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BOOTSTRAPPING INAR MODELS

CARSTEN JENTSCH AND CHRISTIAN H. WEISS

Abstract. Integer-valued autoregressive (INAR) time series form a very useful class of pro-
cesses suitable to model time series of counts. In the common formulation of Du and Li (1991,
JTSA), INAR models of order p share the autocorrelation structure with classical autoregressive
time series. This fact allows to estimate the INAR coefficients, e.g., by Yule-Walker estimators.
However, contrary to the AR case, consistent estimation of the model coefficients turns out to
be not sufficient to compute proper ‘INAR residuals’ to formulate a valid model-based bootstrap
scheme. In this paper, we propose a general INAR-type bootstrap procedure. Based on mild
regularity conditions and suitable meta assumptions, we prove bootstrap consistency of our pro-
cedure for statistics belonging to the class of functions of generalized means. In particular, we
discuss parametric and semi-parametric implementations of the INAR bootstrap scheme. The
latter approach is based on a semi-parametric estimator suggested by Drost, van den Akker
and Werker (2009, JRSSB) to estimate jointly the INAR coefficients and the distribution of the
innovations. In an extensive simulation study, we provide numerical evidence of our theoretical
findings and illustrate the superiority of the proposed INAR bootstrap over some obvious com-
petitors. We illustrate our method by an application to a real data set about iceberg orders for
the Lufthansa stock.

1. Introduction and Motivation

In recent years, the interest in time series of counts has increased steadily. Among the models
proposed for dependent count data, integer-valued autoregressive (INAR) time series processes
enjoy great popularity and have been used extensively in the statistical literature. As introduced
by McKenzie (1985) and Al-Osh and Alzaid (1987), (strictly) stationary INAR processes of first-
order (INAR(1)) (Xt, t ∈ Z) are defined to follow the recursion

Xt = α ◦Xt−1 + εt, t ∈ Z, (1)

where α ∈ (0, 1) and (εt, t ∈ Z) is an independent and identically distributed (i.i.d.) process
with εt ∼ G, where G is a distribution with range N0 such that µε = E(εt) <∞. As coined by
Steutel and van Harn (1979), the operator “◦” in (1) is called binomial thinning operator. For
a random variable Xt−1 having range N0, it is defined by

α ◦Xt−1 =

Xt−1∑
j=1

Z
(t)
j , (2)

where (Z
(t)
j , j ∈ N, t ∈ Z) are i.i.d. binary (Bernoulli-distributed) random variables independent

of (εt, t ∈ Z) with P (Z
(t)
j = 1) = α. That is, Z

(t)
j ∼ Bin(1, α) and, conditionally on Xt−1, we

have α ◦Xt−1 ∼ Bin(Xt−1, α), where Bin(n, π) denotes the binomial distribution with param-
eters n and π. The binomial thinning operation in (2) allows to interpret (1) as a branching
process with immigration: with Xt−1 costumers waiting for service at time t− 1, each of them
is served with probability 1−α during the period (t− 1, t] such that α ◦Xt−1 customers remain
in the queue (‘survivors’) and εt new customers arrive (‘immigrants’).
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2 CARSTEN JENTSCH AND CHRISTIAN H. WEISS

In the literature, the definition of INAR models of first order in (1) has been extended to
general lag order p ∈ N essentially in two ways. Alzaid and Al-Osh (1990) proposed INAR(p)
processes that maintain the nice interpretation of customers waiting for service of the INAR(1)
model in (1). However, the formulation of INAR(p) processes proposed by Du and Li (1991) has
been preferred and followed by most researchers; see, e.g., Latour (1998), Silva and Silva (2006)
or Drost et al. (2009). In their formulation, which we will use throughout this paper, INAR(p)
processes (Xt, t ∈ Z) are defined to follow the recursion

Xt = α1 ◦Xt−1 + α2 ◦Xt−2 + · · ·+ αp ◦Xt−p + εt, t ∈ Z, (3)

where (εt, t ∈ Z) as before and α = (α1, . . . , αp)
′ ∈ (0, 1)p such that

∑p
i=1 αi < 1 and

αi ◦Xt−i =

Xt−i∑
j=1

Z
(t,i)
j , (4)

where (Z
(t,i)
j , j ∈ N, t ∈ Z), i = 1, . . . , p, are mutually independent i.i.d. binary random variables

with Z
(t,i)
j ∼ Bin(1, αi) that are independent of (εt, t ∈ Z).

The main reason why INAR(p) processes as proposed by Du and Li (1991) are usually pre-
ferred in the literature is as follows. If σ2ε = V ar(εt) <∞ holds, their autocorrelation structure
turns out to be exactly the same as that of an autoregressive process of order p (AR(p)) with
corresponding coefficients, that is,

Xt = ν + α1 ·Xt−1 + · · ·+ αp ·Xt−p + et, t ∈ Z, (5)

where ν ∈ R is an intercept term and (et, t ∈ Z) is a white noise process with et ∼ (0, σ2e). Note
that we distinguish INAR innovations εt and AR errors et throughout the paper. In contrast,
the autocorrelation structure of INAR(p) processes in the set-up of Alzaid and Al-Osh (1990)
corresponds to that of an autoregressive moving-average ARMA(p, p−1) process; see also Latour
(1998).

As they share the same autocorrelation function ρ(h) = Corr(Xt+h, Xt), h ∈ Z, the INAR(p)
model in (3) can be considered as a (non-negative) integer-valued counterpart to the continuous-
valued AR(p) model in (5). In particular, this similarity allows to estimate the INAR coefficients
α1, . . . αp and the intercept ν by well-known techniques from classical time series analysis as,
e.g., Yule-Walker (YW), Least-Squares (LS) or Maximum-Likelihood (ML) estimators; see, e.g.,
Du and Li (1991); Silva and Silva (2006); Bu et al. (2008). However, both models differ in one
crucial point. Contrary to AR models, which belong to the class of linear time series processes,
INAR models are non-linear. This non-linearity is caused by the (random) thinning operations
“◦” in (3) in comparison to the simple (deterministic) multiplications “·” in (5).

In particular, with data X1, . . . , Xn at hand, this additional random source introduced by the
thinning operation in INAR models does not allow to identify the innovations εt even in the case
when the model coefficients α1, . . . , αp are known. This is in contrast to AR models, where the
error terms et, t = p + 1, . . . , n, can be easily re-constructed using (5). Moreover, if α1, . . . , αp
are not known, it is still possible to consistently estimate the AR error terms et by residuals
êt as α1, . . . , αp and ν can be consistently estimated by some α̂1, . . . , α̂p and ν̂ (with

√
n-rate).

More precisely, we have

êt = Xt − ν̂ − α̂1Xt−1 − · · · − α̂pXt−p
P→ Xt − ν − α1Xt−1 − · · · − αpXt−p = et, (6)
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where
P→ denotes convergence in probability. The latter observation allows to make meaning-

ful inference about the distribution of the errors et as well. In particular, it allows the valid
application of residual-based bootstrap schemes as the residuals carry automatically the true
distribution of the error terms1. If the data generating process (DGP) is an AR model as in (5),
a corresponding AR bootstrap is proved to consistently estimate the distributions of statistics
Tn = Tn(X1, . . . , Xn) belonging to large classes of statistics under mild conditions; compare
Kreiß (1988, 1992, 1997); Bühlmann (1995, 1997); Kreiß et al. (2011) and the overview in Kreiß
and Paparoditis (2011). The AR bootstrap is very popular in practice as it is very easy to im-
plement and it usually outperforms asymptotic approximations in finite samples. Furthermore,
as the residuals are used directly, it is not necessary to estimate explicitly the distribution of
the innovations or its features as, e.g., its variance. We refer to Section 3 for details.

In view of the convenience and popularity of the AR bootstrap, it would be desirable to adapt
it to the INAR case. For this purpose, first of all, it would be necessary to construct an appro-
priate set of residuals from INAR time series data. In Section 2, we will address this seemingly
straightforward task in more detail. It turns out that, in comparison to the AR case, it is not
possible to get proper residuals from observed INAR data that are “close to” the true innova-
tions ε2, . . . , εn and carry the true innovation distribution to an (asymptotically) sufficient extent.

Alternatively, as INAR and AR models share the autocorrelation structure, it might be advis-
able to just ignore the discreteness of count data and to apply straight ahead an AR bootstrap
to capture the dependence in INAR data. The generality of such an approach to lead to asymp-
totically valid bootstrap approximations will be discussed in detail in Section 3. It turns out
that consistent application is restricted to certain special cases, and the standard AR bootstrap
is not appropriate for general statistics when applied to INAR time series data.

