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Abstract

Patent studies inform our understanding of innovation. Any study of
patenting involves classifying patent data according to a chosen taxonomy.
The literature has produced numerous taxonomies, which means patents are
being classified differently across studies. This potential inconsistency is
compounded by a lack of documentation provided on existing taxonomies,
making them difficult to replicate. Because of this, we develop a new patent
taxonomy using machine learning techniques, and propose a new
methodology to automate patent classification. We contrast existing
taxonomies with our own upon a widely used patent dataset. In a regression
analysis of patent classes upon patent characteristics, we show that
classification bias exists: the size, statistical significance, and direction of
association of coefficients depend upon how a patent dataset has been
classified. We recommend investigators adopt our approach to ensure future
studies are comparable and replicable.
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1 Introduction

Patent statistics are a widely used proxy for measuring technological change (Griliches,

1990).1 Patentable inventions, however, have heterogeneous characteristics, which, if

not accurately controlled for, have the potential to bias any interpretation of patent

statistics. Biased statistics are likely to lead to ineffective policy measures. For example,

the propensity to patent varies by industry, suggesting the decision to obtain a patent also

varies by industry (Moser, 2005). A single system of classification is necessary to account

for such characteristics consistently across studies. The innovation literature, however,

does not have a standard, re-usable taxonomy. Some studies use the section headings of

the International Patent Classification (IPC) schema (Nicholas, 2011c). Others employ

various industrial classification taxonomies (Phillips, 1966; Rajan and Zingales, 1998;

Aghion et al., 2002; Walsh et al., 2016). Still, others use historical classes derived from

prize-giving institutions (Moser, 2005; Moser, 2012; Khan, 2013b; Khan, 2016). The

inconsistency raises the following questions: how comparable are existing studies? And,

which, if any, of the prevailing taxonomies can and should be used in future studies?

Existing taxonomies can be divided into two types: “Official” and “Academic”. Official

taxonomies are produced by and for patent offices.2 Academic schemas exist independent

of patent offices, for conducting innovation research. Official taxonomies are limited in

their scope: they either group too many unrelated patents because patents are classed

by their technical functions, or too few related patents because of too many subclasses.

Academic schemas, likewise, are limited because they are often not fully discussed or

described. This makes academic taxonomies difficult to replicate or re-use consistently.

At present, both types of taxonomies can complicate our ability to interpret the existing

literature.

Patents can also be classified under “static” or “dynamic” schemas. Static schemas

1 A patent is a temporary monopoly right granted to a particular novel and non-obvious invention
or process; it provides the holder with the legal power to prevent replication or copying without express
permission (Scotchmer, 1991; Scotchmer, 2004).

2 Patent classification schemas have been developed to benefit patent examiners, rather than patent
researchers (e.g., WIPO, 2016). The thousands of unique patent classes within schemas, such as the
IPC, have greatly reduced the associated costs of patent examination.
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consist of broad classes that do not change over time. Dynamic schemas encompass much

more detailed classes, reflecting time- or country-specific innovation. Static taxonomies

are useful for a comparative analysis as comparisons can be made over the long-run and

between studies. Modern patent systems do not change much, having largely homogenised

over time. The long-run, however, encompasses numerous periods of patent reform. Such

events act as natural experiments, which can provide important insights concerning the

optimal design of patent institutions. The ability to contrast patents throughout history

is important for developing a complete understanding of how patent systems encourage

innovation, and how they have developed over time. For this reason, we opt for developing

a static taxonomy.

Our goal is to design a new, static patent taxonomy, for producing more consistent

and comparable results within the innovation literature. We base our taxonomy upon the

principle of transparency, so that future investigators can understand how our taxonomy

is designed. In this way, investigators can either: reuse our schema, re-purpose it for

their own needs, or even develop new schemas using our methods. We also propose a

new methodology for automating patent classification to ensure patent data are grouped

consistently. Our approach is to adopt machine learning techniques that can classify

any patent data using any patent taxonomy. Machine learning techniques minimize

the subjective element of classification, reducing the probability that some patents are

classified incorrectly. Establishing a consistent approach to patent classification is likely to

lead to increased comparability of innovation studies, which can only benefit policymakers

in designing appropriate measures to encourage innovation.

The first half of this paper is concerned with developing a new taxonomy, and a

method for classifying patent data. This methodology focuses on using text as data

to derive our set of static patent classes. Because the literature abounds of competing

patent taxonomies, we can observe which classes appear frequently. Frequent classes in

contemporary and historical taxonomies reflect technology groups that exist independent

of time or geography. These classes are then likely to represent static classes. Then, we

apply machine learning techniques to the patent data to check if our static classes are
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valid. Patent data contain rich textual information in their titles (and in their abstracts).

Using these titles, we elicit a set of common word associations, or “topics”. Topics

capture specific technology groups, and can be used to observe whether we have omitted

any potential classes; we derive topics from multiple patent datasets to check this. Finally,

we use our machine learning techniques to automate the patent classification process.

The second half of our paper is focused on whether the choice of schema influences the

results of examining patent characteristics – “classification bias”. To test this, we examine

the population of British patents granted between 1700 and 1850. There are several

advantages to using this dataset. First, taxonomies that have classified the data, such as

Nuvolari and Tartari (2011), Bottomley (2014), and Dowey (2017), can be replicated .

Second, this data spans the period of the Industrial Revolution; any insights are important

to our understanding of this phenomenon. Third, the dataset is relatively small, making

manual assignments and comparisons of classes simpler, as well as reducing the time

needed to run our machine learning techniques. Our results show that classification bias

does exist; the magnitude, sign, and significance of coefficients in a regression analysis of

patent characteristics against patent classes each depend on the taxonomy used.

This study contributes to the literature as follows. First, we present a new, well-

defined, static patent taxonomy. We thoroughly describe the development of our schema

to ensure future users understand how it was constructed and how it can be used. Second,

we provide a new methodology for automating the classification of any patent dataset.

This method classifies similar patents in a similar manner, leading to a classification

process that is more consistent and has fewer errors. Our method also significantly

decreases the time needed to classify large patent datasets, reducing the opportunity

cost of engaging in any large-scale analysis of patenting. Third, we identify classification

bias. This bias makes it difficult for policymakers to develop measures that encourage

innovation based on the existing literature. Overcoming this bias is dependent upon

whether taxonomies can be replicated consistently in future studies.

Our paper is closely related to the seminal article of Lybbert and Zolas (2014). In

their paper, the authors develop a concordance between the IPC and modern industrial
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classification schemas, to facilitate long-run analysis. This construct their concordance

using a probabilistic algorithm, which matches keywords in modern industrial classes to

patent titles from the European Patent Office’s PATSTAT database. However, their

method runs into the following difficulties. First, PATSTAT’s historical collection is

incomplete; any concordance using PATSTAT is less capable of contrasting patents over

the long-run. Second, because their concordance uses keywords from modern industrial

schemas, it cannot observe time- or region-specific terms, which then omits potentially

useful text for classification. Our approach overcomes these drawbacks. The key

difference is that we construct a new schema and not a concordance, so classification

does not rely on any-pre-existing classification codes. This schema also accompanies a

new methodology for classifying patent data. Our methodology uses only the text

contained in patent titles for the purposes of classification. This allows us to exploit the

entire set of unique words contained in patents titles from any patent dataset. In

addition, we ask a new question: whether classification bias exists. Because existing

studies inform policy measures, the implications from any bias for industrial policy are

likely to be serious and therefore need to be acknowledged and understood.

The remainder of this paper is outlined as follows: Section 2 surveys the existing

literature concerning patent classification. Section 3 discusses the machine learning

techniques used in this present study. Section 4 details how we derived our static patent

taxonomy. Section 5 outlines the data used in this study to test the efficacy of our new

taxonomy. Section 6 provides the results of contrasting patent taxonomies in our

analysis of patent classes upon patent characteristics. Section 7 discusses the

implications of our findings for the study of innovation. Finally Section 8 concludes

with some recommendations for future scholarship.

2 Patent Classification Literature

The development of official schemas has primarily been to the aid of patent examiners

(WIPO, 1992). Examining patents usually requires examiners to engage in the time-
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consuming search for prior art: previous patents that are likely to influence or anticipate

future ones. Having thousands of well-defined classes and subclasses makes this search

quicker. Such classes make fine distinctions between seemingly similar types of inventions,

allowing examiners to find the relevant art more effectively.

However, this approach is not universally appropriate. Academic studies do not need

patent classes to search for prior art; they need them to control for any common patent

characteristics likely to bias the study of patenting. Official schemas are not capable

of doing this for two reasons. First, section headings are too broad for use, as these

group together too many unrelated patents. The IPC has eight section headings, each

of which captures many diverse types of invention. Second, official subclasses are too

numerous, resulting in too few patents per class; the IPC has 61,397 subgroupings. For

this reason, academic studies often develop their own taxonomies, which consist of fewer,

broader classes. Replicating academic taxonomies, however, is not so easy: the absence

of documentation means we do not know how authors constructed their schemas.

In 1830, John D. Craig, the US Superintendent of Patents, gave evidence to the US

House of Representatives regarding the development of the US classification schema. In

his evidence, Craig raised two points: the ‘imperceptible shades of difference’ of patent

classes, and that ‘a doubt frequently arose concerning the class to which some of the

patents did properly belong’ (cited in Bailey, 1946: p. 466). Craig’s concern was that

patented inventions have overlapping characteristics. Accurately pinpointing a particular

class for a particular patent is then a difficult task. Modern schemas encounter this same

difficulty, especially in instances where authors only assign one class per patent.

It is precisely because assigning classes is difficult that a standardised schema is

necessary. Without a standard taxonomy, the inconsistent classification of patent data

becomes highly likely. Pearce (1957) discusses the inconsistency problem in the context

of industrial statistics. Prior to 1937, various agencies collected industrial statistics, but

these agencies used different classifications to code their data. Any resulting

comparisons of industrial data became ‘difficult and often misleading’ (Pearce, 1957: p.

1). This resulted in the creation of the Standard Industrial Classification (SIC) schema,
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for standardizing the classification of industrial data.

Such concerns are just as relevant for the current innovation literature, which relies

heavily on patent data to inform industrial policy. At present, different authors classify

(often the same) patent data in different ways. Patent classes are supposed to account for

common patent characteristics that could bias how we interpret such data. For example,

“machine” inventions are often patented because they can be easily reverse-engineered

(Moser, 2005). “Chemical” inventions, by comparison, are harder to reverse-engineer.

