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Abstract

Methods of systematically balanced treatment allocation for economic
experiments, as an alternative to random allocation, are gaining increasing
attention in recent years. This paper analyzes the benefits and the limits
of a systematic allocation of treatments within a linear model framework.
Linear models do not necessarily require the treatment allocation to be
random. Since the variance of the treatment estimator within linear models
does not depend on the realization of the dependent variable, whenever
the covariate information is available prior to allocating treatments it is
possible to allocate treatments in a way that minimizes the variance of
the treatment estimator. I show that in each experiment satisfying the
linear model assumptions, there exists at least one deterministic optimal
design, i.e., a deterministic way of allocating treatments that minimizes the
variance of the treatment estimator over all alternative ways of allocating
treatments. In finite samples, optimal design reduces the variance of the
treatment estimator and increases statistical power compared to random
allocation. For a given linear model with m covariates, optimal design
reduces the required sample size of the experiment to achieve a predefined
power by approximately m. However, asymptotically, as the sample size
goes to infinity, neither optimal design nor any alternative design yields
any benefit over random allocation.
JEL Classification: C90, C61
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1 Introduction

Economic experiments are a major part of economic research. The typical ques-
tion analyzed within such experiments is whether a certain treatment causally
influences a particular dependent variable of interest. A main difference to ob-
servational studies is that within an experiment, the researcher can control parts
of the data generating process. In particular, given a sample of experimental
units,1 the researcher conducting the experiment can decide which of the units
to allocate to the treatment group and which to the control group. I will define
the term experimental design as the strategy for allocating treatments.2

Ever since Fisher (1926) introduced formal statistical methods to experimenta-
tion, there is an ongoing debate in the statistical literature on how to ideally use
the ability of allocating treatments for inference (Student, 1938; Ziliak, 2014; Bert-
simas et al., 2015). In recent years, economic literature has taken on this debate
(Bruhn and McKenzie, 2009; Hahn et al., 2011; Horton et al., 2011; Deaton and
Cartwright, 2016; Kasy, 2016a; Banerjee et al., 2017; Athey and Imbens, 2017;
Schneider and Schlather, 2017). When deciding how to allocate treatments, it
is important to consider the method of inference. Randomization inference as-
sumes the treatment allocation to be random and the dependent variable given
the treatment allocation to be fixed (Kempthorne, 1955; Rubin, 1974; Holland,
1986). Consequently, this method of inference requires experimental designs that
involve a certain degree of randomness. Model-based inference on the contrary,
assumes the treatment allocation to be fixed and the dependent variable given
the treatment to be random (Freedman, 2008; Athey and Imbens, 2017). There-
fore, there is no particular need to allocate treatments randomly in this setting.
Although this insight is not particularly new to the statistical literature (e.g.,
Aickin, 2001), there appears to be a mismatch between theory and economic ex-
periments in practice. Whereas the econometric and related statistical literature
mainly advocates randomization inference (Rosenbaum, 2002; Imai et al., 2008;
Imbens and Wooldridge, 2009; Lock Morgan and Rubin, 2012; Imbens and Rubin,
2015; Schneider and Schlather, 2017; Athey and Imbens, 2017), many researchers
nevertheless analyze experiments via model-based inference (Glewwe et al., 2009;
Krawczyk and Smyk, 2016; Abdulkadiroğlu et al., forthcoming). Consequently,
model-based inference is widely used for analyzing experiments, but there ex-
ists little statistical guidance on the role of the treatment allocation within this
framework.

This paper aims at analyzing the role of treatment allocation within a linear
model framework. Linear models are among the most frequently used regression
models for experimental data (Bruhn and McKenzie, 2009). Inside the model
framework, the variance of the treatment estimator is proportional to a function
of the covariate matrix and the treatment allocation. Consequently, for a given
sample with known covariates, the experimental design can minimize the vari-

1For example people, groups of people, schools, hospitals or whatever unit is of interest for
the experiment.

2See Section 3 for a more formal definition.
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ance of the treatment estimator. I refer to this type of design as optimal design.
Optimal design aims at minimizing the linear dependency between the allocation
and the covariates, i.e., experimental units with similar covariate values should
be put in different groups. However, even though optimal design clearly results in
a lower variance of the treatment estimator than random allocation, in practice
the choice of the allocation algorithm seems to be less clear. On the one hand,
most researchers neglect the benefits of a balanced allocation and use random
allocation within linear model frameworks. On the other hand, many of those
researchers report balance or randomization checks, so balance on observable co-
variates appears to matter (e.g. Blattman et al., 2017; Cristia et al., 2017).

This paper addresses the benefits as well as the limits of a systematic allocation
of treatments compared to random allocation in a linear model framework. I
compare random allocation to optimal design as well as more frequently used
designs such as stratification or matching. The paper introduces a measure of
covariate balance taken from medical research. Using this measure, I develop a
sample size formula for linear models that takes into account the covariate bal-
ance. The formula shows that given a model with a fixed number of covariates
m, the maximum reduction in sample size of systematic allocation compared to
random allocation is approximately equal to m. Once one allows for a varying
number of covariates, in case of systematic allocation one can and should con-
trol for more covariates than in case of random allocations to further reduce the
necessary sample size. Lastly, I show that systematic allocation of treatments
primarily fosters inference whenever the sample size is close to the number of
covariates, so typically for small sample sizes. For a fixed number of covariates,
as the sample size increases, the ratio of the variance of the treatment estimator
under any type of systematic allocation to the variance under random allocation
converges to one.

This paper is structured as follows: Section 2 provides a short overview over the
related literature. Section 3 defines optimal design in the case of linear models
and discusses intuitions behind this type of design. Section 4 introduces a multi-
variate measure of covariate balance for linear models called the loss due to the
lack of balance. Given this measure, the section discusses the role of balance for
the variance of the treatment estimator and statistical power, or more precisely
necessary sample sizes to obtain a given power. Section 5 presents numerical
algorithms for finding optimal treatment allocations. Section 6 compares differ-
ent treatment allocations with respect to their impact on covariate balance and
power. Section 7 concludes.

2 Related Literature

Since this paper studies optimal designs for linear models, it is closely related
to the statistical field of optimal experimental design (see Pukelsheim (2006) for
an overview). In a given model framework, optimal design approaches search for
allocations of experimental units that minimize (functions of) the variance of the
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treatment estimator in the chosen model.3 Applications of this theory can be
found in most fields of research, including engineering (Harville, 1974), biology
(Khinkis et al., 2003), chemistry (Telen et al., 2016) and physics (Berger et al.,
2017).

As mentioned in the introduction, econometric and related statistical literature
on experimental design primarily focuses on randomization inference. Experimen-
tal designs used in economic experiments consequently involve a certain degree
of randomness. Popular allocation algorithms include stratified randomization
(Athey and Imbens, 2017), non-bipartite matching (Greevy et al., 2004; Moore,
2012) and re-randomization (see Bruhn and McKenzie (2009) for an overview of
the usage of these algorithms in the field of development economics).

Lately, Kasy (2016b) suggested an optimal design method for economic experi-
ments. In a Bayesian inference framework similar to most decision theoretic mod-
els, he proposes to minimize the expected posterior mean squared error (MSE)
of the treatment estimator given the experimenter’s prior via the treatment allo-
cation. Banerjee et al. (2017) extend the decision theoretic framework to cases
in which the researcher not only aims at minimizing the MSE of the treatment
estimator given her prior, but also at convincing an audience with presumably
different priors. Schneider and Schlather (2017) take the optimal design approach
to frequentist inference. They propose a re-randomization approach that aims at
minimizing the variance of the treatment estimator in a linear model and use this
as a heuristic for treatment allocation in a randomization inference setting.

To this end, the present paper is related to a small strain of the econometric liter-
ature targeting the use of linear models in experiments (Freedman, 2008; Deaton,
2010; Schochet, 2010; Athey and Imbens, 2017). This literature takes random
treatment allocation as given and shows that a random allocation of treatments
does not automatically imply the linear model assumptions to be satisfied. Con-
trary to this literature, this paper takes the linear model assumptions as given
and targets the implications for the treatment allocation.

To my best knowledge, the only economic paper that tries to capture the effect of
treatment allocation from a plain linear model perspective is Bruhn and McKen-
zie (2009). They recommend to analyze the data with a linear model involving
the same covariates as in the experimental design. However, their simulations
are based on a repeated allocation of treatments on a fixed data set. This is a
randomization inference setting in which the assumptions of linear models are
not fulfilled (see Athey and Imbens, 2017).

