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Abstract

We analyze Assessment Voting, a new two-round voting procedure that
can be applied to binary decisions in democratic societies. In the first round,
a randomly-selected number of citizens cast their vote on one of the two al-
ternatives at hand, thereby irrevocably exercising their right to vote. In
the second round, after the results of the first round have been published,
the remaining citizens decide whether to vote for one alternative or to ab-
stain. The votes from both rounds are aggregated, and the final outcome
is obtained by applying the majority rule, with ties being broken by fair
randomization. Within a costly voting framework, we show that large elec-
torates will choose the preferred alternative of the majority with high prob-
ability, and that average costs will be low. This result is in contrast with
the literature on one-round voting, which predicts either higher voting costs
(when voting is compulsory) or decisions that often do not represent the
preferences of the majority (when voting is voluntary).
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1 Introduction

How can the will of the majority in the citizenry be reflected in the outcomes of democratic
decisions? Turnout in elections tends to be significantly lower than the size of the electorate
and thus it is unclear whether the citizens casting a vote can be trusted to represent the
distribution of preferences in the entire population. As has been widely argued in the
literature, some citizens may not exercise their right to vote when voting is costly, with
such costs potentially affecting the election outcome (Ledyard, 1984; Palfrey and Rosenthal,
1983, 1985). There are many reasons why voting may be costly for an individual: going
to the polling station requires effort and is associated with opportunity costs, the need to
understand some details about the election process may discourage some citizens to vote,

or some individuals may be disappointed from repeatedly being in the minority.

When voting is costly, a balance is struck in equilibrium between such cost and the expected
benefit of going to the ballot box. Three stylized facts are then predicted by a major
strand of the literature on costly voting (see e.g. Borgers, 2004; Krasa and Polborn, 2009;
Taylor and Yildirim, 2010a,b).! First, if at all, citizens vote for their preferred alternative,
and hence no strategic voting occurs.? Second, regardless of the distribution of preferences
within the entire citizenry, both alternatives are expected to win with the same probability.?
Third, absolute aggregate turnout is bounded from above, regardless of the size of the
electorate. This implies that relative turnout decreases with the size of the electorate. The
voting procedure for which these three properties are derived is the standard and widely-
applied one-round voting, which is modeled by having all citizens (simultaneously) decide

whether or not to go to the ballot box, and in the former case which alternative to vote for.

The goal of the present paper is to show that within a costly-voting set-up, it is possible to
devise a different voting procedure which is superior to the standard one-round voting in the
following sense: the final decision will match the preference of the majority of the population
with a probability arbitrarily close to one, and, also in expectation, participation costs will
be similar to the participation costs in the (voluntary) one-round voting procedure. At the

same time, the suggested procedure is also superior to compulsory one-round voting, in

!Most papers in the costly-voting literature analyze private-value settings. We refer to Ghosal and
Lockwood (2009) for a setting where preferences have both private- and public-value components.

2This feature obtains even if there are more than two alternatives (Arzumanyan and Polborn, 2017)
and has empirical support in settings where voting is voluntary (Bhattacharya et al., 2014).

3While sometimes less stark, the underdog effect—according to which supporters of the minority alter-
native turn out in relative terms more than supporters of the majority alternative—is featured by most
models. Exceptions include the case where the cost is much smaller for the members of the majority and
the case where there is ambiguity about the true preferences of the electorate (Taylor and Yildirim, 2010a).



which case the alternative preferred by the majority is also chosen with high probability,
but at a much higher cost. As a matter of fact, we will argue that there is a sense in which
the proposed voting procedure can be seen as the right mix of voluntary and compulsory

one-round voting schemes.

Instead of having the entire citizenry vote at the same time, we suggest the following two-

round procedure, which we call Assessment Voting (AV in short):*

1. A number of citizens are randomly selected from the entire population, all of whom
constitute the Assessment Group (AG).

2. All members of AG (simultaneously) cast a vote for one of the alternatives at hand

or abstain.

3. The number of votes in favor of either alternative obtained in the first round is made

public.

4. All citizens who do not belong to AG (simultaneously) decide whether to abstain or

to vote for either alternative, and thus the second voting round takes place.

5. The alternative with the most votes in the two rounds combined is implemented. Ties

are broken by a fair toss coin.

Because AV serves the purpose of choosing one of two alternatives and is compatible with
basic democratic principles—every citizen is granted one vote—, it could be used both in
representative and direct democracies for any voting by the entire citizenry, such as the
referendum on Brexit.® To be implementable in democratic environments, however, the
members of AG would have to be selected truly randomly and this group be large enough
to make the results of this first round representative for the entire electorate from an ex post
perspective—not merely ex ante. Moreover, both features should be common knowledge.®
By building on a sequential voting procedure, and due to a few other features that we
will discuss below, AV will be able to equalize the extent of the externalities that voting in

favor of either alternative creates on its supporters.” It is actually known from the literature

4For a verbal description, see Gersbach (2015).

5In Section 5, we show that Assessment Voting works similarly when there are more than two alterna-
tives.

6Given the unequal power that members of both voting groups have, distrust would emerge if citizens
were to anticipate that either the identity of such groups may be manipulated or the selected group may
not be representative enough (say, because the group is too small).

"A strand of literature on costly-voting has analyzed sequential procedures, with the focus on informa-
tion aggregation (see e.g. Battaglini, 2005).



on costly voting that externalities generated by casting a ballot typically yield a welfare-
inefficient level of turnout. This phenomenon is at the core of the drawbacks of voluntary
one-round voting procedures, and is resolved by AV, which induces an endogenous level of

turnout that yields socially desirable outcomes.

To assess the properties of AV, we consider a model of a society that needs to choose
one of two alternatives, say A and B. Each citizen’s preference is private information
and is independently drawn from a given common distribution. We assume that ex ante,
it is more likely that a citizen prefers A to B than B to A. This means that A is the
desirable alternative from an ex-ante utilitarian perspective. For each citizen, there is
also a cost ¢ > 0 of going to the ballot box. Such participation costs are private, but
they may also be considered in the societal calculus: from a utilitarian perspective, right
decisions should be met at the lowest possible average cost of participating in the voting
procedure, given standard democratic constraints such as the right of every citizen to vote.
Because we consider large societies, we assume that the number of citizens follows a Poisson

distribution—and hence our political game is a Poisson game (Myerson, 1998, 2000).8

The characterization of the equilibria of our sequential game is in general a complex task,
even if we focus on the customary type-symmetric, totally-mixed strategy equilibria. The
main reason for this complexity stems from the fact that for a two-round voting procedure
such as AV, the strategies of second-round citizens need to take the outcome of the first
round into account. In turn, the first-round voters face two sources of uncertainty: within-
round uncertainty (how will the other members of AG vote, if at all), and across-round
uncertainty (how will the second-round citizens vote in response to the outcome of the first

round and to the predicted votes of all other members of the second-round group, if at all).

In many cases, the above features yield a multiplicity of equilibria.® Nevertheless, we shall
prove that if in the first round voting is compulsory—or is incentivated through subsidies—
and the size of the first group is sufficiently large, only one equilibrium of the subgame

starting after the publication of the first-round vote count survives: no citizen will cast

8The costly-voting literature has shown that Poisson games characterize the limit scenario where the
number of citizens goes to infinity (see e.g. Taylor and Yildirim, 2010b). Accordingly, considering a Poisson
game does not drive our results, but it simplifies the analysis greatly. Recent papers that study Poisson
models are Campbell (1999), Hughes (2016), or Arzumanyan and Polborn (2017). Also recently, Meroni
and Pimienta (2017) have analyzed the structure and number of Nash equilibria in Poisson games under
different voting schemes.

