24-months rolling window, beginning in 2004.6–2006.5 and ending in 2007.10–2009.9. The individual models parameters are estimated

using a 76-months rolling window, beginning in 1997.12–2004.3 and ending in 2001.4–2007.7.

Table 1 presents descriptive statistics of the full sample. The typical yield curve is upward sloping. The volatility of
the yields increases with the maturity. Finally, the amplitude of the yields indicates the huge change of level of yield
curve during the period under analysis.

5. Methodology

This section presents the forecast procedures and evaluating criteria.

5.1. Forecast procedure

Similar to Cajueiro et al. (2009), in order to proceed with out-of-sample forecasts, we estimate the models using
the first half of the sample (in-sample), that is, a rolling estimation window of 76 months. The initial estimation
window is 1997.12–2004.03. Then, we reestimate the models including the next month and excluding the first month
of the previous sample. The parameters are updated until the final estimation window, 2001.04–2007.07. We obtain
the forecasts for the following horizons ahead: 1, 3, 6 and 12 months. We use the models to generate daily forecasts
and we convert these forecasts to the monthly average.

Similar to Almeida et al. (2008), every month ahead corresponds to 21 working days. Inside the out-of-sample period,
we use the first 24 months to obtain the weights of the individual models that are used in the forecast combinations

(training period P0 described in Section 3). We compare the individual models and the combining schemes with the
RW, which is the model used as the benchmark in the yield curve forecast.
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Table 4
(Trace) Relative Root Mean Squared Forecast Error, 6-months horizon.

Models (T)RMSFE 1m 2m 3m 6m 9m 12m 15m 18m 21m 24m 30m

RW 2.16 1.96* 1.97* 1.99* 2.09* 2.18* 2.24 * 2.29* 2.29* 2.27* 2.24* 2.20*
(0.76) (0.83) (0.88) (0.85) (0.83) (0.85) (0.83) (0.83) (0.83) (0.83) (0.83)

Panel A: Individual models
AR 1.15 1.24 1.20* 1.18* 1.20* 1.17* 1.15* 1.12* 1.12* 1.10* 1.10* 1.08*

(0.00) (0.12) (0.49) (0.51) (0.61) (0.66) (0.66) (0.68) (0.66) (0.66) (0.85)
VAR 1.77 1.15 1.25* 1.35* 1.58 1.70 1.77 1.83 1.91 1.98 2.06 2.20

(0.59) (0.78) (0.61) (0.12) (0.12) (0.07) (0.15) (0.17) (0.17) (0.27) (0.07)
DNS 1.15 1.32 1.30* 1.27* 1.21* 1.16* 1.11* 1.08* 1.07* 1.06* 1.06* 1.07*

(0.83) (0.93) (0.93) (0.90) (0.88) (0.85) (0.95) (0.93) (0.93) (0.95) (0.90)
FSN-ECM 1.69 1.11* 1.23* 1.33* 1.53 1.65 1.72 1.76 1.82 1.88 1.96 2.08

(0.93) (0.41) (0.29) (0.17) (0.12) (0.07) (0.07) (0.07) (0.12) (0.12) (0.12)

Panel B: Combining methods
SM 1.24 1.08 1.11 1.14 1.21 1.24 1.25 1.25 1.27 1.29 1.31 1.35
MED 1.15 1.14 1.16 1.17 1.21 1.18 1.17 1.14 1.13 1.12 1.12 1.11
TM 1.24 1.08 1.12 1.15 1.22 1.24 1.25 1.25 1.27 1.28 1.30 1.33
MSFE 1.11 1.07 1.10 1.13 1.16 1.15 1.13 1.11 1.10 1.09 1.08 1.07
WLS 0.85 0.81 0.60 0.56 0.71 0.83 0.85 0.89 0.91 0.95 0.97 1.00