3One typical case is a polynomial model (see Smith (1918) for an initial contribution). For
example in an experiment to develop a law of gravity, the initial model for the dependence
between the height of a dropped ball and the speed at which the ball hits the ground could be
quadratic or cubic. Depending on that model, one question about the experimental design can
be from which heights the ball should be dropped to optimally estimate the model. For more
examples see Atkinson et al. (2007).
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3 Treatment Allocation for Linear Models

This section repeats some well known results from linear regression theory in
order to explain the impact of the experimental design on the distribution of the
treatment estimator in a linear model. In this paper, I assume all covariates to be
observed prior to allocating the treatments. The experimental design involves the
same covariates as the analysis of the data. The section starts with a definition
of the experimental setting, then analyzes the role of treatment allocation for the
distribution of the treatment estimator, introduces optimal design, and finishes
with an analysis of stratified and matched experiments in this setting.

3.1 Setting

I consider a sample of n individuals drawn from a population of possible subjects.4

For the data generating process, I assume a linear model:

Y = Xβx + Tβt + ε with ε ∼ N (0, Iσ2), (1)

where Y ∈ Rn is the dependent variable, X = (1, X1, ..., Xm+1) ∈ Rn×m+1 the
covariate matrix, and T ∈ {0, 1}n indicates the treatment allocation. The co-
variates are measured prior to allocating the treatments. Each participant i can
only be allocated either to the treatment group (Ti = 1) or to the control group
(Ti = 0). After determining the treatment allocation, the dependent variable
Y = (Y1, ..., Yn) ∈ Rn is observed. If individual i received the treatment, Yi is
given by xiβx + βt + εi, if not Yi = xiβx + εi, where xi denotes the i-th row of X.
The coefficients βx ∈ Rm+1 and βt ∈ R are unknown to the researcher and have
to be estimated on the basis of Y , X, and T .

Throughout this paper, I assume X to have full rank (no perfect collinearity).
Further, I denote T ⊂ {0, 1}n as the set of all treatment allocations T for which
the matrix (X,T ) has full rank. I only consider one treatment and one control
group and assume no interaction effects between the treatment and the covariates.
See Appendix D for a generalization on multiple treatments and interactions.

In line with Kallus (2017), I define the term experimental design as the distri-
bution of T and the term treatment allocation as the realization of the design. I
assume that the allocation of treatments takes place before observing the depen-
dent variable but after observing the covariates. Thus any possible design has to
be independent of Y given X.

Note that the definition of the linear model above does not require any assumption
on the experimental design. Consequently, for the model it makes no difference
whether the same allocation T was derived via a random or a deterministic design.
All results of the next section will hold for any fixed T ∈ T , given (1).

4This paper regards the sample as given. The role of sampling on experimental inference
will not be discussed in this paper.
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3.2 Optimal Allocation

I start with the model for estimation:

Y = Xβx + Tβt + ε with ε ∼ N (0, Iσ2). (2)

Let b(T ) =

(
bx(T )
bt(T )

)
:= ((X,T )′(X,T ))−1(X,T )′Y denote the ordinary least

squares (OLS) estimates of the coefficients. It is well known that, under the
assumptions of section 3.1, the estimator bt(T ) is unbiased, meaning E[bt(T )] = βt
(e.g., Marquardt, 1970). The variance of bt(T ) is given through the following two
equivalent representations (e.g. Fox and Monette, 1992; Zuur et al., 2010):

Proposition 3.1. (Variance of the Treatment Estimator)
Let T ∈ T . Then V[bt(T )] has the following two representations:

(i) V[bt(T )] = σ2(T ′MXT )−1

(ii) V[bt(T )] = σ2

n·p̂T (1−p̂T )
· 1
(1−R2

T,X)

Here I use the following notations: MX := I − X(X ′X)−1X ′ is the projection
matrix into the orthogonal space of the space spanned by the columns of X.

p̂T :=
∑n
i=1 Ti
n

is the proportion of experimental units allocated to the treatment
group. R2

T,X is the R2 statistic of the OLS regression T = Xθ + ε̃ and measures
the linear dependence between the treatment variable and the covariates. 1

1−R2
T,X

is commonly known as the variance inflation factor (Marquardt, 1970; Kutner
et al., 2004, p.408).

The first of the two representations is useful for computation. The second distin-
guishes between the different factors that affect the magnitude of the variance of
the treatment estimator and thus provides an intuition.

The influence of the sample size n is common knowledge. The higher the sample
size, the lower the variance of the treatment estimator. Also the influence of the
relative group size p̂T is frequently targeted (e.g. List et al., 2011). The more
equal the group sizes (i.e., the closer p̂ is to 0.5), the lower the variance of the
treatment estimator.5

The influence of R2
T,X is noted much less frequently in the context of experiments:

The lower the linear dependence between the treatment variable and the covari-
ates, the lower the variance of the treatment estimator. Contrary to what other
authors claim (e.g. McClelland, 1997; List et al., 2011), R2

T,X is not equal to zero
when the random variables that induce T and X are independent (for example
in case of random treatment allocation). By definition, R2

T,X is always greater or
equal to zero, with equality only if the means of all covariates are equal in treat-
ment and control group. Random allocation will achieve this balance on average,
over many experiments, but in any single experiment there will be imbalances
(and thus R2

T,X > 0). In fact, the R2
T,X term is the reason that optimal design

leads to a lower variance of the treatment estimator than random allocation.
5Note that equal group sizes are only desirable as long as the variance of the error term is

equal in treatment and control group (which I assumed). For a discussion about group sizes in
cases of heteroskedasticity see List et al. (2011).

5



Definition 3.2. (Optimal Treatment Allocation and Optimal Design)
A treatment allocation T ∈ {0, 1}n is optimal if and only if it minimizes the
variance of the treatment estimator V[bt(T )] over all T ∈ T .
An experimental design µ ∈ [0, 1]T is optimal if and only if it minimizes the
variance of the treatment estimator over all admissible distributions on T .

Proposition 3.1 provides some intuition on how optimal allocations for linear
models look like: They aim at minimizing the linear dependence between the
treatment variable and the covariates, R2

T,X . Whenever the covariate matrix
allows for this, optimal allocations result in the covariate means in the treatment
group being identical to those in the control group (in this case, R2

T,X = 0).
Thus, optimal design aims at balancing covariates across treatment and control
group (see also section 4). Definition 3.2 leads to a very similar theorem as in
the Bayesian framework of Kasy (2016b).

Theorem 3.3. (Deterministic vs. Random Designs)
In a linear model framework, there exists at least one deterministic optimal

design. Any design is optimal if and only if it randomizes exclusively among
optimal treatment allocations.

Proof. See Appendix B.1.

This theorem shows that there is no benefit of any random component in the
experimental design concerning the variance of the treatment estimator. Con-
trary to what intuitions, for example from the field of portfolio allocation, might
suggest, once the design allows for more than one possible allocation, the vari-
ance does not get lower than the variance for the best deterministic treatment
allocation. On top of the deterministic design, there exists, by symmetry, also
at least one optimal design that involves a certain degree of randomness. For an
optimal allocation T ∗, this design randomizes among T ∗ and 1− T ∗.6

What are the implications of balanced designs, such as optimal design, on reverse
causality and ommitted variables?7 As Bruhn and McKenzie (2009) argue, bal-
ancing on observable covariates can only increase the balance on unobservables.
Their argument is as follows: Consider an unobserved covariate Z. Then Z can
be written as Z1 + Z2, where Z1 = (I − MX)Z is perfectly collinear with the
observable covariates X and Z2 = MXZ is uncorrelated with X. Balancing on
X will thus also balance Z1 and does not increase imbalance on Z2 compared
to random allocation. The exclusion of reverse causality and hence the estima-
tion of causal effects does not require the treatment allocation to be random,
but exogenous. In this paper, treatment allocation is a function of the covari-
ates X and possibly a random component. Thus, the treatment allocation has

6Note that V[bt(T )] = V[bt(1− T )] for all T ∈ T .
7One argument in favor of random allocation in experiments is that this design protects

against all kinds of model misspecifications. Freedman (2008) shows that this is not true.
Random allocation does not ensure the linear model assumptions to be fulfilled. If the linear
model assumptions do not hold, the estimator of the treatment effect and the estimator of the
standard deviation can be biased. In this paper, I assume the model specification to be correct
and regard the implications on experimental design.
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to be independent of the error term ε conditioned on X. For a more thorough
discussion on model assumptions under balanced designs see Aickin (2001). It
is crucial, that the analysis of the data controls for the same covariates as the
allocation of treatments. Omitting variables in the analysis generally results in
overly conservative standard errors (Kernan et al., 1999).

