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Abstract

We propose a multi-stage stochastic trading cost model in optimal portfolio

selection. This strategy captures uncertainty in implicit transaction costs

incurred by an investor during initial trading and in subsequent rebalancing

of the portfolio. We assume that implicit costs are stochastic as are asset

returns. We use mean absolute deviation as our risk and apply the model to
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securities on the Johannesburg Stock Market. The model generates optimal

portfolios by minimizing total implicit transaction costs incurred. It provides

least-cost optimal portfolios whose net wealths are better than those gener-

ated by the mean-variance, minimax and mean absolute deviation models.

Key words: implicit transaction costs, stochastic programming.
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A Stochastic Multi-stage Trading Cost model in optimal

portfolio selection

Abstract

We propose a multi-stage stochastic trading cost model in opti-

mal portfolio selection. This strategy captures uncertainty in implicit

transaction costs incurred by an investor during initial trading and in

subsequent rebalancing of the portfolio. We assume that implicit costs

are stochastic as are asset returns. We use mean absolute deviation

as our risk and apply the model to securities on the Johannesburg

Stock Market. The model generates optimal portfolios by minimizing

total implicit transaction costs incurred. It provides least-cost optimal

portfolios whose net wealths are better than those generated by the

mean-variance, minimax and mean absolute deviation models.

Key words: implicit transaction costs, stochastic programming.

1 Introduction

Financial markets are inherently volatile, characterized by shifting values,

risks and opportunities. The prices of individual securities are frequently
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changing for numerous reasons that include shifts in perceived value, lo-

calized supply and demand imbalances, and price changes in other sector

investments or the market as a whole. Reduced liquidity results in price

volatility and market risk to any contemplated transaction. As a result of

this volatility, transaction cost analysis (TCA) has become increasingly im-

portant in helping firms measure how effectively both perceived and actual

portfolio orders are executed. The increasing complexities and inherent un-

certainties in financial markets have led to the need for mathematical models

supporting decision-making processes. In this study, we propose a stochastic

multi-stage mean absolute deviation model with trading costs (SMADTC)

that minimizes implicit transaction costs incurred by an investor during ini-

tial trading and in subsequent rebalancing of the portfolio. This is achieved

by allowing the investor to choose his or her desired implicit transaction cost

value and portfolio mean rate of return or risk level, where the risk is defined

by the mean absolute deviation of assets’ returns from expected portfolio

return. The multi-stage stochastic transaction cost model captures assets’

returns, implicit transaction costs and risk due to uncertainty. We apply

stochastic programming since it has a number of advantages over other tech-

niques. Firstly, stochastic programming models can accommodate general
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distributions by means of scenarios. We do not have to explicitly assume

a specific stochastic process for securities’ returns, but we can rely on the

empirical distribution of these returns. Secondly, they can address practical

issues such as transaction costs, turnover constraints, limits on securities and

prohibition of short-selling. Regulatory and institutional or market-specific

constraints can be accommodated. Thirdly, they can flexibly use different

risk measures.

Konno and Yamazaki [14] propose the mean absolute deviation (MAD) model,

in deterministic form, as an alternative to the mean-variance (MV) model

by Markowitz [17]. MAD is a dispersion-type risk linear programming (LP)

computable measure that may be taken as an approximation of the vari-

ance when the absolute values replace the squares. It is equivalent to the

mean-variance if the assets’ returns are multivariate normally distributed.

However, using a linear model considerably reduces the time needed to reach

a solution, thus making the MAD model more appropriate for large-scale

portfolio selection. It makes intensive calculations of the covariance matrix

unnecessary as opposed to the mean-variance model. The MAD model is also

sensitive to outliers in historical data (Byrne and Lee, [2]) Much financial re-

search has been done regarding asset allocation, portfolio construction and
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performance attribution. However, for the total performance of a portfolio,

the quality of the implementation is as important as the decision itself. Im-

plementation costs usually reduce portfolio returns with limited potential to

generate upside potential. A portfolio must strike what an investor believes

to be an acceptable balance between risk and reward, having considered all

costs incurred in the setting or rebalancing of the portfolio. Investment port-

folios should be rebalanced to take account of changing market conditions

and changes in funding. This brings with it some trading costs, which can

be either direct or indirect. Direct trading costs are observable and they

include brokerage commissions, market fees and taxes. Indirect costs are

invisible and these include bid-ask spread, market impact and opportunity

costs.

Of the literature that is devoted to modeling portfolio selection with trans-

action costs, the greater part concentrates on proportional transaction costs.

Kozmik [15] discusses an asset allocation strategy with transaction costs

formulated as a multi-stage stochastic programming model. He considers

transaction costs as proportional to the value of the assets bought or sold,

but does not consider implicit transaction costs in the model. He employs

Conditional-Value-at-Risk as a risk measure. Moallemi and Saglam [18] study
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dynamic portfolio selection models with Gausian uncertainty using linear

decision models incorporating proportional transaction costs. They assume

that trading costs such as bid-ask spread, broker commissions and exchange

fees are proportional to the trade size. However, as assets’ prices follow a

random-walk process, such price movement would result in randomly fluctu-

ating transaction costs due to a number of factors that include asset liquidity,

market impact and so on. In economic recessions and booms where asset re-

turns are characterised by extreme movements, the extreme movements of

the market are not always reflected in all individual stocks. Some individ-

ual stocks show an extreme reaction while others exhibit a milder reaction

(Jansen and De Vries, [12]). Hence considering proportional transaction costs

in an uncertain environment does not provide good estimate of trading costs,

especially implicit transaction costs. Lynch and Tan [16] study portfolio se-

lection problems with multiple risky assets. They develop analytic frame-

works for the case with many assets taking proportional transaction costs.

Xiao and Tian [20] estimate implicit transaction costs in Shenzhen A-stock

market using the daily closing prices, and examine the variation of the cost of

Shenzhen A-stock market from 1992 to 2010. They use the Bayesian Gibbs

sampling method proposed by Hasbrouck [10] to analyze implicit costs in the
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bull and bear markets. Hasbrouck [10] incorporates the Gibbs estimates into

asset pricing specifications over a historical sample and find that effective

cost is positively related to stock returns. Brown and Smith [3] study the

problem of dynamic portfolio optimization in a discrete-time finite-horizon

setting, and they also take into account proportional transaction costs. Cai,

et al [4] examine numerical solutions of dynamic portfolio optimization with

transaction costs. They consider proportional transaction costs which can

be either explicit or implicit, whichever is greater. However, transaction cost

analysis requires the identification of the type of cost to be estimated in order

to explore effective ways of having a good estimate of it, hence enabling an

investor to make an informed decision. Thus, in our study, we concentrate

on implicit transaction costs as these are invisible and can easily erode the

profits of an investment. These costs can turn high-quality investments into

moderately profitable investments or low-quality investments into unprof-

itable investments (Hondt and Giraud, [5]). Konno and Wajayanayake [13]

propose the deterministic mean absolute deviation model with transaction

costs modeled by a concave function. They use a linear cost function as an

approximation to the concave cost function. Gulpinar, et al [6] propose a

multi-stage mean-variance portfolio analysis with proportional transaction
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costs. Our study considers random transaction costs since asset prices are

random.

Some investors do not like too high costs as these are known to erode the

profits of investment. Most models in the literature are static models and

they are essentially single-period models. There is only one decision to be

made, for the first period. In real-life, decisions are made with possibilities

of adjustment down the road, since the future is unknown. Stochastic pro-

gramming models hence are dynamic, covering multiple-time periods with

associated separate decisions, and they account for the stochastic decision

process. The main features of stochastic programming are scenarios and

stages. The uncertainty about future events is captured by a set of scenar-

ios, which is a representative and comprehensive set of possible realizations

of the future. Stochastic programming recognizes that future decisions hap-

pen in stages, incorporating earlier decisions and events that occurred during

earlier time-periods.

The main contributions of this study include:

(i) The development of a stochastic multi-stage trading cost model that
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generates optimal portfolios while minimizing uncertain implicit trans-

action costs incurred by an investor during initial trading and in sub-

sequent rebalancing of portfolios;

(ii) The development of a strategy that captures uncertainty in stock prices

and in corresponding implicit trading costs by way of scenarios.

This paper is organized as follows. In Section 2, we discuss the formu-

lation of the stochastic trading cost model for multi-stage optimal portfolio

selection. Transaction costs and portfolio rebalancing constraints are ex-

plained. Discussion on transaction cost calculation is given in this section.

In Section 3, we demonstrate the application of the model to securities taken

from the Johannesburg Stock Market courtesy of I-Net Bridge. We compare

the model’s performance with the performance of the mean-variance, mini-

max (MM) and mean absolute deviation models. We conclude, in Section

4, by giving a summary of our findings and the main contributions of this

study, as well as directions on future research.