On the other hand, as stationary INAR(p) models are always assured to be geometrically strong
mixing and they are just a parsimonious form of a Markov processes with countable state space
N0, two (groups of) non-parametric bootstrap procedures can be applied to INAR time series
data. These are block bootstraps and Markovian bootstraps. Whereas block bootstrap are
generally applicable, but require the selection of a tuning parameter (block length) and tend
to perform inferior in small samples, Markovian bootstraps suffer from a huge number of pa-
rameters (transition probabilities), especially for INAR processes with their infinite range and a
possibly large Markov order. For prediction in INAR models, block bootstrap techniques have
been used, e.g., by Jung and Tremayne (2006) to estimate the standard errors. Potential issues
of (block) bootstrapping discrete-valued time series are discussed in Jentsch and Leucht (2016).

In general, if a certain structure is available for a DGP (e.g., in form of a parametric model), it
will be advisable to make use of such structural assumptions to construct a tailor-made boot-
strap procedure. Usually, this leads to bootstraps that will be superior to other competitive
bootstrap methods that are more widely applicable. The main contribution of this paper is
to propose a general INAR-type bootstrap procedure in Section 4, where we prove consistency
under suitable meta assumptions and discuss parametric and semi-parametric implementations.
The latter will be semi-parametric in the sense that it mimics the parametric structure of the
binomial thinning operations in an INAR recursion without assuming any parametric family
of distributions for the innovation process (εt, t ∈ Z). In Section 5, we show the results of an
extensive simulation study that compares several bootstrap approaches including, e.g., block
and Markovian bootstraps to construct confidence intervals. We find that our semi-parametric

1In the sense that the empirical distribution of the ê1, . . . , ên converges to the marginal distribution of (et, t ∈ Z)
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INAR bootstrap is robust and tends to perform superior to relevant competitors. In a real-data
application, we analyze iceberg orders from Lufthansa stock to illustrate our method. Section 6
concludes, and all proofs are deferred to Appendix A.

2. Constructing INAR Residuals: some (naive) ideas

In view of the popularity of the AR bootstrap, it would be desirable to adapt it to the INAR
case. For this purpose, it would be necessary (among others) to construct an appropriate type
of residuals from INAR time series data. In the sequel, we shall briefly discuss three such
approaches, which appear more or less obvious at a first glance. However, it turns out that all
these approaches suffer from severe handicaps, so a straightforward adaption of a model-based
AR bootstrap to the set-up of INAR processes is not possible.

2.1. Exploiting Discreteness.
The randomness of the thinning operation in INAR models does generally not allow to estimate
consistently the innovations εt. However, it is possible to exploit the discreteness of INAR
models to observe directly some of them even without any deviation. For instance, for INAR(1)
models from (1), we have

Xt = α ◦Xt−1 + εt = εt if Xt−1 = 0. (7)

That means, whenever Xt−1 = 0, we observe the true innovation without any deviation as
Xt = εt one step ahead. As the range of εt is N0, the same holds for Xt leading to p0 =
P (Xt−1 = 0) > 0 iff P (εt = 0) > 0. That is, we can expect about (n − 1)p0 zeros in a sample
X1, . . . , Xn−1, and this increases to ∞ as n → ∞. This means, although it is not possible to
estimate the innovations εt consistently, it is still possible to observe asymptotically infinitely
many of these innovations, which of course carry the true distribution. Hence, this approach
allows for asymptotically meaningful inference on the innovation distribution. In the context of
random coefficient AR models, a similar approach has been employed by Fink and Kreiß (2013)
for bootstrapping of random coefficient AR models. However, in finite samples, this approach
suffers from severe drawbacks:

(i) If p0 is small, only few innovations are observed in an INAR sample X1, . . . , Xn. Con-
sequently, the effective sample size for the sequence of innovations is very small, leading
to inferior finite sample performance.

(ii) In principle, the idea of (7) can be extended to INAR(p) models of general order p. In
this case, to be able to observe the innovations εt directly, one even needs Xt−1 = · · · =
Xt−p = 0. But the latter event is by far rarer than Xt−1 = 0.

(iii) In general, this approach suffers from a considerable loss in efficiency as only few infor-
mation from a data sample X1, . . . , Xn is eventually used.

2.2. AR Fitting and Rounding.
Motivated by the fact that INAR(p) and AR(p) models share the same autocorrelation function,
Cardinal et al. (1999); Kim and Park (2006, 2008) proposed to fit an AR(p) model (5) to the
INAR sample X1, . . . , Xn to get quantities êt + ν̂ = Xt − α̂1Xt−1 − · · · − α̂pXt−p; see also Park
and Kim (2012) for the notion of expected residuals. A sequence of residuals having range N0

is constructed by

ε̆t :=

{
[êt + ν̂], êt + ν̂ > 0

0, êt + ν̂ ≤ 0
,

where [x] denotes a rounding operator to ensure that ε̆t is integer-valued. In their papers,
Cardinal et al. (1999); Kim and Park (2006) used this sequence of residuals for model-based
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Figure 1. PMF of εt ∼ Poi(1.0) (light gray) against PMF of rounded residuals
[Xt−αXt−1] in (a), and thinning-based residuals Xt−α◦̃Xt−1 in (b); here α = 0.4
(black) or α = 0.8 (dark gray).

bootstrapping, whereas Kim and Park (2008) adapt this approach for bootstrapping signed
INAR(p) models that have range Z. But as illustrated in Figure 1 (a), this method for con-
structing residuals will generally not work sufficiently precise. For the example presented in
Figure 1 (a), it was assumed that εt ∼ Poi(1.0), and the corresponding true probability mass
function (PMF) of the innovations is plotted as thick light bars. Now assume an INAR(1) model
with either α = 0.4 or α = 0.8, then the distributions of [Xt−αXt−1] (plotted with thin bars in
black or dark gray, respectively) strongly deviate from the one of εt. Moreover, it can be easily
seen that no simple transformation as, e.g., shifting the distribution or setting negative values
to zero does cure the problem.

2.3. Additional Thinning.
Another naive approach that tries to mimic the randomness of the thinning operation in the
construction of residuals is as follows. Fit an INAR(p) model (3) to the sample X1, . . . , Xn to
get estimated coefficients α̂1, . . . , α̂p. Then, define a sequence of residuals by

ε̃t := Xt − α̂1 ◦̃Xt−1 − · · · − α̂p ◦̃Xt−p, t = p+ 1, . . . , n, (8)

where “ ◦̃ ” denotes mutually independent binomial thinning operations executed independently
of everything else. But again, this approach is not applicable, because, among others, the
residuals ε̃1+p, . . . , ε̃n become negative with positive (asymptotically non-vanishing) probability.
Setting the negative values to zero does not cure this problem, also see the example plotted
in Figure 1 (b), which plots the PMF of Xt − α◦̃Xt−1 for α = 0.4 (black) or α = 0.8 (dark
gray). This immediately leads to the conclusion that the INAR residuals in (8) do not mimic
properly the true marginal distribution of the innovations, such that these residuals are not
appropriate for statistical inference on the innovation distribution. Additionally, residuals from
(8) are random and hence not reproducible.

3. Ignoring Discreteness: Residual-based AR Bootstrap

In the case where the DGP is assumed to be a stationary AR(p) process following a recursion
(5), it is usually advisable to use a model-based bootstrap to resample observations X1, . . . , Xn.
A corresponding residual-based AR bootstrap is well-suited for statistical inference and can be
used to consistently estimate the distribution of statistics Tn = Tn(X1, . . . , Xn) belonging to a
large class of statistics. For example, it allows to construct confidence intervals in numerous
situations that are of great interest in the statistical literature.
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The idea of the residual-based AR bootstrap is to fit an AR(p) model (5) to the data X1, . . . , Xn

to get estimated coefficients α̂ = (α̂1, . . . , α̂p)
′ and ν̂, and to use those to compute AR residuals

êt := Xt − ν̂ − α̂1Xt−1 − · · · − α̂pXt−p, t = p+ 1, . . . , n. (9)

These residuals êp+1, . . . , ên approximate the true but unobserved errors ep+1, . . . , en, and they
are approximately i.i.d.; compare also (6). This heuristic allows the application of Efron’s i.i.d.-
bootstrap (Efron, 1979) on the set of residuals to get (asymptotically valid) bootstrap error terms
e+1 , . . . , e

+
n , and to define AR bootstrap observations X+

1 , . . . , X
+
n according to the recursion

X+
t = ν̂ + α̂1X

+
t−1 + · · ·+ α̂pX

+
t−p + e+t . (10)

Despite the INAR’s observations and innovations being non-negative and integer-valued, INAR
models are still autoregressive-type DGPs, and they even share the autocorrelation structure
with AR models. Hence, one may just ignore that the residuals êt obtained from fitting AR
models to INAR data are neither integer-valued nor assured to be non-negative, and apply
the AR bootstrap to INAR data just straight ahead. With data X1, . . . , Xn at hand, the AR
bootstrap is as follows2:

Residual-based AR Bootstrap

Step 1. Compute the centered observations Yt = Xt −X, where X = 1
n

∑n
t=1Xt.