9In some countries, unofficial voting polls are revealed before all polling stations are closed. This is
the case in Spain, where the official turnout rate is also revealed in the course of election day, from which
certain information about the development of the voting outcome can, in principle, be extracted. Our
analysis reveals that, even if we leave aside the strategic incentives of choosing the moment for going to
the ballot box, the purely positive analysis of sequential costly voting is a very difficult task.

4



a vote in the second voting round. This implies that the outcome (i.e., the alternative
chosen and the costs of voting incurred by all citizens) is fully determined in the first
round. While this is admittedly a very strong prediction, it is reasonable to expect that the
main mechanisms underlying this prediction will also operate in real-world environments,
thereby giving considerable power of decision to members of the first voting group.!? If,
as already highlighted, the composition of this group is representative enough of the entire
citizenry, socially optimal alternatives will be chosen at a low societal cost, without the
need to deprive citizens of their right to vote: the low level of turnout in the second round
will simply arise as the result of a cost-benefit analysis made by the citizens participating

in this voting round, all of whom will be aware of the result in the first round.

As a consequence, in the case of AV, the two components of welfare will also be determined
entirely by the outcome of the first voting round. On the one hand, the alternative will
be resolved by the (random) composition of such group, and hence the probability that
the socially desirable alternative A will be chosen goes to one as the size of such a group
increases. What is more, the expected value of the distribution of the first-round vote
count difference in favor of alternative A (i.e. votes for A minus votes for B) will also
increase with the size of AV. This, in turn, will make it more complicated for any fixed
group of B-supporters to change the final outcome in the second round, thereby reducing
the individual incentives for each of them to go to the ballot box in the expectation that
the negative result from the first round will be overcome. On the other hand, there will be
no other costs associated with voting except the costs (or the subsidies) that are necessary
to make all members of AG participate in the election process. It turns out that if the
citizenry is large enough, it is possible to set the size of AV such that alternative A is
chosen with high probability and the voting costs remain moderately low. This follows
from the fact that the vote count threshold that discourages participation in the second

round voting does not change as the size of the entire electorate increases.

The remainder of the paper is organized as follows: In Section 2 the model is introduced.
In Section 3 we analyze the voting equilibria under AV. In Section 4 we explore if AV
improves welfare compared to one-round voting, whether it is compulsory or voluntary. In
Section 5 we analyze some extensions of our baseline model—see also Appendix B. Section 6

concludes. The proofs of the main body of the paper are in Appendix A.

10Tt is easy to verify that as long as the share of non-strategic voters—say those who always vote
regardless of any other consideration—is not sufficiently large (relative to the size of AG), the outcome will
still exhibit the same properties as in our baseline model, and hence the welfare conclusions will be very
similar.



2 Model

2.1 Set-up

We consider a country—or, more generally, a jurisdiction—whose citizens have a right to
vote for one of two alternatives (or candidates), say A and B. Citizens are indexed by i or j.
There is a number p, with 1/2 < p < 1, such that citizen ¢’s preferred alternative is A with
probability p =: p4 and B with probability 1 — p =: pg. While individual preferences are
private information, their prior distribution—i.e., the value of p—is common knowledge. If
citizen i’s preferred alternative is chosen, he derives utility 1, while he derives utility O if the
other alternative is chosen. This normalization is standard and does no affect the results.
On occasion, we may also say that citizen i’s type is t; = A (t; = B) when his preferred
alternative is A (B). Additionally, if 7 exercises his right to vote, he incurs a cost ¢, which

is additively subtracted from his utility. We consider that!!
0<c<1/2. (1)

We summarize the citizen utility profile in Table 1.

i’s preferred alternative is chosen | ¢’s preferred alternative is not chosen

1 votes 1—c —c

1 does not vote 1 0

Table 1: Voter Utilities.

2.2 A new two-round voting

Under Assessment Voting (AV), there are two voting rounds. In the first round, a small
number of citizens are chosen by fair randomization to participate, all of whom constitute
the so-called Assessment Group (AG). That is, each citizen has the same probability to
be a member of AG. We let N, a positive integer, denote the size of AG. All members

of AG (simultaneously) decide whether to exercise their right to vote or not, and if so,

HTf ¢ > 1/2, no citizen has incentives to vote at all. Assuming that ¢ is common to all voters with
the same preferences is not a critical assumption, since we consider large populations, in which case the
incentives to vote are very small for those citizens with cost higher than the lowest one (see e.g. Taylor
and Yildirim, 2010a,b). Assuming that ¢ is common across types of citizens will allow us to focus on
the differential effect of AV with respect to standard one-round voting procedures. Similar results would
nonetheless obtain in the case where the two types of citizens incurred different costs of voting.



which alternative to vote for. We assume that all members of AG are given a subsidy
equal to ¢, their cost of voting, so that voting in the first round becomes costless for them.
Whether members of the first round exercise their right to vote or not, they cannot vote
in the second round. In the latter round, only citizens who are not members of AG have
a right to vote. Before the voting in the second round takes place, the number of votes
that each alternative received in the first voting round is disclosed and becomes common
knowledge. Henceforth, we let d denote the vote difference between alternatives A and B in
the first round. In particular, if d > 0, A received d more votes than B from the members
of AG. The alternative that receives more votes within the two voting rounds combined is

implemented, with ties being broken by fair randomization.

We assume that the total number of citizens is N = Ny + N, where N, follows a Poisson
distribution with parameter n,, with n, being a positive real number.'> Then, we let
n = Nj+ngy denote the expected number of citizens. Following Myerson (2000), the number
of citizens of type ¢ in the second round, with ¢t € {A, B}, follows a Poisson distribution
with parameter ny - p;. The properties of the Poisson distribution ensure that from the
perspective of a voter of type ¢, the number of voters of his same type also follows a Poisson
distribution with parameter ns - p;. This will simplify the analysis greatly. Finally, we

denote by €2; and 2 the set of citizens of the first and second voting round, respectively.

2.3 Equilibrium concept and information

We study the existence and multiplicity of type-symmetric perfect Nash equilibria in our
voting game. By type-symmetric we mean that within each round, all citizens of the same
type use the same strategy. Moreover, we assume that if they do turn out, they vote
sincerely, i.e., we assume that they either vote in favor of their preferred alternative or
abstain. In the second round, sincere voting arises endogenously as in one-round voting
procedures already analyzed in the literature (see e.g. Arzumanyan and Polborn, 2017;
Taylor and Yildirim, 2010b). This follows from the fact that once the results of the first
round become common knowledge, voting for an alternative that is not one’s preferred is
a weakly-dominated strategy for any citizen. As for the first round, although we impose

sincere voting as an assumption of our model, it will turn out to be compatible with

12This assumption is made for convenience, but it does not affect our results qualitatively. Alternatively,
we could assume that the total number of citizens N follows a Poisson distribution with parameter n. In
that case, for a fixed N1, the probability that there are not enough citizens to make up for the N; members
of AG converges to zero, as we increase n.



equilibrium behavior.!®> In combination with the subsidies given to members of AG, this
means that the first-round outcome, namely d, follows mechanically from the size of AG
and the value of p. The reason is that every member of AG will vote, and he will do it for
the alternative he prefers. Accordingly, let citizen ¢ be a member of AG and consider the

following random variable:

+1  ift; = A, +1  with probabilit ,
X — _ b Y PA )
-1 ift; = B. —1  with probability pg.