8



2 Materials and methods

We determine a multi-period discrete-time optimal portfolio strategy over

a given investment horizon T . The period T is divided into two discrete

intervals T1 and T2. T1 defines the planning phase, where T1 = 0, 1, · · · , τ .

Period T2 = τ + 1, · · · , T is the period to investment maturity. During T1,

an investor makes decisions and adjustments to his portfolio at each of the

τ periods as some assets’ returns get realized. The initial investment takes

place at t = 0, with portfolio restructuring at times t = 1, 2, · · · , τ . After

period τ , no further decisions are implemented until investment maturity at

t = T . A portfolio is restructured in terms of asset return and risk which

is measured by the mean absolute deviation of assets’ returns from expected

portfolio return. This restructuring of the portfolio brings with it transaction

costs, as the investor buys or sells shares of some securities to balance his

portfolio. For a conservative investor, trade execution costs are paramount.

Hence the need to minimize these costs. We thus consider an investor who

is interested in getting an optimal portfolio while at the same time keeping

transaction costs to the minimum.
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2.1 Scenario Generation

Let R = {R1, · · · , Rt} be stochastic events at t = 1, · · · , T , and consider

I = {i : i = 1, 2, · · · , n} to be a set of securities for an investment. The

decision process is non-anticipative (i.e., a decision at a given stage does not

depend on the future realization of the random events). The decision at pe-

riod t is dependent on Rt−1. We define a scenario as a possible realization of

the stochastic variables {R1, R2, · · · , Rt}. Hence the set of scenarios corre-

sponds to the set of paths followed from the root to the leaves of a tree, Sτ ,

and nodes of the tree at level t ≥ 1 corresponds to possible realizations of Rt.

Each node at a level t corresponds to a decision which must be determined

at time t, and depends in general on Rt, the initial wealth of the portfolio

and past decisions. Given the event history up to time t, Rt, the uncertainty

in the next period is characterized by finitely many possible outcomes for the

next observations Rt+1. The branching process is represented by a scenario

tree. An example of a scenario tree with 2 time periods and three-three

branching structure is shown in Figure 1 below.
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Figure 1: Scenario tree

The uncertain return of the portfolio at the end of the period t is

R = R(xt, rt). This is a random variable with a distribution function, say F ,

given by

F (x, µ) = p{R(x, r) ≤ µ}

The expected return of the portfolio at the end of period t is

rpt = E[R(xt, Rt)] = r(xt, Rt).

Suppose the uncertain returns of the assets, Rt, in period t are represented by

a finite set of discrete scenarios Ω = {s : s = 1, 2, · · · , S}, whereby the returns
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under a particular scenario s ∈ Ω take the values Rs = (R1s, R2s, · · · , Rns)
T

with associated probability ps > 0, where
∑

s∈Ω
ps = 1. The portfolio return

under a particular realization of asset return Rs of period t is denoted by

rst = r(xt, Rst). The expected portfolio return of period t is now given by

rpt = E[r(xt, Rst)] =
∑

s∈Ω
psr(xt, Rst)

2.2 Model constraints

The dynamic portfolio selection in discrete time allows an investor to adjust

dynamically his or her portfolio at successive stages. We assume that the

investor joins the market at t = 0 with initial wealth W0, and Wt being

portfolio wealth at period t. The wealth can be partitioned among the n-

assets at the beginning of each of the τ consecutive time periods to rebalance

the portfolio. The investor is seeking an optimal investment strategy,

xt = [x1st, x2st, · · · , xnst] for t = 1, 2, · · · , τ , such that

∑n
i=1

xit =
∑S

s=1
xist = 1, t = 1, 2, · · · , τ.

where S is the total number of scenarios in period t. Let aist and vist be,

respectively, the buying and selling proportions of asset i of scenario s of

period t. Then we have aist = Aist

Wt

and vist = Vist

Wt

where Aist is the amount
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of money used to buy new shares of asset i of scenario s in period t, and Vist

is the money obtained from selling shares of asset i of scenario s in period

t. Thus, in portfolio rebalancing at the beginning of each time period t, we

have

xi,s,t = xi,s,t−1 + ai,s,t − vi,s,t, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ. (1)

We remark here that either aist or vist is zero at each rebalancing of the

portfolio since we cannot buy and sell an asset at the same time. This

results in the constraint

aist · vist = 0 (2)

We assume that the portfolio is self-financing and consider that money can

only be added at t = 0 and not in subsequent periods.

The decision made by the investor at period t depends on xi,s,t−1 and the

yield of the investment of asset i of scenario s. Thus, the expected return of

asset i in period t is given by

rit =
∑

s∈Q

ps · Ri,s,t · (xi,s,t−1 + ai,s,t − vi,s,t), i = 1, · · · , n; t = 1, · · · , τ.

=
∑

s∈Q

ps · Rist · xist, i = 1, · · · , n; t = 1, · · · , τ. (3)
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for all scenarios s of asset i. Here, Q ⊂ Ω is a set of scenarios of asset i of

period t. When rebalancing the portfolio, it is observed that

0 ≤
∑

i

aist ≤
∑

j,j 6=i

vist; i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ. (4)

This constraint ensures that the amount of money used to purchase shares

of assets i should be at most equal to the amount of money obtained from

selling shares of assets j, (j 6= i) of period t during portfolio rebalancing.

The following constraint guarantees that the proportion of asset i of scenario

s in period t sold for portfolio rebalancing should be at most the proportion

of the asset in the portfolio,

0 ≤ vist ≤ xist, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ. (5)

The inequality (5) also ensures that no short-selling takes place. To pro-

vide for diversification of the portfolio, bounds Uist on decision variables are

considered resulting in the constraint

0 ≤ xist ≤ Uist, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ. (6)

It should be noted that scenarios may reveal identical value for the uncer-

tain quantities up to a certain period. These scenarios that share common

information must yield the same decisions up to that period. Thus we have
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the constraint

xist = xis′t (7)

for all scenarios s and s′ with identical past up to time t.

2.3 Expected portfolio Wealth

The investor aims to obtain an optimal strategy that minimizes transac-

tion costs. Let kist and list be, respectively, the rate of buying and selling

transaction costs of the quantity of asset i of scenario s bought or sold for

portfolio rebalancing at the beginning of period t. Thus, the transaction

cost rate incurred by the investor for buying or selling proportions aist or vist

respectively, of asset i of scenario s in period t is given by

kistaist + listvist

We remark here that since aist · vist = 0 (from (2)), we have either

kistaist = 0 or listvist = 0 (8)

or both being equal to zero. Thus, the expected transaction cost rate of the

portfolio in period t becomes

∑S

s=1
ps{kistaist + listvist}, i = 1, 2, · · · , n; t = 1, 2, · · · , τ.
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The gross mean rate of return of the portfolio of period t is given by

rpt =
S∑

s=1

ps ·Ri,s,t · (xi,s,t−1 + ai,s,t − vi,s,t), i = 1, · · · , n; t = 1, · · · , τ.

=
S∑

s=1

ps ·Rist · xist, i = 1, · · · , n; t = 1, · · · , τ. (9)

since we have a total of S scenarios in each period. The wealth of period t,

without transaction costs, becomes

Wt = (1 + rpt) · Wt−1, t = 1, · · · , τ (10)

Denoting the net expected portfolio return rate of period t by Npt, we get

Npt = rpt −
∑S

s=1
ps{kistaist + listvist}.

Thus, the portfolio wealth of period t taking transaction costs into account

is given by

Wt = (1 + Npt) · Wt−1, t = 1, · · · , τ. (11)

2.4 Expected portfolio Risk

The portfolio risk for any realization of any period is measured by the mean

absolute deviation of the realized returns relative to the expected portfolio

return, rpt. We consider deviation of a scenario return from expected portfolio
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return at any period t. Konno and Yamazaki [14] develop the deterministic

mean absolute deviation model in an attempt to improve on the famous

Markowitz [17] mean-variance model. Their mean absolute deviation model

has portfolio risk expressed as

H(p) = 1

T

∑T

t=1
|
∑n

i=1
(rit − ri)xi|

where rit is the realized return of asset i of period t, ri is the expected return

of asset i per period, and xi is the proportion of wealth invested in asset i.

We therefore extend this formulation of portfolio risk by taking into account

uncertainty of asset returns and transaction costs in portfolio rebalancing.

Using the deterministic model as our basis, three key stochastic framework el-

ements are incorporated to formulate the stochastic mean absolute deviation

model. The first element considered is the concept of scenarios. Since the

deterministic model represents one particular scenario, the inclusion of mul-

tiple scenarios in capturing uncertainty result in the increase in the number

of variable parameters. Thus uncertainty is represented by a set of distinct

realizations s ∈ Ω. We now consider the scenario parameter, along with other

parameters of security and time period. Secondly, the stochastic trading cost

model allows for the implementation of recourse decisions as unfolding infor-

mation on assets’ returns get realized. The third element is the probabilistic
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feature of the stochastic framework which assigns probabilities to scenarios.