As a last proposition in this section, I highlight the connection between treat-
ment allocation and power of a two-sided t-test on the treatment estimator. The
proposition shows that power monotonously decreases as the variances of the
treatment estimator increases:

Proposition 3.4. Let the assumptions in (1) hold. Further, let the probability
of a type I error, α ∈ (0, 1

2
), be given. Then the power of the experiment is given

by:

P(| bt(T )√
V̂[bt(T )]

| > td,1−α
2
) = Pα(n−m− 2, | βt√

V[bt(T )]
|), (3)

where P : N× R+ → [0, 1] is monotonously increasing in both parameters.

Proof. See Ghosh (1973).

3.3 Stratification and Matching

To provide further intuition on optimal designs, this section shows that strat-
ification and matching are special cases of optimal designs in a linear model
framework.

In this section, I will refer to optimal design as an algorithm that randomizes
among all optimal treatment allocations. Stratification divides the sample into
k blocks and randomly allocates treatments within each block such that half the
units out of each block are allocated to the treatment group, and the other half
to the control group. For simplicity, I assume that the sample size n is divisible
by k and that each block contains an even number of units. Matching is a special
case of stratification for k = n

2
blocks.

When using stratification or matching, Bruhn and McKenzie (2009) propose to
“control for the method of randomization in [the] analysis”. This means, if the
allocation of treatments was based on k strata, they propose to analyze the data
with the following linear model:

Y = β0 + β1block1 + ...+ βk−1blockk−1 + βTT + ε, with ε ∼ N (0, Iσ2) (4)

where block1, ..., blockk are dummy variables for the different strata.8 Now, let us
turn this around. Suppose the researcher commits to the model of Equation 4
prior to conducting the experiment. Then optimal treatment allocation leads to
the same allocation rule as stratification:

8As such, they have to fulfill
∑k

i=1 blocki =

1
...
1

, with blocki ∈ {0, 1}n. I removed the k-th

block from the model to avoid multicollinearity.
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Corollary 3.5. Assume the model of Equation 4 to be true and every block to
contain an even number of experimental units. Then a treatment allocation T is
optimal in the sense of Definition 3.2 if and only if treatment and control group
contain an equal number of subjects from each block, i.e., whenever:

1

nj

n∑
i=1

block
(i)
j Ti =

1

2
, for all j = 1, ..., k,

where nj is the number of units in block j.

Proof. See Appendix B.2.

Hence, whenever all blocks are of even size and the dependent variable for units of
the same block is identically distributed, stratification and matching randomize
among all optimal treatment allocations. Consequently, in this case, matching
and stratification are optimal designs.

4 Balance and Sample Sizes

This section, together with the simulations of Section 6, quantifies the benefits
of a systematic allocation of treatments over random allocation. I provide a no-
tion of balance within linear models taken from medical research. Based on this
balance measure, this section analyzes the connection between balance and the
variance of the treatment estimator as well as the necessary sample size to detect
a treatment effect with a given power.

The term covariate balance is frequently used in the economic literature, but
rarely precisely defined. What most researchers will agree upon is the case of
perfect balance. I will define a perfectly balanced experiment as one in which
treatment and control group have the same size and the covariate means in treat-
ment and control group are exactly equal. Recall from Section 3 that any treat-
ment allocation that yields perfect balance is an optimal treatment allocation.
Of course, depending on the covariate matrix, there does not need to exist a
treatment allocation that yields perfect balance. Therefore, the variance under
perfect balance, which is given by V∗ := 4σ2

n
, does not necessarily minimize the

variance of the treatment estimator V[bt(T )] over all T ∈ T , but serves as a lower
bound. These considerations justify defining covariate balance in terms of the
variance of the treatment estimator. As a measure of balance, I will use the loss
due to the lack of balance, as defined by Atkinson (2002):

Definition 4.1. Let V∗ := 4σ2

n
be the variance of the treatment estimator under

perfect balance. Then for a treatment allocation T ∈ T , the loss due to the lack
of balance is defined by:

Ln(T ) := n(1− V∗

V[bt(T )]
) = n− 4 · T ′MXT. (5)

The loss is a multivariate measure of balance. It measures imbalance resulting
from unequal group sizes as well as imbalance because of unequal covariate means
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across treatment and control group. A loss of zero corresponds to the case of per-
fect balance, whereas a higher loss indicates larger imbalances. Section 6 provides
simulations of the loss due to the lack of balance for different experimental de-
signs. The notion of loss gives rise to a third characterization of the variance of
the treatment estimator:

Corollary 4.2. (Variance)
Consider a treatment allocation T , with Ln(T ) = L. Then:

V[bt(T )] =
4σ2

n− L
. (6)

Proof. Follows directly from definition 4.1.

This representation allows for an easy comparison of the variance of the treatment
estimators for two treatment allocations. Suppose the first allocation leads to a
loss of L1 and the second to a loss of L2. Then, the ratio of the variances of the
two treatment estimators is given by V[bt(T1)]

V[bt(T2)] = n−L2

n−L1
. I will use this representation

to show that asymptotically the variance ratio for random allocation to any other
experimental design converges to one.

Theorem 4.3. (Asymptotic Benefit)
Let µ1 be an experimental design that allocates treatments completely randomly,
and µ2 an arbitrary design that yields a lower asymptotic loss, i.e., lim

n→∞
Ln(T1)−

Ln(T2) > 0 a.s., then:

lim
n→∞

V[bt(T2)]

V[bt(T1)]
= 1. (7)

Proof. See Appendix B.3.

This theorem shows that asymptotically, designs that balance covariates across
treatment and control group do not provide any benefit over a completely random
allocation of treatments. Note that this only holds in case of the OLS estima-
tor. Once experiments are analyzed by the difference in means of the dependent
variable in treatment and control group, the benefits of systematically balanced
designs compared to random allocation do not decrease with sample size (Kasy,
2016b; Aufenanger, 2017). The reason for this is that the OLS estimator already
controls for the covariates. The larger the sample size, the lower the variance
of βx and the better the OLS estimator accounts for the imbalances of random
allocation. Consequently, the benefits of optimal design are only present in finite
samples.

To better quantify the benefits of optimal or alternative designs compared to
random allocation in finite samples, I derive an expression for the sample sizes
necessary to detect a given effect size with a given power:

Proposition 4.4. (Sample Size)
Consider an experimental design µ. Further assume Eµ[Ln(T )] = L(n). Then the

9



sample size necessary to detect a treatment effect of a size of βt at level α with a
power P solves the following equation:

n = Sα,P (n) + L(n) (8)

with Sα,P (n) ≈ (2σ(tα+tP )
βt

)2, and tα := tn−m−2,1−α
2
, tP := tn−m−2,P .

Proof. See Appendix B.4.

Proposition 4.4 provides a sample size formula that takes into account the
covariate balance L(n). The function for the loss has to be determined via sim-
ulations. As a rule of thumb, one can take Sα,P (n) to be constant by replacing
the quantiles of the t-distribution by the corresponding quantiles of the normal
distribution9, and keep the expected loss constant by taking L(n) = L(n∗). n∗

should be somewhere in the region where one would suspect the necessary sample
size to be. The simulation of Section 6.1 helps to determine the loss of a partic-
ular algorithm.

As another rule of thumb, the loss of random allocation is equal to m, the number
of covariates (see Section 6.1 as well as Atkinson (2002)), and the loss for optimal
allocation is approximately zero. Therefore, optimal treatment allocation can re-
duce the necessary sample size for a given model by approximately m. As Section
6.2 will show, one can and should control for more covariates when using optimal
allocation than when using random allocation, leading to a further reduction in
necessary sample size.

5 Numerical Optimization

In this section, I will present two algorithms to find optimal treatment allocations
in practical applications. Recall the relevant optimization problem (Definition
3.2):

max
T∈{0,1}n

T ′MXT. (9)

This is a binary quadratic optimization problem, which is numerically very hard
to solve.10 Brute force solution would require calculating T ′MXT for 2n times.
Even more sophisticated methods for calculating exact solutions to this problem
can usually only be applied to small problems of 100 experimental units or less
(see Kochenberger et al. (2014) for a literature review on solvers for this prob-
lem). Much interest in the field of binary quadratic optimization is therefore
on heuristics that provide near best solutions very quickly. I suggest two very
simple heuristics for this problem. For a comparison of those two algorithms to
alternative optimization algorithms, see Appendix C.