Then, d is the outcome of the random variable D defined by

D:=>" &, (3)

i€Qq

As far as the citizens’ strategic choices are concerned, we can thus focus on the subgame
starting after the first voting round and after the value of d has been made public, which
we denote by G%(d). For simplicity, we assume that the citizens who vote in the second
round can only condition their vote on their type and the observed value of d, since nothing

else is payoff-relevant. Accordingly, a strategy for citizen i is a mapping
Q; - {A,B} X {—Nl,...,O,...,Nl} — [0,1]

That is, (¢, d) indicates the probability of citizen i voting for his preferred alternative if
he is of type t and the vote difference between the two alternatives in the first round is d.

As is standard, we assume that there are mappings
ag:{—Ny,...,0,....,Ny} —»[0,1] and ap:{-Ny,...,0,...,N;} —[0,1]

such that a; (A, d) = aa(d) if t; = A and oy (B, d) = ag(d) if t; = B. That is, the probability
that citizens of the same type will turn out are the same. A strategy profile is denoted by

a = (a4, ap). Finally, we define dy = d and dp = —d.

13This assumption is further discussed in Section 3.2.



3 Analysis of Assessment Voting

We start by analyzing the second round of AV, which is described by G?(d), and then focus

on the analysis of the entire voting procedure.

3.1 Second voting round

In the second voting round of AV, citizen i’s vote will make a difference in the final outcome
only if the votes—together with the abstentions—of the remaining citizens that have a right

to cast a vote in this round are such that:

e in the second round, i’s preferred alternative obtains d;, + 1 votes less than the other

alternative, or

e in the second round, ¢’s preferred alternative obtains d;, votes less than the other

alternative.

In the first case, i’s vote in favor of his preferred alternative ¢; will turn a defeat of ¢; into
a tie, while in the second case, i’s vote in favor of ¢; will turn a tie into a win of ¢;. In
both cases, (expected) utility increases by 1/2 if citizen ¢ turns out and votes in favor of

his preferred alternative.

In the following, we investigate the totally-mixed equilibria of G(d), i.e., we assume that
0 < a;(d) < 1 for i € {A,B}. This type of equilibria is central in the costly-voting
literature (see e.g. Arzumanyan and Polborn, 2017; Taylor and Yildirim, 2010b). It will
come in handy to use x4 := napaa s and xp := noppap to denote the expected number of
votes for each alternative given strategy profile . Note that it is equivalent to determine
the pair (a4(d), ap(d)) and to determine the pair (x4, 25) = (xa(d),z5(d)). We now derive
the conditions that make both type of citizens indifferent between abstaining and voting in
favor of their preferred alternative, thereby incurring cost c. First, we assume that d = 0.

Then, we obtain the following two equations:

-3 i T (W
2 “— ek €$Bk}‘ 2 & eraklers(k + 1y
1 & A 2
— - . 5
2Zeuk'ewskv " 2§em(k+1)!ew3k! ©)



The first equation corresponds to the indifference condition for any voter i of type t; = A,
while the second equation is the indifference condition for any voter i of type t; = B.
Mathematically, the case where d = 0 corresponds to the case where there is only one
round of simultaneous, voluntary voting.!'* By simple algebraic manipulations, we obtain

T4 =2xp = x, where
I ©
x - —— = 2ce” — = —_—.
par Elk 4+ 1)! 2 k!

The above equation has a unique solution in the unknown z (see Arzumanyan and Polborn,

2017). Second, we assume that d > 1.> Then, we obtain the following system of equations:

C = 1 i xf"q x%—i_d + 1 i xf"q x%+d+1 (7)
2 &= emaklers(k+d)! - 24 emaklems(k+d+ 1)1

C = 1 i xg I%+d + 1 i xg x%‘i’d*l (8)
2 &= emaklers(k+d)! - 24 emaklems(k+d—1)1

The following result, which is shown in Appendix A, demonstrates that the above system

of equations is incompatible:

Proposition 1. There exists d*(c) such that for all d > d*(c), the system of equations

defined by (7) and (8) has no solution. Moreover, d*(c) (weakly) increases as ¢ decreases.

The negative result identified by Proposition 1 does not follow from the fact that the two
equations of the system are incompatible, but from the fact that each of them cannot
separately hold for values of d that are large enough. To show this property more clearly,
we assume now that d > 2 and focus on equilibria of the following type: citizens of type A
vote with probability zero, while citizens of type B randomize. Note that because d > 2,
an equilibrium where only citizens of type A vote with positive probability cannot be an
equilibrium, as alternative A will be chosen with certainty in the absence of any further
votes.!® Hence, we assume that ay = 0 and 0 < ap < 1, and obtain the following two
conditions: . i

x x
2c > —L z 9
€= * e*s(d+1)! )

4When voting is compulsory, the analysis is almost trivial: all citizens vote for their preferred alternative
and they incur the cost of voting.

5The case d < —1 can be proven analogously.

I6Tf ny is large enough, it can be easily verified that there cannot be an equilibrium where at least one
type of citizens votes with probability one.

10



and d d—1
T Th

20 =B B . 10

“T ndl i e*s(d—1)! (10)

The first equation guarantees that citizens i of type t; = A are content with their decision
not to vote, while the second equation is the indifference condition for any voter i of type

t; = B. We can prove the following lemma:

Lemma 1. There exists a positive integer d*(c) such that Eq. (10) does not have a solution
for alld > d*(c).

We point out that the threshold d*(c¢) of Lemma 1 is precisely the threshold used in Propo-
sition 1, and that we will use the same notation throughout the paper, including the Ap-
pendices. Furthermore, it is trivial to note that if d > 2, there is an equilibrium in which
no citizen votes—we call it the no-show equilibrium. The combination of Proposition 1 and

Lemma 1 leads to the following result:

Corollary 1. If d > d*(c), the only equilibrium of G*(d) is the no-show equilibrium.

According to Corollary 1, if the absolute vote difference between the two alternatives in the
first voting round, namely |d|, is large enough, there are no incentives for any second-round
citizen to participate in the second voting round.'” What is more, this property holds
regardless of the (expected) size of the second-round voting group. An ensuing question
is what the outcome from the second round is when |d| is moderately low. We obtain the

following result:

Lemma 2. Given d > 2, there is ¢*(d) € (0,1/2) such that for all ¢ < ¢*(d), an equilibrium
(0,z5) of G*(d) exists.

The above lemma complements the result of Corollary 1. While d* = d*(c) determines the
size of AG above which the no-show equilibrium is the only equilibrium, ¢* = ¢*(d) deter-
mines the cost level below which equilibria that are different from the no-show equilibrium
exist. It turns out—see the proof of Proposition 1—that for any given ¢ € (0,1/2), there
exist constants Ky and K, with Ky < K7, such that

(i) if d > %3, the only equilibrium of G*(d) is the no-show equilibrium, and

(i) if d < £2, then G*(d) has equilibria different from the no-show equilibrium.

"By symmetry, the case d < —d*(c) is analogous and hence the no-show equilibrium is the only equi-
librium.

11



Hence, we can say that both thresholds are (approximately) tight, in the sense that d* ~
1
not guaranteed within all admissible parameter ranges, even if we only consider equilibria

In addition, it can be verified numerically that uniqueness of equilibria of G?(d) is

of the type (0, zp). For instance, multiplicity of equilibria occur if we consider ¢ = 0.2 and
d = 3. In this case, we have that (0,y;) and (0, ys) are equilibria of G?(3), where y; ~ 3.17
and y, &~ 3.76 are positive solutions of the equation 0.4e¥ = % + g—z that additionally satisfy
the inequality 0.4e¥ > g—: + %.
cannot uniquely predict the outcome of the second round of AV, if at all.