The parameter ps represents scenario probability. Scenarios may reveal iden-

tical value for the uncertain quantities up to a certain period. Scenarios that

share common information must yield the same decisions up to that period.

The stochastic mean absolute deviation also incorporates transaction costs

incurred during portfolio rebalancing at each time period. Thus, we obtain

the following portfolio risk:

H(rpt) =
1

τ

τ∑

t=1

|
S∑

s=1

ps(Rst − rpt)xst| (12)

where Rst, rpt and xst are as defined earlier. Let us denote yst = (Rist −

rpt)xist, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ . Since Ri,s,t = Ri,s,t(xi,s,t−1 +

ai,s,t − vi,s,t) and rpt = rpt(xi,s,t−1 + ai,s,t − vi,s,t), we have ys,t = ys,t(xi,s,t−1 +

ai,s,t − vi,s,t) as well. Equivalently, we have yst = yst(xist). Thus the portfolio

risk becomes

H(rpt) =
1

τ

τ∑

t=1

|
S∑

s=1

psyst|

This risk function is non-linear, and since we intend to have a linear pro-

gramming model we linearize the portfolio risk function and it becomes

H(rpt) =
1

τ

τ∑

t=1

Zt (13)

where Zt ≥ |
∑S

s=1
psyst|.
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2.5 Multi-stage Stochastic Transaction Cost Model

We present the multi-stage stochastic transaction cost model in optimal port-

folio selection as a minimization of implicit trading costs incurred by an in-

vestor during initial trading and in subsequent rebalancing of the portfolio.

We subject the model to constraints describing the growth of the portfolio

in all scenarios, some performance constraints and bounds on variables.

We constrain the final expected wealth to be at least a particular value, say

α, desired by the investor. The portfolio risk, measured by the stochastic

mean absolute deviation, is also constrained to be at most a value chosen by

the investor, say θt, at any period t. The optimization model provides an

optimal investment strategy that minimizes implicit transaction costs while

achieving the specified expected wealth and desired risk level. Varying the

expected return or risk and re-optimizing generate a set of optimal portfo-

lios, forming the efficient frontier. If we let the investor’s desired minimum

net portfolio return to be at least λ say, we state the stochastic multi-stage

transaction cost model as follows:
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Minimize

S∑

s=1

ps{kistaist + listvist} (14)

subject to

0 ≤ Zt +

S∑

s=1

psyst, i = 1, · · · , n; t = 1, · · · , τ,

0 ≤ Zt −

S∑

s=1

psyst, i = 1, · · · , n; t = 1, · · · , τ,

Npt ≥ λt

Wt = (1 + Npt)Wt−1, t = 1, · · · , τ,

θt ≥
1

τ

τ∑

t=1

Zt

1 =
S∑

s=1

xist, i = 1 · · · , n; t = 1, · · · , τ,

0 ≤
∑

i

aist ≤
n∑

j=1,j 6=i

vist, s = 1, · · · , S; t = 1, · · · , τ

0 ≤ vist ≤ xist, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ,

0 ≤ xist ≤ Uist, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ,

0 = aist · vist, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ,

xist = xis′t, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ,

The first two constraints ensure that the deviation is absolute. In addition to

20



constraining the final rate of return of the portfolio, constraints of the form

Npt ≥ λt, t = 1, · · · , τ,

can be added to ensure any desired intermediate expected performance. We

assume that no borrowing is done and the portfolio is self-financing. It de-

serves mention that the existence of a riskless asset among the securities is

regarded as a special case in the stochastic transaction cost model formula-

tion (14) above.

It has been noted earlier that for each asset i, aist and vist cannot simul-

taneously be non-zero. Thus, we can now state problem (14) without the

complementary constraint aist · vist = 0 as the following linear program.

Minimize

Cpt =
S∑

s=1

ps{kistaist + listvist} (15)
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subject to

0 ≤ Zt +
S∑

s=1

psyst, i = 1, · · · , n; t = 1, · · · , τ,

0 ≤ Zt −
S∑

s=1

psyst, i = 1, · · · , n; t = 1, · · · , τ,

Npt ≥ λt

Wt = (1 + Npt)Wt−1, t = 1, · · · , τ,

θt ≥
1

τ

τ∑

t=1

Zt

1 =
S∑

s=1

xist, i = 1 · · · , n; t = 1, · · · , τ,

0 ≤
∑

i

aist ≤

n∑

j=1,j 6=i

vist, s = 1, · · · , S; t = 1, · · · , τ

0 ≤ vist ≤ xist, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ,

0 ≤ xist ≤ Uist, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ,

xist = xis′t, i = 1, · · · , n; s = 1, · · · , S; t = 1, · · · , τ,

where Cpt is the total portfolio transaction cost rate at time t. Alternatively,

the objective function can be expressed as minimizing the total portfolio

transaction cost in period t as

C = [
∑S

s=1
ps{kistaist + listvist}] · Wt−1
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2.6 Transaction cost measurement

An investor incurs transaction costs when buying or selling securities on the

Stock Market. This takes place during initial trading and when rebalanc-

ing the portfolio in subsequent periods. Transaction costs are either explicit

or implicit. Explicit costs are directly observable, and they include market

fees, clearing and settlement costs, brokerage commissions, and taxes and

stamp duties. These costs do not rely on the trading strategy and can easily

be determined before the execution of the trade. However, implicit costs are

embedded in the stock price, and hence are invisible. They depend mainly on

the trade characteristics relative to the prevailing market conditions. They

are strongly related to the trading strategy and provide opportunities to

improve the quality of trade execution.These can broadly be put into three

categories, namely market impact, opportunity costs and spread. These costs

can turn high-quality investments into moderately profitable investments or

low-quality investments into unprofitable investments (Hondt and Giraud,

[5]). When an investment decision is immediately executed without delay,

implicit costs are largely a result of market impact or liquidity restrictions

only, and defined as the deviation of the transaction price from the ‘unper-

turbed’ price that would have prevailed if the trade had not occurred.
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Thus we assume immediate trade execution and regard market impact to

account for the total implicit costs. We follow implicit transaction cost cal-

culation as provided by Hau [9]. We use the spread mid-point benchmark

and take the transaction price to be the last price of the month. We calcu-

late the effective spread as twice the distance from the mid-price measured

in basis points. Thus, for the mid-price PM , mid-point of the bid-ask spread,

and transaction price P T , we obtain the effective spread (implicit transaction

cost) as

SPREADTrade = 200 ×
|P T − PM |

PM

We consider the transaction price to be the last price of the month for each

security. These are prices of securities traded on the Johannesburg Stock

Market from 1 January 2008 to 30 September 2012. We got the historical

data courtesy of I-Net Bridge.

3 Results and discussion

We use monthly historical data of securities on the Johannesburg Stock Mar-

ket from January 2008 to September 2012. We evaluate the performance of

the proposed SMADTC model by comparing portfolios developed from it
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and the mean-variance, mean absolute deviation and minimax (MM) mod-

els. These models are shown in appendix section. The following criteria are

used in the selection of stocks to comprise our initial portfolio:

(a) Stocks with negative mean returns for the entire period considered are

excluded from the sample,

(b) Companies which were not on the list by January 2008 and only entered

the JSE afterwards are excluded.

(c) Those assets having the highest positive mean returns are taken to

become our initial portfolio.

We take empirical distributions computed from past monthly returns as equi-

probable scenarios. A scenario, Rist, for the return of asset i of period t is

obtained as

Rist =
Pi,s,t

Pi,s,t−1

− 1

where Pi,s,t is a historical monthly price of asset i.

In the first stage of analysis, 13 securities are chosen to comprise our initial

portfolio. The mean returns, total transaction costs and total wealth of each
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of the four optimal portfolios developed according to models15, A1, A2 and

A3 are calculated and then compared.

In using the proposed model, we consider five scenarios for each asset re-

turn and the corresponding transaction cost, and apply the SMADTC model

over two stages. However, comparison with other models is restricted to the

first stage. We take empirical distributions of the 13 securities comprising

our initial portfolio. Since for each security we have 54 monthly returns, we

number the months from 1 to 54, and use random numbers to select asset

returns and associated transaction costs corresponding to scenarios of a secu-

rity. We take implicit transaction costs calculated from the effective bid-ask

spread corresponding to each selected asset return. We assume that these

transaction costs are random since they are randomly selected together with

corresponding asset’ returns. Thus, a scenario comprises an asset return and

the associated transaction cost. The implicit cost for each of the 13 assets is

taken into account as it is in the buying or selling of each asset that the cost

is incurred. We give the transaction cost as a rate. We take each scenario to

be equally likely to occur.

It should be noted that scenarios are only considered for the proposed SMADTC

model. Other models use mean returns and risks calculated over the whole
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period under examination. First-stage optimal portfolios of all models are

compared. For the SMADTC model, we consider five scenarios for each asset

return in our demonstration, each with a probability of occurring of 1

5
, and

apply the model over two stages. This consideration is taken noting that in

stochastic programming the scenario tree grows exponentially. At the end

of the first stage, an investor decides on his first-stage optimal portfolio as

given by the investor’s chosen portfolio transaction cost, the diversification

limit, the gross portfolio mean return or the net portfolio mean return as the

case may be, and the associated risk given by the mean absolute deviation.