In this case, inventors acquire patents for different reasons that need to be consistently

accounted for. If scholars fail to take the same approach to identifying group-specific

characteristics, different studies cannot be easily compared.

The innovation literature has been relatively quiet with regard to the development of

patent taxonomies. Most studies use their classes as a set of industry controls for their

econometrics. What is not clear, however, is how authors have constructed their

taxonomies, how authors define their classes nor how they assign them. Without this

information, replicating existing taxonomies is difficult. This leads to two possible

outcomes. Either future investigators apply existing taxonomies incorrectly – leading to

further inconsistencies – or they produce additional taxonomies, which may not be

comparable with existing ones.

Table 1 details a sample of established taxonomies, both official and academic, which

have been used in conjunction with patent data.3 The table documents the source of

the taxonomy, the number of classes within the taxonomy, if there is an accompanying

description of its development, and if the classes receive definitions. As can be seen, the

number of classes varies across studies, while few schemas are described in detail.4 Official

articles are more likely to discuss their schema and methodology in detail: 10 out of 13

articles explicitly describe their classes, while eight out of 13 provide their methodology.

3 This table includes only unique taxonomies. The IPC, for example, has been used in multiple
studies, but is included once. We do include, however, studies that adapt existing codes because they
produce a taxonomy different to the original.

4 Not all of the provided taxonomies are for patents, some are for inventions submitted to prize-giving
exhibitions. Since these act to group inventions much like a patent class, and crucially to compare with
patents, we treat them as the same. Industrial taxonomies are also not intended for patent data, but
authors use them anyway. Because of this, they are also included and treated as patent schemas.
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Such documentation is probably why seven out of the 23 listed academic articles adapt

or adopt official schemas in some way.

Replicating taxonomies requires that they detail how to group patents. However, there

are multiple methods for doing so. Table 2 provides an overview of the most common

approaches to classification, which are relevant for developing a new patent taxonomy.

In his seminal article, Griliches (1990) outlines three methods of classification: “Origin”,

“Production”, and “Destination”. Origin groups patents by the industry that produced

them; this is suitable for examining R&D expenditure, as R&D occurs within a given

industry. Production groups patents by the industry most likely to produce the invention,

or use within the production of goods or services. Destination groups patents according

to the industry most likely to make use of, or benefit from, the invention. Destination and

Production overlap to some degree. The major difference is that the use of an invention

does not intrinsically imply its use is in production, but an invention used within the

production process constitutes Destination. Destination is likely to be the most suitable

method for studying patenting within the wider economy, as it is easier to determine the

intended industry of a patent.

Industrial taxonomies are often used when classifying patent data, for studying firm

or industry innovation (e.g. Baten et al., 2007; Nicholas, 2011b; Schautschick, 2015).

These taxonomies classify firms or industries by their “supply-side” or “demand-side”

characteristics. The supply-side method groups firms according to their production

process, or by their activities (Statistics Division, 2008; S&P Capital IQ and MSCI,

2015). For patents, this is not suitable. While this is useful to for the study of firms and

their acquisition of patents, it is less useful for studying the effects of patents in the

wider economy. Firms may have similar production processes, but can produce entirely

different output. This, in turn, suggests that the patents they obtain could be for

widely different applications. Similar to official schemas, the supply-side method is

likely to group unrelated inventions, which then do not accurately account for

group-specific characteristics of patents.

Alternatively, the demand-side approach groups firms by their competitors (e.g.
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Table 1: Classification Literature

Authors Classes Method Definitions

Academic Literature

Bain (1954) 20 Census of Manufactures (1947) No
Baten et al. (2007) 19 SIC Codes No
Brunt et al. (2012) 10 Woodcroft Subject-Matter Index No
Burhop and Wolf (2013) 9 None Provided No
Galasso and Schankerman (2015) 6 None Provided No
Hall et al. (2001) 6 USPTO codes No
Khan (2013a) 12 Massachusetts Mechanics Association Fair classes No
Khan (2013b) 4 None Provided No
Khan (2017) 6 Royal Society for Arts No
Khan (2015) 26 Annuaire de la Societe d’Encouragement pour l’Industrie Nationale No
Krueger and Summers (1988) 7 CIC codes No
Lampe and Moser (2016) 20 USPTO subclasses No
Lehmann-Hasemeyer and Streb (2016) 5 None Provided No
Moser (2012) 10 Historical Exhibitions No
Moser (2005) 7 Crystal Palace Exhibition No
Nanda and Nicholas (2014) 15 Mapping to SIC No
Nicholas (2008) 3 Description of business activities No
Nicholas (2011a) 30 Based on IPC No
Nicholas (2011b) 16 Based on SIC No
Nuvolari and Tartari (2011) 21 Expansion upon Moser Working Paper No
Rajan and Zingales (1998) 36 SIC No
Schautschick (2015) 8 Two-digit NACE codes No
Sokoloff (1988) 4 None Provided No

Official Literature

British Patent Office-Austrian Scheme (1915) 89 None Provided Yes
British Patent Office-French Scheme (1915) 20 None Provided No
British Patent Office-German Scheme (1915) 89 None Provided Yes
British Patent Office-Swiss Scheme (1915) 129 None Provided Yes
British Patent Office (2007) 8 Supply-side methodology No
SIC (2007) 21 Supply-side methodology Yes
ISIC (2008) 21 Supply-side methodology Yes
NACE (2008) 21 Supply-side methodology Yes
GICS (2016) 67 Supply-side methodology Yes
IPC (2016) 8 Supply-side methodology Yes
NAICS (2017) 20 Supply-side methodology Yes
Woodcroft (1860) 246 Patent titles No
A Cradle of Inventions (2009) 15 None Provided Yes

Notes: The table shows a sample of 36 published patent taxonomies. ‘Classes’ shows the number of individual patent classes in each taxonomy,
at the broadest level. ‘Method’ details how the classes were constructed, or where they were adapted from. ‘Definitions’ states whether the article
provided a list of definitions for their classes.

Sources: Official Industry Publications: SIC, ISIC, GICS, NAICS. Academic Literature: Bain (1954), Krueger and Summers (1988), Sokoloff
(1988), Rajan and Zingales (1998), Hall et al. (2001), Moser (2005), Baten et al. (2007), Nicholas (2008), Nicholas (2011c), Nicholas (2011b),
Nuvolari and Tartari (2011), Brunt et al. (2012), Moser (2012), Burhop and Wolf (2013), Khan (2013b), Khan (2013a), Bottomley (2014), Nanda
and Nicholas (2014), Schautschick (2015), Lampe and Moser (2016), Lehmann-Hasemeyer and Streb (2016), WIPO (2016), and Khan (2017).
Historical Publications: Woodcroft (1860), and A Cradle of Inventions: British Patents from 1617 to 1894. All British Patent Office schemas:
Franks (1915).

8



Table 2: Methodological Considerations for Classifying Patents

Approach Description Advantages Disadvantages

Dynamic Class patents by evolving
classes

Identification of rising technologies; identification of periods of
‘patent-mania’; consistency in use of IPC and industrial codes

Not appropriate for historical analysis; relies entirely on assigned
IPC codes

Static Class patents by fixed
classes

Allows for historical comparison; identification of broad classes
which rise and fall over time; comparability across countries and
time; does not require IPC

Not useful for identifying niche technology fields; reliant on
accurate identification of fixed classes

Destination Class patents by the
industry most likely to use
them

Allows for analysis of how patenting activity influences economic
indicators: GDP, Productivity; identification of fields inventor
intended their invention for

Cannot be sure where inventor intended their patent to go; reliant
on subjective classification of each patent

Origin Class patents by the
industry which invented
them

Allows for analysis of which industries contribute most to
technological progress and knowledge output

Reliant on data containing detailed information on the occupation
of the inventor, or if the patentee is a firm; doesn’t account for
the influence inventions have, only industry output

Production Class patents by the
industry most likely to
produce them, or use them
in the production process

Allows for analysis of investment activity, and the relationship
between output and investment

Limits observations to inventions requiring a production process,
e.g. manufactured goods; different classes will be captured that
share the same production process

Demand Side Class patents along
industry lines, where
industry is defined by its
close substitutes

Allows for comparison with the economists’ definition of industry Patents do not technically have substitutes; requires the accurate
identification of related inventions

Supply Side Class patents along
industry lines, where
industry is defined by its
production process

Allows for analysis of investment activity, and the relationship
between output and investment

Limits observations to inventions requiring a production process,
e.g. manufactured goods; different classes will be captured that
share the same production process

Notes: The table details the most important aspects of constructing patent classes, and assigning patents to these classes.

Sources: Dynamic and Static are our own definitions. Industry of Origin, Production, and Destination (Griliches, 1990). Demand-side and Supply-side (ECPC, 1992; ECPC, 1993; ECPC, 1994;
WIPO, 2016).
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Bain, 1951; Bain, 1954; ECPC, 1992; ECPC, 1993; ECPC, 1994; WIPO, 2016).

Patents, however, are not the same as industries or firms, and should not be grouped in

the same manner for the purpose of economic enquiry. Patents and inventions can be

either “macro-inventions” or “micro-inventions” (Mokyr, 2009). A macro-invention is a

substantially new technology, while a micro-invention complements this new technology

by improving upon it with incremental advancements. Micro-inventions complement

macro-inventions, as they improve upon minor aspects of the technology, increasing

their cost-effectiveness or productivity. Patents, therefore, do not necessarily compete

with each other. Studying the wider economy requires examining how an invention or

innovation affects that economy. For this purpose, patents should be characterised and

classified according to their applications.

The dynamic approach is another useful method for classification. This method

classes patents by the specific details of new technologies, rather than by any

application of it. For example, dynamic schemas classify inventions that improve the

use of UV lighting in farming based on the use of UV lighting, but not on its use in

agriculture. In this way, dynamic schemas are much like official schemas (WIPO, 2016).

The most common approach to producing a dynamic schema is to develop a

‘concordance’ between existing schemas (e.g. Verspagen et al., 1994; Kortum and

Putnam, 1997; Johnson, 2002; Schmoch et al., 2003). Recent developments in this

literature, however, have been to adopt statistical methods for classifying patents.