18 This example shows that if |d| is moderately low, we

3.2 First voting round

Corollary 1 yields a very strong prediction: if d is above a certain threshold, no citizen
will vote in the second voting round. It turns out that by making Nj, the size of AG,
large enough, the probability that d is larger than this threshold converges to one. This
is proved in the following result, which characterizes the outcome of Assessment Voting

(almost surely).

Theorem 1. For every € > 0, there is N = Ny (e,¢,pa — pp) such that for all Ny > N,
the outcome of AV satisfies the following properties with probability at least 1 — e:

o All citizens of the first voting round vote for their preferred alternative.
e No citizen of the second voting round votes.

o Alternative A s chosen.

According to the above theorem, if AG is large enough, citizens who have a right to vote
in the second round are all discouraged from going to the ballot box. The logic behind this
result hinges on the law of large numbers: because (i) alternative A is more preferred in the
society than alternative B, (%) members of AG are selected randomly, and (744) voting is
subsidized for members of AG, the difference in the first-round vote count for alternative A
with respect to alternative B increases with the size of AG, until the no-show equilibrium
is reached (with high probability). Moreover, this is the only equilibrium in the second-
round voting game (with this same high probability). The following corollary follows from
Theorem 1, and reveals how the size of AG should vary with respect to the most important

parameters of the model:

18The same holds true if we restrict to equilibria of the type (x4, 75). Numerical examples for this other
case can be provided upon request.
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Corollary 2. Let N = Nf(e,¢,pa — pg) as defined in Theorem 1. Then,

o N7 increases if € decreases, with lin% N} = o0,
E—

o N increases if pa — pp decreases, with lim N = oo,

pa—pB—0
o Ny increases if ¢ decreases, with il_r% N} = oo.
The behavior of NJ* with respect to changes in ¢ and py — pp is self-evident: when either
the society is more divided (i.e., lower py — pg) or we want to be more certain that the
voting outcome will be dictated entirely by AG members (i.e., lower ¢), the size of AG
needs to be greater. Most remarkably, the above corollary implies that, ceteris paribus, a
lower size of AG is obtained when c¢ increases. In particular, incentives for voting in the
second round are least significant for B-supporters relative to those of A-supporters when ¢
is (almost) equal to 1/2, in which case a smaller vote count difference from the first round
suffices to discourage voting. In this case, NJ may still be large, depending on the values
of pa — pp and €. Note that N; must be generally large enough to satisfy two objectives:
on the one hand, second-round citizens’ incentives to vote should disappear; on the other
hand, alternative A should be chosen with at least probability 1 — e. It is also important
to stress that although N gives a sufficient condition with regard to the size of AG for the
outcome of AV to be described by Theorem 1, the discussion at the end of Section 3.1 shows
that this required size is (approximately) tight, in the sense that the desired outcome may
fail to hold for lower AG size. Finally, Table 2 depicts the value of Ny for some parameter

constellations.®

pa —pp =0.05

pa —pp = 0.15

pa —pp =0.05

pa —pp = 0.15

e=20.1

146,049

45,045

e=20.1

41,856

12,433

e =0.01

152,788

47,160

e =0.01

45,769

13,007

¢ =0.005 (with d*(c) = 6,367)

pa —pp =0.05

pa—pp =0.15

¢ =0.01 (with d*(c) = 1,592)

pa —pp =0.05

pa —pp = 0.15

e=20.1

3,003

455

e=20.1

2,476

293

e =0.01

4,858

668

e =10.01

4,319

498

¢ =0.1 (with d*(c) = 16)

¢ = 0.3 (with d*(c) = 2)

Table 2: The (optimal) size of the Assessment Group (AG).

19We stress that the values depicted in Table 2 do not depend on the total number of citizens in the
population. We stress that in actual implementations, N should be chosen taking also into account that

the outcome of the first-voting round should represent the actual population.
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The numbers in Table 2 reflect the desirable size of AG for some particular situations.
We stress that members in this group will exercise their right to vote and that this hard
fact is very different from participation in pre-election polls, in which case cheap-talk or
other strategic behavior may lead to biased revelation of preferences (Agranov et al., 2017;
Goeree and Grosser, 2007). As a matter of fact, the literature on costly voting predicts that
manipulation of polls may have a strong impact on election outcomes, by triggering a level
of turnout in equilibrium that does not match the true preferences of the electorate (Taylor
and Yildirim, 2010a,b). Because AV is based on actual votes and not on reported opinions,
such a voting procedure should be more immune to this type of manipulation. The reason
is that as a result of the cost-benefit analysis of voting being equalized for all citizens, the
outcome of AV matches the prior distribution of preferences in the entire citizenry (with
high probability).

4 Welfare Analysis

Having characterized the (almost certain) equilibrium outcome under AV, a natural question
is what would be the welfare consequences of introducing such a voting procedure. Focusing
on expected average utilitarian welfare, there are two standard benchmarks, both of which
consist in a single round of simultaneous voting: first, voting may be voluntary; second,
voting may be compulsory.?? In both cases, we assume that the total number of citizens
follows a Poisson probability distribution of parameter N; 4+ ns. Under one-round voluntary

voting, the analysis in Section 2 shows that welfare amounts to

1 T
Wvol __ "
2 N1+TL2 ¢

(11)

where z is the solution to Equation (6). Under one-round compulsory voting, it is easy to
verify that welfare amounts to
wem = w™ — ¢, (12)

where w”™ is the expected average welfare obtained from the alternative eventually imple-

mented when the entire population, which has expected size equal to N;+ns, votes sincerely.
com com com

It is easy to verify that wy?™ = pa - (1 — 2?™(N)), with limpy_,o 257" (N) = 0. Moreover,
according to Theorem 1, there is N7 = N (e,¢,pa — pp) such that for all Ny > N, with

20The comparison between voluntary and compulsory one-round voting is the topic of Borgers (2004)
and Krasa and Polborn (2009).
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probability at least 1 — ¢ we have

N-

WA = py — Wl e (13)
where p4 coincides with the expected welfare obtained from the alternative being eventually
implemented when all members of AG (which has a certain size N;) vote sincerely. Finally,
a lower bound for (expected) welfare is

W:i=0-1-c=—c (14)
We will consider W to estimate welfare when our analysis does not yield clear-cut predic-

tions as to the outcome of AV. Our main result regarding welfare is the following:

Theorem 2. There are N{*(c) and nk(c) such that if Ny > N{*(c) and ny > nj(c), we have

WAV > max{W”Ol, Wcom}.

Naturally, at the constitutional level, neither N;*(c) nor n3(c) could depend on the particu-
lar instances of referenda that would take place, which would be characterized by different
parameters, particularly by different values of py — pg. Theorem 2 nonetheless indicates
that in large societies, AV will perform better on average than standard one-round voting,
whether voting in the latter is voluntary or compulsory. In comparison with voluntary
one-round voting, participation costs in AV will be of a similar extent, but decisions will
represent the population preferences much more accurately. In comparison with compul-
sory one-round voting, decisions will represent the population preferences equally well, but
participation costs will be much lower in AV. Hence, AV simultaneously exhibits the most
desirable properties of voluntary and compulsory one-round voting, and it can thus be seen
as an appropriate mixture of both approaches. It should also be emphasized that AV ex-
hibits the main desirable features of democratic mechanisms, including the fact that every
citizen has a right to vote. This property adds to the appeal of this new voting mechanism.
What is more, alternatives that find little support in the citizenry are bound to be defeated
in equilibrium when AV is used. In direct democracies, this fact may reduce the incentives

to initiate popular voting on issues which are only supported by a small minority.
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5 Extensions

The baseline model analyzed thus far can be extended in at least two sensible ways. First,
one may ask whether the prediction that citizens of the second round will (almost) never vote
if the size of AG is large enough hinges on our equilibrium concept, and very particularly on
the assumption that citizens of the same type all use the same strategy. Second, although we
have introduced AV for binary decisions, one may wonder about whether the performance
of this voting procedure (with respect to voluntary and compulsory one-round voting) is
maintained when there exist three or more alternatives. It turns out that the answer to the
first question is negative and the answer to the second question is positive. A comprehensive

analysis of both extensions can be found in Appendix B.