3.1 Analysis of results

Results of the SMADTC model are given in stages.

Stage 1

We consider an investor who has R10000 to spend on his initial portfolio.

The optimal portfolios generated by the four models are shown in Table 1

below. The phrase ‘D.L’ stands for ‘diversification limit’.

The information in Table 1 reveals that the portfolios generated by the MM

model have the highest gross mean returns for each diversification limit con-

sidered, followed by the MV model. The SMADTC model generates optimal
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portfolios with least gross mean returns, up to when the diversification limit

is 0.25. The portfolio gross mean returns from the MAD and the MV models

show a decreasing trend as the portfolios become less diversified. On the con-

trary, the MM and SMADTC generated portfolios have gross mean returns

that increase as portfolios become less diversified.

Although the MM model appears to generate optimal portfolios with highest

gross wealth, it is evident that these portfolios also have the highest implicit

transaction costs, resulting in the least net portfolio wealth. The SMADTC

model generates optimal portfolios with the least transaction costs per each

diversification limit. The MAD model portfolios have transaction costs that

start being greater than those of MV portfolios, but becoming less as port-

folios become less diversified.

The greatest advantage of the SMADTC lies in its ability to generate an

optimal portfolio whose net wealth is always more than amount invested.

The other models generate portfolios which are not optimal investments as

intended because of the eroding effect of implicit transaction costs. The in-

formation also reveals that implicit transaction costs in SMADTC portfolios

decline as the portfolio becomes less diversified.
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Table 1. Summary Statistics of Optimal Portfolios

D.L Model Mean return Risk Gross Wealth Cost Net Wealth

0.10 MAD 0.027 0.002 10269.80 432.00 9837.80

MV 0.029 0.002 10289.02 426.34 9862.68

MM 0.031 0.031 10314.80 502.10 9812.70

SMADTC 0.014 0.001 10138.09 3.71 10134.38

0.15 MAD 0.025 0.022 10251.75 479.10 9772.65

MV 0.028 0.002 10277.97 397.32 9880.65

MM 0.033 0.033 10332.30 411.15 9921.15

SMADTC 0.018 0.005 10174.99 2.81 10172.18

0.20 MAD 0.024 0.023 10240.20 223.20 10017.00

MV 0.027 0.002 10268.25 378.64 9889.61

MM 0.035 0.035 10346.80 503.60 9843.20

SMADTC 0.019 0.006 10187.44 2.16 10185.28

0.25 MAD 0.023 0.025 10229.25 248.50 9980.75

MV 0.026 0.002 10259.68 356.71 9902.97

MM 0.036 0.036 10356.25 591.00 9765.25

SMADTC 0.020 0.007 10194.80 1.70 10193.10
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0.30 MAD 0.023 0.025 10221.70 272.80 9948.90

MV 0.026 0.002 10255.02 340.06 9914.96

MM 0.036 0.036 10362.50 550.00 9812.50

SMADTC 0.023 0.010 10226.24 1.56 10224.68

0.35 MAD 0.021 0.026 10214.90 270.55 9944.35

MV 0.025 0.002 10250.44 318.87 9931.57

MM 0.037 0.037 10368.30 502.10 9866.20

SMADTC 0.025 0.012 10249.58 1.42 10248.16

0.40 MAD 0.021 0.027 10209.60 215.20 9994.40

MV 0.025 0.002 10247.81 306.70 9941.12

MM 0.037 0.037 10373.20 440.40 9932.80

SMADTC 0.026 0.013 10256.72 1.28 10255.44

However, portfolio risk increases instead. It is also evident that portfolio

wealth increases with decrease in portfolio diversification.The wealth from a

portfolio generated by SMADTC or MV model grows in value as the portfolio

become less diversified. This is not the case with MAD and MM optimally

generated portfolios whose wealths decline with decrease in diversification.
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The assets’ weights of portfolios generated by the four models are com-

pared for each diversification level. Assets considered are numbered A1, · · · , A13

and their descriptions are given in Appendix section. This analysis is shown

in Table 2. It is evident that as the portfolios become less diversified, the

assets in optimal portfolios become different, with the exception of MAD and

MV generated portfolios that seem to maintain the same assets. While the

SMADTC, MAD and MM models diversify portfolios as per the diversifica-

tion level, there is little influence of such a restriction on assets in optimal

portfolios generated by MV model. It is noted that the MV optimal portfo-

lios comprise more assets in relatively smaller quantities than any portfolio

generated by other models.
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Table 2.Assets’ Percentage Compositions in Optimal Portfolios.

D.L Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

0.10 MAD 10 10 10 10 10 10 10 10 10 10

MV 10 7.8 10 10 10 4.5 3.9 3.7 10 9.2 10 10 10

MM 10 10 10 10 10 10 10 10 10 10

SMADTC 10 10 10 10 10 10 10 10 10 10

0.15 MAD 15 15 15 15 15 10 15

MV 15 6.1 13.7 15 6.4 2.9 15 7.3 14.7 0.6 3.2

MM 15 15 15 15 10 15 15

SMADTC 15 15 15 15 15 10 15

0.20 MAD 20 20 20 20 20

MV 20 4.0 10.8 20 3.1 3.4 20 4.4 13.1 1.3

MM 20 20 20 20 20

SMADTC 20 20 20 20 20

0.25 MAD 25 25 25 25

MV 24.5 2.3 8.7 22.3 0.3 3.9 25 1.1 11.8

MM 25 25 25 25

SMADTC 25 25 25 25
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0.30 MAD 10 30 30 30

MV 22.8 1.8 8.6 21 3.9 30 11.9

MM 30 30 10 30

SMADTC 30 30 10 30

0.35 MAD 30 35 35

MV 20.5 1.2 8.1 19.5 3.8 35 11.8

MM 30 35 35

SMADTC 35 30 35

Stage 2

The MV, MM and MAD models are not considered in this stage. It is only

the SMADTC model that is examined to assess its multi-stage potential in

generating competent optimal portfolios. We consider a first-stage optimal

portfolio with six securities. The second-stage optimal portfolios generated

by the model reveal that as the investor diversifies his or her portfolio, implicit

transaction costs increase while the portfolio wealth decreases, as shown in

Table 3 below. This can be attributed to an increasing number of securities

being included in the portfolio as the diversification limit decreases.
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Table 3. Second-stage Optimal Portfolios

D.L Gross mean Assets Net mean Risk(MAD) Cost Wealth

0.175 0.005 6 0.005 0.003 5.402 10231.432

0.200 0.006 5 0.005 0.004 4.222 10240.097

0.225 0.007 5 0.006 0.005 3.683 10248.122

0.250 0.007 4 0.007 0.006 3.143 10256.147

0.275 0.008 4 0.008 0.006 2.936 10263.840

0.300 0.009 4 0.009 0.007 2.728 10271.534

0.325 0.010 4 0.009 0.008 2.520 10279.227

0.350 0.010 3 0.010 0.009 2.318 10286.915

A further analysis is done by holding the diversification limit constant and

varying the portfolio gross mean return as shown in Table 4. Here, ‘assets’

imply ‘number of assets’. The results show that for the same portfolio gross

mean return that can be achieved at different diversification limits, implicit

transaction costs decrease with increasing diversification limit. The portfolio

wealth also increases with increasing diversification limit. For the same risk,

we observe that the greater the diversification limit the lower the portfolio

implicit transaction cost. It is also noted that for each diversification limit

considered, an increase in portfolio gross mean return causes implicit trans-
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action costs to rise.

Table 4. Stage (2) Optimal Portfolios: Portfolio rate of return con-

strained

D.L Gross mean No. of Assets Net mean Risk(MAD) Cost Wealth

0.175 0.005 6 0.005 0.003 5.402 10231.432

0.006 6 0.005 0.004 5.479 10240.062

0.007 6 0.006 0.005 5.623 10250.103

0.008 6 0.007 0.006 5.814 10260.096

0.009 6 0.008 0.007 6.010 10270.085

0.010 6 0.009 0.008 6.210 10290.069

0.011 6 0.010 0.009 6.611 10289.853

0.012 6 0.011 0.010 7.308 10299.341

0.013 6 0.012 0.011 8.036 10308.797

0.014 6 0.013 0.012 8.837 10318.180

0.015 6 0.014 0.013 9.644 10327.557

0.016 6 0.015 0.014 11.432 10335.954

0.017 6 0.016 0.015 14.179 10343.392

0.200 0.006 5 0.005 0.004 4.222 10240.097

0.007 5 0.007 0.005 4.323 10251.403
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0.008 5 0.008 0.006 4.474 10261.436

0.009 5 0.009 0.007 4.666 10271.429

0.010 6 0.010 0.008 4.954 10281.325

0.011 6 0.010 0.009 5.491 10290.973

0.012 6 0.011 0.010 6.028 10300.620

0.013 5 0.012 0.011 6.630 10310.202

0.014 5 0.013 0.012 7.438 10319.579

0.015 5 0.014 0.013 8.246 10328.956

0.016 6 0.015 0.014 9.944 10337.442

0.017 5 0.016 0.015 11.814 10345.756

0.018 5 0.017 0.016 14.410 10353.348

0.250 0.007 4 0.007 0.006 3.143 10256.147

0.008 4 0.008 0.006 3.202 10262.708

0.009 4 0.009 0.007 3.292 10272.803

0.010 4 0.010 0.008 3.458 10282.821

0.011 4 0.011 0.009 3.650 10292.814

0.012 4 0.012 0.010 3.841 10302.807

As in first stage, we analyzed the performance of portfolios generated by
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the model during the second stage by considering the portfolio net return.