9A general rule of thumb is that t-quantiles are fairly close to normal quantiles, whenever
the degrees of freedom are larger than 30, i.e., the sample size is larger than 32 plus the number
of covariates (Meier et al., 2015, p. 191).

10More precisely, the binary quardratic optimization problem belongs to the class of NP-hard
problems (Wang and Kleinberg, 2009). Up to now, the does not exists any algorithm that
precisely solves NP-hard problems in polynomial time (Milan et al., 2017).
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The first is a local search algorithm. This algorithm is very simple and provides
reasonably good solutions in a short amount of time. The local search algorithm
starts with some (for example random) treatment allocation T , and searches for
improvements in the neighborhood of T . The neighborhood of a treatment allo-
cation T is defined by all treatment allocations T̃ that differ from T in exactly
one coordinate (i.e., all T̃ ∈ {0, 1}n with ||T̃ − T || = 1, where || · || denotes the
euclidean distance). The algorithm moves in every step to the neighboring alloca-
tion with the highest improvement (i.e., the highest value of T̃ ′MX T̃ − T ′MXT ).
It terminates when there exist no more neighboring allocations that yield any
improvement over the current allocation.11 This algorithm will terminate very
quickly. However, it will terminate in every local optimum, i.e., whenever chang-
ing the treatment assignment of one experimental unit does not lead to any
improvement. This does not rule out that there exist possible improvements once
one changes the assignment for more than one experimental unit simultaneously.

The second algorithm is a simple extension of the local search algorithm, which I
call the multiple local search algorithm: Draw k treatment allocations randomly.
Apply the local search algorithm to each of them. Take the treatment allocation
with the lowest variance of the treatment estimator. The larger k, the better the
solution, but also the longer the computing time.

For both of those algorithms, I determine randomly which of the two groups
receives the treatment. In particular, if T ∗ is the solution of one of the above
algorithms, I choose T = T ∗ or T = (1− T ∗) with equal probabilities. Note that
(1− T ) leads to the exact same value of the goal function as T .

6 Simulations

In this section, I present some simulations, comparing optimal treatment allo-
cation to random treatment allocation as well as to stratification, matching and
re-randomization. Bruhn and McKenzie (2009) identify the latter three algo-
rithms as the most popular experimental designs in economic research. Matching
and stratification aim at defining blocks on the experimental units and to ran-
domize within those blocks (see Section 3.3). For the stratification design, I start
by defining dummy variables for continuous covariates that are equal to one when-
ever the continuous variable is greater than the median and zero otherwise. Given
the discrete as well as the discretized continuous covariates, I define blocks such
that units within each block are identical with respect to every covariate. The
matching algorithm minimizes the sum of Mahalanobis distances between the two
units of each block (see Greevy et al., 2004). Re-randomization draws a finite
number of k random treatment allocations and selects the one that minimizes
the largest t-statistic for the mean difference of the covariates between treatment
and control group (Bruhn and McKenzie (2009) refer to this design as min-max
re-randomization).

11This algorithm is also known as 1-Opt algorithm (Merz and Freisleben, 2002) or Greedy
algorithm (Kasy, 2016a).
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The first part of this section compares the different algorithms for a constant
model. This means, the model for estimating the data and specifically the num-
ber of covariates stays the same for all algorithms. The second part of this section
compares the different algorithms for a varying number of covariates. In partic-
ular, I evaluate how the optimal number of covariates changes depending on the
treatment allocation algorithm.

The simulations use the statistical software R (R Development Core Team, 2008).
For the matching algorithm, I apply the package nbpMatching that implements
the optimal matching approach of Greevy et al. (2004) (see Lu et al., 2011).

6.1 Fixed Number of Covariates

In this subsection I compare how the different algorithms perform in a given
model. I focus on comparing the losses due to the lack of balance of the different
algorithms. As Propositions 4.2 and 4.4 show, the loss directly translates to the
variance of the treatment estimator and the power or rather necessary sample size
of the experiment. I simulate the average loss for the case of binary covariates.12

The results are very robust to different covariate distributions, with the exception
that stratification performs significantly worse for continuous covariates because
of the discretization of the continuous variables (see Appendix A). I simulate the
data according to the following model:

Y = Xβx + Tβt + ε with ε ∼ N (0, I); βx =

1
...
1

 , (10)

and also base the treatment allocation and the estimation of the treatment effects
on this model. I provide simulations for 1, 10 and 25 covariates and for 16 to
256 experimental participants. Each simulation uses 1, 000 Monte-Carlo steps.
In every step, I draw a new covariate matrix and allocate treatments according
to each of the algorithms based on this matrix. Given this covariate matrix,
and the treatment allocation, I calculate the loss according to Definition 4.1.13

The re-randomization algorithm uses 100 redraws and the multiple local search
algorithm uses 10 redraws:
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12In this paper, I use binary covariates that are equal to one with a probability of 0.5 and
zero otherwise.

13Note that this procedure does not require explicit simulation of errors.
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Figure 1: Loss for Binary Covariates

For one covariate, all allocation algorithms except for random allocation yield the
same loss. This is no surprise since for one binary covariate, treatment allocation
is very simple: The experimental units with a covariate of one as well as the units
with a covariate of zero have to be allocated equally across treatment and control
group.

For more than one binary covariate, we see that especially stratification performs
worse. In case of ten covariates, there are already 210 = 1024 strata. Conse-
quently, there are many strata with only one subject. Subjects of strata with size
one will be allocated randomly. Therefore, stratification will only yield low losses
if most strata have sizes larger than one. For 10 covariates and 256 participants,
we see that stratification works slightly better than random allocation. However,
for 25 covariates (and consequently 33,554,432 strata) there is no difference be-
tween random allocation and stratification anymore.

In the case of 10 and 25 covariates, it also becomes apparent that the matching
algorithm performs comparably poor, especially for small sample sizes. The rea-
son for this is that matching still includes some degree of randomness. After the
matches are made, one randomly selected subject of each match is allocated to the
treatment group, the other to the control group. This randomness decreases the
performance of the algorithm whenever the matches are not perfect. For larger
sample sizes, the matches will get better and thus this problem is less severe.

The re-randomization algorithm performs worse than the local search algorithm
for two reasons. First, the goal function, i.e., the maximum t-statistic does not di-
rectly relate to the variance of the treatment estimator. Second, re-randomization
is not perfectly suited as a means of optimization (see Appendix C.2).

Using Proposition 4.4, these results on the loss directly translate to necessary
sample sizes. For example, take a model with 25 covariates and assume that
the treatment effect is sufficiently strong, such that with random allocation one
would need exactly 125 subjects to achieve a power of 0.8. Then with matching or
re-randomization, one would only need around 115 subjects and with optimal allo-
cation only around 100 to obtain the same power. In this case, optimal allocation
can reduce necessary sample sizes by around 20% compared to random allocation,
and around 13% compared to multivariate matching and re-randomization.

While these plots show how useful systematic and especially optimal treatment
allocation is for small scale experiments, they also show that there is little need
for systematic allocation whenever the sample size is very large compared to the
number of covariates. Bruhn and McKenzie (2009) report that out of 18 reviewed
experiments in the field of development economics, 12 use samples of 200 or less
participants. The number of covariates to check balance on ranges from 4 to 39
among these 12 experiments. For these experiments, a systematic allocation of
treatments might have been extremely useful. The authors report two other ex-
periments with sample sizes exceeding 1,000 and 12-14 covariates to check balance
on. For these experiments, a systematic allocation of treatments might not be
necessary. Note, however, that additional covariates to control for nonlinearities
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also count as covariates. For example, if one has one continuous covariate, but
assumes quadratic effects, this makes for effectively two covariates.

6.2 Endogenous Number of Covariates

Up to now, I assumed the model for estimation to equal the data generating pro-
cess. This means, I assumed that every observable covariate that influences the
dependent variable was controlled for in the regression. In practical applications
this will most likely not be the case. In reality, there are often thousands of
variables that might influence the dependent variable. Of those variables, only a
few are observed in the context of the experiment and even less are used in the
analysis of the experimental data.