On the one hand, it is important to investigate whether the assumption that all citizens
with the same preferences use the same strategy does drive our main (negative) result—
namely that no equilibria differing from the no-show equilibrium exist if the vote count
difference in the first round is large enough (in absolute terms)—or not. Demonstrating
that this result holds even if we consider different (sub)types for citizens who have the same
preferences, with each subtype using a different strategy, greatly adds to the robustness of
our prediction regarding the outcome of AV. The proof—see Appendix B—is based on
properties of the Poisson distribution and the multinomial theorem. On the other hand, a
setting with three or more alternatives allows us to extend the application of AV from binary
decisions (i.e., referenda) to other decisions, say elections for executive offices where several
candidates compete. As mentioned in the Introduction, the case of multiple alternatives
has been recently studied by Arzumanyan and Polborn (2017). As in their paper, we show
that sincere voting—i.e., voting in favor of the preferred alternative—is consistent with

equilibrium behavior, although there may exist other equilibria.

Finally, we note that the robust result that identifies the conditions for which the no-show
equilibrium is the only equilibrium that will survive, provided that the vote count difference
is large enough, has been derived within the framework of AV. Nevertheless, our analysis
of game G?(d) could be applied to one-round voluntary voting procedures where one of
the two alternatives, say alternative A, is the status quo, and the other alternative, say

alternative B, has to reach a qualified majority in order to be implemented.?! In that

LA qualified majority imposes no direct requirement on the absolute difference needed between the
number of votes in favor of the alternative and the number of votes in favor of the status quo, but on the
relative difference. However, under the assumption that there will always be “by default” some share of
partisan citizens voting for the status quo, it does also impose a requirement on this absolute difference.
This allows the applicability of our analysis to this second set-up.
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case, not only would d typically be positive, but it would typically be very large if the
electorate were large itself. Our (negative) result would then imply that in settings where
voting is costly and the alternatives at hand only have a private value component, qualified
majorities might effectively protect the status quo in general, regardless of the support
such an alternative gathers within the population. We stress that under the standard (non-
qualified) majority rule, the literature on costly voting predicts the opposite: the status
quo and the alternative proposal will be implemented with the same probability, regardless

of the support that either alternative gathers within the population.

6 Conclusion

Most democracies, representative or direct, have faced important challenges recently. Some
of these challenges were due to inefficiencies of the decision mechanisms. In Switzerland,
for instance, the 100,000-signature threshold for popular initiatives is easy to attain, paving
the way for a misuse of popular votes as political mobilization devices. With more popular
votes in the form of referenda, organization and opportunity costs represent an increasingly
important factor to be taken into account.?? Facing more referenda also demands more
effort from the citizens themselves, especially in the case of decisions about which citizens
are ex ante poorly informed. Over and above these concerns, some of the referenda that
took place in the EU in the last decade have also demonstrated that sometimes decisions end
up being strongly dependent on turnout, a feature compatible with the outcome volatility

predicted by the literature on costly voting.

In this paper, we have advocated a new voting procedure, which we have called Assessment
Voting, that fulfills the most standard democratic requirements (e.g. one person, one
vote) and may be a partial remedy to the problems just described. The reason is that
Assessment Voting lowers the costs of popular votes and ensures (approximately) that the
majority /minority relation in the citizenry is reflected in the voting outcome. Although our
main analysis has focussed on binary decisions (i.e., referenda), we show in the Appendix
that the main mechanisms are at work with a voting on three or more alternatives. Because
Assessment Voting may yield more informed and less costly collective decisions, it could be

tested in democracies on an experimental basis.

Our analysis could be extended in various. First, we could consider circumstances where

22For instance, information needs to be distributed to all citizens, with such costs being ultimately
financed by taxes. Moreover, campaign absorbs time from other governmental activities.

17



citizens may have only partial knowledge about their own preferences. A sequential voting
procedure such as Assessment Voting opens up the possibility for new forms of information
transmission from voters of the first voting group to voters of the second voting group.
Second, in anticipation of the use of Assessment Voting, proposal-making may change.
For instance, proposals that have no chance under Assessment Voting (but do have one in

single-round voting) may not be made anymore. These issues are left for future research.
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Appendix A

In this Appendix we prove Lemma 1, Proposition 1, Lemma 2, Theorem 1, Theorem 2, and

Proposition 3.

Proof of Lemma 1: The goal of the proof is to show that there does not exist a non-negative

solution in y for the following equation if d is sufficiently large:

yd N yd—l
ey

2c =

~evd! (15)

We start by noting that the right-hand side of Eq. (15) is equal to 0 for y = 0 and tends to 0 as y
tends to oco. Therefore, proving that Eq. (15) does not have a non-negative solution is equivalent
to proving that for all y € R, the left-hand side of Eq. (15) is strictly larger than the right-hand

side.?? To that end, we prove two auxiliary results. First, for a given d > 1, we define

Y
faly) = e 2. (16)
We claim that
faly) >0 forally € Ry = fgr1(y) > 0 for all y € Ry. (17)

For the proof of the claim, assume that the left-hand side of (17) is true. Then,

2eetld) _ ) > . (18)

That is, fg11(y) is increasing in y € Ry. Since f311(0) = ¢ > 0, it follows immediately that the

claim in (17) is correct. Second, for a given d > 2, define

d
galy) = 1 o VT (19)
and note that
ga(y) >0« fa(y) > 0. (20)

Consider now the following claim, which we will also prove:

gy(y) > 0 for all y € Ry for some d* := d*(¢) > 1. (21)

ZWe let R, denote the set of non-negative real numbers.
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By straightforward calculations,

dgaly)  y*'(d—y)

Ay evd!

It then follows that y* = d is the (global) minimum of g4(y) in R4, since

oy v

and ngigsy) is negative for all y < d and positive for all y > d. We accordingly obtain that, for all

y€R+7

dd
94(y) > ga(d) =C= g >c—

OrdeTsi
where the last inequality holds by Stirling’s inequality. Hence, a sufficient condition for the claim
of (21) to hold is that

1
c > 71.
2mdeT2d
It is straightforward to verify that the righ-hand side of the above inequality is a decreasing
function of d, provided that d > 1, and that, moreover, one that converges to zero as d goes to
infinity. Accordingly, we let d*(c) be (uniquely) defined as the smallest positive integer larger than

one that satisfies

1

c> —.
2rd*(c)e124%()

(22)

Note that, in particular,

*(c) = O < ! > (23)

2
All in all, we have demonstrated the claim of Eq. (21). Finally, let d > d*(¢). Then, for all
Y€ R+7

y? yd—1
2 — _ ) 0
¢ (eyd; T 1)!> ga(y) + ga-1(y) > 0,

where the strict inequality holds by the Claims of (17) and (21). This completes the proof of the

lemma.