Although it is obvious that portfolio performance calculated using the equa-

tion (16) will differ according to the risk measure chosen (MAD in this case),

some interesting results emerged as shown in Table 5.

Portfolio performance =
Mean return

risk
(16)

It is evident that as the portfolio gross mean return increasingly vary for

each diversification limit, the portfolio performance is on a decreasing trend.

Table 5. Stage (2) Optimal Portfolios’ Performances

D.L Net mean Risk(MAD) Performance Cost

0.175 0.005 0.003 1.67 5.402

0.005 0.004 1.25 5.479

0.006 0.005 1.20 5.623

0.007 0.006 1.17 5.814

0.008 0.007 1.14 6.010

0.009 0.008 1.13 6.210
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D.L Net mean Risk(MAD) Performance Cost

0.175 0.010 0.009 1.11 6.611

0.011 0.010 1.10 7.308

0.012 0.011 1.09 8.036

0.013 0.012 1.08 8.837

0.014 0.013 1.08 9.644

0.015 0.014 1.07 11.432

0.016 0.015 1.07 14.179

0.200 0.005 0.004 1.25 4.222

0.007 0.005 1.40 4.323

0.008 0.006 1.33 4.474

0.009 0.007 1.29 4.666

0.010 0.008 1.25 4.954

0.010 0.009 1.11 5.491

0.011 0.010 1.10 6.028

0.012 0.011 1.09 6.630

0.013 0.012 1.08 7.438
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D.L Net mean Risk(MAD) Performance Cost

0.014 0.013 1.08 8.246

0.015 0.014 1.07 9.944

0.016 0.015 1.07 11.81

0.017 0.016 1.06 14.41

0.250 0.007 0.006 1.17 3.143

0.008 0.006 1.33 3.202

0.009 0.007 1.29 3.292

0.010 0.008 1.25 3.458

0.011 0.009 1.22 3.650

0.012 0.010 1.20 3.841

0.013 0.011 1.18 4.763

0.013 0.012 1.08 5.813

0.014 0.013 1.08 6.863

0.015 0.014 1.07 7.914

0.016 0.015 1.07 9.013

0.017 0.016 1.06 11.424

0.018 0.017 1.06 14.709

0.018 0.018 1.00 19.961
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D.L Net mean Risk(MAD) Performance Cost

0.300 0.009 0.007 1.29 2.728

0.010 0.008 1.25 2.840

0.011 0.009 1.22 2.945

0.012 0.010 1.20 3.128

0.013 0.011 1.18 3.441

0.014 0.012 1.17 4.450

0.014 0.013 1.08 5.504

0.015 0.014 1.07 6.737

0.016 0.015 1.07 7.970

0.017 0.016 1.06 9.202

0.018 0.017 1.06 12.072

0.018 0.018 1.00 16.109

3.2 Sensitivity Analysis

We perform sensitivity analysis of the SMADTC model by calculating sensi-

tivity index (SI) for each parameter. This is achieved by finding the output

percentage difference when varying one input parameter from its minimum

value to its maximum value (Hoffman and Gardner, [11]; Bauer and Hamby,
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[1]). We use the formula

Sensitivity Index =
Dmax −Dmin

Dmax

where Dmin and Dmax are the minimum and maximum output values respec-

tively, resulting from varying the input parameter over its entire range. This

figure-of-merit provides a good indication of parameter and model variability

(Hamby D. M., [8]). We take the minimum input value to be zero and let

the maximum input value vary from 0.1 to 0.35, as shown in Table 6. The

phrase ‘max value’ refers to ‘maximum input parameter value’ and it gives

the maximum input of the parameter considered. We calculate the sensitivity

index corresponding to each asset weight.The result in the table reflect small

percentages of model variability due to each input change of each parameter.

This shows that the output values are not strongly reliant on certain individ-

ual parameters. Hence, the SMADTC model shows to be a reliable portfolio

optimization model.

However, when doing sensitivity analysis, the following is noted. The SMADTC

model is stochastic and works by replacing one parameter by a less profitable

one when we take a weight of an asset to be zero, thereby achieving a less ‘op-

timal portfolio’. Here, a less preferable asset is included in the ‘less optimal

portfolio’. This is so because of a condition in the model that ensures that
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the total weight of assets in a portfolio be unit. The weight xi is for asset

Ai, i = 1, · · · , 13. This, however, leads to relative sensitivity analysis. Thus,

the Dmin of model output is a relative value. Therefore, we perform the rel-

ative sensitivity analysis of the model by finding the difference between the

optimal portfolio value when the asset under consideration attains maximum

value and when it gets a value of zero (i.e., excluded).

Table 6.SMADTC model Sensitivity Analysis

Max value Parameter Cost SI Wealth SI

0.1 x1 0.1618 0.0019

x2 -0.0607 0.0017

x3 0.0547 0.0016

x4 0.1534 -0.00006

x6 0.1348 -0.00005

x7 0.1078 0.0016

x9 0.0647 0.0004

x10 0.0377 0.0012

x12 0.1348 0.0010

x13 0.1240 0.0016
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Max value Parameter Cost SI Wealth SI

0.15 x2 -0.0125 0.0052

x3 0.1281 0.0035

x7 0.2135 0.0028

x9 0.1281 0.0006

x10 0.0747 0.0017

x12 0.2598 0.0018

x13 0.2456 0.0029

0.2 x2 -0.1065 0.0064

x3 0.2222 0.0039

x7 0.3704 0.0031

x9 0.2222 0.0074

x10 0.1296 0.0023

0.25 x2 -0.2153 0.0071

x3 0.3529 0.0049

x9 0.3529 0.0009

x10 0.2059 0.0029
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Max value Parameter Cost SI Wealth SI

0.3 x2 -0.1859 0.0101

x3 0.4615 0.0059

x9 0.4615 0.0043

x10 0.2692 0.0034

We also carry out sensitivity analysis of the model in which we allow the

gross portfolio mean return to vary by gradually increasing it and analysing

changes in optimal portfolio asset weights. The results are shown in Table

7. The abbreviation ‘A.weight’ means ‘Asset weight’. We observe that the

model identifies assets with better returns but which have more implicit

transaction costs whenever there is a change in the initial asset’s weight.

However, such changes are minimal.
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Table 7.Percentage portfolio compositions: Portfolio mean re-

turn constrained.

D.Lim A.weight 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.030

0.1 x1 10 10 10 10 10 10 10 10 10

x2 10 10 10 10 10 10 10 10 10

x3 10 10 10 10 10 10 10 10 10

x4 10 2.3 4.9 4.0

x5 7.7 10 10 10 10 10 10 10

x6 10 10 5.1

x7 10 10 10 10 10 10 10 10 10

x8 1.5 10

x9 10 10 10 10 10 10 10

x10 10 10 10 10 10 10 10 8.5

x11 6.0 10 10 10 10 10

x12 10 10 10 10 10 10 10 10 10

x13 10 10 10 10 10 10 10 10 10
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D.Lim A.weight 0.019 0.020 0.022 0.024 0.026 0.028 0.030 0.032 0.034

0.2 x1 20 14.1 20 20 20

x2 20 20 20 20 20 20 20 20 20

x3 20 20 20 20 20 20 20 20 20

x5 8.5 15.2

x7 20 20 20 20 5.9

x9 20 11.9

x10 20 20 20 20 20 20 20 11.5

x11 2.6 13.3 20 20 20 20 20

x12 4.8

x13 8.1 17.4 6.7

0.023 0.024 0.026 0.028 0.030 0.032 0.034 0.036 0.038

0.3 x1 4.1 10.2 18.2 26.3

x2 30 30 30 30 30 30 30 30 30

x3 30 30 30 30 30 30 29.8 21.8 13.7

x7 10

x9 10

x10 30 30 29.7 21.2 12.7 5.9

x11 10.3 18.8 27.3 30 30 30
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4 Conclusion

In this study, a multi-stage stochastic transaction cost model is proposed

which uses mean absolute deviation as its risk and takes into account un-

certainty of assets’ returns and of implicit transaction costs. The main con-

tributions of this study include (i) the development of a stochastic trading

cost model that generates optimal portfolios while minimizing uncertain im-

plicit transaction costs incurred during initial trading and in subsequent re-

balancing of the portfolios, (ii) the development of a strategy that captures

uncertainty in stock prices and in corresponding implicit transaction costs

by way of scenarios. To provide investors with competitive portfolio returns,

investment managers must manage transaction costs pro-actively, because

lower transaction costs mean higher portfolio returns. Ineffective transaction

cost management may be very damaging in today’s competitive environment,

in which the difference between success and failure may be no more than a

few basis points. The model has shown that it generates optimal portfolios

whose net wealths are better that those generated by MV, MM, and MAD

models. It also has the advantage of generating a least cost optimal portfolio

as compared to the other three models. The methodology allows investors or

investment managers to choose optimal portfolios with acceptable implicit
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cost levels to be incurred while executing their trading. It is a suitable strat-

egy for conservative investors. The methodology is a linear programming

model and hence reduces considerably the time needed to reach a solution.