Step 2. Fit an autoregressive process of order p, i.e., Yt =
∑p

i=1 αiYt−i + et to the centered data
Y1, . . . , Yn. This leads to estimated AR coefficients α̂1, . . . , α̂p, which can be obtained,
e.g., from Yule-Walker estimates.

Step 3. Compute the estimated residuals êt = Yt −
∑p

i=1 α̂iYt−i, t = p + 1, . . . , n, and center

them, i.e., compute ẽt = êt − 1
n−p

∑n
t=p+1 êt.

Step 4. Generate bootstrap observations Y +
1 , . . . , Y

+
n according to

Y +
t =

p∑
i=1

α̂iY
+
t−i + e+t ,

where (e+t ) are randomly and uniformly drawn from the centered residuals {ẽp+1, . . . , ẽn}.
Defining X+

t = Y +
t +X leads to the AR bootstrap sample X+

1 , . . . , X
+
n .

In view of the analogy of INAR and AR models with respect to their autocorrelation struc-
ture, there is some chance for the AR bootstrap to lead to valid bootstrap approximations.
Heuristically, an AR bootstrap is obviously capable to capture the complete correlation struc-
ture of INAR models, which might be sufficient for certain statistics as, e.g., the sample mean
X = 1

n

∑n
t=1Xt, which depends exclusively on autocovariances in the limit. More precisely,

under rather mild mixing conditions (fulfilled by INAR processes with existing 2 + δ moments)
on a stationary process (Xt, t ∈ Z) with µX = E(Xt) and γX(h) = Cov(Xt+h, Xt), h ∈ Z, the
following central limit theorem (CLT) from Ibragimov (1962) holds

√
T
(
X − µX

) d→ N (0, V ), (11)

where
d→ denotes convergence in distribution and V =

∑∞
h=−∞ γX(h).

In the following lemma, see Appendix A.1 for the proof, we show that an AR bootstrap ap-
plied to INAR data is generally sufficient to lead to valid bootstrap approximations for the
statistic of the sample mean.

2Note that this approach is asymptotically equivalent to the approach, where intercept and AR parameters
are estimated jointly, where no centering in Step 1 has to be applied.
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Lemma 3.1 (AR Bootstrap Consistency for the Sample Mean).
Suppose (Xt, t ∈ Z) is a stationary INAR(p) model as in (3) such that E(ε4t ) < ∞. Then, we

have nV ar+
(
Y

+)→ V and

√
nY

+
=
√
n
(
X

+ −X
)

d→ N (0, V )

in probability, respectively, leading to

dK

(
L+
(√
nY

+)
,L
(√
n
(
X − µX

) ))
:= sup

x∈R

∣∣∣P+
(√

nY
+ ≤ x

)
− P

(√
n
(
X − µX

)
≤ x

)∣∣∣ = oP (1),

where dK denotes the Kolmogorov-Smirnov distance and L(X) denotes the probability law of a
random variable X. Here and throughout the paper, L+, P+, E+, V ar+, etc. denote bootstrap
law, bootstrap probability measure, bootstrap mean, bootstrap variance, etc., respectively, induced
by the AR bootstrap (conditional on the sample X1, . . . , Xn).

The result of Lemma 3.1 shows that an AR bootstrap is capable to capture the proper limiting
variance (and distribution) of

√
n (X − µX), that is,

nV ar
(
X
)
→ αµε + σ2ε

(1− α)2
as n→∞, (12)

although the discrete nature of the underlying process is completely ignored. Such a result is
closely related to those obtained in Theorem 3.1 in Kreiß et al. (2011). By introducing the
concept of companion processes, the authors show that an AR (sieve) bootstrap that captures
asymptotically the complete autocovariance structure of an underlying process, will always be
consistent for the sample mean and other statistics that depend exclusively on the autocovariance
structure of the process under very mild conditions. However, the situation becomes much
different for statistics that depend also on other distributional features of the DGP beyond
second-order structure. To illustrate this, we consider the sample variance γ̂(0) = n−1

∑n
t=1(Xt−

X)2 in the following example. For an INAR(1) model with Poisson-distributed innovations, it
shows that an AR bootstrap cannot be generally valid for statistical inference for INAR data.

Example 3.1 (AR Bootstrap Inconsistency for the Sample Variance).
Suppose (Xt, t ∈ Z) is a stationary Poisson INAR(1) process as in (1) with εt ∼ Poi(λ), λ > 0
and thinning parameter α ∈ (0, 1). This leads to µX = E(Xt) = λ/(1−α), and the true limiting
variance of the sample variance γ̂(0) is given by

nV ar
(
γ̂(0)

)
→ 2µ2X

1 + α2

1− α2
+ µX

1 + α

1− α
, (13)

see Weiß and Schweer (2016). However, if an ordinary AR bootstrap (of order one) is applied
to INAR(1) data, we get

nV ar+
(
γ̂+(0)

)
→ 2µ2X

1 + α2

1− α2
+ µX

1− 4α2 + 6α3 − 3α4

(1− α2)2
(14)

in probability, as shown in Appendix A.2. A comparison of (13) and (14) shows that their re-
spective second summands differ, leading to the conclusion that the AR bootstrap is not asymp-
totically valid. As an illustrative example, consider the case of λ = 1 and α ∈ {0.4, 0.8}, leading
to µX = 1.6 and µX = 5, respectively. Then the asymptotic variances according to (13) and (14)
are equal to about 11.56 vs. 9.25 (α = 0.4) and 272.78 vs. 238.70 (α = 0.8), respectively. Hence,
the AR bootstrap systematically underestimates the variances in both cases. This difference does
not only hold asymptotically, but also manifests itself for finite sample size. In Table 1, we
summarize some results from the simulation study as described in Section 5.1. The columns
“Simul. value” give the value of nV ar

(
γ̂(0)

)
that was empirically computed from the respective
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(λ, α) = (1, 0.4) (λ, α) = (1, 0.8)
Simul. Median of bootstrap estimates Simul. Median of bootstrap estimates

n value spINAR pINAR CBB AR MB value spINAR pINAR CBB AR MB
100 10.51 9.92 10.58 6.12 7.17 9.04 232.35 167.40 183.45 73.81 116.78 121.83
250 10.97 10.99 10.93 8.23 8.33 11.70 245.88 224.70 222.36 121.26 168.73 174.14
500 11.26 11.23 11.31 9.61 8.68 12.97 280.65 255.53 250.01 167.15 202.75 211.16

1000 11.44 11.36 11.50 9.82 9.00 12.55 277.70 266.38 262.94 191.45 222.16 236.72
∞ 11.56 9.25 272.78 238.70

Table 1. Poisson INAR(1) model: Simulated values of nV ar
(
γ̂(0)

)
against the

median of the corresponding bootstrap estimates, see Example 3.1 for details.

simulation runs, while the remaining columns give the median value from bootstrap estimates
for nV ar

(
γ̂(0)

)
. The columns “AR” refer to the AR bootstrap discussed here, and it becomes

clear that the AR bootstrap estimates for nV ar
(
γ̂(0)

)
are much below the simulated true value

also for finite n. The columns “CBB” and “MB” refer to the natural non-parametric bootstrap
competitors of the circular block bootstrap and the Markov bootstrap, respectively (see Section 5.1
for more details), while “spINAR” and “pINAR” refer to the INAR bootstraps being introduced
below in Section 4. Without knowing the details of these methods at the moment, it is obvious
that these methods produce estimates being much closer to the simulated values for nV ar

(
γ̂(0)

)
.