Lybbert and Zolas (2014), for example, have pioneered a new approach of using

probabilistic algorithms to match IPC classes to industrial schemas. By matching

keywords contained within existing industrial schemas to keywords in patent titles, they

attempt to reduce the subjective element of concordance mapping.

Such developments are of great value for examining the changing nature of

technology, but are less applicable to producing a long-run static taxonomy for studying

the wider economy. The importance of studying the long-run is that it contains

numerous periods of technological change. Such periods can provide important lessons

for directing policy measures to encourage innovation. The Industrial Revolution
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(1760-1830), for example, was the first period of major technological change historically,

and one of the most significant events in human history. Comparisons over the long-run

allow us to draw lessons from this period, which can then be used to encourage

innovation, which may be useful to the ongoing “Fourth Industrial Revolution”.

Dynamic schemas cannot make such comparisons. First, the dynamic method

requires patent data to have pre-existing IPC codes. Patents without these codes – such

as historical patents – are then effectively neglected, hampering the ability of dynamic

schemas to observe the long-run. Second, studying patenting behaviour and its effects

on the wider economy requires observing the Destination of patents, rather than their

technical function. Technical functions reveal nothing about how a particular invention

influences productivity levels, or R&D expenditure, or economic development, because

this method groups together otherwise unrelated patents. Mapping to existing

industrial taxonomies, which also use the supply-side methodology, further limits the

capability of dynamic schemas to study the applications of patents.

Therefore, this study opts to produce a new static taxonomy, based upon the

application or Destination of patents. To effectively produce such a schema, we turn to

machine learning techniques. The design of any schema should be replicable in future

studies, and should minimize the subjective decision making of the investigator. Here,

text analysis techniques are most useful: they can be easily replicated, and they do not

require much human judgement as they rely strongly on the text contained in patent

data.

3 Machine Learning Approach

Text analysis uses text as data, by attempting to extract subjective information from

natural language. One approach is to classify articles based on the common associations

of particular words contained within them. The choice of words in a given article of text

are conditional on the theme of the article; the words used can identify the relevant

classification. Such associations can be derived from either “unsupervised” or
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“supervised” machine learning techniques. Unsupervised methodologies seek to find

hidden associations between observations. Supervised techniques, by contrast, use

known classifications to train a particular model. We opt for unsupervised techniques,

so as to allow the data to derive latent patent groups.

In text analysis, words that commonly appear together are called topics. One method

to identify a set of topics is Non-Negative Matrix Factorization (NMF). Here, the dataset,

or “corpus”, is represented as a matrix composed of word frequencies for each article (row)

and word (column). Frequencies can be simple term counts, but following O’Callaghan

et al. (2015) we adopt a log-based term frequency-inverse document frequency (TF-IDF)

representation, which helps to counter the influence of words that appear more frequently

throughout the corpus. “Stop words” are entirely removed from the corpus.5 The matrix

is then approximately decomposed into the product of two non-negative matrices. Here,

articles are represented in terms of scores relating to each topic, and each topic by scores

relating to their use of words.

To understand how the NMF approach works, consider the following example. Suppose

we have a corpus – a collection of patents in this instance – containing m patent titles,

each composed from a set of n unique words. This corpus is represented by the matrix

C, where ci,j represents, for each document i, the number of occurrences of word j.

NMF attempts to factorize this matrix by approximating it as the product of two smaller

non-negative matrices. This is represented as:

AT ≈ C (1)

where matrix T represents how often each word occurs within each topic. The weights in

matrix A then reveal the extent to which a patent relates to each topic. Word associations

define their topics, which allows them to be interpreted by the investigator for further

classification.

5 The term stop words is used to describe words which are most commonly used in a particular
language (for example the conjunctions like ‘and’, ‘if’, or ‘when’, and prepositions like ‘to’, ‘with’ or
‘in’). Such words are unhelpful in understanding the content of the corpus and are therefore ignored.
Stop words were sourced from http://www.ranks.nl/stopwords.
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Before deriving a set of topics, we first need to determine how many topics to

produce. When using topic scores to classify patents, the number of topics influences

where each patent is assigned.6 Initially, we generated topics in multiples of 20, and

examined the differences between them. Fewer topics were associated with less

consistent word associations, while additional topics alleviated this inconsistency.

Therefore, we adopt a set of objective measures to determine the number of topics to

use. We rely on three separate measures: the Residual Sum of Squares (RSS); Entropy

scores; and Coherence scores. For each measure, we derived a range of different numbers

of topics: 10, 20, 30, 40, 50, 60, 70, 80, 100, 120, 150, and 200. These are displayed in

Figure 1. Future investigators should reproduce these measures when determining how

many topics to use; it is unlikely that the optimal number of topics would be the same

for all studies.

Firstly, we compute RSS scores. The RSS measures the quality of the approximation

to the original document term frequency matrix. This metric decreases with each

additional topic. In the case where there is a hidden number of groups, we may observe

an improvement in the score once the number of topics reaches the number of these

groups, with diminishing returns thereafter (Hutchins et al., 2008). Figure 1a shows the

RSS scores to be decreasing in the number of topics, but at a marginal rate of decline.

The slope of the curve becomes relatively flatter between 70 and 120 topics. For this

reason, we suggest our optimal number lies within this range.

Secondly, we compute Entropy scores for our various numbers of topics. Entropy is

a measure of unpredictability. Information theory shows that changes in entropy proxy

as a measure of information gain. Following Stevens et al. (2012), for topic model M

partitioning data into t groups, where t is the number of topics, entropy can be measured

as:

H(M) =
t∑

i=1

−P (i)logP (i) (2)

Entropy can therefore measure the amount of information gained from adding an

additional topic. Figure 1b shows a negative association between the number of topics

6 We generate the optimal number of topics from our British dataset, described in Section 5.
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(a) Residual Sum of Squares Scores Per Topic

(b) Entropy Scores Per Topic

(c) Coherence Scores Per Topic

Figure 1: Measures for the Optimal Number of Topics

Source: Author’s calculations using A Cradle of Inventions: British Patents from 1617 to 1894 (2009)
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and information gain. A lower score suggests little information gain from one more

topic. The figure shows that, for each additional topic, the information received is

diminishing. Between 10 and 60 topics is when the greatest information gain occurs.

This steadily falls between 50 and 100, getting flatter as the number of topics

approaches 100. Information gain is relatively constant after 120 topics. Based on this

measure, the optimal number of topics lies between 60 and 120, but closer to the upper

bound.

Finally, we use Coherence-based scores. We can think of topics that make meaningful

connections between words as being coherent. Measures of coherence are based on ‘pairs

of topic descriptor terms that co-occur frequently or are close to each other within a

semantic space are likely to contribute to higher levels of coherence’ (O’Callaghan et al.,

2015: p. 1). Stevens et al. (2012) consider measures of topic coherence that align with

judgements by human investigators. One such measure is the “UMass” measure of Mimno

et al. (2011). For topic T represented by the top n words ti, the measure is defined as:

C(T ) =
n∑

i=2

i−1∑
j=1

log
D(ti, tj) + 1

D(tj)
(3)

where D(ti) is the number of documents featuring word ti, and D(ti, tj) is the number of

documents featuring both words ti and tj. For any given number of topics, we can then

calculate the average topic coherence score.

Figure 1c displays the coherence scores. The overall trend suggests that additional

topics lead to less coherent associations. The figure shows a sharp decline in coherence

between 10 and 30 topics. The scores steadily fall until 100 topics, where the slope

becomes flatter. There is also a small increase in Coherence between 70 and 80 topics.

This measure suggests our optimal number lies between 70 and 100.

Based on the three metrics, we argue that the optimal number of topics for this

instance is 100. Each score suggests that the range of 70-120 has the optimal amount.

Collectively, the scores point to 100 as being the appropriate number. For the remainder

of this discussion, we use 100 topics. It is important to note that this does not mean we
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will have 100 patent classes. The topic is a means to derive common word associations

that we then classify according to a particular schema.

4 The Taxonomy

Our goal is to design a new, static patent taxonomy. This taxonomy should class patent

data based on the text contained in patent titles. It should also classify patents

according to their Destination, as described in Griliches (1990). This allows us to

identify the relevant classification based on the information provided in patent titles.

For example, the following patent title identifies the likely industry for this particular

invention: improvements in firearms. This is a military improvement, but we cannot say

for certain which industry would produce it, or which industry it came from.7

Our methodology for developing a new taxonomy is two-fold. First, we undertake a

number of counting exercises based on a sample of studies from the innovation literature.

These exercises are, for the most part, subjective, but necessary, as human judgement is

required to identify those existing classes that relate to each other. Second, we apply our

machine learning techniques as an objective robustness check.

Static classes are likely to be independent of both time and countries. Classes that

appear frequently throughout the literature are likely to represent static classes, as their

frequent usage indicates their value. Observing the entire population of established classes

is not possible; not all studies publish their taxonomy. Instead, we use our sample of

unique taxonomies presented in Table 1. This sample should be representative of the

literature; it covers historical and contemporary taxonomies, as well as studies from

different regions.

The first step to identifying our common classes is to decompose each taxonomy into

a corpus of single words. This approach allows us to observe each word in isolation of

its source. The majority of classes in our sample consist of a single word: we term them

7 The Production method is more subjective, as the investigator must decide the industry most likely
to produce the new invention; it is doubtful the investigator has the requisite knowledge to do so. The
Origin approach also requires the investigator to decide which industry an invention comes from; is this
to be decided from the inventor’s occupation or the industry of the firm the inventor works for, or some
other criteria?
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as short classes. Other classes are comprised of multiple keywords: we term these as

long classes. However, determining whether a short class is similar to a long class is a

difficult task. For example, consider the following long class taken from the historical

German schema (Franks, 1915): ‘Sheet Metal, Metal Pipe and Tube and Wire

Manufacture and Working, Metal-Rolling’. This class focuses on the specific aspects

related to metalworking and manufacturing. But, consider another, broader class, this

time taken from Moser (2005): ‘Manufactures’. The only relation between these classes

comes from their use of the word ‘manufacture’. But, the long class also relates to

metalworking. Therefore, we could not consider these to be related. For long classes to

be related they would have to consist of the same keywords, but this is highly unlikely.

Instead, splitting the long class into a set of short classes means we can derive related

words much more easily.