Including a variable into the regression only makes sense when the upside from
including this variable exceeds the downside from including this variable. Con-
cerning the power of the experiment, most researchers see including an additional
variable as a trade-off between the degrees of freedom of the t-distribution and a
lower variance of the error term (e.g. Senedecor and Cochran, 1989; Box et al.,
2005; Bruhn and McKenzie, 2009; Kahan et al., 2014). However, there is another
effect of an additional covariate. As Duflo et al. (2008, p.3925) note, in a ran-
domized experiment a new covariate increases the loss due to the lack of balance
(see also Figure 1).14 To understand this, suppose one includes a covariate Xi

that has a coefficient βi of zero. Then the estimate bi for this covariate will not
automatically be zero, but catches possible random correlations with the depen-
dent variable. Whenever the treatment variable is not perfectly orthogonal to
the covariates (perfect balance), this will lead to a more noisy estimation of the
treatment effect.

Since the loss due to the lack of balance differs across treatment allocation algo-
rithms, one might want to control for a different number of covariates if one uses
a different allocation algorithm. In this section, we analyze how the optimal num-
ber of covariates changes with the allocation algorithm and what influences this
has on the overall benefits of these algorithms. This analysis is fairly similar to an
analysis by Therneau (1993), who compares the optimal number of covariates for
stratification and minimization.15 For simplicity of the graphic, I only compare
random and optimal treatment allocation. Results for stratification, matching
and re-randomization would lie somewhere in between these two extremes.

I simulate the data according to the following model:

Y = Tβt +Xβx + ε, with ε ∼ N (0, 1). (11)

14These three effects of covariates on the power of the experiment are also apparent in the
sample size formula of Proposition 4.4.

15Minimization is a popular algorithm for sequential treatment allocation in medical trials,
developed by Taves (1974) and Pocock and Simon (1975). This algorithm should not be confused
with the optimal treatment allocation proposed in this paper.
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Further, I simulate all covariates X1, ..., Xm to be normally distributed with mean
zero and variance one. The coefficients of the covariates linearly decrease in size:

βi =
m− i
4m

, i = 1, ...,m. (12)

In the analysis of the data, I only control for the j strongest covariates. Therefore
the model for estimation is given by:

Y = β0 +

j∑
i=1

βiXi + βtT + ε̃,with ε̃ ∼ N (0, σ2), (13)

where ε̃ decomposes to
∑m

i=j+1 βiXi + ε. Optimal design is based on the same
model. In this simulation, I chose a sample size of 64 and a maximum number of
m = 60 covariates.

The left graphic in Figure 2 shows the variance of the treatment estimator de-
pending on the number of control variables. This figure contains the true variance
of the treatment estimator, not the sample estimate thereof. Recall Proposition
4.2 to see that there are only two influences of an additional covariate on the true
variance of the treatment estimator: First, an additional covariate reduces the
variance of the error σ2, leading to a lower variance of the treatment estimator.
Second, an additional covariate can increase the loss due to the lack of balance,
leading to a higher variance of the treatment estimator.

The green and the blue line in Figure 2 are hypothetical cases. This means there
do not have to exist treatment allocations that lead to this particular loss or
power. The green line represents the case of a loss of zero (i.e., the hypotheti-
cal case that all covariates are always perfectly balanced). In the hypothetical
case of perfect balance, an additional covariate can only reduce the variance of
the treatment estimator. The blue line is a lower bound on the variance of the
treatment estimator obtained for a hypothetical allocation with a loss of zero in
a model that controls for all 60 covariates.

The variance for the local search algorithm (red line) gets very close to the lower
bound. However, as the number of covariates approaches the sample size, there
is a mild increase since the covariate matrices do not allow for perfectly bal-
anced allocations anymore. The variance of the treatment estimator for random
allocation (black line) hardly decreases with the number of covariates. At the
beginning, the reduction in the error term is slightly higher than the increase
in loss. However, as the effect sizes of additional covariates get weaker, the in-
crease in loss dominates. The figure for the variance already shows that optimal
treatment allocation is able to retrieve much more information out of the same
covariates than random allocation.
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Figure 2: Variance of the Treatment Estimator and Power Depending on the
Number of Control Variables for Experiments with 64 Units.

The right graphic in Figure 2 presents statistical power, i.e., the probability of es-
timating a significant treatment effect. For random treatment allocation, power
would be maximized if 15 covariates are taken into account. Consequently, a
researcher who uses random treatment allocation and aims at maximizing statis-
tical power should control for 15 covariates. In case of 15 covariates, the power
of the random allocation is 78.2% and the power of the local search algorithm is
0.88%. However, when the researcher uses the local search algorithm, it would
be optimal to control for 37 covariates. In this case, the power is 94.4%. This
shows that the comparison of these two algorithms for a fixed number of covari-
ates provides only a lower bound for the difference in statistical power in practical
applications.

The blue line in Figure 2 presents power for the hypothetical case that the variance
of the treatment estimator does not change with the number of control variables.
This helps to distinguish the importance of the two downsides of adding control
variables with respect to power. The first downside of an additional control vari-
able is an increase in the loss due to the lack of balance, the second is a decrease
in the degrees of freedom of the t-distribution. Since we keep the variance of the
treatment estimator constant, the only factor that makes the blue line decrease
in the right graphic is the degrees of freedom. Up to 45 or 50 controls, the blue
line decreases only slightly. For more than 50 controls, the line quickly goes to
zero. This shows that as long as the number of covariates is not too close to the
sample size, the degrees of freedom play only a minor role for the power of the
experiment. Intuitively, one would expect a low power out of a regression with
40 covariates and 64 subjects. Figure 1 shows that this is only true for random
allocation and the main factor that drives the low power is the loss due to the
lack of balance.

In sum, this simulation shows that optimal treatment allocation retrieves much
more information from the covariates than random treatment allocation. Even
once one controls for covariates that have only weak effects on the dependent vari-
able, the power under optimal allocation might still increase. Generally, when
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using optimal allocation, one should control for more covariates than when using
random allocation.

7 Conclusion

This paper analyzes experimental designs from a linear model perspective. I
show the benefits as well as the limits of a systematic allocation of treatments
compared to random allocation.

A first result is that asymptotically, no systematic allocation of treatments yields
any benefit over random allocation (Theorem 4.3).

In finite samples however, even though the OLS estimator already controls for
imbalances in the covariates, a systematic allocation of treatments can reduce the
variance of the treatment estimator and increase statistical power (Section 6.1).
In terms of the sample size necessary to detect an effect of a given strength with a
given power, optimal designs can reduce necessary sample sizes by approximately
m, the number of covariates in the model (Proposition 4.4). If possible, one can
and should control for more covariates in case of optimal allocation than in case
of random allocation to maximize statistical power (Section 6.2).

From a linear model perspective, it makes no difference whether treatments are
allocated randomly or deterministically. Experimental designs are only optimal if
they randomize exclusively among optimal treatment allocations (Theorem 3.3).
The popular experimental designs matching and stratification are optimal if all
blocks are of even size and equally distributed dependent variables in each block
(Section 3.3). For blocks of unequal size, or whenever the linear model does not
imply identically distributed dependent variables in each block, those algorithms
perform worse than optimal allocation (Section 6.1).
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A Alternative Covariate Distributions

In Section 6.1, I simulated the losses due to the lack of balance for different
treatment allocation algorithms and binary covariates. In this section, I provide
the same simulation for alternative distributions of the covariates. In particular,
I focus on the following distributions:

• normal: A normal distribution with mean zero and variance one. This
serves as an example of a continuous distribution.

• gamma: A gamma distribution with shape parameter two and scale param-
eter one. This serves as an example of a skewed distribution.

• different: Covariates that follow this distribution are a sum of a uniformly
distributed variable on [-10,10] and a second variable that is normally dis-
tributed with probability 2/3 and gamma distributed with probability 1/3.
This serves as an example of a slightly more complex distribution that con-
sists of a continuous and a discrete part.