O]
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Proof of Proposition 1: The goal of the proof is to show that the following system of equations in

(z,y) does not have a solution with non-negative components if d is sufficiently large:

& k k+d k+d+1
2e=% = ( Y + 7 > : (24)
— ekl \e¥(k+d)  e¥(k+d+1)!
0 xk yker ykerfl
2 — . 25
¢ kgoe%! <ey(k+d)!+ey(k+d—1)!> (25)

The system of equations is obtained from (7) and (8) by some algebraic manipulations and by
setting 4 = z and xp = y. From the proof of Lemma 1, there is a positive integer d* = d*(c)
such that, foralld > d*— 1, k > 0 and y € Ry,

k+d k+d+1

) 4 Y
eV(k+d)!  ev(k+d+1)!

< 2. (26)

Moreover, it is know from the properties of the Poisson probability distribution that

X
=1. 2
Z erk! (27)
k=0
Accordingly,
—y Jl‘k yk+d yk+d+1 o ZUk
2c=2
kzzo okl (ey(k: T ekt det 1)!) < kzzo k¢ T2

where the first inequality is due to (26) and the second inequality is due to (27). This completes
the proof of the proposition, since (24) cannot be satisfied for any (z,y) with z,y € R.

O]

Proof of Lemma 2: Throughout the proof, we have d > 2 fixed. First, we show that an equilibrium
(0,z) of G2(d) exists if and only if Eq. (10) has a solution. It suffices to prove sufficiency, i.e., if
Eq. (10) holds for a given (0, x3), this must be an equilibrium of G?(d). Indeed, take the smallest
positive root of Eq. (10), which we denote by z7. Additionally, consider

d+1 d d d—1
i Y and ha(y) = 2ce¥ — v._ Y

(d+1)! A (d-1)

ha1(y) = 2ce? —

That is, 7 is the smallest positive solution y of the equation h4(y) = 0. In particular, it must be
that



and, by continuity of hg and the fact that hy(0) = 2¢ > 0,
ha(y) > 0 for all y < z7;. (28)

Next, note that from Eq. (18) in Lemma 1, it follows that

%dg;(y) _ (fy (Fanr(v) + Fa@)) = W) + far(y) = ha(y), (29)

where fy_1, f4, far1 were defined in (16). Hence, Eqs. (28) and (29) imply that

ahﬂg@j(y)>()ify<x*3. (30)

Then, (30) implies that

(2h)?  (a)!
207 hal o = hat1(2}) > hat1(0) = 2¢ > 0.
©7 bl s (d+1)! d+1(zp) = hat1(0) = 2¢

As a consequence, Ineq. (9) is (strictly) satisfied for 27, and hence (0,27) is an equilibrium
of G2(d).

Second, we show that there is ¢*(d) > 0 such that an equilibrium of G?(d) of the type (0,zp)
exists for all ¢ < ¢*(d). By the first part of the proof, it is sufficient to prove that such ¢*(d)

exists guaranteeing that there is zp such that hq(zp) = 0, provided that ¢ < ¢*(d). Indeed, let
¢* = c*(d) be defined as follows:

ddfl dd
2c* = .
¢ T da—1 e
Then, for 0 < ¢ < ¢*,
ha(0) = 2¢ > 0
and d d—1 d—1 d
d de— d*- d
hg(d) =2ce? — — — — < 2c%e?— — 2 —
ald) =2ce” =~ G =2 T Go T d

Hence, due to continuity of hg, the equation hy(xp) = 0 must have a solution. This proves the
result of the lemma.

dd

We conclude the proof with a remark. If we apply Stirling’s formula to ¢*(d) = —ag» We obtain
W=-0() (31)
c = — .
Vd

In combination with (23), Condition (31) implies that d > d*(c), with d*(c) = Q (%), is not only
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sufficient the result in Lemma 1 to hold, but it is also necessary. In other words, the difference d*(c)
in the vote count d obtained after the first voting round must be achieved in this round in order
for the no-show equilibrium to be the only equilibrium of G2(d), the game representing the second-
voting round when the vote count difference is d. More specifically, for any given ¢ € (0,1/2),
there exist constants K7 and Ko, with Ky < K7, such that the following two statements hold.
First, if d > %, the no-show equilibrium is the only equilibrium of G2(d). Second, if d < %, then
G?(d) has equilibria that are different from the no-show equilibrium. The existence of K1 and K3
follows from Conditions (23) and (31).

O

Proof of Theorem 1: As already mentioned in the main body of the paper, we assume that all
citizens of AG vote sincerely, i.e., that they vote for their preferred alternative. Below, we show
that this assumption is also consistent with equilibrium behavior. Accordingly, the behavior of
any such citizen i is described by the random variable X;—see (2)—, while the difference in vote
count for alternative A with respect to alternative B obtained in the first voting round is described

by the random variable

D=>"x,

1€

which has been defined in (3), ©; denoting the set of citizens that belong to AG. Because E[X;] =
pa —pp and X; are i.i.d., it follows that

E[D] = N -E[X;] = N1 - (pa — pB).

Recall that d* = d*(c¢) has been defined in Proposition 1. This integer guarantees that if d, the
outcome associated with the random variable D, is at least d*, the only equilibrium of game G3(d)
is the no-show equilibrium. In that case, the only votes are cast in the first round, and because

d > 0, alternative A will be chosen. Now, let

d* . In 2 N \/2d*(pA—pB)ln%+(ln%)2

Ni = N{(c,e,pa — pB) := £ 32
P = Al Pyppe (pa —pB)? (pa —pB)? (32)
Henceforth, we assume that
N1 > Ni(c,e,pa — pB). (33)
Then, we obtain that
d* — E[D]=d" — Ny -(pa—pp) <d"— Ny - (pa—pp) <0, (34)



where the first inequality follows from Ineq. (33) and the second inequality follows from the
fact that N > ﬁ, as implied by the definition of Ny in (32). Then, the following chain of

inequalities also holds:
P[D <d*|=P[D—-E[D]|<d"—E[D]| < P||D - E[D]| > E[D] —d],
where the last inequality holds due to (34),

PID — E[D]| 2 E[D] - d'] < 2ewp< - W)

(N1(pa — pB) — d*)2
= — <
Qexp( 9N, SN

where the last inequality holds by (32) and Ineq. (33). Combining the last two chains of inequal-

ities, we obtain that
PD>d*|>P[D>d]|>1—c¢.

Accordingly, with probability 1 — €, no citizen will vote in the second round. Given this outcome,
citizens in the first round do not want to change their sincere voting decision. On the one hand,
all first-round citizens whose preferred alternative is A are content with their decisions as their
preferred outcome is implemented. On the other hand, all first-round citizens whose preferred
alternative is B would not obtain a better outcome by switching their vote towards A in the first

round, for this would only increase d. This completes the proof.

Proof of Corollary 2: Given the proof of Theorem 1—see (32)—, it follows immediately that Ny
increases if either € or p4 — pp decreases. We now focus on changes on ¢. From the proof of
Lemma 1—see Eq. (23)—, we know that d*(c) decreases as ¢ decreases. Since Nj is increasing

when d* is increasing, the claim holds.