Panel C: Combining via MCS
MCS-SM 1.05 1.12 1.15 1.13 1.15 1.11 1.03 1.00 0.98 0.97 0.97 0.97
MCS-MED 1.04 1.13 1.14 1.12 1.13 1.09 1.03 1.00 0.99 0.97 0.98 0.97
MCS-TM 1.04 1.13 1.14 1.12 1.13 1.09 1.03 1.00 0.99 0.97 0.98 0.97
MCS-MSFE 1.04 1.11 1.14 1.13 1.15 1.10 1.02 1.00 0.98 0.97 0.97 0.97
MCS-WLS 0.92 0.88 0.85 0.76 0.82 0.87 0.96 0.95 0.95 1.06 0.96 0.92

Note: The out-of-sample period for 6-months horizon used in the table is 2006.9–2010.1. The training period used in the combining methods contains
a
7

5

e

c
a

24-months rolling window, beginning in 2004.9–2006.8 and ending in 2008.1–2009.12. The individual models parameters are estimated using a
6-months rolling window, beginning in 1997.12–2004.3 and ending in 2001.4–2007.7.

.2. Evaluation result procedures

In order to evaluate the full out-of-sample period, we compute the Root Mean Squared Forecast Error (RMSFE) for
ach forecast horizon and maturity

RMSFE(τi)
c =

√√√√ 1

P1

P1∑
t=1

(ŷ(τi)
t+h|t,c − y(τi)

t+h)2. (27)

The accuracy of forecasts is appraised by the Relative Root Mean Squared Forecast Error(ReRMSFE) given by

ReRMSFE(τi)
c = RMSFE(τi)

c

RMSFE
(τi)
RW

. (28)

Similar to Hordahl et al. (2006) and Pooter et al. (2010), we summarize the performances of each model and
ombining method across all maturities by evaluating the Trace Root Mean Squared Forecast Error (Christoffersen
nd Diebold, 1998) given by

TRMSFEc =
√√√√ 1

N

1

P1

N∑
i=1

P1∑
t=1

(ŷ(τi)
t+h|t,c − y(τi)

t+h)2. (29)
Furthermore, in order to compare to the RW, we use

TReRMSFEc = TRMSFEc

TRMSFERW
. (30)
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Table 5
(Trace) Relative Root Mean Squared Forecast Error, 12-months horizon.

Models (T)RMSFE 1m 2m 3m 6m 9m 12m 15m 18m 21m 24m 30m

RW 2.97 2.83* 2.84* 2.86* 2.96* 3.04* 3.09* 3.11* 3.08* 3.02* 2.96* 2.89*
(0.98) (0.93) (0.98) (0.95) (0.93) (0.88) (0.83) (0.83) (0.83) (0.83) (0.83)

Panel A: Individual models
AR 1.21 1.3 1.27 1.26 1.27 1.24 1.21 1.18 1.17 1.16 1.16 1.14*

(0.12) (0.17) (0.49) (0.51) (0.61) (0.66) (0.66) (0.68) (0.66) (0.66) (0.85)
VAR 2.16 1.67 1.75 1.82 1.97 2.05 2.11 2.19 2.28 2.39 2.50 2.70

(0.59) (0.78) (0.61) (0.12) (0.12) (0.07) (0.15) (0.17) (0.17) (0.27) (0.07)
DNS 1.15 1.29 1.27 1.24 1.17 1.12 1.09* 1.07* 1.07* 1.08* 1.10* 1.13*

(0.83) (0.93) (0.93) (0.95) (0.95) (0.88) (0.95) (0.93) (0.93) (0.95) (0.90)
FSN-ECM 1.95 1.56 1.64 1.70 1.82 1.88 1.93 1.97 2.04 2.13 2.22 2.38

(0.98) (0.46) (0.29) (0.17) (0.12) (0.07) (0.07) (0.07) (0.12) (0.12) (0.12)