The simulations for all three covariate distributions show fairly similar results.
One difference to the binary case is that stratification performs even worse. The
reason is that stratification requires a discretization of continuous covariates. In
the simulation, I split the continuous variable at the median. This means, for
each covariate, I create a dummy variable that is equal to one if the value of the
continuous variable is above the median, and zero if the continuous variable is
below the median. Of course, this discretization leads to a loss of information.
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Figure 3: Loss for Normal Distributed Covariates
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Figure 4: Loss for Gamma Distributed Covariates
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Figure 5: Loss for Different Distributed Covariates

B Proofs for the Paper

B.1 Proof of Theorem 3.3

Proof. First, consider only deterministic allocations. Since the set T of admissible
allocations is finite, there exists at least one allocation T̂ ∗ that minimizes the
variance of the treatment estimator. Now, consider designs that involve some
randomness. Let M be the set of all probability distributions on T . For an
arbitrary µ ∈M, the variance of the treatment estimator is given by:

Vµ[bt(T )] = Vµ[E[bt(T )|T ]] + Eµ[V[bt(T )|T ]]

= Vµ[βt] + Eµ[V[bt(T )|T ]] = Eµ[V[bt(T )|T ]]

Consequently, the variance of the treatment estimator under any random allo-
cation µ is simply the (probability weighted) average of all deterministic deter-
ministic allocations in the support of µ. Since V[bt(T )|T ] ≥ V[bt(T

∗)] for every
T ∈ T , the variance under µ is either equal to V[bt(T

∗)] if µ randomizes only
among optimal deterministic allocations, or larger if the support of µ contains at
least one sub-optimal allocation.
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B.2 Proof of Corollary 3.5

Proof. Let X := (1, block1, ..., blockk−1), with 1 =

1
...
1

.

⇐: By Proposition 3.1(i): V[bt(T )] = σ2(T ′MXT )−1, withMX = Id−X(X ′X)−1X ′.
Equal allocation of units from each stratum to treatment and control group im-

plies: X ′T = 1
2


n
n1
...

nk−1

 = 1
2
X ′1 = 1

2
X ′Xe1, where e1 =


1
0
...
0

 is the first unit

vector in Rn and nj is the number of subjects in stratum j. Thus

T ′MXT = T ′T − 1

4
e′1X

′X(X ′X)−1X ′Xe1 (14)

=
n

2
− 1

4
e′1X

′Xe1 (15)

=
n

2
− 1

4
1′1 (16)

=
n

2
− n

4
=
n

4
(17)

This shows that V[bt(T )] = 4σ2

n
, which is a lower bound on the variance of the

treatment estimator and thus a minimum.

⇒: Let T ∗ ∈ {0, 1}n be a treatment allocation with V[bt(T
∗)] = 4σ2

n
. By Propo-

sition 3.1(ii): V[bt(T )] = σ2

n·p̂T (1−p̂T )
· 1
(1−R2

T,X)
. Note that p̂T · (1− p̂T ) ≤ 1

2
· 1
2

= 1
4

and R2
T,X ≥ 0 for all T ∈ {0, 1}. Therefore, V[bt(T

∗)] = 4σ2

n
implies p̂T = 1

2
and

R2
T,X = 0. Let || · || be the Euclidean norm, then:

R2
T,X = 0 (18)

⇔ ||X(X ′X)−1X ′T − p̂T · 1||2

||T − p̂T · 1||2
= 0 (19)

⇒ ||X(X ′X)−1X ′T − p̂T · 1||2 = 0 (20)

⇒ X(X ′X)−1X ′T =
1

2
· 1 (21)

⇒ X ′T =
1

2
·X ′1 (22)

⇒ 1

nj

n∑
i=1

block
(i)
j Ti =

1

2
, for all j = 1, ..., k (23)

B.3 Proof of Theorem 4.3

Since the loss for random allocation Ln(T1) converges almost surely to m, the
number of covariates (see Atkinson, 2002), there almost surely exists a constant
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K1 ∈ R and a N1 ∈ N such that Ln(T1) < K1 for all n > N1. Similarly, since
the asymptotic loss of µ2 is almost surely lower than m, there almost surely
exists a K2 ∈ R and a N2 ∈ N such that Ln(T2) < K2 for all n > N2. Let
n > max{N1, N2}. Since the loss is always greater or equal to zero, this yields:

V[bt(T2)]

V[bt(T1)]
=
n− Ln(T2)

n− Ln(T1)
≤ n

n−K1

→
n→∞

1, (24)

and
V[bt(T2)]

V[bt(T1)]
=
n− Ln(T2)

n− Ln(T1)
≥ n−K2

n
→
n→∞

1. (25)

B.4 Proof of Proposition 4.4

Proof. Let µ be an experimental design. Then the loss Ln(T ) is typically a
random variable that depends on the realization of the covariate matrix and
the realization of the treatment allocation. For this proof, start by assuming
Ln(T ) = L(n) to be deterministic.

Let d(n) = n−m− 2 and δ(n) = βt√
V[bt(T )]

. Further let P (d, |δ|) = P(| bt(T )√
V̂[bt(T )]

| >
td,1−α

2
) be the power function of Proposition 3.4. For any fixed d ∈ N the range

P (d,R+) is equal to [α, 1). Thus, since P is monotonously increasing both in d
and |δ|, for any d ∈ N and P ∈ [α, 1) there exists a function gP (d), such that:

P (d, |δ|) = P ⇔ |δ| = gP (d). (26)

Writing gP (n) := gP (d(n)) and plugging the definition of δ into Equation 26
yields:

| βt√
V[bt(T )]

| = gP (n) (27)

By Proposition 4.2:

⇔ β2
t (n− L(n))

4σ2
= gP (n)2 (28)

⇔ n =
4σ2gP (n)2

β2
t︸ ︷︷ ︸

Sα,P (n)

−L(n) (29)

Now, consider the case that Ln(T ) is stochastic with E[Ln(T )] = L(n), where
the expectation is over the joint distribution of the covariate matrix and the
treatment allocation. Note that Sα,P (n) depends neither on the covariate matrix
nor on the treatment allocation. Therefore:

E[n] = Sα,P (n) + L(n). (30)

Consequently, in expectation, the necessary sample size is equal to Sα,P (n) plus
the expected loss L(n).

It remains to show that gP (n) is approximately equal to tn−m−2,P + tn−m−2,1−α
2
.
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Let tα := tn−m−2,1−α
2
, tP := tn−m−2,P . I start by approximating the power func-

tion:

P (d, |δ|) = P(|bt(T )− βt√
V̂[bt(t)]

+
βt√

V̂[bt(T )]
| > tα) = P(|X +

βt√
V̂[bt(T )]

| > tα). (31)

where X follows a central t-distribution with n − m − 2 degrees of freedom. I
follow List et al. (2011), using two simplifications. The first approximation is to
replace V̂ by its mean V and thus βt√

V̂[bt(T )]
by δ:

P (d, |δ|) ≈ P(|X + δ| > tα) (32)

= P(X < −tα + δ) + P(X < −tα − δ) (33)

The second approximation is to neglect the smaller of the two probabilities. The
error of this approximation has to be smaller than α

2
and will be much smaller

than this whenever P is large (which one would typically assume). This yields
the approximation:

P (d, |δ|) ≈ P(X < −tα + |δ|). (34)

Next, I invert this function to get an approximation g̃P (n):

P(X < −tα + |δ|) = P ⇔ −tα + |δ| = tP ⇔ |δ| = tα + tP . (35)

Consequently: g̃P (n) = tα + tP .

C Comparison of Optimization Algorithms for

Finding Optimal Allocations

Section 5 suggests to use a simple local search algorithm or the multiple local
search algorithm with random starting points for finding optimal treatment al-
locations. This section is meant to justify this suggestion. In the first part of
this section (Part C.1), I compare the local search to some more sophisticated
algorithms. In the second part (Part C.2), I compare the local search to an op-
timization via re-randomization. The third part (Part C.3) provides the pseudo
code for all algorithms. The algorithms presented in this section aim at maximiz-
ing the goal function T ′MXT over all T ∈ {0, 1}n. I compare the performance
of the algorithms with respect to the loss due to the lack of balance, which is a
monotonously decreasing transformation of the goal function (see Section 4).

C.1 Local Search vs. Alternative Optimization Algorithms

Since exact methods for binary optimization generally work only on small prob-
lems (up to around 100 variables), I focus on heuristic methods. After all, each
subject in the experiment represents a new variable for the optimization. I con-
sider three very popular algorithms:
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1. A Randomized Greedy Algorithm (Merz and Freisleben, 2002):
The idea of this algorithm is simple: Start with a vector T̃ = (0.5, ...0.5)′,
and sequentially set coordinates to either 0 or 1, such that in each step
the improvement, i.e., the increase in the goal function, is maximized. To
preserve some randomness, a random draw determines which coordinate is
first and whether this coordinate should be set to 0 or 1. After that, the
algorithm calculates among all coordinates that still have a value of 0.5 the
coordinate with the highest improvement from changing its value to 1 and
the coordinate with the highest improvement from changing its value to 0.
Then, with a specific chance proportional to the size of the improvement,
the first of the two coordinates is set to one, and otherwise the second
coordinate is set to zero. This procedure continues until the final vector T
consists only of zeros and ones.