O

Proof of Theorem 2: Under AV, the average per-capita social cost of subsidizing is f - ¢, where f

is the expected ratio of the AG size to the total number of the voters

f=E [Nl]sz] . (35)
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Since Ns is a Poisson random variable with parameter ny, we can easily obtain the following upper
bound for f:

1 > N 1
f= Zwﬁwem < kZ i —m'<1‘enz>' (36)

In particular, for a fixed Nj, we have limy, o f = 0. Next, according to Theorem 1, if N; >

N{(e,c,pa — pB), the outcome will be fully determined by AG with probability 1 —e. Therefore,
WA > (1—¢) - (wa(N1,n2) — cf) + 2 (—c), (37)

where ¢ > 0 and wg(N1,n2) is the expected average welfare (in the entire population) obtained
from the alternative implemented when members of AG, a group of size Ni, vote sincerely. It is

easy to verify that

wg(N1,m2) = pa - (1 — 24(N1,n2)), (38)
with
lim z4(Ni,n2) =0. (39)
N1—o00

Hence, there is €* > 0 such that for all Ny > N{(e*,¢,pa — pg), we derive from Ineq. (37) that

WA > ps — ef + 6(N1,ng), (40)
where
lim §(Ny,ng) =0. (41)
N1—>(>O

Finally, because pa — pp > 0 and due to Ineq. (36) and (41), there must be N;*(c), with
N{*(c) > Ny(e*,¢,pa — pB), and n3(c) such that if Ny > N;*(c) and na > ni(c),

pA —cf +0(N1,ng) >pa —c=We"
and

2
pa —cf +6(Ny,ng) > = — * cc=Wv,

2 Ni+no

where x is the solution to Eq. (6). In combination with (37) and (40), the latter two inequalities
prove that
WAV > maX{WUOl, Wcom}_
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Appendix B

In this Appendix, we extend the properties of AV in two directions: first, we analyze the robust-
ness of Corollary 1 when citizens with the same preferences use different strategies; second, we

investigate the performance of Assessment Voting when there are more than two alternatives.

Multiple citizen types

In the main body of the paper, we have assumed that all agents who preferred alternative A to
B used the same strategy. In particular, in our analysis of game G?(d), we considered that all
citizens played according to one of two strategies: a4 for citizens whose preferred alternative is A
and ap for citizens whose preferred alternative is B. In this section, we assume that citizens of
type A and B may be of different (sub)types, which are given exogenously.

More specifically, for a given integer T > 1, let ST = {(pk)fzﬂpl, .oy pr >0, 25:1 pr = 1} denote
the T-simplex. Then, we assume that there exist p4 = (pﬁ){il e ST and pp = (p’fg)zfl e sT?,
with 74, T8 > 1, such that any citizen i’s probability of being of (sub)type t]j‘ is equal to p4 - pffl.
We shall assume that citizens of different (sub)types may use different strategies, i.e, they may
randomize between going to the ballot box or not, using different probabilities. Accordingly, we
have a4 j, with a4 ;, € [0, 1], denote the probability according to which citizens of type tfﬁl will turn
out (and then vote for alternative A). In turn, ag ) can be analogously defined for B-supporters.
By the properties of the Poisson probability distribution, in the second round of AV, the number
of citizens of each (sub)type tfﬁl is a Poisson random variable with parameter ns - p4 - plj‘ COUA s
which we denote by x4 j. Similarly, the number of citizens of each (sub)type t’fg is a Poisson
random variable with average ns - pp - p% - ap i, which we denote by zp ;. We recall that d*(c)
has been defined as the (minimal) threshold guaranteeing that if d > d*(c¢), no citizen will turn
out in the second round of AV. We can prove the following result, which generalizes Corollary 1

to a setting with multiple citizen types.

Proposition 2. Assume that there are T4 (sub)types of A-supporters and TP (sub)types of B-
supporters. For any cost ¢, with 0 < ¢ < 1/2, if d > d*(c), the only equilibrium is the no-show

equilibrium.

Proof. Let N denote the set of non-negative integer numbers. The fact that the no-show strategy
profile is an equilibrium is trivial, provided that d*(c¢) > 2. To show that this is the unique

equilibrium, we distinguish two cases.
Case : TA>1and T2 =1

For all voters of type A, regardless of their subtype, the indifference condition between turning
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out and abstaining is the following:

A
£ pEsmt Fotd+1

e (Y1 ks +d+ 1)!

A
e ket

+
<wwz?wﬁwﬂ

xAr
ZA'r‘k '

2c =

> I

(K1yeooskpa JENTA =1

(42)

)

Nevertheless, by Ineq. (26)—see the proof of Proposition 1—, we obtain that for all d > d*(c)

and all zp € Ry,

T4 T4
—1 ks+d _q kstd+1
NI ( )
k) TA TA
(kl,A ,kTA)GNTA r=1 xA k ers (Zs:l ks + d)‘ ers (Zs:l ks +d+ 1)'
TA, r
<X II ] 6= 2 (43)
(k1,woskpa JENTA T=1
where the second inequality holds from the claim that
xA r
2. lemrk. (44)

(K1yeooskpa )ENTA T=1

Assuming Eq. (44), Eq. (42) does not have a solution, and hence there cannot be an equilibrium
of game G2(d) in which A-supporters are split into 7 (sub)types and each (sub)type #" of citizen
4). We
prove the claim by induction on T#. The case T4 = 1 holds directly from the properties of the
Poisson probability distribution. Hence, assume that Eq. (44) holds for some T4 > 1. Then,

plays according to a totally-mixed strategy x4 ,. Finally, it only remains to prove Eq. (4

TA+1 ke o0 T4 kr k
> Mas-2| X [Tt
etArk | eTA rk 1 ePAarAsi]l
A =1 T k=0 A =1 T )
(k‘1,...,kTA+1)ENT +1 7 (kl,...,kTAJrl)ENT +1, T
kpa =k
00 k
S R E N
B ela, At k| A EA7k|
k=0 i (k;lv' ,k?TA>ENT r=
Z ATA+1 B
- efariiipl 7

where the penultimate equality holds by induction and the last equality holds due to the properties

of the Poisson probability distribution.

28




Case I: TA>1and T2 > 1

Let us assume T4 is given. We introduce further notation. Given zp = (rB,1,..,vps) and kB =
(KB, ..., szjB), we let P(xp, k) denote the probability that, for each (sub)type tZ (s = 1,...,TB),
there are exactly kf citizens of this (sub)type that vote, provided that citizens of type t; use

strategy ap s (which leads to zp 5). Because (sub)types are drawn independently, we obtain

TB ka

B B
P($B7k ) :H stkSB"
s=1 s

Moreover, because of the multinomial theorem, we obtain that for all m > 0,

B m
(23:1 mB,s)

TB
@Zszl wB,sm!

Z P(xB,kB) =
(kP k2 )ent?,

T
Zs:l ksB =m

For all voters of type A, the indifference condition between turning out and abstaining is

2¢c = Z H%' Z P(zp, kP) + Z P(zp, kP)

(kft ooty ) ENTA T kP = (’%B, K ) ent”, kB—(kl okl )ENTY,
Zél s ZZlk?+d Z&l E Zslef+d+1
B ST ki B ST kAt
Z H za," (25:1 xB,s) N <25:1 SUB,s)
- etar Al TB TA TB TA
(ki y JENTA 7= i eus=1 7B <Zs:1 K+ d>! e2s=1 TBys (Zs:l k& 4+ d+ 1)!
A A
ey kit d a1 ki dt1
fL'A ’I” O-B O'B
- Z H eTA, kA' ' TA + TA <2
T A A
<k1 kAA) nTA T=1 eB (25:1 k2 + d)' e’B (25:1 k& +d+ 1)'
ARG T

where op := ZZjl xR.s, the second equality follows from Eq. (45), and the inequality follows from
Ineq. (43) if d > d*(c). Because we have reached a contradiction, it must be that if d > d*(c),
there cannot exist an equilibrium of game G?(d) in which A-supporters are split into 74 (sub)types
and each (sub)type t; of citizen plays according to a totally-mixed strategy x4, and in which
B-supporters are split into 72 (sub)types and each (sub)type t'; of citizen plays according to a
totally-mixed strategy xp,. This completes the proof.?4 O

24The case in which some (sub)types play according to pure strategies can be proved analogously to the
case considered here. We also note that although we have focussed on the case where T4 and T are finite
numbers, the claim of Proposition 2 can be extended to the case where T4 or Tz are infinite.
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Three or more alternatives

In this section, we analyze the case of three or more alternatives. As already mentioned in the
Introduction, this case has been analyzed by Arzumanyan and Polborn (2017) for one-round
voluntary voting. We build on their approach to analyze AV. Specifically, we show that the
negative result identified by Corollary 1 holds, regardless of the number of alternatives at hand.
That is, we show that there is a threshold—which coincides with d*(§) such that there is an
equilibrium of the second-round voting game in which no citizen turns out, provided that the vote

count difference in the first voting round is sufficiently large.?