Panel B: Combining methods
SM 1.38 1.28 1.30 1.32 1.36 1.36 1.36 1.36 1.39 1.42 1.45 1.51
MED 1.23 1.30 1.30 1.30 1.30 1.26 1.23 1.19 1.18 1.17 1.17 1.16
TM 1.37 1.29 1.32 1.33 1.36 1.36 1.36 1.35 1.37 1.39 1.42 1.47
MSFE 1.17 1.24 1.25 1.25 1.23 1.19 1.16 1.14 1.12 1.11 1.11 1.10
WLS 0.57 0.59 0.55 0.52 0.53 0.55 0.57 0.59 0.59 0.59 0.58 0.56

Panel C: Combining via MCS
MCS-SM 1.04 1.25 1.21 1.19 1.02 0.99 0.97 0.97 0.96 0.97 0.97 0.99
MCS-MED 1.04 1.26 1.20 1.15 1.01 0.99 0.97 0.97 0.96 0.97 0.97 0.99
MCS-TM 1.04 1.26 1.20 1.15 1.01 0.99 0.97 0.97 0.96 0.97 0.97 0.99
MCS-MSFE 1.04 1.24 1.20 1.18 1.02 0.99 0.97 0.97 0.96 0.97 0.97 0.99
MCS-WLS 0.88 0.85 0.79 0.74 1.13 1.04 0.91 0.84 0.83 0.82 0.82 0.82

Note: The out-of-sample period for 12-months horizon used in the table is 2007.3–2010.7. The training period used in the combining methods

contains a 24-months rolling window, beginning in 2005.3–2007.2 and ending in 2008.7–2010.6. The individual models parameters are estimated
using a 76-months rolling window, beginning in 1997.12–2004.3 and ending in 2001.4–2007.7.

In order to test if the forecast error differentials of the models are statistically different, we apply the MCS approach
described in Section 3.4. The relevant change here is the number of observations considered, P1 instead of P0. This is
due to the fact that P1 is the number of out-of-sample observations used to compare the performances of the models
and combining schemes.

To analyze in which periods of the sample the models or methods underperform or outperform the RW, we graphically
display the Cumulative Squared Forecast Error (CSFE) for the accumulated period T given by

CSFE(τi)
c,T =

T∑
t=1

[(ŷ(τi)
t+h|t,RW − y(τi)

t+h)2 − (ŷ(τi)
t+h|t,c − y(τi)

t+h)2]. (31)

Finally, to summarize this measure for all maturities, we use the TCSFE, which is the simple average of CSFE(τi)
c,T ,

for i = 1, . . ., N.18

It is worth mentioning that this approach was applied for stocks by Welch and Goyal (2008) and adapted to interest
rates by Pooter et al. (2010).

6. Results

This section presents the results of the paper. For the sake of clearness, we divide this section in two parts. While

in the first subsection we present the results for the individual models, in the second subsection we analyze the results
for the combining methods.

18 In fact, although the original trace MSFE statistic proposed by Christoffersen and Diebold (1998) is a sum, in this work also we divide it by N
to normalize the measures.
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Fig. 2. Trace Cumulative Squared Forecast Error (including training period). TCSFE of individual models. 1-month horizon out-of-sample period:
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004.4–2009.8. 3-months horizon out-of-sample period: 2004.06–2009.10. 6-months horizon out-of-sample period: 2004.9–2010.1. 6-months
orizon out-of-sample period: 2005.03–2010.07.

.1. Individual models results

We start the discussion of the individual models performance considering the results in terms of the (Trace) Relative
oot Mean Squared Forecast Error, (T)ReRMSFE, displayed for each forecast horizon in Tables 2–5. The first row of
ach table contains the (T)RMSFE for the RW. The remaining rows in Panels A, B and C19 report the (T)ReRMSFE
or the other models relative to the RW, in accordance with Eq. (29). While the first column of each row corresponds
o the TReRMSFE, the remaining columns present the ReRMSFE.

Thus, a number smaller than 1 indicates that the model outperforms the RW and a number larger than 1 suggests
he model underperforms. The stars on the upper right of the ReRMSFE of the models denote that the model belongs
o the set Ĉ∗

0.25, whereas the data in parentheses corresponds to the percentage of times that each model is included in̂∗
0.25.