Once each schema is decomposed, we initially tally how often each unique word

appears. This result is displayed in the first half of Table3. Our initial tally produced

1,600 unique words, the majority of which appeared only once or twice. This tally,

however, is not very informative because it does not account for synonyms or related

text.

The next step is to begin manually identifying related words and grouping them

together. Here, human judgement has the advantage, as any machine learning

algorithm would not necessarily identify, for example, that ‘instruments’ and

‘accoutrements’ are related terms. By grouping related words, we can derive a set of

“word-groups” which act as preliminary classes. We start by observing an initial word –

such as ‘agriculture’, for example – and then review the entire corpus for related terms

– such as ‘forestry’, ‘seeds’, ‘fishing’, etc. Once our search of the corpus is complete, we

then sum the tallies of related terms together to produce a score for each word-group.

As a provisional check, both authors conducted this exercise independently, twice. Each

exercise resulted in the same 24 word-groups. These are displayed in the second half of

Table 3. The associated counts reflect how likely it is our word-group represents a static

patent class. ‘Lighting’, for example, has the lowest count, as terms related to Lighting
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Table 3: Industry Count Results

Raw Count Aggregate Count

Words Count Word-groups Count

Instruments 28 Commodities 263
Machinery 22 Machinery 249
Machines 22 Chemicals 244
Food 20 Instruments 213
Gas 20 Construction 194
Water 20 Textiles 170
Engines 19 Agriculture 169
Equipment 19 Transportation 116
Metal 19 Manufacture 98
Paper 17 Food 93
Agriculture 16 Apparel 89
Construction 16 Health 82
Electric 16 Paper 81
Mining 16 Engines 74
Manufacture 14 Metal 67
Materials 14 Electricity 60
Furniture 13 Gas 56
Printing 13 Water 54
Tools 13 Heating 52
Chemicals 12 Military 46
Appliances 11 Communications 43
Engineering 11 Mining 39
Glass 11 Utility 39
Leather 11 Lighting 23
Manufacturing 11
Ships 11
Textiles 11
Carriages 10
Chemicals 10
Electrical 10
Fabrics 10
Lighting 10
Steam 10
Stone 10
Transportation 10

Notes: The ‘Raw Count’ columns represent our results from the initial frequency
counts. ‘Aggregate Count’ displays the results for manually grouping certain words.

Source: See Table 1.

did not often appear as part of any class within our sample.8

However, certain taxonomies contain significantly more classes or words per class than

others do, and may bias the results. The appearance of certain word-groups might result

entirely from one taxonomy. Therefore, we repeat our counting exercise upon the broadest

class levels within the sample. For example, the GICS has ‘Sectors’, which are divided

into ‘Industry Group’, which are then further divided into ‘Industries’; Sectors counts as

the broadest level that we use in our second exercise instead of ‘Industries. Consequently,

we omit Woodcroft (1860) as it has too many classes and no broader level of classification.

Our second counting method produced 536 unique words, compared to 1,600 from before.

8 Higher scores suggest that a number of class contained related words. Some classes repeat the same
words. However, they do not repeat such words too often. Therefore, lower scores possibly reflect this
repetition, while high scores reflect the appearance of words in multiple class and schemas.
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Table 4: Industry Count Results Robustness Check

Words Frequency New

products 24 Yes
activities 22 Yes
instruments 17 No
food 15 No
metal 15 No
agriculture 14 No
machinery 14 No
mining 14 No
paper 13 No
construction 12 No
chemicals 11 No
engines 10 No
equipment 10 Yes
machines 10 No
textiles 10 No

Notes: The table shows the words with an initial tally of 10 or greater.
‘New’ states whether the word appeared in the top 15 words of the first
count shown in Table 3.

Source: Authors’ calculations using data from Table 1.

Of these words, we examined those with an initial tally of 10 or greater. The results

are reported in Table 4. This allows us to identify whether new words have appeared

compared to the initial count in Table 3. Of the 15 listed words, ‘products’, ‘activities,

and ‘equipment’ are new. Further investigation showed that ‘products’ and ‘activities’

were entirely from industrial schemas, ruling them out as common classes. Furthermore,

we consider ‘Equipment’ to be related to ‘Instruments’ and group them accordingly.

Words with a count of two or greater were then reviewed, with word-groups again being

derived based on identifying related terms. The resulting word-groups remained identical

to those from the prior exercise.

We next compare our word-groups against the sample literature. By doing so, we

can check how often a word-group appears as a distinct class. Word-groups appearing

frequently are then more likely to represent a static class. We check each word-group

against each taxonomy, and then tabulate how often they appear verbatim. Table 5 shows

the results of this matching process. For example, 24 out of the 36 sample taxonomies

list Chemicals as a distinct class, while Utilities appears only five times. This suggests
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Table 5: Results from Matching Word-groups to the Literature

Word-groups Total Percentage

Chemicals 24 72.73
Machinery 21 63.64
Electricity 20 60.61
Food 19 57.58
Construction 18 54.55
Instruments 18 54.55
Textiles 18 54.55
Transportation 18 54.55
Agriculture 16 48.48
Health 16 48.48
Metal 15 45.45
Paper 14 42.42
Communications 13 39.39
Mining 13 39.39
Manufacturing 12 36.36
Apparel 10 30.30
Engines 8 24.24
Gas 7 21.21
Commodities 7 21.21
Military 7 21.21
Heating 6 18.18
Water 6 18.18
Lighting 5 15.15
Utilities 5 15.15

Notes: The table shows how often each word-group appears, verbatim,
in our sample of 36 taxonomies from Table 1. Word-groups with higher
scores are considered more robust and representative of the literature.

Source: Authors’ calculations using data from Table 1.

that Chemicals is representative of being a static class, while Utilities is less so.

To verify our derived word-groups, we next examine a selection of patent datasets with

machine learning techniques. Specifically, we derive a set of topics from each dataset, and

then match these topics to our list of word-groups. We base the strength of our proposed

schema on whether it can suitably classify each topic. In particular, we are concerned

with the spanning nature of the proposed classes: we wish to assign at least one word-

group per topic, and are less concerned with instances where ambiguity arises. The ability

to apply multiple classes mitigates concerns that might apply in the latter case. Large

patent datasets will inevitably contain pioneering and niche inventions that are more
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Table 6: Data Used for Topic Analysis

Country Years Source

England 1617-1852 A Cradle of Inventions (2009)
Switzerland 1880-1930 PATSTAT Biblio
UK1 1893-1914 PATSTAT Biblio
USA 1950-1980 PATSTAT Biblio
UK2 1990-2016 PATSTAT Biblio

Notes: This table lists the datasets used to aid the development of our new patent taxonomy.
For the USA and UK datasets, samples were taken from each decade.

Source: See Source column.

difficult to classify. Such outlier patents are unlikely to undermine an entire classification

schema. Nevertheless, if significant numbers of patents appear as distinct, unclassifiable

topics then our schema is likely to be undermined.

To check the robustness of our word-groups, we apply the NMF topic analysis method

to the patent datasets described in Table 6. We chose these datasets because they contain

detailed patent titles, and span historical and contemporary periods collectively. For the

USA and both UK datasets, we draw a random sample from each decade by extracting

patents with an identification number ending in either one or six. By taking samples,

we can ensure that each patent dataset is of a similar size, so that we can use the same

number of topics.

To justify including an additional class, we would expect significant numbers of

patents to arise that belong to a specific topic that we cannot be map to an existing

word-group. By extracting more topics from each dataset than word-groups within the

proposed schema, we hope to expose any missing classes. Should such a distinct class

exist, it follows that distinct language would be used to describe associated patents. If

these patents appeared in significant numbers, we would expect a separate topic to

appear. We can infer whether any omitted classes exist by reviewing the derived topics.

Our topic analysis confirms that the proposed schema is sufficient to capture patents

from a number of diverse datasets.9 We could readily assign each topic to at least one of

our word-groups, supporting the word-groups as static classes. The results also suggest

9To prepare the patents for analysis, patent titles were stripped of non-printing characters and stop
words. Suitable substitutions are applied to reduce all text to a standard character set.
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including an additional word-group, comprised of patents related to ‘screws, nuts, bolts,

nails, pins’ etc. Consequently, we term this word-group as “Hardware” and append it to

our set of word-groups.

To determine whether our proposed schema constitutes a static taxonomy, we compile

the results from each of our exercises into Table 7. Here, each exercise is labelled as a

“Step”, and the respective tallies from each stage are shown. We also present a cut-off

indicator to aid us decide whether a word-group constitutes a patent class. This indicator

provides an objective measure of how robust a word-group is in each step. For example,

under ‘Step One: Raw’, the cut-off value states that any word-group with a score below

10 is less likely to be a static class. For most exercises, the cut-off value is intended to

separate the bottom third of scores from the rest. An inspection of each column shows a

greater separation between word-groups in the bottom third against the remainder. For

Step Four, a word-group which can be readily assigned to a topic is considered a stronger

indicator of whether it is a static class.10 In each column, the text that appears in bold

falls below our assigned cut-off values.

The final column of Table 7 is our measure to determine whether a word-group qualifies

as a static class. A score of zero indicates a completely robust class. A score of ten,

however, indicates that a word-group is not static. For any score in between zero and

ten, we review the associated word-group, with higher scores more likely to be removed

or reformed.