It is feasible for large-scale portfolio selection. It is left, however, for future

research to develop a model that accounts for both implicit and explicit trad-

ing costs while considering uncertainty of both asset prices and transaction

costs. The study, like any other, has its own limitations. The use of an asset’s

closing price for each month in the calculation of an asset’s return rate may

not be the most accurate measure. However, since all assets’ rates of returns

have been obtained in the same way, this does not prejudice the findings.

Disclosure: The authors declare that there is no conflict of interest

regarding the publication of this paper.

48



References

[1] Bauer L. R and Hamby D. M, 1991, Relative Sensitivities of Existing

and Novel Model Parameters in Atmospheric Tritium Dose Estimates,

Vol. 37, 253 - 260.

[2] Byrne P and Lee S, 2004, Different risk measures: Different portfolio

compositions?, Journal of Property Investment and Finance, Vol. 22(6),

501 - 511.

[3] Brown D. B and Smith J. E, 2011, Dynamic Portfolio Optimization with

Transaction Costs: Heuristics and Dual Bounds, Management Science,

Vol. 57(10), 1752 - 1770.

[4] Cai Y, Judd K. L and Xu R, 2013, Numerical Solution of Dynamic

Portfolio Optimization with Transaction Costs, NBER Working Paper

Number 18709.

[5] D’Hondt C and Giraud J. R, 2008, Transaction Cost Analysis A - Z, A

step towards Best Execution in the Post-MiFID Landscape.

[6] Gulpinar, Rustem and Settergren, 2004, Simulation and Optimization

approaches to scenario tree generation, Journal of Economic Dynamics

49



and Control, Vol. 28(7), 1291 - 1315.

[7] Hakansson N. H, 1971, Multi-period mean-variance analysis: toward a

general theory of portfolio choice, Journal of Finance, Vol. 26, 857-884.

[8] Hamby D. M, 1994, A Review of Techniques for Parameter Sensitiv-

ity Analysis of Environmental Models, Environmental Monitoring and

Assessment, Vol. 32, 135 - 154.

[9] Hau H, 2006, The Role of Transaction costs for Financial Volatility:

Evidence from the Paris Bourse, Journal of the European Economic

Association, MIT Press, Vol. 4(4), 862-890.

[10] Hasbrouck J, 2009, Trading Costs and Returns for U.S. Equities: Esti-

mating Effective Costs from Daily Data, The Journal of Finance, Vol.

64(3), 1445 - 1477.

[11] Hoffman F. O and Gardner R. H, 1983, Evaluation of Uncertain-

ties in Environmental Radiological Assessment Models, Report Number

NUREG/CR - 3332.

50



[12] Jansen, D. W. and De Vries, C. G. (1991), On the frequency of large

stock returns: Putting booms and busts into perspective, The Review of

Economics and Statistics, Vol 73(1), 18 - 24.

[13] Konno H and Wajayanayake A, 2001, Portfolio optimization problem un-

der concave transaction costs and minimal transaction unit constraints,

Mathematics Program, Serial B: Vol. 89, 233-250.

[14] Konno H and Yamazaki H, 1991, Mean absolute deviation portfolio opti-

mization model and its applications to Tokyo Stock Market, Management

Science, Vol. 37, 512 - 529.

[15] Kozmik V, 2012, Multistage risk-averse asset allocation with transac-

tion costs, Proceedings of 30th International Conference Mathematical

Methods in Economics.

[16] Lynch A. W and Tan S, 2010, Multiple risky assets, transaction costs

and return predictability: Allocation rules and implications for U.S. in-

vestors, Journal of Financial Quantitative Analysis, Vol. 45(4), 1015 -

1053.

[17] Markowitz H. M, 1952, Portfolio Selection, Journal of Finance, Vol. 7(1),

77 - 91.

51



[18] Moallemi C. C and Saglam M, 2011, Dynamic Portfolio Choice with

Transaction Costs and Return Predictability: Linear Rebalancing Rules,

Graduate School of Business, Columbia University.

[19] Simaan Y, 1997, Estimation of risk in portfolio selection: The mean-

variance model versus the mean absolute deviation model, Management

Science, Vol. 43(10), 1437 - 1446.

[20] Xia R and Tian C, 2012, An Analysis of the Implicit Transaction Cost

of Shenzhen A-Stock Market Using Bayesian Gibbs Sampling, Advances

in Intelligent Systems and Computing, Vol. 136, 413 - 420.

[21] Young M, 1998, A minimax portfolio selection rule with linear program-

ming solution, Management Science, Vol. 44(5), 673 - 683.

[22] Yu L. Y, Ji X. D and Wang S. Y, (2003), Stochastic Programming Models

in Financial Optimization: A Survey, AMO- Advanced Modeling and

Optimization, Vol. 5(1).

52



5 Appendix

We present models and data sets used in the validation of the SMADTC

model.

5.1 Mean-variance model: A1

The mean-variance (MV) model is proposed by Harry Markowitz [17], in

which the portfolio that minimizes the variance subject to the restriction of

a given mean return is chosen as the optimum portfolio. The mathematical

model proposed by Markowitz is as follows:

Minimize

F =

n∑

i=1

n∑

j=1

σijxixj (1)

subject to

n∑

i=1

rixi ≥ ρ,

n∑

i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, · · · , n.
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where σij is the covariance between assets i and j, xi is the proportion of

wealth invested in asset i, ri is the expected return of asset i in each period, ρ

is the minimum rate of return desired by an investor, and ui is the maximum

proportion of wealth which can be invested in asset i.

5.2 Minimax model: A2

Young [21] propose the minimax (MM) model using minimum return as as

measure of risk. This minimax model is equivalent to the mean-variance

(MV) model if assets’ returns are multivariate normally distributed. It is a

linear programming model and is given as follows:

Maximize

Mp (2)
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subject to

n∑

i=1

wiyit −Mp ≥ 0, t = 1, · · · , T

n∑

i=1

wiȳi ≥ G,

n∑

i=1

wi ≤ W,

wi ≥ 0, i = 1, · · · , n.

where yit is the return of one dollar invested in security i in time period t,

ȳi is the mean return of security i, wi is the portfolio allocation to security

i, Mp is the minimum return on the portfolio, G is the minimum level of

return, and W is the total allocation.

5.3 Mean absolute deviation model: A3

Konno and Yamazaki [14] propose the L1 risk function (mean absolute de-

viation - MAD) and show that it behaves in the same manner as the mean

- variance model of Harry Markowitz [17] when the assets’ returns are mul-

tivariate normally distributed. They develop the MAD model as given below:
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H(x) =
1

T

T∑

t=1

|
n∑

i=1

(rit − ri)xi| (3)

subject to

n∑

i=1

rixi ≥ ρ,

n∑

i=1

xi = 1,

0 ≤ xi ≤ ui, i = 1, · · · , n.

where rit is the realized return of asset i of period t, ri is the expected return

of asset i per period, and xi is the proportion of wealth invested in asset i.