In terms of 1-month ahead forecasts, in general, the individual models beat the RW for almost all maturities. The

nly exceptions are the DNS and the VAR models for the few maturities. Additionally, the AR model seems to be
he one with the best general performance. However, in the other forecast horizons (h = 3, h = 6 and h = 12) no model

19 For the forecast evaluation of the individual models only matters Panel A.
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Fig. 3. Trace Cumulative Squared Forecast Error, 1-month horizon. TCSFE of individual models and combining methods: 2006.6–2009.8.

systematically outperforms the RW. In these horizons, the AR and the DNS models present regular performances,
whereas the VAR and the FSN-ECM underperform the RW.

Regarding the significance test of the MCS approach, it is worth pointing out that although the AR and the DNS
present ReRMSFE above 1 for horizons larger than 1 month, the results of the tests suggest not being possible to
assume the superiority of the RW in many maturities, specially in the longest ones. However, this result differs in some
sense from Cajueiro et al. (2009),20 once we also cannot affirm the superiority of the DNS. This fact demonstrates that
the forecast performances of the models can vary over time, a result defended theoretically by Timmermann (2006)
and verified empirically for the US yield curve21.

Analyzing over the specific maturities, the FSN-ECM and the VAR models present superior performance at the
shorter maturities and horizons. On the other hand, the AR demonstrates good performance at longer maturities until
the 6-month horizons. Finally, the DNS has better performance at the longer maturities and horizons.

22
We consider now the CSFE graphical analysis generated for the entire out-of-sample period. Fig. 2 shows the
graphs for each forecast horizon. Every line in the graph represents a model and displays the forecast performance
relative to the RW. An upward slope of CSFE signals the model is outperforming, whereas the opposite indicates the

20 In their work, considering a shorter sample period (1997.12–2008.03), they find that the DNS outperformed the RW for all maturities and
horizons. It is worth mentioning that we also find this result, if we consider this smaller period.
21 As in Bowsher and Meeks (2008), and Pooter et al. (2010).
22 In particular, Pooter et al. (2010) asserts that this option helps to show explicitly the performance of the individual models during the training

period.
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ig. 4. Trace Cumulative Squared Forecast Error, 3-months horizon. TCSFE of individual models and combining methods: 2006.6–2009.10.

odel is underperforming. In order to reduce the number of graphs displayed, we use the Trace Cumulative Squared
rror (TCSFE).

In general terms, the training period analysis (P0) suggests a reduced volatility in the performances of the models,
xcept for the DNS at 1-month ahead horizon. On the other hand, in the subsequent periods (P1), we have found that:
1) the VAR and the FSN-ECM present poor performance from the end of 2006 to the end of the sample for the longer
orizons; (2) all models outperform the RW in the period of international financial crisis (from the end of 2008 to the
iddle of 2009) for the 1-month ahead horizon; (3) the DNS underperforms the RW after the peak of international

risis (middle 2009) for the 3 and 6-months ahead horizons; (4) the AR and the DNS, on one side, and the VAR and
he FSN-ECM, on the other side, present a similar performance.

.2. Combining methods results

In order to analyze the performance of the combining schemes, we consider Panels B and C in Tables 2–5. While
anel B refers to the combinations of all models, Panel C considers only the ones that are not eliminated by the MCS
pproach.

First, at each forecast horizon, it is always possible to find at least one combining scheme that has presented equal or

uperior performance than the best individual model. In addition, the longer the horizon, the greater the contribution of
he combinations. At the shorter horizons, the simple combinations and the inverted MSFE trimmed by MCS presented
erformances similar to the AR in 1-month ahead and superior performance than the RW in 3-months ahead. At the
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Fig. 5. Trace Cumulative Squared Forecast Error, 6-months horizon. TCSFE of individual models and combining methods: 2006.9–2010.1.

longer horizons, the combinations by WLS (trimmed or not by MCS approach) produce smaller forecast errors than
the RW.