Based on our review, we merge the following classes: Apparel into Textiles; Gas into

Chemicals or Utility; Heating, Lighting and Water into Utility; and Military into

Instruments. To avoid confusion, we reform Engines into Power (as Engines and

Machines are very similar classes), which groups inventions that produced locomotion,

energy, or force of any kind. Hardware, which initially arose from examining a selection

of patent datasets, is also determined to be representative of a static class. We repeat

each step to ascertain whether Hardware should be included in the taxonomy. This

review led us to conclude that Hardware represents another usable class; Hardware

10 Note that most topics under this Step were assigned at least two classes. We count both within
the tally.
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Table 7: Patent Class Methodology Scores

Classes
Step One Step Two Step Three Step Four Frequency

Raw Aggregate Raw Aggregate England US UK1 UK2 Swiss
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Chemicals 12 244 11 44 24 16 9 7 7 6 0
Construction 16 194 12 31 18 5 3 3 1 4 0
Electricity 16 60 8 24 20 1 10 2 2 7 0
Instruments 28 213 17 58 18 19 30 25 13 11 0
Machinery 22 249 14 66 21 28 8 6 8 5 0
Manufacturing 14 98 9 49 12 3 1 1 3 1 0
Transportation 10 116 8 35 18 7 6 3 7 5 0
Metal 19 67 15 31 15 4 1 1 4 0 1
Paper 17 81 13 22 14 3 1 2 3 0 1
Textiles 11 170 10 20 18 16 1 0 4 4 1
Agriculture 16 169 14 24 16 5 1 0 0 0 3
Communications 7 43 7 19 13 1 4 14 3 0 3
Engines 19 74 10 16 8 4 0 0 5 6 3
Food 20 93 15 34 19 0 0 1 1 0 3
Hardware 4 257 2 31 4 23 24 13 31 17 3
Apparel 7 89 4 19 10 1 0 0 1 1 4
Gas 20 56 8 11 7 3 1 2 0 1 4
Commodities 8 263 7 61 7 2 1 1 3 0 4
Water 20 54 8 8 6 3 2 3 0 1 4
Health 8 82 6 33 16 0 1 3 0 0 5
Heating 8 52 4 12 6 3 2 1 1 4 5
Lighting 10 23 5 5 5 2 0 1 1 1 5
Mining 16 39 14 17 13 2 1 0 0 0 5
Utilities 6 39 3 3 5 2 0 0 4 5 7
Military 4 46 2 12 7 0 0 0 0 0 10

Cut-off point <10
Bottom
Third

Bottom
Third

Bottom
Third

<10 >0 >0 >0 >0 >0

Notes: ‘Step One’ refers to our first count of unique words. ‘Step Two’ refers to our second count of unique words, using the broadest level of classification available from our sample. ‘Step Three’ refers to counting
the number of taxonomies in which each of our 24 word-groups appear. ‘Step Four’ shows how often each of our classes appeared in one of the 5 listed patent datasets using topic analysis. The “cut-off” points are
defined as the threshold for determining whether a class is robust. A class which falls inside the cut-off point criteria is considered less robust. For each column they are as follows: Column 1 - classes with scores
less than 10. Columns 2, 3, and 4 - the bottom third of classes. Column 5 - classes with scores less than 10. Columns 6, 7, 8, 9, and 10 - classes with a score of 0. In the final column, classes with higher scores
are reviewed. Step Four is given a higher rating, as it is based on a greater number of empirical observations. The result is that the following classes are reviewed, then either modified, combined further, or kept:
Apparel into Textiles; Engines becomes Power; Gas into Chemicals and Utilities; Water, Heating, Lighting into Utilities; Military into Instruments. Mining and Health are kept as separate classes because they do
not readily fit into another existing class.
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Table 8: Patent Class Definitions

Number Classification Inventions Pertaining To:

(1) Agriculture The growth of crops and raising of livestock; fishing, forestry and hunting;
horticulture; unspecified use of land

(2) Chemicals The development of new chemicals, the applications of chemicals,
or products developed by chemicals processes; organic and inorganic
chemistry; gases; nuclear

(3) Commodities Consumable, durable, and non-durable goods which are not explicitly for
industrial usage, with a focus on inventions to be sold in the market for
private use; intangible services; recreational items

(4) Communications Facilitating communication between persons; signalling; digital inventions;
software; media

(5) Construction Building; tools for building; civil engineering; construction and building
related accessories; building of infrastructure; construction of items of a
physical nature

(6) Electricity The creation, management, and application of electricity; of electrical
appliances, components, and instruments; aspects of electricity which do
not overlap with other utilities; combinations of electricity with galvanism,
magnetism and the like

(7) Food The production, treatment, and management of foodstuffs and beverages
for consumption; tobacco

(8) Hardware Devices, objects, or items which serve a purpose without requiring a direct
application; Objects which do not require a direct action in order to
function

(9) Health Improving the quality of life; life-saving medicines or apparatus; protection
from ailments

(10) Instruments Measuring, gauging, weighing; general devices or objects which reduce the
effort required to perform certain tasks; devices or objects which aid in
productivity of labour; a tool or implement especially for precision work

(11) Machinery Machines which operate on mechanical power, and to their maintenance;
processes conducted by machines

(12) Manufacturing The production of goods or items; large scale and small scale

(13) Metal Metallurgy; extracting metals from their ores; the application of chemical
processes to metals, whether by producing, refining, galvanising or other
such methods

(14) Mining The construction of mines, their excavation, management, flood
management, and extraction of natural resources; the raising and lowering
of heavy bodies

(15) Paper The use of paper; methods which improve paper; the process of printing;
paper and cardboard production, and to other such related items; physical
record keeping; bills, cheques

(16) Power Generating, regulating, and applying energy for power, speed, or such
related uses

(17) Textiles The creation of fabrics from processes of weaving, spinning, knitting,
felting, etc, and their bleaching or dyeing, and treatment ; clothing and
clothing accessories

(18) Transportation Facilitating speedy, or easier, travel across distances; transport
infrastructure; packaging and storage of items for easier transport

(19) Utility The management of public systems, such as sewerage; the creation,
management, and application of gas, heat, light, and water; the regulation
of water, light, heat, gas, and electricity as public goods; and to inventions
which encompass combinations of water, light, heat, gas, and electricity;
fireproofing structures

Notes: Definitions are constructed using the list of word associations derived from the topic analysis approach.
Some classes could be further divided using these definitions, or further aggregated.
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appeared frequently under the topic analysis approach, which we consider a stronger

indicator of robustness. Overall, our methodology produced a set of 19 static patent

classes.

The final step was to use topic analysis techniques to aid the descriptions of our

classes. Inadequate descriptions can lead to a subjective interpretation of how to apply

our taxonomy. Such difficulties would deter adoption of the schema, and undermine

results derived from its application. Since topics represent word clusters that tend to

appear in combination with one another, where a topic directly relates to a class the

words comprising that topic act as descriptors. This uncovers the vocabulary used to

connect a patent’s description with its intended classification, upon which we build our

class definitions. Table 8 presents our finalized classification schema.

5 Application of Taxonomy

The use of competing patent taxonomies within the literature is problematic: the

results posited may be contingent on the choice of classification. How can we compare

the results derived using different taxonomies, especially when we do not know how to

replicate them? Before we test for classification bias, this section first discusses our

dataset: the population of British patents granted during the period 1700-1850. We

chose this dataset for the following reasons. First, this dataset has been used

extensively within the historical innovation literature (Dutton, 1984; Sullivan, 1989;

Sullivan, 1990; MacLeod, 2002; Nuvolari and Tartari, 2011; Meisenzahl and Mokyr,

2012; Bottomley, 2014; Dowey, 2017; Khan, 2018). Second, prior studies have classified

the patent data. For instance, Nuvolari and Tartari (2011) and A Cradle of Inventions:

British Patents from 1617 to 1894 have both assigned competing schemas to the data.

Both schemas are obtainable for this present study, allowing for a simple comparison

with our own. Third, this dataset covers the traditional period of the Industrial

Revolution (1760-1830). Any insights from this era are vital to our understanding of

this phenomenon, which transformed stagnant, agricultural economies into
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industrialised ones, birthing the modern age.

To prepare the dataset for comparison, we assign the three taxonomies. The Cradle of

Invention (COI) schema had already been assigned when the data were extracted. The

Nuvolari-Tartari (NT) taxonomy was provided by Nuvolari and Tartari (2011). We assign

our schema using our machine learning methodology. After deriving our 100 topics, we

assigned one class per topic. Where a topic was inconsistent in its word associations, we

labelled it ‘Unclear’ and then manually reviewed any patents assigned to it.11 Our method

creates each topic and assigns patents to them simultaneously. We then assign the topic’s

associated class. By assigning the top two topic scores to each patent, we can account

for any potential overlap across technology groups. We denote these as TopicOne and

TopicTwo. In some instances, a patent has the same class assigned twice. We consider

these patents to have no overlapping characteristics. We also manually classified the

entire dataset, and compared our assignments with the machines. Both authors do this

independently. In 90 per cent of cases, either of our manually assigned classes matched

either of the assigned topics. The remaining 10 per cent either were the result of Unclear

topics, or patents which had too few unique words.

Table 9 presents a comparison of the schemas used in this study. Several classes

appear within each taxonomy: Agriculture, Food, Instruments, Medicines (or Health),

Mining, Paper, and Textiles. For these commonly occurring classes, however, the number

of assigned patents are not identical across taxonomies. The COI schema, for example,

assigns 510 patents to Agriculture, while our own TopicTwo assigns only 410. At least

100 patents are prone to being classified inconsistently. Food patents suffer a similar

inconsistency across existing schemas. COI lists 369 patents as Food, while NT lists 784

instead. The majority of patents also receive a different TopicTwo assignment, suggesting

that the characteristics of many patented inventions spillover into multiple technology

groups. This supports our assertion that patents require more than one classification.

We calculate Herfindahl-Hirschman (HHI) scores for each schema. HHI scores show

how concentrated a particular taxonomy is. A higher score indicates a more skewed

11 Such occurrences, however, are relatively few: only four topics were labelled Unclear.
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Table 9: Comparison of Class Assignments

Cradle of Invention Nuvolari-Tartari TopicOne TopicTwo

Class Count Percentage HHI Class Count Percentage HHI Class Count Percentage HHI Class Count Percentage HHI

Agriculture 510 3.34 0.001 Agriculture 479 3.48 0.001 Agriculture 501 3.06 0.001 Agriculture 410 2.50 0.001

Beverages 310 2.25 0.001 Carriages 888 6.45 0.004 Chemicals 1,243 7.59 0.006 Chemicals 1,203 7.34 0.005

Clothing 302 2.19 0.000 Chemicals 1,236 8.97 0.008 Commodities 357 2.18 0.000 Commodities 178 1.09 0.000

Communications 102 0.74 0.000 Clothing 366 2.66 0.001 Communications 33 0.20 0.000 Communications 47 0.29 0.000

Domestic 1,747 12.68 0.016 Construction 692 5.02 0.003 Construction 1,167 7.12 0.005 Construction 1,549 9.46 0.009

Food 369 2.68 0.001 Engines 1,818 13.19 0.017 Electricity 141 0.86 0.000 Electricity 123 0.75 0.000

Industry 6,513 47.27 0.223 Food 784 5.69 0.003 Food 144 0.88 0.000 Food 73 0.45 0.000