A similar discrepancy as in Example 3.1 is also observed for the sample autocorrelation function
of a Poisson INAR(1) process. While

√
n(ρ̂(1) − ρ(1)) is known to have a limiting variance of

1−α2+α(1−α)/µX for a Poisson INAR(1) process (Weiß and Schweer, 2016),
√
n(ρ̂+(1)− ρ̂(1))

has a limiting variance of 1 − α2; compare, e.g., Brockwell and Davis (1991), Example 7.2.3.
The additional term α(1− α)/µX may be large for small values of the observations’ mean µX .
The latter observation of AR bootstrap inconsistency for autocorrelations is in sharp contrast to
linear time series, where an AR (sieve) bootstrap will be generally consistent for autocorrelations
(due to Bartlett’s formula) although it might not be consistent for autocovariances.

Besides the inconsistency of the AR bootstrap, e.g., for sample autocovariances and autocorrela-
tions of INAR data, this bootstrap is particularly not suitable at all for statistics that rely on the
discreteness of the data. For example, if one is interested in the zero-probability p0 = P (Xt = 0),
one just counts the zeros in the sample X1, . . . , Xn and estimates p0 by its relative frequency.
However, if an AR bootstrap is applied to INAR data, one gets bootstrap data X+

1 , . . . , X
+
n

that is no longer discrete with range N0. Hence, it is not even possible to compute a meaningful
relative frequency of zeros from X+

1 , . . . , X
+
n ; compare also the simulation results in Section 5.1.

As the application of an ordinary AR bootstrap to INAR data is in general not satisfactory
due to the issues raised above, there is a great need for INAR-type bootstrap procedures that
allow a consistent application to a broad class of statistics.

4. INAR Bootstraps

As observed in the previous section, an ordinary AR bootstrap cannot be valid for INAR models
in general. It is obviously crucial to replicate the randomness of the thinning operation in the
INAR recursion and to use appropriate bootstrap innovations. Hence, an INAR-type bootstrap
is required rather than an AR-type bootstrap. However, in view of Section 2, it is at least not
straightforward to construct INAR residuals that carry the true innovation distribution to a
sufficient extent. Consequently, a general proposal of a model-based bootstrap that exploits the
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autoregressive nature of INAR processes and can be valid for general statistics is not straight-
forward.

It is, however, not essential to use explicitly residuals from a fitted model, but to use suitable
random variables whose marginal distribution shares asymptotically all relevant features with
the true innovation distribution. Hence, it turns out to be sufficient to get enough information
from an INAR sample to be able to construct sufficiently well-behaved bootstrap innovations.
Depending on the statistic of interest and on the conditions imposed on the DGP, these can be
obtained in different ways.

In the following, we present a general INAR-type bootstrap scheme in Section 4.1, that does

not specify the method used to estimate α1, . . . , αp and at first allows any distribution Ĝ with

range N0 for the bootstrap innovations. An appropriate choice of the distribution Ĝ will usually

depend on the data sample, that is, Ĝ = Ĝ(X1, . . . , Xn). We prove bootstrap consistency under

a suitable set of meta-assumptions on estimators α̂1, . . . , α̂p and on Ĝ in Section 4.2. In Sections
4.3 and 4.4, we propose parametric and semi-parametric implementations of an INAR bootstrap
procedure.

4.1. The INAR Bootstrap Scheme.
With data X1, . . . , Xn at hand, a general INAR bootstrap scheme is defined as follows:

Step 1. Fit an INAR(p) process Xt =
∑p

k=1 αk ◦Xt−k+εt to the data to get estimates α̂1, . . . , α̂p
for the INAR coefficients.

Step 2. Specify a marginal distribution Ĝ with range N0 for the bootstrap innovations.
Step 3. Generate bootstrap observations X∗1 , . . . , X

∗
n according to

X∗t =

p∑
k=1

α̂k ◦∗ X∗t−k + ε∗t (15)

where “ ◦∗ ” denotes (mutually independent) bootstrap binomial thinning operations

and (ε∗t ) are i.i.d. random variables following the distribution Ĝ.

4.2. Bootstrap Consistency.
In this section, we specify the class of functions of generalized means that we consider here.
It is worth mentioning that the considered class is actually richer for discrete-valued data and
allows a treatment of statistics that are not covered in the continuous setup. Then, we state
suitable assumptions on the INAR process and meta-assumptions on the estimation scheme for

α̂1, . . . , α̂p and the marginal distribution Ĝ used to generate bootstrap innovations. Together,
these conditions allow to prove bootstrap consistency results.

A statistic Tn = Tn(X1, . . . , Xn) belongs to the class of functions of generalized means if for
functions g : Rm → Rd and f : Rd → R, Tn can be represented as

Tn = f

(
1

nm

nm∑
t=1

g(Xt, . . . , Xt+m−1)

)
, (16)

where m ∈ N (fixed) and nm = n−m+ 1. In the following, the functions f and g are assumed
to fulfill the following smoothness conditions:
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Assumption 1. The function f in (16) has continuous partial derivatives for all y in a neigh-

borhood of ξ := E(g(Xt, . . . , Xt+m−1)), and the differentials
∑d

i=1 ∂f(x)/∂xi|x=ξ do not vanish.
The function g has partial derivatives of some order h (h ≥ 1), which satisfy a Lipschitz condi-
tion, i.e., for all i = 1, . . . , d and for all (h1, . . . , hm) ∈ Nm0 with

∑m
u=1 hu = h, the derivative

∂hgi(x1, . . . , xm)

∂h1x1 · · · ∂hmxm
is Lipschitz.

The above class of statistics is quite rich and contains as special cases, e.g., versions of sample
autocovariances, sample autocorrelations, sample partial autocorrelations, Yule-Walker estima-
tors, and the sample mean. In the context of bootstrap methods, this class of statistics has been
considered by Künsch (1989), Bühlmann (1997), Kreiß et al. (2011), Jentsch and Politis (2013),
Meyer and Kreiß (2015) in the context of continuous-valued univariate and multivariate time
series and by Meyer et al. (2017) for random fields observed on the lattice Z2.

It is worth noting that Assumption 1 was originally designed for continuous-valued random
variables. In particular, it does not allow for discontinuous functions g ruling out, e.g., indicator
functions. When dealing with integer-valued INAR processes (Xt, t ∈ Z), i.e., if P (Xt ∈ N0) = 1
holds, Assumption 1 can be easily weakened. Precisely, the smoothness condition imposed on
the function g can be relaxed to read as follows: The function g is such that there exists a
function g̃ : Rm → Rd with g(x) = g̃(x) for all x ∈ Nm0 , and g̃ fulfills the smoothness condition
in Assumption 1. The latter condition covers, e.g., indicator functions (with h = 1) such that
estimators based on relative frequencies can also be treated within our framework of Assumption
1. For example, the probability to observe a zero, i.e., p0 := P (Xt = 0), which is a feature of
the marginal distribution of the INAR process (Xt, t ∈ Z), can be estimated from a sample
X1, . . . , Xn by its relative frequency

p̂0 :=
1

n

n∑
t=1

1(Xt = 0), (17)

where 1(A) denotes the indicator function that equals 1 if the condition A holds and 0 oth-
erwise. Similarly, any unconditional, conditional, marginal or joint estimator of probabilities
corresponding to the distribution of X1, . . . , Xm based on relative frequencies will be covered.
However, e.g. sample quantiles are not included in this generalized class of functions g̃; see also
Jentsch and Leucht (2016).

Example 4.1. The class of functions of generalized means with the relaxation of Assumption 1
discussed above includes, for instance,

(i) the relative frequency p̂0 in (17) to estimate the probability to observe a zero in an INAR
sample p0 = P (Xt = 0);

(ii) the conditional probability that i is observed one time step after j, i.e., pi|j := P (Xt+1 =
i|Xt = j). Its canonical estimator is

p̂i|j :=

∑n−1
t=1 1

(
(Xt+1, Xt) = (i, j)

)∑n−1
t=1 1(Xt = j)

.

For the DGP of the INAR process, we make the following assumption:



BOOTSTRAPPING INAR MODELS 11

Assumption 2. Let (Xt, t ∈ Z) be a stationary INAR(p) process as in (3) with coefficients
α1, . . . , αp such that αi ∈ (0, 1), i = 1, . . . , p and

∑p
i=1 αi < 1. Further, the innovation process

(εt, t ∈ Z) is i.i.d. with a distribution G = L(εt) having range N0 such that EG(εst ) < ∞ for
some s ∈ N and 0 < G(0) < 1 holds, where G(k) = P (εt = k), k ∈ N0.