Second, comparing Panels B and C, we can verify the good performance of the combinations after applying the MCS
approach. Except for the WLS combinations for the longer horizons, we have found for each scheme superior forecast
results after the exclusion of worst individual models. The percentages in the tables (in parentheses) indicate that most
of the time the methods via MCS select the best performance models. Other interest point is that, in the shorter horizons,
in which the combinations via MCS present the best results, the differences among them are negligible. Therefore,
we can conclude that in these cases the trimming procedure of individual models via MCS is more beneficial for the
forecast than the way how the weights are computed. This is in line with Timmermann (2006) that affirms that the
trimming of the worst models often improves performance.

Third, the WLS combining method (without MCS), which is the unique unrestricted method, presents quite different
performances depending on the forecast horizon. While, in the shorter horizons, this scheme presents large forecast
errors, in the longer horizons, this scheme is the one that presents the best performance, with even more emphasis in the
12-month ahead horizon. In this horizon, the outperformance relative to the RW was above 40% in all maturities. This
feature of best performance of an unrestricted method is similar to the empirical findings of Bolder and Romanyuk
(2008) with the application of the simple OLS for the Canadian interest rates. As Timmermann (2006) points out, the
schemes that use regressions can adjust model bias through the intercept term. It is also important to note that although

the WLS combining methods are effective in the longer horizons, it has the disadvantage of being more sensitive to
the training period used in the weights determination.
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Figs. 3–6 can also be used to value the quality of the combining methods. In order to confront them in a more
ffective way, these figures contain the same period of Tables 2–5. The forecast errors of the combinations are certainly
ess volatile than the ones of individual models. Among the combining methods, emphasis is given to the methods via

CS, whose forecast errors are even less volatile. In terms of eventual benefits of the use of time-varying parameters in
he case of structural breaks, we find empirical evidence of forecast improvement in the shorter horizons of the inverted

SFE combination and in the longer horizons of the WLS combination23 in the period of international financial crisis
2008–2009). Another important point is that the poor forecast performance of the VAR and the FSN-ECM above
-month ahead is mitigated with the introduction of the combining methods.24 This verification corroborates with
immermann (2006) argument that the combining schemes may be interpreted as a way of turning the forecasts more
obust against the specification bias of individual models.

. Conclusions

In this paper we have assessed the performance of individual models and combining methods using Brazilian data.

In the case of individual models, we conclude that it is not possible to identify an individual model that consistently

roduces smaller forecast errors. The performance of each model is contingent to the forecast horizon, maturity and
eriod of the sample. This fact confirms that models with different specifications contribute in a complementary way to

23 In both cases, with or without trimming via MCS.
24 In particular, in the VAR and the FSN-ECM with trimming via MCS, the forecast errors are in most of the time strongly reduced.
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approximate the data generating process of the term structure, which is a strong argument for the use of the combining
schemes.

The results of the combining methods are in consonance with this analysis. For each forecast horizon it is possible
to find at least one combining scheme that presents performance equal or superior to the best individual model. In
addition, the longer the horizon, the greater the contribution of the combinations.

The forecast errors of the combining schemes are certainly less volatile than the individual models, specially in the
combinations via MCS. These specific combinations also present superior results in the shorter horizons, suggesting
that they can be used in these situations.

For 1-month ahead forecasts, the simple combinations via MCS and the MSFE via MCS present a performance
similar to the best individual model, which is the AR. On the other hand, for 3-month ahead forecasts, they present
a performance superior than the best individual model, which is the RW. Another relevant point is that the difference
among the results of these combinations is negligible. Thus, we can conclude that in these cases the trimming procedures
by MCS are more beneficial for the forecast combination than the way how the weights are computed.

In the longer horizons, the WLS combination presents the best performance. This is a significant result since it is
well known that in the longer ahead horizons it is very difficult to find a yield curve forecast model that beats the simple
RW.
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