Instruments 500 3.63 0.001 Furniture 716 5.20 0.003 Hardware 1,417 8.65 0.007 Hardware 1,296 7.91 0.006

Medicine 259 1.88 0.000 Glass 146 1.06 0.000 Health 428 2.61 0.001 Health 279 1.70 0.000

Military 235 1.71 0.000 Hardware 920 6.68 0.004 Instruments 1,013 6.18 0.004 Instruments 1,038 6.34 0.004

Mining 280 2.03 0.000 Instruments 651 4.72 0.002 Machinery 1,111 6.78 0.005 Machinery 1,370 8.36 0.007

Miscellaneous 18 0.13 0.000 Leather 237 1.72 0.000 Manufacture 1,431 8.74 0.008 Manufacture 1,830 11.17 0.012

Paper 580 4.21 0.002 Manufacturing 769 5.58 0.003 Metal 573 3.50 0.001 Metal 757 4.62 0.002

Textiles 1,865 13.54 0.018 Medicines 301 2.18 0.000 Mining 381 2.33 0.001 Mining 279 1.70 0.000

Transportation 1,667 12.10 0.015 Metallurgy 763 5.54 0.003 Paper 298 1.82 0.000 Paper 317 7.90 0.006

Military 267 1.94 0.000 Power 973 5.94 0.004 Power 1,294 10.97 0.012

Mining 94 0.68 0.000 Textiles 2,250 13.73 0.019 Textiles 1,797 7.00 0.005

Paper 526 3.82 0.001 Transportation 1,658 10.12 0.010 Transportation 1,147 8.52 0.007

Pottery 314 2.28 0.001 Utility 1,263 7.71 0.006 Utility 1,395 8.52 0.007

Ships 648 4.70 0.002

Textiles 1,949 14.15 0.020

HHI 0.280 0.078 0.077 0.085

Notes: The table displays the Herfindahl-Hirschman Concentration ratios for each taxonomy. Count represents the total number of patents related to that class. This is then represented as a percentage. The individual class
HHI scores are represented. The bottom row displays the HHI ratio for each taxonomy as a whole.

Sources: Authors’ calculations using data from A Cradle of Inventions: British Patents from 1617 to 1894 and ServicesNuvolari and Tartari (2011). Both datasets cover 1700-1850.
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distribution of patents within a particular schema. For example, COI has the highest

associated HHI score at 0.280, while TopicOne has the lowest at 0.077. Examining the

COI schema shows that ‘Industry’ accounts for almost 50 per cent of all British patents.

No other schema has such a ‘catch-all’ class.

6 Comparison of Taxonomies

The existing, competing schemas do not consistently classify patent data. Consequently,

studies that use different schemas are likely to produce different results. To test for any

potential bias, we observe each schema against two commonly examined patent

characteristics: the citations of patented inventions, and the occupational status of

patentee’s. Because each taxonomy does not have the exact same patent classes, we

present only those common to all schemas: Agriculture, Food, Instruments, Medicines

(or Health), Mining, Paper, and Textiles.

6.1 The Citations of Patented Inventions

First, we examine how the chosen taxonomy affects an analysis of the citations of

patented inventions. In the innovation literature, patent citations are a popular metric

used to proxy for patent quality or value (Hall et al., 2001; Hall et al., 2005; Lach and

Schankerman, 2008; Bernstein, 2015; Kogan et al., 2017). In place of citations, the

historical literature has adopted the Woodcroft Reference Index (WRI), as pioneered by

Nuvolari and Tartari (2011). This index lists how many contemporary scientific and

trade journals referenced a particular patent within our dataset. The references are

used to proxy for the technical and economic significance of a particular patented

invention: more references signals a higher quality patent. Because the number of

references artificially increases over time, we adopt the approach of Hall et al. (2005)

and Nuvolari and Tartari (2011), by weighting the total sum of references on a patent

by the average number of references on all patents within a given time period. To
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Table 10: Negative Binomial: Dependent Variable is the Weighted Number
of References per Patent

(1) (2) (3) (4) (5)
VARIABLES NT COI TopicOne TopicTwo TT

Food 0.018 0.022 0.017 -0.057 -0.070*
(0.029) (0.038) (0.056) (0.070) (0.042)

Instrument 0.035 -0.022 -0.026 -0.037 -0.073***
(0.030) (0.032) (0.029) (0.040) (0.017)

Medicines -0.077** -0.037 0.017 -0.039 -0.048**
(0.036) (0.041) (0.034) (0.050) (0.023)

Mining 0.174*** 0.188*** 0.001 -0.042 -0.065***
(0.060) (0.044) (0.039) (0.047) (0.024)

Paper 0.070* 0.053 0.022 -0.031 -0.046**
(0.036) (0.035) (0.041) (0.045) (0.024)

Textiles -0.067** -0.037 -0.017 -0.065 -0.086***
(0.028) (0.028) (0.028) (0.040) (0.017)

Constant -0.131*** -0.111*** -0.134*** -0.074 -0.049
(0.042) (0.040) (0.042) (0.048) (0.038)

Time Y Y Y Y Y
Controls Y Y Y Y Y
Observations 13,286 13,286 13,286 13,286 13,286
Pseudo R-Squared 0.00376 0.00294 0.00317 0.00264 0.00303

Notes: The table shows how the quality of patented inventions varies by technology
group. The dependent variable is the weighted number of references per patent. In each
column, the omitted variable is the “Agriculture” class. Coefficients are interpreted as
the difference in the logs of expected counts of the predictor variable. To translate this
into a unit change, the coefficients need to be exponentiated. Robust standard errors in
parentheses. *** p<0.01, ** p<0.05, * p<0.1

Sources: Authors’ calculations using data from A Cradle of Inventions: British Patents
from 1617 to 1894 and Nuvolari and Tartari (2011). Both datasets cover 1700-1850.

ensure comparability, our time periods are those of Nuvolari and Tartari (2011).12

The quality indicator is a count variable with a skewed distribution; many patents

have few references, and few patents have many references. The negative binomial model

accounts for this skewness by relaxing the assumption that the mean and the variance

are equal (Greene, 2008).13 Under this model, our dependent variable is the weighted

number of references on a given patent. Our control variables constitute: whether the

12 These cohorts are as follows: 1700-1721; 1722-1741; 1742-1761; 1762-1781; 1782-1801; 1802-1811;
1812-1821; 1822-1831; 1832-1841; 1842-1850.

13 We also test this relationship using the poisson model. The results from poisson are equivalent to
the negative binomial approach.
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patentee had a prior patent; the patentee’s occupation; whether the patentee’s occupation

matches the class of their invention; their nationality; and time controls. The explanatory

variables are the classes associated with each schema. We represent patent classes with

dummy variables, where Agriculture is the chosen baseline category.

Table 10 provides the results of our approach. Column 1 uses the NT schema; column

2 then controls for the COI schema; column 3 examines our TopicOne taxonomy; column

4 represents the TopicTwo taxonomy; and column 5 controls for TopicOne and TopicTwo

(henceforth known as “TT”). We argue that future investigators who employ our schema

run three separate econometric specifications, using TopicOne, TopicTwo, and then both

schemas together as a robustness check.

Classification bias exists. This bias affects all aspects related to interpreting

regression coefficients. The magnitude of coefficients fluctuates considerably when

comparing Mining inventions, for example. The COI schema suggests that Mining

patents are likely to have 17-18 per cent more references per patent compared to

Agricultural patents. One reasonable interpretation is that capital-intensive inventions

are of a greater quality.14 TopicOne, however, suggests that Mining patents have 0.1 per

cent more references. Capital-intensive inventions, then, are of a similar quality to

Agricultural ones.

Statistical significance also fluctuates considerably. Textile patents, for example,

show a statistically significant association under the NT and TT schemas. However,

this significance does not exist under the remaining schemas. Here, Textile patents are

not statistically distinguishable from Agricultural patents, in terms of their respective

number of references. Such a result is likely to lead investigators to consider Textile

patents as being no different from Agricultural patents.

The direction of association of coefficients is also subject to bias. Most classes

exhibit some variation in the direction of association; Textiles is the only class to show a

consistently negative result. Furthermore, Food and Paper patents show the greatest

14 Based on their titles, Mining patents were likely to be highly mechanised during this period. Such
inventions are considered to be capital-intensive, as suggested by Khan (2005), because more capital
than labour is required for their development.
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variation, as both classes have an almost even split between positive and negative signs.

For these classes, TopicTwo and TT schemas produce a negative result, suggesting they

have fewer references than Agricultural patents. However, the remaining schemas

produce a positive result, suggesting instead that these types of patents have more

references.

6.2 Patentee Occupational Status

To ascertain whether classification bias is unique to examining the citations of patented

inventions, we conduct an additional test by regressing patentee’s occupations against

patent classes. The innovation literature has examined the role of independent inventors

and the types of industries they are likely to select into, or the types of inventions they are

likely to produce (Schmookler, 1966; Khan and Sokoloff, 2004; Nicholas, 2010; Nicholas,

2011b; Khan, 2018). Our data allow us to conduct a similar examination. The patent

data record the patentee’s occupation alongside their name. This allows us to match

occupations to a statistical measure of potential skills: the HISCLASS schema of Van

Leeuwen and Maas (2011). The metric group occupations based on their skills, whether

they are manual or non-manual labour, and the degree of supervision required. For

simplicity, we break the HISCLASS codes into manual versus non-manual, following

Klemp and Weisdorf (2012). Non-manual occupations are likely to be higher-skilled than

their manual counterparts (Van Leeuwen and Maas, 2011).

We represent non-manual occupations using a dummy indicator variable.

Consequently, a probit regression model is necessary to derive the probability of patent

classes being associated with non-manual occupations. Our control variables constitute:

whether the inventor had a prior patent; their nationality; and time controls. The

explanatory variables are patent classes, with the baseline class being Agriculture.

Table 11 report our results.