5.4 Data of assets

Table 8. Meaning of symbols

Symbol A1 A2 A3 A4 A5 A6 A7

Asset AVI ASR APN CSB CLS CML MPC

Symbol A8 A9 A10 A11 A12 A13

Asset PNC SPP TRU CPI IPL WHL
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Table 9. Mean asset returns

Month AVI ASR APN CSB CLS CML MPC

1 0.099 0.422 -0.028 0.067 0.124 0.127 0.045

2 -0.102 -0.036 0.036 0.041 -0.057 -0.074 -0.078

3 -0.051 0.297 -0.027 0.143 -0.017 0.056 -0.082

4 -0.027 0.038 0.057 -0.021 0.014 -0.152 -0.042

5 -0.112 -0.036 -0.031 -0.138 -0.122 -0.188 -0.063

6 0.093 -0.125 0.32 0.036 0.062 0.099 0.304

7 0.084 0.071 0.113 0 0.179 0.04 0.134

8 -0.026 -0.193 -0.091 0.1 0 0.106 0.003

9 0.029 -0.173 -0.2 -0.018 0.03 -0.13 0.079

10 0.225 -0.2 0.101 -0.074 -0.048 0 -0.003

11 0.116 0.213 -0.103 0.04 0.118 -0.076 0.034

12 -0.074 -0.186 0.26 0.096 -0.029 -0.026 0.051

13 0.026 -0.139 -0.02 -0.035 -0.106 -0.022 -0.085

14 -0.136 0.294 -0.099 0.236 0.017 0.114 0.019

15 -0.046 0.02 -0.053 -0.043 0.097 0.163 0.076

16 0.061 0.069 0.111 0.022 0.064 -0.075 0.04

17 -0.029 0 0.141 -0.038 0.049 0.159 0.035
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Month AVI ASR APN CSB CLS CML MPC

18 0.117 0.104 0.087 0.078 0.116 0.113 0.087

19 0.001 0.102 -0.017 0.014 -0.009 0.118 0

20 0 0.079 0.057 0.081 0.128 0.013 0.114

21 0.097 0.029 0.07 -0.077 0.079 0.048 0.056

22 -0.074 0.08 0.027 0.017 0.018 0.035 -0.092

23 0.083 0.004 0.082 0.056 0.083 0.048 0.074

24 0.012 -0.011 -0.084 -0.027 -0.028 0.017 0.005

25 0.033 0.036 0.053 -0.014 0.042 -0.006 0.095

26 0.089 0.069 0.12 0.034 0.074 0.101 0.032

27 0.008 0.018 0.05 -0.011 0.044 0.176 0.053

28 -0.031 -0.133 -0.052 -0.05 0.051 -0.07 0.069

29 -0.049 0.015 -0.039 0.072 0.043 0.028 -0.001

30 0.131 0.112 0.071 -0.027 0.065 0.16 0.128

31 0 -0.091 0.032 -0.068 0.037 0.004 -0.022

32 0.088 0.117 0.118 0.147 0.179 0.16 0.113

58



Month AVI ASR APN CSB CLS CML MPC

33 0.029 0.077 -0.005 0.212 0.034 0.014 0.157

34 0 0 -0.005 -0.049 -0.049 0.125 0.009

35 0.076 0.125 -0.011 0.057 -0.003 0.111 0.036

36 -0.005 0.055 -0.074 -0.048 -0.085 -0.069 -0.145

37 0.01 0.028 -0.043 -0.074 -0.029 -0.052 0.054

38 -0.01 0.056 -0.031 0.116 0.105 0.076 0.022

39 0.027 -0.012 0.025 -0.005 0.031 0.067 0.097

40 -0.028 0.012 0.077 0.043 -0.025 0.034 -0.047

41 0.042 0.014 -0.037 -0.023 -0.013 -0.018 0.065

42 0.033 0.02 -0.008 -0.035 -0.053 0.037 0.081

43 0.014 -0.018 0.014 0.011 0.043 -0.006 0.001

44 -0.011 -0.105 0.08 0.113 -0.097 0.005 -0.088

45 0.101 0.099 0.044 0.001 0.107 0.128 0.135
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Month AVI ASR APN CSB CLS CML MPC

46 0.049 0.012 0.023 0.086 0.068 0.007 0.047

47 0.063 -0.041 -0.008 0.055 0.039 0 -0.003

48 0.045 0.086 0.031 -0.005 -0.141 0.117 0.081

49 0.057 0.106 0.09 -0.053 0.106 0.083 0.034

50 0.057 -0.043 0.091 0.133 0.019 0.038 0.057

51 0.039 0.098 0.061 0.04 0.046 0.025 0.115

52 0.01 0.057 -0.065 -0.007 0 -0.099 -0.01

53 0.027 0.068 0.07 0.054 0.149 0.051 0.074

54 0.182 -0.01 0.153 0.102 0.016 0.064 0.101

55 -0.009 0.007 -0.008 0.053 -0.003 0.02 0.049
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Table 9. Mean asset returns (continued)

Month PNC SPP TRU CPI IPL WHL

1 0.136 -0.008 0.02 0.177 0.053 0.057

2 0 -0.025 -0.038 -0.064 -0.009 -0.025

3 -0.022 0.155 0.004 -0.096 -0.034 -0.013

4 -0.068 -0.071 -0.105 -0.076 -0.308 -0.054

5 -0.146 -0.048 0.002 -0.115 -0.005 -0.097

6 -0.057 0.051 0.267 0.107 -0.165 0.155

7 0.288 0.038 0.073 -0.013 0.226 0.067

8 -0.141 -0.065 -0.064 0.085 0.094 -0.069

9 -0.285 0.129 0.136 -0.156 -0.07 -0.034

10 -0.272 -0.056 -0.043 0.037 -0.084 0.084

11 -0.042 0.06 0.075 0.036 0.184 0.038

12 0.049 -0.035 0.033 0.034 -0.137 0.058

13 -0.063 -0.031 -0.117 0 -0.138 -0.115

14 0.039 -0.026 0.032 0.081 0.207 -0.042

15 0.022 0.026 0.058 0.202 0.02 0.053

16 0.089 0.07 0.068 0.051 0.101 0.042

17 0.097 -0.004 0.019 0.035 -0.028 0.036
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Month PNC SPP TRU CPI IPL WHL

18 0 0.054 0.081 0.131 0.167 0.202

19 -0.004 0.043 -0.016 0.146 0.09 0.012

20 0.456 0.037 0.08 0.109 0.077 0.025

21 -0.033 0.066 0.059 0.049 0.02 0.083

22 -0.041 -0.041 -0.075 0.109 -0.006 -0.048

23 -0.02 0.074 0.048 0.111 0.092 0.072

24 0.1 -0.001 -0.028 -0.024 -0.092 0.024

25 0.125 0.028 0.166 0.065 0.17 0.127

26 0.078 0.021 0.058 0.153 0.07 0.093

27 -0.023 0.029 0.017 0.076 -0.018 0.041

28 0.103 0.019 0.022 -0.03 -0.025 -0.013

29 -0.002 0.022 -0.013 0.197 -0.107 0.035

30 0.131 0.071 0.087 0.093 0.124 0.085

31 -0.021 -0.017 0.004 0.035 0.059 -0.053

32 0.114 0.105 0.196 0.116 0.111 0.099

33 0.068 0.025 -0.014 -0.021 0.007 0.015

34 0.092 0.062 0.043 0.019 0.072 -0.038

35 0.107 -0.033 -0.005 0.156 0.041 0.02
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Month PNC SPP TRU CPI IPL WHL

36 -0.034 -0.071 -0.11 -0.109 -0.137 -0.128

37 0.03 0.046 0 0.039 0.021 0.136

38 0.029 0 0.106 0.057 0.016 0.047

39 0.014 0.026 0.078 0.037 0.033 0.072

40 0.099 -0.05 -0.047 0.085 -0.013 -0.007

41 0.154 -0.026 0.012 -0.042 0.041 0

42 0.022 0.02 -0.012 0.001 -0.052 0.061

43 -0.076 0.035 0.071 0.04 0.007 0.155

44 0.116 0.011 -0.091 0.019 -0.091 -0.04

45 0.138 0.007 0.138 -0.052 0.116 0.154

46 -0.029 0.16 -0.012 0.011 0.007 0.001

47 0.044 -0.035 -0.068 -0.033 0.044 -0.035

48 0.185 0.02 0.059 0.024 0.122 0.077

49 0.059 0.041 0.034 0.015 0.063 0.074

50 0.039 0.004 -0.001 0.108 0.052 0.067

51 0.113 0.05 0.028 0.083 0.089 0.01

52 -0.037 -0.097 -0.009 0.017 -0.021 0.003

53 0.035 0.035 0.089 -0.058 0.04 0.031
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Month PNC SPP TRU CPI IPL WHL

54 0.002 0.054 0.154 0.026 0.1 0.071

55 0.061 0.011 0.003 -0.012 0.005 0.016
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Table 10.Asset Transaction Cost rates