Accordingly, suppose there is a set of m alternatives Ay, Ao, ..., A, denoted by A. Citizens are
of one of m! possible types (A1, A2, ..., Am)yory (Amy Am—1, ..., A1), where type (Ai Aiy, ..., 4i,,)
stands for the citizen whose most preferred alternative is A;,, the second most preferred alternative
is A;,, and so on. Without loss of generality, we assume that there are Vi,...,V,, such that each
citizen ¢ derives a utility level Vj if his 4t best alternative wins. Without loss of generality we

impose the normalization 1=V, >V, > ... > V,,, = 0.

As in the case of two alternatives, we assume that the number of citizens of each type (A;,, A, ..., 4i,,)
is distributed according to a Poisson random variable with parameter p;, i, . .. As for the solu-
tion concept, we assume that (A;, ..., A;,, )-citizens who turn out vote for alternative A;,, where

1 <57 <m —1, with probability pzjl g These probabilities are exogenously given and satisfy

m—1

' 1.

Diligyesim —
Jj=1
In particular, we assume that citizens never vote for their least preferred alternative—this as-

sumption generalizes sincere voting in a framework with at least three alternatives.

Accordingly, we obtain that the number of voters in favor of alternative A; is distributed as a
Poisson random variable (with parameter denoted by 7;), since it is a sum of independent Poisson
random variables. As a tie-breaking rule, we consider that if there are k alternatives with the same
number of votes combined in the two voting rounds and if the remaining alternatives have strictly
fewer votes, the alternative that wins is chosen among these k alternatives, each alternative having

probability %

Next, suppose that alternative A; has received a; votes in the first voting round. We can assume
that a1 < ag < ... < a,, without loss of generality. Finally, we let G"(d) denote the modification
of G2(d), so that citizens can now vote for any of the m alternatives in any voting round. We have

the following proposition:

25We cannot rule out the possibility that equilibria may also exist in which strategic voting occurs in
the first voting round. One-round voting mechanisms also have the same drawback.
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Proposition 3. For any c¢ and any vector of votes (a1, ag, ...,an) after the first voting round,
there is d**(c) large enough, such that if ap, — am—1 > d**(c), the only equilibrium of game G™(d)

s the no-show equilibrium in the second round.

Proof. The proof is based on an induction on m. The case m = 2 is proven in Corollary 1. Now
suppose that the claim of the proposition is true for the case of m — 1 alternatives, and consider
the case of m alternatives. In particular, we will show that no citizen will vote for alternative Ay
in any equilibrium of game G™(d), where A; is the alternative that received the lowest number of
votes in the first voting round. This means that instead of m alternatives, it is as if there were
only m — 1 alternatives, Ao, ..., Ay,. Because a,, — am—1 > d**(c), we obtain by induction that

the only equilibrium that survives is the no-show equilibrium.

We distinguish two cases, which correspond to the cases in which one more vote in the second
voting round in favor of alternative A; will make a difference in the final outcome. In both cases,

we let i be a citizen of type (A1, Ay, ..., A;,). It will suffice to consider this type of citizen.26

Case I: In the two voting rounds combined, alternative Ay received exactly the same number of
votes as each of the alternatives of a given (non-empty) set B, with all alternatives in A\ (BU{A1})

recewing strictly fewer total votes than those in B.

In this case, with one additional vote in the second voting round, A; will win without ties.
Accordingly, the expected gain that citizen ¢ derives from voting for A; in the second round is
equal to
1
H(B) ::1_Tyrsy' 1+j6§;3v;-

Let z denote the total number of votes received by A; and alternatives from B in the two voting
rounds combined. It is straightfoward to verify that = > a,,, because alternative A,, already has
ap, votes from the first round (the highest number among all alternatives). Then, the probability

of having an alternative of set B winning the voting after both rounds (excluding i’s vote) is

00 T—aj

Pequal(B) = Z H L'P(va\(BU{Al})) )

nj .-
T=am jeBU{Al}e](x a;)!

where P(z,S) denotes the probability that alternatives in set S all receive strictly fewer votes

than x. Let s denote the size of any arbitrary set S. It is easy to verify the following:

s I,
P(z,8) = S Ik (46)

eNsrl,)’
(1,m0s)ENS, =1 "

lj—l—asj <z,j=1,...,s

26The argument of the proof can be easily adapted for all other types of citizens.
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Case II: In the two voting rounds combined, alternative Ay received one vote less than each of the
alternatives of a given (non-empty) set C, with all alternatives in A\ (CU{A1}) receiving strictly

fewer total votes than those in C.

In this case, with one additional vote in the second voting round, there is a chance that A; will
be chosen. Accordingly, the expected gain that citizen ¢ derives from voting in the second round

in favor of A; is equal to

1 1

jec jec

which is always a non-negative number since max;ccV; < 1. Let o 4 1 now denote the number of
total votes received by each of the alternatives in set C in the two voting rounds combined. That is,
alternative Ay has received z votes in both rounds combined, and it must be that x > a,,. Then,

the probability of having an alternative of set C winning the voting after both rounds (excluding

i’s vote) is
0o T—ay n$+1—aj
T J A
P, = E . | | . P A
(€ t—a <e771 (z —ar)! jec ei(z+1— aj)! (@ AN C A 1}))>’

where P(x,S) has been defined in Eq. (46).

Finally, let 24 denote the power set of A. Then, the indifference condition for citizen i that

equalizes the expected gain of voting for alternative A; and the cost of voting is

c= Y PuguaB) HB)+ > Pou(C)-F(C). (47)

Be2AV AL ce2A\ A1\ ¢

By Ineq. (26)—see the proof of Proposition 1—, if d > d**(¢) and for all y € R4 and k > 0, it

holds that
yk+d

ev(k + d)! <3 (48)

If we now assume that a,, — a1 > d**(c), then because H(B) and F(C) are at most one and all

the events described in the calculations of Peyyuq and Py, are disjoint, we have:

Y PuquaB)-HB)+ > Powl(C) F(C)

Be2A\A1 N\ ce2A\{A1h\p
0 na:—al
< Z Pequal(B) + Z jjlow(c) < Z m ’ (Pl(x) + PQ(x)) <¢,
Be2A\ A1\ CeaA\AL N T=am 1)
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where the strict inequality holds by Ineq. (48), and we also have that

Z Pi(z) <1 and Z Py(x) < 1.

T=am T=am

That is, Eq. (47) cannot hold if a,, — a; is above a certain threshold, which in fact coincides

with d*(§), and thereby is approximately four times bigger than d*(c). Letting d**(c) = d*($)

concludes the proof.
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