Classification bias still exists, and all aspects related to interpreting coefficients are

affected. Medicine patents show a significant range in terms of coefficient size. Under the

COI schema, for example, an average Medicine patent is approximately 29 per cent more
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Table 11: Probit: Dependent Variable is a Dummy representing a Non-
Manual Occupation

(1) (2) (3) (4) (5)
VARIABLES NT COI TopicOne TopicTwo TT

Food 0.110*** 0.167*** 0.117** 0.021 0.009
(0.025) (0.035) (0.046) (0.066) (0.035)

Instruments 0.035 -0.025 -0.018 -0.026 -0.061***
(0.025) (0.028) (0.025) (0.028) (0.013)

Medicines 0.287*** 0.292*** 0.223*** 0.070* 0.122***
(0.037) (0.040) (0.033) (0.038) (0.021)

Mining 0.228*** 0.236*** 0.107*** 0.048 0.036*
(0.059) (0.041) (0.033) (0.039) (0.021)

Paper 0.131*** 0.083*** -0.029 0.042 -0.027
(0.028) (0.028) (0.034) (0.037) (0.021)

Textiles -0.024 0.000 -0.024 -0.051* -0.082***
(0.022) (0.022) (0.023) (0.027) (0.012)

Time Y Y Y Y Y
Controls Y Y Y Y Y
Observations 13,241 13,241 13,241 13,241 13,241
Pseudo R-Squared 0.0875 0.0690 0.0753 0.0585 0.0743

Notes: The table shows how the association between non-manual occupations and
technology groups. The dependent variable is a dummy variable, where a value of
1 indicates a non-manual occupation. In each column, the omitted variable is the
“Agriculture” class. Coefficients are interpreted as marginal effects at the means. Robust
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 item Sources: Authors’

calculations using data from A Cradle of Inventions: British Patents from 1617 to 1894
and Nuvolari and Tartari (2011). Both datasets cover the period 1700-1850.

likely to be associated with a non-manual occupation, when compared to an Agricultural

patent. The size of this result is large, and suggests that inventors of Medicine patents

were skilled. However, the TopicTwo schema suggests that non-manual occupations were

only 7 per cent more likely to produce Medicine patents. While the conclusion remains

similar, the reduced coefficient size suggests that the specific human capital and skills

associated with elite occupations are less important for producing medicinal inventions.

Statistical significance also varies across taxonomies. The majority of patent classes

present an almost even divide between significance and non-significance. For example,

Food patents are statistically significant at the one per cent level under the NT, COI,

and TopicOne schemas. From this, a reasonable interpretation is that Food patents are

significantly different to Agricultural patents. However, the TopicTwo, and TT schemas
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are not statistically significant at conventional levels. This result undermines our initial

interpretation.

The direction of association, likewise, fluctuates considerably. For Paper patents, there

is an almost equal divide between positive and negative associations. The NT, COI,

and TopicTwo schemas suggest Paper patents were more likely to be associated with

non-manual occupations compared to Agricultural patents. TopicOne and TT, however,

suggest the opposite: less skilled individuals were more likely to produce Paper patents.

7 Discussion

To our knowledge, the present study is the first to show that classification bias exists.

Prior studies have likely been unaware of the potential consequences of their choice of

taxonomy. This is a serious concern, as statistical significance, direction of influence, and

coefficient magnitude are subject to bias when competing schemas are used. The extent

of this bias is uncertain within the literature. Without a complete understanding of how

authors construct their taxonomies, and for what purpose, we cannot determine how

serious the bias is. Most academic studies do not provide such detail. Therefore, prior

research articles that do not expressly describe their taxonomy should be interpreted with

caution.

To illustrate the severity of our findings, consider the following example. Suppose

there exists a policymaker tasked with designing appropriate measures for encouraging

innovation. This policymaker bases her decisions upon the existing evidence presented to

her. She is keen to promote innovation by directing resources toward particular high-value

technologies. But, she must first discern which technology groups are associated with

higher value inventions, and the types of skills associated with them. In her approach, the

policymaker hires a number of academic investigators, one of which decides that long-run

evidence on the subject would be useful. They classify patents using the COI taxonomy.

In their analysis, they find that capital-intensive inventions (Mining, for example) are on

average more valuable, and are more likely to be produced by higher skilled occupations.
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Our policymaker may conclude that supporting capital-intensive innovation is the

appropriate policy. She may then shape industrial policy to support, for example, the

establishment of university research parks (URP).15 Such parks would likely encourage

capital-intensive innovation through access to highly skilled labour, scientific knowledge,

and additional resources for R&D. Suppose, however, another investigator had the same

idea to obtain historical evidence, except they use the TopicTwo schema. Based on their

findings, the policymaker would likely conclude that capital-intensive inventions are not

of great value nor produced by highly skilled individuals. She is likely, then, to question

her initial policy measures. Had she implemented a policy to encourage URPs, then she

may have misdirected important resources, with little effect on innovation.

Of course, this is but a very simplistic example. However, it does highlight the

potential implications classification bias has for prescribing policy. Existing taxonomies

are difficult to replicate, and may lead to the development of new taxonomies, which

further compounds the inconsistency problem. The collective body of evidence on the

economics of patents is then difficult to interpret. Shaping industrial policy requires a

strong body of evidence that is comparable and replicable. By directing their efforts

based on the existing evidence, policymakers are at risk of making the wrong decisions.

Such decisions may have great costs involved, such as the opportunity costs of resources

used. Alternatively, incorrect policy measures may inadvertently hinder innovation,

rather than encourage it. Since innovation is widely accepted as an important driver of

economic growth, the tools to encourage innovation need to be appropriately designed.

These tools are dependent upon the consistent classification of patents.

Our recommendations for the literature are as follows. Firstly, creators of taxonomies

should describe how they design them. This ensures that potential biases are identifiable

and their methods replicable. Secondly, mitigating potential biases requires adopting a

universal schema. The taxonomy produced in this study is a useful starting point, as

it is readily adoptable and adaptable for future studies. Thirdly, descriptions need to

accompany patent classes to ensure a consistent classification of patent data throughout

15 URPs are intended to encourage innovation through knowledge diffusion from academic research
to small, high-tech start-ups (Anselin et al., 1997; Siegel et al., 2003; Link and Scott, 2007).
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the literature. Fourthly, subjectivity can be reduced by employing machine learning

techniques to improve the consistency of patent classification. Finally, topic analysis

provides a means to both identify appropriate classes and omitted classes, and to perform

the classification of patent datasets in ways that are useful for economic analysis of

innovation.

8 Conclusion

Our goal in this paper has been: to document methods of taxonomy construction; to

design and develop a new, static patent taxonomy in a clear and transparent manner;

to develop a new method for classifying all patent data consistently; and to show that

classification bias exists. We recommend our methodology and taxonomy be used in

future studies. We acknowledge, however, that our schema may not be applicable to

every study. In such cases, future investigators should describe any new taxonomies they

produce. The machine learning techniques described in this study are adaptable and

adoptable for any future researchers, and could be used alongside other schemas.

The implications of classification bias are likely to be profound for the innovation

literature. Classification bias exists, at least, in the long-run British patent data studied

here. Whether this bias exists in other datasets necessitates a re-examination of the

existing literature, for clarification. In the case that this bias is only moderate,

interpreting the literature is then less problematic, and deriving appropriate policy

measures would remain possible. However, in the extreme case, where all studies are

biased, the literature becomes incomparable. If studies are not comparable, then

appropriate policy measures cannot be readily prepared. We recommend, where

possible, that existing studies be re-examined using our schema and methodology. This

is not to say that our schema is “right”, as there can be no objective measure of this.

Our schema is transparent, however, making it straightforward for any subsequent

studies to make use of it, or draw from it, as they see fit. Our methodology, likewise, is

also not “right”, but it is, at least, consistent. Human error is substantially minimised
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using our machine learning approach. Related patents will always be identified, and will

always be grouped together. Unlike humans, the machine does not make mistakes.

9 References

A Cradle of Inventions: British Patents from 1617 to 1894 (2009). Stevenage, UK: Metal

Finishing Information Services Ltd.

Aghion, P., N. Bloom, R. Blundell, R. Griffith, and P. Howitt (2002). Competition and

Innovation: An Inverted U Relationship. National Bureau of Economic Research

Working Paper Series No. 9269.

Anselin, L., A. Varga, and Z. Acs (1997). Local Geographic Spillovers between

University Research and High Technology Innovations. Journal of Urban Economics

42(3), pp. 422–448.

Bailey, M. F. (1946). History of Classification of Patents. Journal of the Patent Office

Society 28(7), pp. 463–507.

Bain, J. S. (1951). Relation of Profit Rate to Industry Concentration: American

Manufacturing, 1936-1940. The Quarterly Journal of Economics 65(3), pp. 293–324.

Bain, J. S. (1954). Economies of Scale, Concentration, and the Condition of Entry in

Twenty Manufacturing Industries. The American Economic Review 44(1), pp. 15–39.

Baten, J., A. Spadavecchia, J. Streb, and S. Yin (2007). What made southwest German

firms innovative around 1900? Assessing the importance of intra- and inter-industry

externalities. Oxford Economic Papers 59(suppl 1), pp. i105–i126.

Bernstein, S. (2015). Does Going Public Affect Innovation? The Journal of Finance 70(4),

pp. 1365–1403.

Bottomley, S. (2014). Patenting in England, Scotland and Ireland during the Industrial

Revolution, 1700-1852. Explorations in Economic History 54, pp. 48–63.

Brunt, L., J. Lerner, and T. Nicholas (2012). Inducement Prizes and Innovation

Inducement Prizes and Innovation. Journal of Industrial Economics 60(4),

pp. 657–696.

36



Burhop, C. and N. Wolf (2013). The German Market for Patents during the ”Second

Industrialization,” 1884-1913: A Gravity Approach. Business History Review 87(1),

pp. 69–93.

Dowey, J. (2017). Mind over matter: access to knowledge and the British Industrial

Revolution. PhD thesis. The London School of Economics and Political Science.

Dutton, H. I. (1984). The patent system and inventive activity during the industrial

revolution, 1750-1852. Manchester University Press.

ECPC (1992). Issue Paper No. 1: Conceptual Issues. Tech. rep. U.S. Department of

Commerce.

ECPC (1993). Issue Paper No. 6: Services Classifications. Tech. rep. U.S. Department of

Commerce.

ECPC (1994). Report No. 1: Economic Concepts Incorporated in the Standard Industrial

Classification Industries of the United States. Tech. rep. U.S. Department of Commerce.

Franks, W. T. (1915). Key to the Classifications of the Patent Specifications of France,

Germany, Austria, Netherlands, Norway, Denmark, Sweden, and Switzerland, in the

Library of the Patent Office. 3rd. London: Darling & Son Ltd.