These conditions on the underlying INAR process have been used in Drost et al. (2009); see Sec-
tion 4.4 for details. The condition αi ∈ (0, 1), i = 1, . . . , p with

∑p
i=1 αi < 1 and EG(εst ) <∞ for

s ≥ 1 is sufficient for the INAR recursion to have a strictly stationary solution. The assumption
0 < G(0) < 1 ensures the possibility of X becoming 0 and not being always equal to 0, which
is reasonable for virtually all applications. For deriving asymptotic theory in the following, we
have to match the number s of existing moments of the innovations in Assumption 2 (and in
Assumption 3 below) to h in Assumption 1 determining the smoothness of g.

The INAR bootstrap scheme in Section 4.1 does not specify the estimation method for the
INAR coefficients or the bootstrap innovation distribution. Naturally, we have to impose cer-
tain additional meta-assumptions that lead eventually to valid bootstrap approximations. More

precisely, we impose the following conditions on α̂1, . . . , α̂p and Ĝ.

Assumption 3. Additional requirements concerning the INAR bootstrap scheme in Section 4.1:

(i) The estimators α̂ = (α̂1, . . . , α̂p)
′ for the INAR coefficients in Step 1 satisfy

√
n(α̂i − αi) = OP (1), i = 1, . . . , p;

(ii) the bootstrap innovation distributions Ĝ introduced in Step 2 satisfies d1(Ĝ,Gc) :=∑∞
k=0 |Ĝ(k) − Gc(k)| = oP (1) as n → ∞, for some distribution Gc having range N0

such that E∗
Ĝ

(ε∗lt )
P→ E∗Gc

(ε∗lt ) <∞ for l ≤ s with some s ∈ N.

Under Assumptions 1–3, in the limit as n→∞, the DGP of the bootstrap process (X∗t , t ∈ Z)
from Section 4.1 will follow the INAR(p) recursion

X̃t = α1 ◦ X̃t−1 + α2 ◦ X̃t−2 + · · ·+ αp ◦ X̃t−p + ε̃t, t ∈ Z, (18)

where ε̃t ∼ Gc. The latter process (X̃t, t ∈ Z) is the companion process in the sense of Kreiß et
al. (2011) that corresponds to the bootstrap scheme in Section 3.1.

Depending on Tn, the following meta assumption on the INAR bootstrap scheme/on the INAR
companion process will allow for a consistent bootstrap approximation result in the subsequent
Theorem 4.1.

Assumption 4. Suppose that Σ̃ = Σ holds, where

Σ =
∞∑

h=−∞
Cov

(
g(Xh, . . . , Xh+m−1), g(X0, . . . , Xm−1)

)
,

Σ̃ =

∞∑
h=−∞

Cov
(
g(X̃h, . . . , X̃h+m−1), g(X̃0, . . . , X̃m−1)

)
.

Under these assumptions, we are now able to prove bootstrap consistency in the following
theorem, see Appendix A.3.
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Theorem 4.1 (INAR Bootstrap Consistency). Suppose the statistic of interest Tn = Tn(X1, . . . , Xn)
and the underlying INAR(p) process (Xt, t ∈ Z) fulfill Assumptions 1 and 2 for some h ∈ N and
with s = 2(h+2), respectively. Furthermore, if the estimators α̂1, . . . , α̂p and the innovation dis-

tribution Ĝ used to generate bootstrap data X∗1 , . . . , X
∗
n satisfy Assumption 3 with s = 2(h+ 2),

and if Assumption 4 holds, then we have

dK

(
L∗
(√

nm
(
T ∗n − f(ξ∗)

))
, L
(√

nm
(
Tn − f(ξ)

)))
= oP (1) (19)

as n→∞, where T ∗n = Tn(X∗1 , . . . , X
∗
n) and ξ∗ = E∗

(
g(X∗t , . . . , X

∗
t+m−1)

)
.

Note that Assumption 4 is tailor-made for the specific statistic of interest Tn and Assumption 3

does not require that Ĝ mimics asymptotically all properties of the true innovation distribution
G. Instead, bootstrap consistency is achieved if only all asymptotically relevant features are
mimicked.

Example 4.2 (Sample Mean). If Tn(X1, . . . , Xn) = 1
n

∑n
t=1Xt is the sample mean, it is suffi-

cient for Assumption 3 to use any Ĝ such that E∗
Ĝ

(ε∗t )→ E(εt) = µε and V ar∗
Ĝ

(ε∗t )→ V ar(εt) =

σ2ε for the INAR bootstrap to be consistent. This is because, besides the INAR coefficients, only
these first two moments appear in the limiting variance of X; compare (12). Hence, any dis-
tribution that satisfies this property is possible here (e.g., an appropriately chosen three-point
distribution, see de Schepper and Heijnen (1995)), although the true innovation distribution
might be different.

To implement the INAR bootstrap procedure from Section 4.1, it is necessary to specify the
estimation α̂1, . . . , α̂p of the INAR coefficients in Step 1 as well as the choice of the distribution

Ĝ in Step 2. Of course, there are several possible choices. In the following, we address a fully
parametric approach in Section 4.3, and a semi-parametric approach in Section 4.4.

4.3. Parametric Implementation.
In this section, we consider a fully parametric approach to specify the estimation α̂1, . . . , α̂p of

the INAR coefficients and the choice of the bootstrap innovation distribution Ĝ. In the context
of AR models, the use of a parametric bootstrap for model diagnostics goes back to Tsay (1992).
Similarly, parametric (Poisson) INAR bootstraps have been used (among others) in Cardinal et
al. (1999) for forecasting INAR(p) processes, in Jung and Tremayne (2011) for checking model
adequacy, in Pavlopoulos and Karlis (2008) for prediction and testing purposes, and in Meintanis
and Karlis (2014) for goodness-of-fit testing, while Schweer (2016) used a parametric bootstrap
for goodness-of-fit testing in the more general class of CLAR(1) models.

As AR and INAR models share the autocorrelation structure, suitable (parametric) estima-
tors α̂1, . . . , α̂p for the INAR coefficients in Step 1 of the bootstrap procedure in Section 4.1 are
easily obtained, e.g., by Yule-Walker estimation. Hence, it remains to estimate the innovation

distribution from the data to specify Ĝ = Ĝ(X1, . . . , Xn). By imposing a parametric family
of distributions depending on a (finite-dimensional) parameter vector θ ∈ Θ ⊂ Rl, say, this
parametric structure can be used to estimate the true innovation distribution G from the INAR

data. For a suitable parametric choice of Ĝ in Step 2 of the bootstrap procedure, we make use
of the following additional assumption on the innovation distribution G.
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Assumption 5. The marginal distribution G = Gθ0 of the i.i.d. innovation process (εt, t ∈ Z)
is a member of a parametric family {Gθ |θ ∈ Θ} of distributions satisfying Assumption 2, where
Θ is an open subset of Rl for some l ∈ N.
Suppose the map θ 7→ Gθ is continuous on Θ, i.e., for all θ ∈ Θ and all ε > 0, there exist a
δ > 0 such that for all θ′ ∈ Θ with |θ − θ′| < δ we have d1(Gθ, Gθ′) < ε. Further, suppose
there exists a neighborhood Bθ0,δ = {θ

∣∣ |θ − θ0| < δ} ⊂ Θ of θ0 such that
∑∞

k=0 k
sGθ(k) <∞

holds uniformly on Bθ0,δ, and there exists an estimator θ̂ = θ̂(X1, . . . , Xn) for θ0 such that√
n(θ̂ − θ0) = OP (1).

Under the parametric Assumption 5 on the innovation distribution G, bootstrap innovations
ε∗1, . . . , ε

∗
n can be easily generated from G

θ̂
leading to the following bootstrap scheme and the

subsequent direct corollary of Theorem 4.1.

Parametric INAR Bootstrap

Step 1. Fit an INAR(p) process Xt =
∑p

i=1 αi ◦Xt−i + εt with εt ∼ Gθ to the data to get (e.g.,

Yule-Walker) estimates α̂ = (α̂1, . . . , α̂p)
′ and θ̂.

Step 2. Generate bootstrap observations X∗1 , . . . , X
∗
n according to

X∗t =

p∑
i=1

α̂i ◦∗ X∗t−i + ε∗t ,

where “ ◦∗ ” denotes (mutually independent) bootstrap binomial thinning operations,

and where (ε∗t ) are i.i.d. random variables following distribution G
θ̂
, i.e., Ĝ := G

θ̂
in

Section 4.1.

