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Abstract

Time to event data for econometric tragedies, like mass shootings, have
largely been ignored from a changepoint analysis standpoint. We outline a
techniqnique for modeling economic changepoint problems using a piece-
wise constant hazard model to explain different economic phonomenon.
Specifically, we investigate the rates of mass shootings in the United States
since August 20th 1982 as a case study to examine changes in rates of
these terrible events in an attempt to connect changes to the shooter’s
covariates or policy and societal changes.
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A Bayesian Reversible Jump Piecewise Hazard approach for modeling
rate changes in mass shootings

Abstract

Time to event data for econometric tragedies, like mass shootings, have largely been ignored from a

changepoint analysis standpoint. We outline a techniqnique for modeling economic changepoint prob-

lems using a piecewise constant hazard model to explain different economic phonomenon. Specifically,

we investigate the rates of mass shootings in the United States since August 20th 1982 as a case study

to examine changes in rates of these terrible events in an attempt to connect changes to the shooter’s

covariates or policy and societal changes.

Keywords: Time-to-event Data, Survival Data, Mass Shooting

1. Introduction

In many economic social issues people wonder whether the incidences have increased or decreased

over time. One particular focus is tragic events such as terrorist attacks or mass shootings. One of

the issues with terrorist attacks is that they are not independent events due to the recent rise of ISIS.

Lone wolves are more likely to commit these crimes since there exists a terrorist network which could5

encourage attacks and communicate other successful attacks. While this could also be argued for mass

shootings, these are less dependent on each event as none of them have any general connection such as

a network to incite them. One could argue there is a cult of personality and that seeing other attacks

makes twisted individuals more brazen to commit mass attrocities against their fellow man, but this

is a stronger assumption than the assumption of independence. Due to this, we consider the mass10

shootings to be statistically independent. Likewise, this methodology and interpretations could be

applied to many different time to event data where independence is a reasonable assumption. We use

a piecewise constant exponential hazard modeling scheme with reversible jump capabilities to model

these events.

This allows us to draw inference on three quantities: the number of changepoints where these15

adverse events increase or decrease in quantity, the location of these changepoints in time, and the

relative rates of these catastrophies within each of these intervals. We use the approach of Green [1]

to these aims by placing a prior distribution on the number of changepoints and the hazard heights

and location of the changepoints, allowing for a dimension varying MCMC. We adopt an Independent



Correllated Autoregresssive structure to model the spatial dependencies of adjacent interval hazards20

[2]. The coding for this approach is already available on CRAN in the BayesPiecewiseICAR package

[3].

2. Methods

We present a Hierarchical Bayesian Analyses consisting of reversible jump Markov Chain Monte

Carlo Methods, to adequately characterize the changing rates in the time to event data. This method25

assumes a piecewise constant hazard in each disjoint time interval with an Intrinsic Correllated Autore-

gression structure to model the dependencies in the hazard heights was used and described extensively

by Lee et al but this approach also used covariates [2] [4]. While their model is computationally

exceptional, this tends to estimate very small baseline hazards due to removing the covariate effects.

Here we do not have data that seems to be driven by covariate differences, as the data compromises30

location, race of shooter, gender which is majority male and mental status which was largely unknown.

None of these prove to suggest trends that are not already evident, such as most of the attacks being

carried out by males. Furthermore since we are not observing every person in America to see if they

committ a mass shooting (which would result in censoring), it is not feasible-nor statistically correct-

to examine this type of data in a covariate based approach. Instead all we can do is model the changes35

over time, which we do here, regardless of the circumstances surrounding the shooting.

For the pieceiwse constant hazard approach, we assume that there exists a partition of the hazard

of the form s0 = 0 < s1 < ... < sJ < sJ+1 = max(Y ) similar to the approach of Lee et al [4]. If

we have data with censoring, this is adjusted to sJ+1 = max(Y |I = 1), that is the largest observed

non-censoring time. On each interval (sj , sj+1] we assume that the hazard takes a piecewise constant40

value exp(λj). Additionally, we follow the approach of Lee et al. in that we do not fix J and rather

allow it to vary in accordance to the data. We assume that J ∼ POI(φ) and that the split points have

a uniform prior, but so that we are not likely to observe no events within a given interval.

We assume a ICAR prior formulation for the heights λ|s ∼ NJ+1(μ, σ
2Σs) where σ2 has an inverse

gamma prior and μ has a flat prior. We define Σs in the following manner. Denote Δj = sj −sj−1 and45

let W be an off-diagonal matrix with the entries Wj,j−1 = cλ(Δj−1 +Δj)/(Δj−1 + 2Δj +Δj+1) and

Wj,j+1 = cλ(Δj+1 +Δj)/(Δj−1 + 2Δj +Δj+1) where cλ is a hyperparameter in the domain of [0, 1]

that characterizes the spatial dependence between adjacent interval heights. Then if Q is a diagonal

matrix with entries 2/(Δj−1 + 2Δj +Δj+1) then we have that Σs = (I −W )−1Q The full list of the

priors is as follows:50

J ∼ POI(φ)
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s|J ∼
(2J + 1)!