Galasso, A. and M. Schankerman (2015). Patents and Cumulative Innovation: Causal

Evidence from the Courts. The Quarterly Journal of Economics 130(1), pp. 317–369.

Greene, W. (2008). Functional forms for the negative binomial model for count data.

Economics Letters 99(3), pp. 585–590.

Griliches, Z. (1990). Patent Statistics as Economic Indicators: A Survey. Journal of

Economic Literature 28(4), pp. 1661–1707.

Hall, B. H., A. B. Jaffe, and M. Trajtenberg (2001). The NBER Patent Citation Data File:

Lessons, Insights and Methodological Tools. National Bureau of Economic Research

Working Paper Series No. 8498.

Hall, B. H., A. B. Jaffe, and M. Trajtenberg (2005). Market Value and Patent Citations.

The RAND Journal of Economics 36(1), pp. 16–38.

37



Hutchins, L. N., S. M. Murphy, P. Singh, and J. H. Graber (2008). Position-dependent

motif characterization using non-negative matrix factorization. eng. Bioinformatics

(Oxford, England) 24(23), pp. 2684–2690.

Johnson, D. K. N. (2002). The OECD Technology Concordance (OTC): Patents by

Industry of Manufacture and Sector of Use. OECD Science, Technology and Industry

Working Papers.

Khan, B. Z. (2005). The Democratization of Invention: Patents and Copyrights in

American Economic Development, 1790-1920. Cambridge University Press.

Khan, B. Z. (2013a). Going for Gold. Industrial Fairs and Innovation in the Nineteenth-

Century United States. Revue économique 64(1), pp. 89–113.

Khan, B. Z. (2013b). Selling Ideas: An International Perspective on Patenting and

Markets for Technological Innovations, 1790-1930. Business History Review 87(1),

pp. 39–68.

Khan, B. Z. (2015). Inventing prizes: a historical perspective on innovation awards and

technology policy. Business History Review 89(4), pp. 631–660.

Khan, B. Z. (2016). Prestige and Profit: The Royal Society of Arts and Incentives for

Innovation and Enterprise, 1750-1850. LSE Economic History Working Papers No.

248/20.

Khan, B. Z. (2017). Prestige and Profit: The Royal Society of Arts and Incentives for

Innovation, 1750-1850. National Bureau of Economic Research Working Paper Series

No. 23042.

Khan, B. Z. (2018). Human capital, knowledge and economic development: evidence from

the British Industrial Revolution, 1750–1930. Cliometrica 12(2), pp. 313–341.

Khan, B. Z. and K. L. Sokoloff (2004). Institutions and Democratic Invention in 19th-

Century America: Evidence from ’Great Inventors,’ 1790-1930. National Bureau of

Economic Research Working Paper Series No. 10966.

Klemp, M. and J. Weisdorf (2012). The lasting damage to mortality of early-life adversity:

evidence from the English famine of the late 1720s. European Review of Economic

History 16(3), pp. 233–246.

38



Kogan, L., D. Papanikolaou, A. Seru, and N. Stoffman (2017). Technological

Innovation, Resource Allocation, and Growth. The Quarterly Journal of Economics

132(2), pp. 665–712.

Kortum, S. and J. Putnam (1997). Assigning Patents to Industries: Tests of the Yale

Technology Concordance. Economic Systems Research 9(2), pp. 161–176.

Krueger, A. B. and L. H. Summers (1988). Efficiency Wages and the Inter-Industry Wage

Structure. Econometrica 56(2), pp. 259–293.

Lach, S. and M. Schankerman (2008). Incentives and invention in universities. The RAND

Journal of Economics 39(2), pp. 403–433.

Lampe, R. and P. Moser (2016). Patent Pools, Competition, and Innovation-Evidence

from 20 US Industries under the New Deal. Journal of Law, Economics & Organization

32(1), pp. 1–36.

Lehmann-Hasemeyer, S. and J. Streb (2016). The Berlin Stock Exchange in Imperial

Germany: A Market for New Technology? American Economic Review 106(11),

pp. 3558–3576.

Link, A. N. and J. T. Scott (2007). The economics of university research parks. Oxford

Review of Economic Policy 23(4), pp. 661–674.

Lybbert, T. J. and N. J. Zolas (2014). Getting patents and economic data to speak to

each other: An Algorithmic Links with Probabilities’ approach for joint analyses of

patenting and economic activity. Research Policy 43(3), pp. 530–542.

MacLeod, C. (2002). Inventing the industrial revolution: The English patent system, 1660-

1800. Cambridge University Press.

Meisenzahl, R. and J. Mokyr (2012). The Rate and Direction of Invention in the British

Industrial Revolution: Incentives and Institutions. The Rate and Direction of

Inventive Activity. Ed. by J. Lerner and S. Stern. Chicago: University of Chicago

Press, pp. 443–479.

Mimno, D., H. M. Wallach, E. Talley, M. Leenders, and A. McCallum (2011). Optimizing

semantic coherence in topic models. Proceedings of the conference on empirical methods

in natural language processing. Association for Computational Linguistics, pp. 262–272.

39



Mokyr, J. (2009). The Enlightened Economy: An Economic History of Britain 1700-1850.

Yale University Press.

Moser, P. (2005). How Do Patent Laws Influence Innovation? Evidence from Nineteenth-

Century World’s Fairs. The American Economic Review 95(4), pp. 1214–1236.

Moser, P. (2012). Innovation without Patents: Evidence from World’s Fairs. The Journal

of Law & Economics 55(1), pp. 43–74.

Nanda, R. and T. Nicholas (2014). Did bank distress stifle innovation during the Great

Depression? Journal of Financial Economics 114(2), pp. 273–292.

Nicholas, T. (2008). Does Innovation Cause Stock Market Runups? Evidence from the

Great Crash. The American Economic Review 98(4), pp. 1370–1396.

Nicholas, T. (2010). The Role of Independent Invention in U.S. Technological

Development, 1880-1930. The Journal of Economic History 70(1), pp. 57–82.

Nicholas, T. (2011a). Did R&D Firms Used to Patent? Evidence from the First Innovation

Surveys. Journal of Economic History 71(4), pp. 1032–1059.

Nicholas, T. (2011b). Independent invention during the rise of the corporate economy in

Britain and Japan. Economic History Review 64(3), pp. 995–1023.

Nicholas, T. (2011c). The origins of Japanese technological modernization. Explorations

in Economic History 48(2), pp. 272–291.

Nuvolari, A. and V. Tartari (2011). Bennet Woodcroft and the value of English patents,

1617-1841. Explorations in Economic History 48(1), pp. 97–115.

O’Callaghan, D., D. Greene, J. Carthy, and P. Cunningham (2015). An analysis of the

coherence of descriptors in topic modeling. Expert Systems with Applications 42(13),

pp. 5645–5657.

Pearce, E. (1957). History of the Standard Industrial Classification. Tech. rep.

Washington: Executive Office of the President. Office of Statistical Standards.

Phillips, A. (1966). Patents, Potential Competition, and Technical Progress. The

American Economic Review 1(2), pp. 301–310.

Rajan, R. G. and L. Zingales (1998). Financial Dependence and Growth. The American

Economic Review 88(3), pp. 559–586.

40



Schautschick, P. (2015). An Economic Investigation of the Use and Impact of Patents

and Trade Marks in Germany. PhD Thesis. Ludwig Maximilians University.

Schmoch, U., F. Laville, P. Patel, and R. Frietsch (2003). Linking technology areas to

industrial sectors. Final Report to the European Commission, DG Research.

Schmookler, J (1966). Invention and Economic Growth. Cambridge: Harvard University

Press.

Scotchmer, S. (1991). Standing on the Shoulders of Giants: Cumulative Research and the

Patent Law. The Journal of Economic Perspectives 5(1), pp. 29–41.

Scotchmer, S. (2004). Innovation and Incentives. London: MIT Press.

Siegel, D. S., P. Westhead, and M. Wright (2003). Assessing the impact of university

science parks on research productivity: exploratory firm-level evidence from the United

Kingdom. International Journal of Industrial Organization 21(9), pp. 1357–1369.

Sokoloff, K. L. (1988). Inventive Activity in Early Industrial America: Evidence From

Patent Records, 1790-1846. The Journal of Economic History 48(4), pp. 813–850.

S&P Capital IQ and MSCI (2015). Global Industry Classification Standard.

Statistics Division (2008). International Standard Industrial Classification of All

Economic Activities. Revision 4. Tech. rep. Department of Economic and Social

Affairs.

Stevens, K., P. Kegelmeyer, D. Andrzejewski, and D. Buttler (2012). Exploring Topic

Coherence over Many Models and Many Topics. Proceedings of the 2012 Joint

Conference on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning. EMNLP-CoNLL ’12. Stroudsburg, PA, USA: Association

for Computational Linguistics, pp. 952–961.

Sullivan, R. J. (1989). England’s ‘Age of Invention’: The Acceleration of Patents and

Patentable Invention During the Industrial Revolution. Explorations in Economic

History 26(4), pp. 424–452.

Sullivan, R. J. (1990). The Revolution of Ideas: Widespread Patenting and Invention

During the English Industrial Revolution. The Journal of Economic History 50(2),

p. 349.

41



Van Leeuwen, M. H. and I. Maas (2011). HISCLASS: A Historical International Social

Class Scheme. Leuven: Leuven University Press.

Verspagen, B., T. Van Moergastel, and M. Slabbers (1994). MERIT concordance table:

IPC-ISIC (rev. 2). MERIT Research Memorandum February.

Walsh, J. P., Y.-N. Lee, and T. Jung (2016). Win, lose or draw? The fate of patented

inventions. Research Policy 45(7), pp. 1362–1373.

WIPO (1992). The International Patent Classification (IPC). eng. Journal of the Patent

and Trademark Office Society 74(7), pp. 481–483.

WIPO (2016). Guide to the International Patent Classification. Geneva.

Woodcroft, B. (1860). Subject-Matter Index of Patents of Invention, From March 2, 1617

(14 James I.) to October 1, 1852 (16 Victoria). London: Queen’s Printing Office.

42


	wp18-06-cover
	InventingTax
	Introduction
	Patent Classification Literature
	Machine Learning Approach
	The Taxonomy
	Application of Taxonomy
	Comparison of Taxonomies
	The Citations of Patented Inventions
	Patentee Occupational Status

	Discussion
	Conclusion
	References