2. A Tabu Search Algorithm (Glover, 1986; Beasely, 1998):
This algorithm works similar to the simple local search algorithm, with
one difference: Whenever the algorithm is stuck in a local maximum, i.e.,
no neighboring allocation yields any improvement, the algorithm moves
to the neighboring allocation with the lowest deterioration. In order to
avoid moving back right away, the algorithm blocks the coordinate along
which the last move was made for a predefined number of steps. Since
this algorithm will not terminate by itself, we need to specify a maximum
number of iterations depending on the acceptable computing time of the
algorithm. In the end, the allocation with the highest value of the goal
function is selected.

3. A Simulated Annealing Algorithm (Kirkpatrick et al., 1983; Černý, 1985;
Beasely, 1998):
This algorithm also works similar to the local search algorithm. However, in
contrast to the simple local search algorithm, this method randomly selects
exactly one neighboring allocation in each step. If this neighbor yields an
improvement, the algorithm moves to this allocation. If the neighbor yields
a deterioration, the move might still be made with a certain probability.
This probability decreases both with the size of the deterioration and in
the course of the algorithm. The algorithm terminates when a predefined
number of iterations is reached.

Most modern heuristics for binary quadratic optimization are based on these three
methods (see Kochenberger et al., 2014). The randomized greedy algorithm is
often used to receive starting points for other algorithms. The tabu search and
simulated annealing algorithm improve on the simple local search algorithm by
avoiding to get stuck in local optima. In total, I compare six different algorithms:
randomized greedy, tabu search, simulated annealing, basic local search, multiple
local search with ten random starting points (Opt MLSR) and multiple local
search with ten randomized greedy starting points (Opt MLSG). To give some
bounds on the performance of these algorithms, I include random allocation as
a lower bound on the performance, and a multiple local search algorithm with
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1, 000, 000 random starting points (Opt MLSM) as an upper bound. These are
much more redraws than in any reasonable experiment in practice, since this
algorithm takes up to 2.5 hours to compute the allocation of a single covariate
matrix. It does, however, show how low the loss due to the lack of balance could
be.

Table 1 shows a simulation for 1, 4, 10, 25 and 50 covariates and a sample size
of 64. The values without parentheses are the average losses for this algorithm,
whereas the values in parentheses are the average computing times (in seconds)
for one allocation. In terms of computation time, the local search algorithm is
much faster than any other algorithm, except for random allocation. In terms
of minimizing the loss,16 the local search algorithm performs better than the
greedy algorithm and only slightly worse than the more computationally intensive
tabu search and simulated annealing algorithms. When using multiple random
starting points (Opt MLSR), the local search algorithm even leads to a lower loss
than tabu search or simulated annealing, while still requiring less computation
time. Randomized greedy starting points in the multiple local search algorithm
(Opt MLSG) do not improve much over random starting points and require more
computation time.

Table 1: Average Loss Due to the Lack of Balance for Binary Optimization
Algorithms

1 Covariate 4 Covariates 10 Covariates 25 Covariates 50 Covariates
Random 1.02 4.11 10.24 25.53 50.52

(0) (0) (0) (0) (0)
Opt Greedy 0.39 0.57 1.12 3.44 12.5

(0.026) (0.027) (0.034) (0.03) (0.026)
Opt LocalSearch 0.01 0.04 0.29 2.22 11.03

(0.001) (0.003) (0.005) (0.008) (0.01)
Opt TabuSearch 0 0.02 0.24 1.95 10.52

(0.151) (0.142) (0.14) (0.129) (0.131)
Opt Annealing 0 0.02 0.23 1.95 10.37

(0.191) (0.194) (0.186) (0.161) (0.143)
Opt MLSR 0 0.01 0.16 1.53 8.84

(0.018) (0.036) (0.047) (0.062) (0.087)
Opt MLSG 0 0.01 0.16 1.55 8.72

(0.292) (0.306) (0.285) (0.284) (0.234)
Opt MLSM 0 0 0.02 0.55 7.45

(1372.679) (2447.998) (3986.627) (6159.142) (9622.744)
Computation times (in seconds) in parentheses.

C.2 Local Search vs. Re-randomization

For a similar optimization problem, Kasy (2016a) suggests to use a re-randomization
algorithm. The algorithm is very simple: Draw a predefined number of random

16Or equivalently, maximizing T ′MXT .
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allocations and pick the one with the highest value of the goal function. He argues
that this procedure performs ”reasonably well”. The argument, also picked up
by Banerjee et al. (2017), is the following: Suppose one re-randomizes for k ∈ N
times. Then the probability that the chosen allocation is better than 99% of all
allocations is 1− 0.99k, which quickly converges to one as k goes to infinity. For
k = 500 the probability is already larger than 99%.

However, what if the distribution of the loss due to the lack of balance has long
but thin tails? In this case, an allocation that is better than 99% of all alloca-
tions might still be not a very good allocation. For example in the case of 64
subjects, there are 264 ≈ 2 · 1019 possible allocations. Therefore, there are still
around 2 · 1017 allocations that are among the 1% of best allocations. These are
2 · 1017 allocations that are potentially better than the allocation determined by
re-randomization.

To analyze the question whether re-randomization could be used as a simple al-
ternative to the local search algorithm, I analyze the density of the loss due to
the lack of balance for random allocation. I simulate the density using 1,000,000
random allocations, for a sample size of 64 and for 10 as well as 50 covariates.
As a benchmark, I include the average loss of the local search algorithm, as well
as the minimum loss over 1, 000, 000 local search algorithms (MLSM).

Figure 6 shows that for ten covariates, the 1% quantile is already very close to
0. For this case, re-randomization might be an alternative to the local search
algorithm. However, for 50 covariates, the one percent quantile is only slightly
better than an average random allocation. Even though the loss could be reduced
to less than ten, the one percent quantile is only slightly lower than 40. Even
after 1,000,000 random allocations, the best allocation still yields a loss of 20. To
calculate losses for 1,000,000 random allocations and 50 covariates, the computer
needs around 30 min. On the same computer, the local search algorithm leads to
a loss of half the size in only ten milliseconds.
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Figure 6: Distribution of Loss for Random Allocation

C.3 Pseudo Code of the Optimization Algorithms

Opt Rerandomization:
Variables:
Retries % Number of Redraws

1. Draw Retries random treatment allocations and store them
in list T̂ .

2. Calculate T ′MXT for every T ∈ T̂ .

3. Return T ∗ with T ∗′MXT
∗ = min

T∈T̂
T ′MXT
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Opt Greedy:
Variables:
C = {1,...,n} % indices of subjects

1. Set T = (0.5, ..., 0.5)′

2. For l = 0, 1, set T̃ = T and T̃i = l and compute gli = T̃ ′MX T̃−
T ′MXT

3. Set k0 = argmaxi∈Cg
0
i and k1 = argmaxi∈Cg

1
i

4. With probability
g0k0

g0k0
+g1k1

do

Set Tk0 = 0 and C = C \ {k0}
else

Set Tk1 = 1 and C = C \ {k1}

5. If C 6= φ
continue with step 2.

else
Return T

Opt LocalSearch:
Variables:
Start % Treatment allocation to start from (for example a random
allocation)
t = 0 % iteration counter

1. Set T = Start and V = T ′MXT .

2. Set t = t+ 1; Store each neighbor of T in a list T̂ .17

3. Calculate T̃ ′MX T̃ for every T̃ ∈ T̂ .

4. If max
T̃∈T̂

T̃ ′MX T̃ > V :

Set T = argmax
T̃∈T̂

T̃ ′MX T̃ and V = max
T̃∈T̂

T̃ ′MX T̃ ;

Continue with step 2.

Else:
Return T ; t

Note: Let T̃ differ from T only in the coordinate i. Then
T̃ ′MX T̃ = T ′MXT + (T̃i − Ti) · (MXi,i + 2

∑
j=1,j 6=iMXi,j). I use

this formula in the implementation of this algorithm to efficiently
calculate T̃ ′MX T̃ for neighbors of T .