Corollary 4.1 (Parametric INAR Bootstrap Consistency). Suppose the statistic of interest
Tn = Tn(X1, . . . , Xn) and the underlying INAR(p) process (Xt, t ∈ Z) fulfill Assumption 1 for
some h ∈ N and Assumption 2 with s = 2(h + 2), respectively. Furthermore, if the estimator
α̂ satisfies Assumption 3 (i), if the true innovation distribution G fulfills Assumption 5 with

s = 2(h+ 2), and if Ĝ = G
θ̂

is used to generate the bootstrap data X∗1 , . . . , X
∗
n, then we have

dK

(
L∗
(√

nm
(
T ∗n − f(ξ∗)

))
, L
(√

nm
(
Tn − f(ξ)

)))
= oP (1) (20)

as n→∞, where T ∗n = Tn(X∗1 , . . . , X
∗
n) and ξ∗ = E∗

(
g(X∗t , . . . , X

∗
t+m−1)

)
.

The latter result (its proof is provided by Appendix A.4) shows that a parametric INAR boot-
strap is asymptotically valid for functions of generalized means if the parametric assumptions
imposed on the innovation process (εt, t ∈ Z) are indeed fulfilled and if a suitable estimator G

θ̂
for the distribution of the innovations is available.

To investigate the potential of parametric INAR bootstraps to lead to valid approximations
even if the innovation distribution is misspecified, we consider the important special case of a
Poisson INAR(1) model in more detail. It is very popular in the literature to assume a Pois-
son distribution for the innovation process, that is, L(εt) = Poi(λ), λ > 0. This is mainly
because the Poisson distribution carries over to the marginal distribution of Xt if the INAR
process (Xt, t ∈ Z) is of order one. More precisely, this leads to the marginal distribution
L(Xt) = Poi(λ/(1−α)). Hence, in this Poisson case, the innovation distribution Gλ = L(εt) can

be easily estimated by G
λ̂

= Poi(λ̂), where λ̂ = X(1− α̂). This leads to the following parametric
bootstrap scheme:
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Example 4.3 (Poisson INAR(1) Bootstrap).

Step 1. Fit an INAR(1) process Xt = α ◦Xt−1 + εt with εt ∼ Poi(λ) to get estimates α̂ = ρ̂(1)

and λ̂ = X(1− α̂).
Step 2. Generate bootstrap observations X∗1 , . . . , X

∗
n according to

X∗t = α̂ ◦∗ X∗t−1 + ε∗t ,

where “ ◦∗ ” denotes (mutually independent) bootstrap binomial thinning operations and

(ε∗t ) are i.i.d. random variables following a Poisson distribution with parameter λ̂, i.e.,

Ĝ := Poi(λ̂) in Section 4.1.

Clearly, as
√
n(λ̂ − λ) = OP (1), such a bootstrap will be generally consistent for functions

of generalized means whenever the underlying process is Poisson INAR(1). Otherwise, the
bootstrap will usually fail. Hence, it is indeed restrictive to impose a parametric structure on
the innovation distribution. However, as will be illustrated in the following example, it is indeed
not always necessary to specify the parametric family of innovation distributions correctly to
achieve bootstrap consistency.

Example 4.4 (Poisson INAR(1) Bootstrap: Sample mean). In analogy to Lemma 3.1, for an
INAR bootstrap to be consistent for the sample mean, it is sufficient to mimic the first two
moments of the innovation distribution; compare Example 4.2 and Equation (12). Furthermore,
Poisson distributions are equidispersed, that is, they have a variance equal to the mean. Hence, a
Poisson INAR(1) bootstrap is consistent for the sample mean X if and only if the true innovation
distribution of an underlying INAR(1) process is equidispersed.

In many real-data applications, a Poisson distribution turns out to be not suitable as the data
show overdispersion, i.e., V ar(Xt) > E(Xt), or the zero probability p0 = P (Xt = 0) is larger
than for Poisson distributions, see Jazi et al. (2012); Schweer and Weiß (2014); Weiß et al.
(2016). Hence, imposing a Poisson distribution will often be too restrictive. In Section 5, Monte
Carlo simulations illustrate that this can lead, e.g., to considerable undercoverage of bootstrap
confidence intervals. Hence, imposing parametric structure on the innovation process turns out
to be a strong assumption that might not be appropriate in practice.

4.4. Semi-Parametric Implementation.
A parametric implementation of the INAR bootstrap will generally be valid exclusively for
functions of generalized means if the parametric class of innovation distributions is correctly
specified. To construct an INAR-type bootstrap procedure that does not rely on any paramet-
ric assumptions imposed on the innovations and is valid for general statistics, it is inevitable
to estimate consistently the true innovation distribution to mimic essentially all its features.
Hence, a (non-parametric) estimation procedure is required to define a semi-parametric INAR
bootstrap scheme. The approach will be semi-parametric in the sense that we stick to the para-
metric binomial thinning operation, but allow for non-parametric estimation of the innovation
distribution.

In a remarkable paper by Drost et al. (2009), for INAR(p) models in (3), the authors consider
the semi-parametric joint estimation of the INAR coefficients α1, . . . , αp and the innovation
distribution G = L(εt). Their semi-parametric maximum likelihood estimator (SPMLE)

(α̂sp, Ĝsp) :=
(
α̂sp,1, . . . , α̂sp,p, Ĝsp(0), Ĝsp(1), Ĝsp(2), . . .

)
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is defined to maximize the conditional log-likelihood function (which uses the fact that the con-
ditional distribution of Xt given Xt−1, . . . , Xt−p becomes a convolution of the binomial distribu-

tions Bin(Xt−1, α1), . . . ,Bin(Xt−p, αp) and of G), where the estimated probabilities Ĝsp(k) are
equal to 0 for k < min {Xt −

∑p
i=1Xt−i | t = p+ 1, . . . , n} and for k > max {Xt | t = 1, . . . , n},

also see Appendix C.1 for some more details. For the SPMLE, Drost et al. (2009) prove effi-
ciency under some mild regularity conditions that cover rather general innovation distributions

with range N0. In particular, for the (infinite-dimensional) estimator Ĝsp = (Ĝsp(k), k ∈ N0) of
the innovation distribution G = (G(k), k ∈ N0), they prove `1-consistency and, moreover, weak
convergence to a suitable Gaussian process. More precisely, in their Theorem 2, they prove

√
n
(
(α̂sp, Ĝsp)− (α, G)

)
 Z (21)

under Assumption 2 plus a slightly stronger moment condition E[εp+4
t ] <∞, where Z is a tight,

Borel measurable, Gaussian process. The (p + 4)th moment of G is needed to establish weak
convergence of certain empirical processes. We refer to Drost et al. (2009) for details. Note

that the sequence Ĝsp is always of bounded support for finite sample size n, that is, we have

Ĝsp(k) = 0 whenever k > max {X1, . . . , Xn}. The weak convergence in (21) immediately implies

√
n
(
(α̂sp,1, . . . , α̂sp,p)− (α1, . . . , αp)

)
= OP (1) and

√
n

∞∑
k=0

|Ĝsp(k)−G(k)| = OP (1). (22)

This is the key result to establish bootstrap consistency for a semi-parametric INAR bootstrap

that makes use of the estimated distribution Ĝsp to generate bootstrap innovations. This leads
to the following bootstrap scheme:

Semi-parametric INAR Bootstrap

Step 1. Fit semi-parametrically an INAR(p) process Xt =
∑p

i=1 αi ◦Xt−i + εt to get estimated

INAR coefficients α̂sp = (α̂sp,1, . . . , α̂sp,p)
′ and the estimator Ĝsp = (Ĝsp(k), k ∈ N0) for

G.
Step 2. Generate bootstrap observations X∗1 , . . . , X

∗
n according to

X∗t = α̂sp,1 ◦∗ X∗t−1 + · · ·+ α̂sp,p ◦∗ X∗t−p + ε∗t ,

where “ ◦∗ ” denotes (mutually independent) bootstrap binomial thinning operations

and (ε∗t ) are i.i.d. random variables following Ĝsp.

Corollary 4.2 (Semi-Parametric INAR Bootstrap Consistency). Suppose the statistic of interest
Tn = Tn(X1, . . . , Xn) and the underlying INAR(p) process (Xt, t ∈ Z) fulfill Assumption 1 for

some h ∈ N and Assumption 2 with s > max{4(h+ 2), p+ 4}, respectively. Then, if (α̂sp, Ĝsp)
is used to generate the bootstrap data X∗1 , . . . , X

∗
n, we have

dK

(
L∗
(√

nm
(
T ∗n − f(ξ∗)

))
, L
(√

nm
(
Tn − f(ξ)

)))
= oP (1) (23)

as n→∞, where T ∗n = Tn(X∗1 , . . . , X
∗
n) and ξ∗ = E∗

(
g(X∗t , . . . , X

∗
t+m−1)

)
.