J+1∏
j=1

(sj − sj−1)

s2J+1
J+1

λ|s ∼ NJ+1(μ, σ
2Σs)

μ ∝ 1 σ−2 ∼ Gamma(a, b)

This formulation produces the likelihood (allowing the ability for censoring) of

L(Y|s, λ) =
J+1∏
j=1

exp

⎡
⎣λjdj − exp(λj)

∑
m∈Rj

Δmj

⎤
⎦

where dj is the number of mass shootings in the interval [sj−1, sj ], Rj is the risk set in the interval

and Δmj = max[min(Yi, sj) − sj−1, 0] where Yi is a mass shooting time. We allow birth and death

moves similar to Lee et al., but we sample the random perturvationat each proposal rather than fixing

it throughout the simulations [1] [4].55

3. Markov Chain Monte Carlo

In our Markov Chain Monte Carlo sampling scheme, we perform seven different moves consisting

of five Metropolis Hastings moves (two of which are Metropolis-Hastings-Green moves) and two Gibbs

samplers. One generic iteration of the sampler proceeds as follows:

1. Sample μ|λ, σ2, s via a Gibbs step. Sample Directly from:60

μ|λ, σ2, s ∼ N

(
1tΣ−1

s λ

1tΣ−1
s 1

,
σ2

1tΣ−1
s 1

)

2. Sample σ−2|μ, λ, s via a Gibbs step. Sample Directly from:

σ−2|μ, λ, s ∼ Gamma

(
a+

J + 1

2
, b+ 0.5(λ− μ1)tΣ−1

s (λ− μ1)

)

3. Sample λ|s, μ, σ2,Y via a Metropolis-Hastings step. We sample each entry of λ and accept or

reject it by drawing λ∗
k ∼ U [λk − c, λk + c] where c is the tuning parameter in our MCMC. λ∗

k is

accepted with probability α∗ = min(1, α) where

α =
L(Y|s, λ∗)NJ+1(λ

∗|μ1, σ2Σs)

L(Y|s, λ)NJ+1(λ|μ1, σ2Σs)
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4. Sample the locations of s|λ,Y, J via a Metropolis-Hastings move that shuffles the locations of65

s1, ..., sJ . We sample s∗j ∼ U [sj−1, sj+1] for j = 1, ..., J , which also adjusts λ in the following

manner. If s∗j > sj then λ∗
j+1 = λj+1 while

λ∗
j =

(s∗j − sj)λj+1 + (sj − sj−1)λj

s∗j − sj−1
.

Likewise if s∗j < sj , then λ∗
j = λj and

λ∗
j+1 =

(sj+1 − sj)λj+1 + (sj − s∗j )λj

sj+1 − s∗j
.

We accept (s, λ) with probability α∗ = min(1, α) where

α =
L(Y|s∗, λ∗)NJ+1(λ

∗|μ1, σ2Σ∗
s)(s

∗
j − sj−1)(sj+1 − s∗j )

L(Y|s, λ)NJ+1(λ|μ1, σ2Σs)(sj − sj−1)(sj+1 − sj)

5. Sample s|λ,Y via a Metropolis-Hastings-Green move by propsing adding a split point and delet-70

ing a split point.

• Birth Move: Draw a random split point via aBirth = U [0, smax] and set s∗ = Sort(Birth, s).

Changing the dimension of s also adjusts the entries of λ in the following manner. Draw

U ∼ U [0, 1] and assume that Birth ∈ (sj−1, sj ]. Then we define the multiplicative per-

turbation as
exp(λ∗

j+1)

exp(λ∗
j )

= 1−U
U as in Green and Lee et al [1] [4]. Then the new heights are75

determined as

λ∗
j = λj − sj −Birth

sj − sj−1
log

(
1− U

U

)

λ∗
j+1 = λj +

Birth− sj−1

sj − sj−1
log

(
1− U

U

)

The proposed vectors (s∗, λ∗) is accepted with probability α∗ = min(1, α) where

α =
L(Y|s∗, λ∗)NJ+1(λ

∗|μ1, σ2Σ∗
s)Poi(J + 1|φ)(2J + 3)(2J + 2)(Birth− sj−1)(sj −Birth)

L(Y|s, λ)NJ+1(λ|μ1, σ2Σs)Poi(J |φ)s2maxU(1− U)(sj − sj−1)

• Death Move: Similar to a Birth move, a death move adjusts both s and λ. We propose

deleting one entry s1, .., sJ equally likely. Assume we delete sj to obtain s∗ then we delete