17A neighbor of a treatment allocation T is defined as a treatment allocation T̃ ∈ {0, 1}n
with ||T̃ − T || = 1, where || · || denotes the euclidean distance. This means a neighbor T̃ differs
form T in exactly one coordinate.
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Opt MultipleLocalSearch:
Variables:
Retries % Number of Redraws

1. Draw Retries treatment allocations either randomly or with
the randomized greedy algorithm and store them in list T̂ .

2. Use Opt LocalSearch with Start parameter T for each T ∈
T̂ . Store resulting allocations in list T̂

3. Calculate T ′MXT for every T ∈ T̂ .

4. Return T ∗ with T ∗′MXT
∗ = min

T∈T̂
T ′MXT
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Opt TabuSearch:
Variables:
Start % Treatment allocation to start from (for example a random
allocation)
maxiter % Maximum Number of iterations (In the implementation,
I use max(200, 20000/n)
T ∗ % best allocation found so far
V ∗ = 0 % T ∗′MXT

∗

L = (L1 = 0, ..., Ln = 0) % The tabu value of coordinate i
L∗ % The tabu tenure. Determine by how much the tabu value Li
is increased if a move along coordinate i is made. (In the imple-
mentation, I use L∗ = min(10, n/8))
t % iteration counter

1. Set T = Start and V = T ′MXT .

2. Set t = t+ 1

3. Let T (i) be the neighbor that differs from T in coordinate i.
Calculate T (i)′MXT

(i) for every i ∈ {1, ..., n} with Li = 0.

4. If max
i∈{1,...,n},Li=0

T (i)′MXT
(i) > V ∗:

Set j = argmax
i∈{1,...,n},Li=0

T (i)′MXT
(i)

Apply Opt LocalSearch for Start = T (j) and t = t
Set T = Opt LocalSearch.T and t = Opt LocalSearch.t
Set V = T ′MXT
Set T ∗ = T and V ∗ = V

Else: Set j = argmax
i∈{1,...,n},Li=0

T (i)′MXT
(i)

Set T = T (j) and V = T ′MXT ;

5. Reduce the tabu values: Li = max(Li − 1, 0) for every i =
1, ..., n
Set the tabu value for the most recent move: Lj = L∗

6. If t < maxiter
Continue with step 2

Else
Return T ∗
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Opt Annealing:
Variables:
Start % Treatment allocation to start from (for example a random
allocation)
maxiter % Maximum Number of iterations (In the implementation,
I use max(1000000, 10000 ∗ n)
T ∗ % best allocation found so far
V ∗ = 0 % T ∗′MXT

∗

temperature % the value of the temperature variable determines the
probability that a sub-optimal allocation will be accepted. (In the
implementation, I use temperature = n)
α % determines how far the temperature reduces in every iteration.
(In the implementation, I use α = 0.995)
t % iteration counter

1. Set T = Start and V = T ′MXT .

2. Set t = t+ 1

3. Determine j ∈ {1, ..., n} randomly. Let T (j) be the treatment
allocation that differs from T only in coordinate j.

4. Calculate T (j)′MXT
(j)

5. If T (j)′MXT
(j) > V ∗

Set T = T (j) and V = T (j)′MXT
(j)

Set T ∗ = T (j) and V ∗ = T (j)′MXT
(j)

Else:
If T (j)′MXT

(j) > V
Set T = T (j) and V = T (j)′MXT

(j)

Else:
With a probability of exp(− |V−T

(j)′MXT
(j)|

temperature
):

Set T = T (j) and V = T ′MXT % Move to new allocation
even though it is worse than the old one

6. If t < maxiter
Set temperature = α · temperature
Continue with step 2

Else
Apply Opt LocalSearch for Start = T ∗ and t = t
Set T ∗ = Opt LocalSearch.T
Return T ∗
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D Multiple Treatments and/or Interaction Ef-

fects

In this section, I extend the analysis on linear models involving interaction effects
and on experiments including multiple treatments. I consider the following model:

Y = Xβx +H(X,T )βh + Tβt + ε, with ε ∼ N (0, Iσ2), (36)

X =

1 X1,1 ... X1,m
...

...
...

1 Xn,1 ... Xn,m

 denotes the covariate matrix;

The matrix T =

T1,1 ... T1,k
...

...
...

Tn,1 ... Tn,k

 describes the allocation of treatments.

Ti,j = 1 means that unit i receives treatment j. Whenever Ti,j = 0 for all
j ∈ {1, ..., k}, the unit is assigned to the control group.

H =

h1(X1,·, T1,·) ... hl(X1,·, T1,·)
...

...
...

h1(Xn,·, Tn,·) ... hl(Xn,·, Tn,·)

 is the matrix of interaction effects.

h1, .., hl are (possibly nonlinear) functions of the covariates and the treatments.
One example is a simple linear interaction effect h(Xi,·, Ti,·) = Xi,j1 · Ti,j2 , with
j1 ∈ {1, ...,m}, j2 ∈ {1, ..., k}.
Let C = (X,H, T ). Then the ordinary least squares estimates of βx, βh and βt
are:

b =

bxbh
bt

 = (C ′C)−1C ′Y.

In a next step, the researcher has to decide which effects are most important.
In many experiments this will be the estimators of all treatment effects βt, but
maybe the researcher is also interested in some of the interaction effects or only in
a selection of the treatment effects. I denote the effects that are most important to

the researcher major effects and all other effects minor effects. Let βz =

βz,1
...

βz,m̃


be vector of major effects. Further, let Z be the columns of C that correspond
to these major effects and N be the columns that correspond to the remaining
minor effects. Up to a permutation of columns, C = (N,Z).

The estimator of all coefficients b has the following variance-covariance matrix:

V[b] = σ2(C ′C)−1 = σ2

(
N ′N N ′Z
Z ′N Z ′Z

)−1
.

The variance-covariance matrix of the estimators for the major effect bz is the
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lower right k̃× k̃ sub matrix of V[b]. Using an inversion formula for block matri-
ces,18 this matrix is given by:

V[bz] = σ2(Z ′MNZ)−1. (37)

Similar to the case of one treatment and no interaction effects, the goal is to
minimize the variance of the treatment estimators. Note that in general N as
well as Z depend on the allocation of treatments T .

Whenever the number of major effects m̃ is equal to one, the matrix V[bz] reduces
to a scalar, which can be minimized by the same binary optimization techniques
presented in the paper. Whenever m̃ > 1, however, this is a matrix and mini-
mization is not clearly defined. In order to define a goal function for optimization,
the researcher therefore needs to specify a function g that maps the matrix V[bz]
to a real number.

In the field of optimal experimental design, popular functions for g are:

1. The determinant: g(V[bz]) = det(V[bz]). Treatment allocations that min-
imize det(V[bz]) are called D-optimal treatment allocations. D-optimal
treatment allocations minimize the volume of the confidence region for bz
(Khinkis et al., 2003).

2. The trace: g(V[bz]) = tr(V[bz]). Treatment allocations that minimize
tr(V[bz]) are called A-optimal treatment allocations. A-optimal treatment
allocations minimize the average variance of the estimators of the major
effects. Schneider and Schlather (2017) propose to use a weighted aver-
age, i.e., g(V[bz]) = tr(V[bz]diag(w)), with w = (w1, ..., wm̃) being weights
defining which effects are of most interest.

3. The maximum eigenvalue: g(V[bz]) = λmax(V[bz]). Treatment allocations
that minimize λmax(V[bz]) are called E-optimal treatment allocations. E-
optimal treatment allocations minimize the worst possible variance of all
linear combinations of the major effects (Pukelsheim, 2006, chapter 6.4).

For more information regarding statistical properties and intuitions behind these
functions and their usage in the field of experimental design, see Pukelsheim
(2006, chapter 6).

Having defined the model and the major effects, the function γ = g(Z ′MNZ) is a
mapping from the set of possible covariate matrices X and the set of admissible
treatment allocations T to the real numbers: γ : X ×T → R. Given the covariate
matrix X, γ(X,T ) solely depends on T and can be optimized according to the
binary optimization techniques presented in this paper.

18The inversion formula yields:(
A B
B′ C

)−1
=

(
A−1 + A−1B(C −B′A−1B)−1B′A−1 −A−1B(C −B′A−1B)−1

−(C −B′A−1B)−1B′A−1 (C −B′A−1B)−1

)
,

for a regular block matrix

(
A B
B′ C

)
(Bernstein, 2009).
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