Note that in comparison to Corollary 4.1, the bootstrap consistency result in Corollary 4.2 holds
without the parametric restriction of Assumption 5.
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5. Simulation Study and Data Example

5.1. Description of Simulation Study.
We investigated the performance of the discussed bootstrap procedure in an extensive simulation
study, where we analyzed the true coverage of 95 % confidence intervals for diverse statistics. To

compute a bootstrap confidence interval for an estimator θ̂, we first computed an appropriate

centering cent
(
θ̂∗
)

(see Appendix C.2 for details), and then the centered bootstrap estimates

θ̂∗cent := θ̂∗ − cent
(
θ̂∗
)
. Using the (1− α/2)- and α/2-quantiles from these centered bootstrap

estimates, the bootstrap confidence interval is defined as[
θ̂ − q1−α/2

(
θ̂∗cent

)
; θ̂ − qα/2

(
θ̂∗cent

)]
.

In our simulations, we considered the following estimators, which refer to important character-
istics of a count process (Weiß et al., 2016):

• X := 1
n

∑n
t=1Xt; estimator of the observations’ mean µX ;

• γ̂(0) := 1
n

∑n
t=1(Xt −X)2; estimator of the observations’ variance σ2X ;

• Îdisp := γ̂(0)/X; estimator of the observations’ dispersion index σ2X/µX ;

• γ̂(1) := 1
n

∑n
t=2(Xt −X)(Xt−1 −X); estimator of the first-order autocovariance γX(1);

• ρ̂(1) := γ̂(1)/γ̂(0); estimator of the first-order autocorrelation ρX(1);
• X

(
1− ρ̂(1)

)
; estimator for µX

(
1− ρX(1)

)
, a quantity, which coincides with the innova-

tions’ mean µε for autoregressive order p = 1;
• p̂0 := 1

n

∑n
t=1 1(Xt = 0); estimator of the probability p0 for observing a zero;

• Îz.i. := ln(p̂0)/X + 1; estimator of the zero inflation index;

• Îz.m. := p̂0 exp(X) − 1; modified type of zero index that can also handle the case of
observing no zeros.

To be able to evaluate the performance of the proposed semi-parametric INAR-Bootstrap
(spINAR-Bootstrap), several types of benchmarks were considered: the parametric Poisson
INAR-Bootstrap (pINAR-Bootstrap, i.e., which assumes an underlying INAR process having
Poisson-distributed innovations), the Circular Block Bootstrap (CBB), the AR-Bootstrap (AR-
Bootstrap), and the Markov Bootstrap (MB). For autoregressive order p = 1, we also considered
an asymptotic approximation as a further benchmark, i.e., we utilized the asymptotic distribu-
tions for the estimators assuming an underlying Poisson INAR(1) process (see Appendix C.3 for
details). Note that the AR bootstrap, which assumes a continuous AR process, is certainly not
able to deal with a zero frequency. As an approximation, we used the frequency of the event
“Xt < 0.5” as the “zero frequency”, also see Appendix C.2.

All bootstrap procedures were applied by once assuming autoregressive order p = 1 (or Markov
order p = 1, respectively), and p = 2 for the other time. When assuming p = 1, we also
considered the asymptotic approximation according to Appendix C.3, as mentioned before. For
both cases, we worked with either Poisson innovations (as required by the parametric INAR
bootstrap) or negative binomial (NB) innovations (this case constitutes a robustness check for
the parametric INAR bootstrap). Furthermore, for p = 1, we also used a Poisson INAR(2)
model as the true data generating mechanism, thus constituting a robustness check for both
INAR(1) bootstraps as well as for the AR(1) and Markov(1) bootstrap.

When generating Poisson innovations, we chose µε ∈ {1, 2.5}. For NB(n, π)-innovations, we took

µε ∈ {1, 2.5} and σ2
ε
µε
∈ {1.5, 2.0}, and the parameters n, π were computed from the relations

σ2
ε
µε

= 1
π and µε = n 1−π

π . When generating an INAR(1) process, the thinning parameter α (which
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Table 2. INAR(1) process with µε = 1, α = 0.8; coverage for µX = 5.

Poi-INAR(1), i.e., σε
µε

= 1 NB-INAR(1) with σε
µε

= 1.5

n spINAR pINAR CBB AR MB asymp spINAR pINAR CBB AR MB asymp
100 0.904 0.890 0.816 0.870 0.816 0.926 0.910 0.868 0.798 0.868 0.802 0.874
250 0.930 0.936 0.862 0.914 0.880 0.944 0.934 0.888 0.868 0.902 0.850 0.888
500 0.938 0.928 0.898 0.924 0.892 0.934 0.946 0.918 0.914 0.934 0.902 0.926

1000 0.948 0.950 0.920 0.946 0.916 0.954 0.940 0.908 0.918 0.948 0.926 0.914

Table 3. INAR(1) process with µε = 1, α = 0.8; coverage for σ2X = 5 resp. σ2X ≈ 6.389.

Poi-INAR(1), i.e., σε
µε

= 1 NB-INAR(1) with σε
µε

= 1.5

n spINAR pINAR CBB AR MB asymp spINAR pINAR CBB AR MB asymp
100 0.804 0.858 0.708 0.762 0.716 0.906 0.812 0.726 0.650 0.726 0.626 0.798
250 0.874 0.914 0.794 0.842 0.760 0.938 0.880 0.798 0.780 0.838 0.758 0.812
500 0.898 0.918 0.848 0.870 0.818 0.932 0.922 0.818 0.840 0.884 0.800 0.834

1000 0.934 0.936 0.878 0.912 0.870 0.944 0.952 0.848 0.890 0.918 0.858 0.864

coincides with ρ(1) in this case) was taken as either 0.4 or 0.8. To keep a generated INAR(2) pro-
cess comparable, we fixed the values ρ(1) ∈ {0.4, 0.8} and α2 ∈ {0.15, 0.3}, and we computed α1

from the relation ρ(1) = α1
1−α2

. The considered sample sizes are n ∈ {100, 250, 500, 1000}. For
each parametrization, 500 sample paths were simulated, and for each sample path, every boot-
strap loop ran through 500 replications. For cases where the stationary distribution was not
directly available, a pre-run of length 100 was used to approximately reach the steady state.

All computations were done using MATLAB. Technical details concerning the semiparametric
estimation procedure of Drost et al. (2009) (like starting values, numerical optimazation routine,
etc.) are summarized in Appendix C.1. When applying the circular block bootstrap, the block
length was selected using the MATLAB package opt block length REV dec07.m offered by
Andrew Patton3, which implements a corrected version of the automatic block-length selection
procedure by Politis and White (2004); Politis et al. (2009). For the Markov bootstrap, we used
the approach described in Section 3 of Basawa et al. (1990) to avoid a degenerate estimated
transition matrix as it could be caused by unobserved pairs or triples of states.

5.2. Discussion of Simulation Results.
This section summarizes our main findings from the simulation study. Since it is not possible
to print the complete tables, we shall illustrate our findings by only small excerpts, but the
complete tables are provided as a Supplementary File at XXX.

Let us first compare both types of INAR bootstraps. If the underlying process is Poisson
INAR(1), then, as expected, the parametric INAR(1) bootstrap (which also assumes such a
Poisson model) is usually superior to the semi-parametric one (see Tables 2 and 3 for illustration).
In fact, the asymptotic CIs do even better than the pINAR-bootstrap in this case. But if the true
data generating mechanism is a non-Poisson INAR(1) process (like the NB-INAR(1) process in
Tables 2 and 3), then both the pINAR-bootstrap as well as the asymptotic approach generally
become worse than the spINAR-bootstrap, i.e., these methods are not particularly robust to
violations of the assumed distribution. The coverages for pINAR and asymp degrade, since these
methods are not able to reproduce the increased variance of the innovations. The bootstrap CIs
according to CBB, AR and MB are robust w.r.t. the innovations’ distribution, with CBB and
MB converging only slowly to the nominal confidence level of 95 %. The AR bootstrap works
fine if computing a CI for the marginal mean µX (see Table 2), but it is not able to produce a

3http://public.econ.duke.edu/∼ap172/
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Table 4. INAR(1) process with µε = 1, α = 0.8; coverage for p0 ≈ 0.007 resp.
p0 ≈ 0.012.