λj+1 from λ∗ and set80

λ∗
j =

λj(sj − sj−1) + λj+1(sj+1 − sj)

sj+1 − sj−1
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We draw U ∼ U [0, 1] as the random perturbation to maintain balance between the two pa-

rameter spaces and we accept the proposed vectors (s∗, λ∗) with probability α∗ = min(1, α)

where

α =
L(Y|s∗, λ∗)NJ+1(λ

∗|μ1, σ2Σ∗
s)Poi(J − 1|φ)(sj+1 − sj−1)s

2
maxU(1− U)

L(Y|s, λ)NJ+1(λ|μ1, σ2Σs)Poi(J |φ)(2J + 1)2J(sj+1 − sj)(sj − sj−1)

4. Application

The application of primary interest for this paper comes from motherjones.com consisting of the85

mass shooting dates and related information for each shooter since 1982 in the United States [5]. In

this analysis, we do not consider any covariates related to the shooting and instead consider the date

of each shooting since 1982 in an attempt to analyze the changes in mass shooting rates over time. To

be clear, this data set considers a mass shooting to be a shooting that results in the death of at least

four people. This eliminates cases of double murder-suicide in cases of infidelity and other crimes of90

passion.

The analyis was perfomed via 100,000 iterations on the package BayesPiecewiseICAR with hyper-

parameters (.7, .7) for σ−2, a prior mean of 5 different split points, a maximum allowed split point

allocation of 50 and a spatial dependency of 0.5. Additionally, we used a tuning parameter of 0.25

(the default) and a starting value of 5 different split points in the hazard. The poserior results without95

burnin as given by the program ICARBHSampler from the package BayesPiecewiseICAR are shown

in figure 1.

As we can see from the posterior distribution, there appears to be significant indication of the

existence of only once split point. Economically this indicates that there is one time where the hazard

of mass shootings has changed since 1982. After burning in the half of the samples, there are 47209100

samples with one split point, 2771 with two split points and 21 with 3 split points. We examined

the posterior location of this single split point by looking at samples with J = 1. The density of this

posterior split point location is shown in figure 2. We see that the density is mostly concentrated

slightly past the middle of 2011 indicating that the rate of mass shootings changed around August

2011. The posterior mean of this location is 2011.592, which falls in early August. Next we can105

examine the posterior rates on the time intervals [1982-August 2011), [August 2011-Today) to see how

the rate of mass shootings changed. Figure 3 displays the posterior densities of the two log hazard

rates, here a smaller loghazard indicates a decreased risk of a mass shooting occurance. We see that

the posterior densities of the two log hazard rates have no overlap, indicating that the hazard of a

mass shooting occuring increased significantly after August 2011. The posterior means of these two110

log hazards are −9.42 and −6.89, respecively, indicating that the hazard of a mass shooting increased
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by over 12 times after August 2011.

This allows us to conjecture about what is causing this large increase in the hazard of a mass

shooting. Gun sales increased since 2008 as reflected by the number of FBI background checks, but

increased drastically in 2012-2013. Since the rates of shootings changed drastically in August 2011,115

one might question whether this is the driving factor. Since August 2011, there have been 30 mass

shootings, with all but 5 weapons being obtained legally. However, this is an increase in the proportion

of shootings involving a legal weapon prior to August 2011 (77% compared to 83%). 15 of these 30

shooters had known mental illnesses while 32 of the shooters prior to August 2011 had mknown

mental illnesses (60%). There is also not a discrepancy between the age of the shooters, with the mean120

(median) ages being 35.07 (33.5) and 34.92 (36), respectively. The data does not draw a clear line to

what’s causing this change.

However, we do know that the coverage of these instances has increased along with the public’s

ability to gather information about them through the internet, which could be a factor in the increased

shootings. People may have become so desensitized to them through comprehensive coverage that these125

rates are increasing. Without additional data on the coverage of these events over time, we’re unable

to confirm this conjecture.

5. Conclusion

We outlined a method to assess the changes in rates for different economic events. This method

allows us to model the number of changes, the location where the rate changes occur, and how the rates130

change probabilistically. Code for this method is provided on CRAN in the function BayesPiecewise-

ICAR [3]. We applied this method to mass shooting data in attempts to connect rate changes to the

shooter’s covariates or policy decisions, showing that the hazard of mass shootings increased over 12

times around August 2011. However, covariate information of shooters prior to and after August 2011

showed inconclusive differences. Additionally, there were no federal changes in gun legislation around135

this time so it appears the change is not due to policy implications. One extension to this method

include those that separate the time scale by both rate of occurance and severity, such as the number

of fatalities. An additional interpretable extension could relax the piecewise constant assumption and

allow for some interpretable function on each interval.
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