Month AVI ASR APN CSB CLS CML MPC

1 0.0030 0.0023 0.0028 0.0036 0.0050 0.0119 0.0073

2 0.0004 0.0009 0.0028 0.0029 0.0023 0.0061 0.0051

3 0.0054 0.0008 0.0022 0.0052 0.0032 0.0425 0.0088

4 0.0087 0.0064 0.0121 0.0040 0.0107 0.0011 0.0019

5 0.0043 0.0062 0.0027 0.0080 0.0034 0.0004 0.0229

6 0.0000 0.0140 0.0072 0.0386 0.0098 0.0067 0.0012

7 0.0066 0.0048 0.0195 0.0214 0.0147 0.0018 0.0128

8 0.0048 0.0044 0.0306 0.0171 0.0548 0.0137 0.0024

9 0.0042 0.0061 0.0063 0.0078 0.0132 0.0018 0.0007

10 0.0100 0.0220 0.0027 0.0018 0.0213 0.0025 0.0060

11 0.0060 0.0003 0.0112 0.0258 0.0041 0.0085 0.0136

12 0.0143 0.0045 0.0170 0.0049 0.0015 0.0258 0.0019

13 0.0003 0.0126 0.0010 0.0055 0.0083 0.0135 0.0037

14 0.0033 0.0051 0.0029 0.0041 0.0019 0.0015 0.0020

15 0.0064 0.0023 0.0004 0.0001 0.0228 0.0026 0.0082

16 0.0057 0.0114 0.0042 0.0054 0.0092 0.0139 0.0140

17 0.0010 0.0087 0.0435 0.0165 0.0099 0.0073 0.0105
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Month AVI ASR APN CSB CLS CML MPC

18 0.0537 0.0047 0.0067 0.0212 0.0045 0.0109 0.0028

19 0.0007 0.0052 0.0027 0.0474 0.0056 0.0053 0.0113

20 0.0060 0.0117 0.0126 0.0856 0.0046 0.0295 0.0033

21 0.0061 0.0303 0.0052 0.0532 0.0169 0.0033 0.0127

22 0.0070 0.0003 0.0087 0.0194 0.0268 0.0149 0.0049

23 0.0076 0.0029 0.0046 0.0074 0.0003 0.0008 0.0103

24 0.0056 0.0473 0.0025 0.0069 0.0127 0.0055 0.0026

25 0.0018 0.0058 0.0095 0.0070 0.0079 0.0046 0.0056

26 0.0149 0.0074 0.0327 0.0072 0.0009 0.0019 0.0045

27 0.0037 0.0208 0.0032 0.0233 0.0104 0.0035 0.0165

28 0.0202 0.0065 0.0256 0.0301 0.0051 0.0021 0.0073

29 0.0068 0.0225 0.0141 0.0061 0.0018 0.0056 0.0116

30 0.0298 0.0000 0.0343 0.0068 0.0695 0.0253 0.0094

31 0.0072 0.0197 0.0027 0.0408 0.0084 2.0000 0.0115

32 0.0157 0.0153 0.0066 0.0679 0.0040 0.0749 0.0058

33 0.0139 0.0238 0.0015 0.0019 0.0040 0.0286 0.0111

34 0.0142 0.0024 0.0079 0.0073 0.0013 0.0105 0.0024

35 0.0074 0.0186 0.0068 0.0326 0.0198 0.0066 0.0114
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Month AVI ASR APN CSB CLS CML MPC

36 0.0316 2.0000 0.0082 0.0146 0.0487 0.0074 0.0133

37 0.0041 0.0083 0.0433 0.0155 0.0369 0.0082 0.0075

38 0.0459 2.0000 0.0058 0.0014 0.0029 0.0354 0.0033

39 0.0006 0.0386 0.0012 0.0046 0.0334 0.0177 0.0339

40 0.0743 0.0225 0.0097 0.0044 0.0148 0.0202 0.0543

41 0.0210 0.0290 0.0103 0.0952 0.0144 0.1277 0.0402

42 0.0208 0.0022 0.0179 0.0222 0.0308 0.1053 0.0089

43 0.0217 2.0000 0.0177 0.0396 0.0238 2.0000 0.0052

44 0.0053 2.0000 0.0151 0.0619 0.0033 0.0942 0.0112

45 0.0124 0.0942 0.0077 0.0759 0.0183 0.0408 0.0083

46 0.0086 0.0083 0.0800 0.0352 0.0215 0.0258 0.0014

47 0.0169 0.0645 0.0026 0.0829 0.0064 0.0077 0.0271

48 0.0060 0.0072 0.0185 0.0769 0.0068 0.0198 0.0020

49 0.0209 2.0000 0.0255 0.1452 0.0000 0.0217 0.0047

50 0.0330 0.0108 0.0132 0.1125 0.0043 0.0089 0.0277

51 0.0040 0.0189 0.0016 0.0894 0.0086 0.0308 0.0114

52 0.0032 0.0028 0.0110 2.0000 0.0078 0.0048 0.0164
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Month AVI ASR APN CSB CLS CML MPC

53 0.0317 0.0237 0.0026 0.0734 0.0007 0.0543 0.0101

54 0.0180 0.0220 0.0085 0.0112 0.0104 0.0151 0.0228

Table 10. (continued)

Month PNC SPP TRU CPI IPL WHL

1 0.0319 0.0019 0.0009 0.0063 0.0058 0.0062

2 0.0323 0.0072 0.0033 0.0105 0.0132 0.0010

3 0.0038 0.0044 0.0241 0.0061 0.0067 0.0018

4 0.0049 0.0035 0.0028 0.0411 0.0040 0.0029

5 0.0058 0.0021 0.0031 0.0031 0.0005 0.0013

6 0.0046 0.0024 0.0056 0.0031 0.0050 0.0010

7 0.0315 0.0029 0.0066 0.0056 0.0050 0.0008

8 0.0086 0.0946 0.0540 0.0121 0.0542 0.0069

9 0.0263 0.0009 0.0068 0.0003 0.0019 0.0027

10 0.0148 0.0030 0.0128 0.0108 0.0052 0.0023

11 0.0202 0.0019 0.0063 0.0459 0.0121 0.0689

12 0.0043 0.0109 0.0029 0.0071 0.0078 0.0099

13 0.0067 0.0007 0.0023 0.0028 0.0042 0.0044

14 0.0127 0.0017 0.0033 0.0032 0.0043 0.0057
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Month PNC SPP TRU CPI IPL WHL

15 0.0197 0.0041 0.0036 0.0191 0.0084 0.0020

16 0.0072 0.0012 0.0177 0.0047 0.0100 0.0050

17 0.0074 0.0001 0.0185 0.0050 0.0008 0.0004

18 0.0122 0.0085 0.0077 0.0005 0.0002 0.0098

19 0.0088 0.0007 0.0015 0.0054 0.0085 0.0015

20 0.0081 0.0078 0.0324 0.0030 0.0027 0.0046

21 0.0179 0.0085 0.0022 0.0031 0.0037 0.0271

22 0.0228 0.0022 0.0011 0.0101 0.0097 0.0234

23 0.0106 0.0305 0.0077 0.0143 0.0010 0.0220

24 0.0293 0.0053 0.0024 0.0039 0.0137 0.0073

25 0.0212 0.0050 0.0127 0.0125 0.0205 0.0421

26 0.0452 0.0019 0.0145 0.0145 0.0034 0.0121

27 0.0178 0.0024 0.0137 0.0069 0.0047 0.0223

28 0.0203 0.0093 0.0027 0.0053 0.0064 0.0071

29 0.0526 0.0043 0.0026 0.0037 0.0040 0.0019

30 0.0595 0.0113 0.0095 0.0065 0.0133 0.0016

31 2.0000 0.0058 0.0069 0.0127 0.0096 0.0028

32 0.0470 0.0020 0.0021 0.0140 0.0086 0.0300
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Month PNC SPP TRU CPI IPL WHL

33 0.0287 0.0151 0.0018 0.0047 0.0047 0.0114

34 0.0030 0.0023 0.0068 0.0149 0.0068 0.0025

35 0.0545 0.0032 0.0261 0.0091 0.0125 0.0184

36 0.0590 0.0017 0.0119 0.0092 0.0103 0.0032

37 0.0874 0.0142 0.0117 0.0012 0.0022 0.0117

38 0.0597 0.0039 0.0055 0.0241 0.0013 0.0080

39 0.2246 0.0186 0.0064 0.0102 0.0215 0.0058

40 0.0488 0.0107 0.0041 0.0015 0.0079 0.0302

41 0.0845 0.0252 0.1433 0.0481 0.0299 0.1060

42 0.0207 0.0077 0.0088 0.0236 0.0164 0.0105

43 0.2118 0.0357 0.0239 2.0000 0.0077 0.0008

44 0.0267 0.0080 0.0066 0.0142 0.0078 0.0123

45 0.2449 0.0741 0.0075 0.0714 0.0082 0.0370

46 0.2290 0.0050 0.0187 0.0546 0.0328 0.0481

47 0.0047 0.0093 0.0123 0.0165 0.0110 0.0169

48 0.0625 0.0012 0.0007 0.0479 0.0099 0.0273

49 0.1374 0.0228 0.0110 0.0147 0.0042 0.0069

50 0.0247 0.0179 0.0013 0.0165 0.0024 0.0608
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Month PNC SPP TRU CPI IPL WHL

51 0.0114 0.0011 0.0155 0.0469 0.0007 0.0109

52 0.0270 0.0062 0.0650 0.0408 0.0336 0.0198

53 0.0110 0.0082 0.0633 0.0524 0.0507 0.0112

54 0.0228 0.0445 0.0136 0.0202 0.0033 0.0347
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