Poi-INAR(1), i.e., σε
µε

= 1 NB-INAR(1) with σε
µε

= 1.5

n spINAR pINAR CBB AR MB asymp spINAR pINAR CBB AR MB asymp
100 0.524 0.604 0.324 0.750 0.324 0.970 0.596 0.484 0.432 0.718 0.432 0.872
250 0.708 0.762 0.666 0.912 0.670 0.956 0.750 0.578 0.584 0.896 0.586 0.828
500 0.806 0.842 0.676 0.990 0.676 0.962 0.880 0.692 0.778 0.982 0.772 0.820

1000 0.922 0.944 0.780 1.000 0.782 0.962 0.930 0.764 0.818 0.994 0.796 0.828

Table 5. INAR(2) process with µε = 1, α1 = 0.68, α2 = 0.15; coverage for µX ≈ 5.882.

falsely assuming p = 1 correctly assuming p = 2
n spINAR pINAR CBB AR MB asymp spINAR pINAR AR

100 0.758 0.776 0.770 0.818 0.746 0.796 0.834 0.860 0.850
250 0.786 0.798 0.842 0.848 0.810 0.808 0.884 0.896 0.884
500 0.810 0.822 0.888 0.886 0.836 0.822 0.936 0.940 0.940

1000 0.830 0.850 0.926 0.914 0.892 0.860 0.956 0.954 0.950

Table 6. INAR(2) process with µε = 1, α1 = 0.68, α2 = 0.15; coverage for σ2X ≈ 8.610.

falsely assuming p = 1 correctly assuming p = 2
n spINAR pINAR CBB AR MB asymp spINAR pINAR AR

100 0.612 0.598 0.634 0.666 0.564 0.658 0.720 0.754 0.682
250 0.680 0.670 0.774 0.782 0.712 0.696 0.822 0.844 0.798
500 0.658 0.640 0.806 0.774 0.706 0.662 0.872 0.894 0.816

1000 0.696 0.678 0.850 0.818 0.792 0.690 0.922 0.920 0.854

reliable CI, e.g., for the marginal variance σ2X (see Table 3). The latter is not surprising in view
of our earlier discussion in Section 3 (in particular, Lemma 3.1 and Example 3.1).

It is also plausible that the (continuous) AR bootstrap does not produce reliable confidence

intervals for the zero probability (or the related zero indices): for Îz.i., the coverages sometimes
even decrease with increasing sample size, while in other cases, the coverages tend towards 1
instead of the nominal level 0.95 (see Table 4 for illustration). At this point, it has to be
mentioned that CIs for zero statistics are sometimes not applicable (highlighted accordingly in
the complete tables); for a Poisson INAR(1) process with µε = 2.5, α = 0.8, for instance, the
true probability for observing a zero equals exp

(
− µε/(1− α)

)
≈ 3.73 ·10−6, i.e., one will hardly

ever observe a zero at all.

The MB bootstrap makes use of the INAR’s Markov property and is therefore a reasonable
candidate at the first glance. However, it severely suffers from the problem that some states (or
combinations thereof) are not observed in a given time series of finite length. Our simulations
show that this problem becomes increasingly severe with decreasing sample size n on the one
hand, and with increasing mean µε and dispersion ratio σε

µε
on the other hand (then it becomes

more and more probable to not observe all values between 0 and m := max {X1, . . . , Xn}). In
particular, while the Markov(1) bootstrap (with order p = 1, i.e., with (m + 1)m parameters)
works reasonably well at least in the Poisson case (σεµε = 1) with the small mean µε = 1, the

Markov(2) bootstrap (with (m + 1)2m parameters) showed extremely bad coverages; for this
reason, we do not consider the MB bootstrap anymore in the sequel.
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Table 7. NB-INAR(2) process with µε = 1, α1 = 0.68, α2 = 0.15, σε
µε

= 1.5.

Coverage for µX ≈ 5.882, Coverage for σ2X ≈ 10.031,
n spINAR pINAR CBB AR spINAR pINAR CBB AR

100 0.810 0.816 0.754 0.828 0.702 0.658 0.628 0.664
250 0.896 0.872 0.834 0.892 0.842 0.792 0.784 0.798
500 0.920 0.896 0.872 0.924 0.904 0.844 0.828 0.844

1000 0.944 0.920 0.896 0.922 0.910 0.864 0.872 0.874

Among the remaining schemes, the CBB bootstrap often produces the worst coverages, which
is reasonable since it is the only fully non-parametric procedure. The semi-parametric spINAR-
bootstrap, in contrast, which only assumes an INAR(p) structure but is non-parametric in the
innovations’ distribution, usually produces much better coverage rates. There is only one im-
portant exception: If the true data generating process is (Poisson) INAR(2), but the spINAR-,
pINAR- and AR-bootstraps (also the asymptotic CIs and the MB bootstrap) assume an autore-
gressive order p = 1, then the CBB bootstrap (where we do not need to specify p at all, but a
block length) shows the best coverages, while the before-mentioned approaches are not robust
against such a misspecified model order. This is illustrated by the results shown in Tables 5
(mean µX) and 6 (variance σ2X), where the autoregressive parameters α1, α2 are chosen such
that still ρ(1) = 0.8, as in the previous tables.

To continue with the INAR(2) case, let us also have a look at Table 7, where again coverages
for mean and variance are shown, but now for an NB-INAR(2) process (with correctly specified
p = 2). Comparing with the right parts in Tables 5 and 6, we see again that the coverages for
pINAR degrade, in analogy to the above discussion (Tables 2 and 3) for autoregressive order
p = 1, while spINAR is robust with respect to the marginal distribution.

5.3. Real Data Application.
Jung and Tremayne (2011) analyzed a time series (length n = 1632) of counts of so-called iceberg
orders concerning the Lufthansa stock traded in the XETRA system of Deutsche Börse. The time
series gives the number of iceberg orders (for the buy side) per 10 minutes for 32 trading days, and
the obtained counts range between 0 and 7. An analysis of the (partial) autocorrelation function
(Jung and Tremayne, 2011, Fig. 3) shows that a second-order autoregressive model seems to be
appropriate for describing these data (with ρ̂(1) ≈ 0.507 and ρ̂(2) ≈ 0.397). Sample mean and
variance of these data are given by about 0.778 and 0.819, respectively, i.e., the observations
are nearly equidispersed. The zero frequency equals about 0.463, which is rather close to the
corresponding Poisson value exp (−x) ≈ 0.460. Further descriptive statistics are provided by
Appendix C.4. There, also the obtained estimates are shown, when semi-parametrically fitting
an INAR(1) or INAR(2) model. Any bootstrap procedure was done with 10,000 replications.
The obtained 95 % confidence intervals are summarized in Appendix C.4.

Since we do not know the true model behind the iceberg counts, interpretations have to be done
with caution. Generally, the length of the CIs increases if the bootstrap procedures “spINAR”,
“pINAR” and “AR” were run based on a 2nd-order model instead of a 1st-order one, which is
plausible in view of the need for estimating the additional parameter α2. For a similar reason,
it is plausible that the “spINAR” intervals are usually larger than the “pINAR” intervals. For
p = 1, the “pINAR” intervals are nearly identical to the asymptotic ones, which is reasonable
since both approaches assume an underlying Poisson INAR(1) model. The intervals obtained
by “spINAR” with p = 2 are often close to those obtained by “CBB”. The “AR” intervals are
sometimes similar to the other intervals, e.g., for the mean x, but show strong deviations in
other cases. For example, the AR-CIs with p = 2 for γ̂(0), γ̂(1) are much more narrow than the
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corresponding spINAR- and pINAR-CIs. Some common conclusions, which are implied by any

of the respective CI approaches, are non-significant deviations of Îdisp from 1, and of Îz.i., Îz.m.

from 0, i.e., neither a significant degree of over-/underdispersion nor of zero inflation/deflation
is established for the observations.

6. Conclusion

Although the INAR(p) models share the autocorrelation structure with the AR(p) models, the
traditional AR bootstrap is generally not consistent if applied to an INAR process. Therefore,
we proposed a general INAR bootstrap scheme, which we proved to be consistent (under mild
conditions) for a class of functions of generalized means. In particular, this bootstrap consistency
applies to the considered parametric INAR bootstrap as well as to the novel semi-parametric
INAR bootstrap. The simulation study concerning bootstrap confidence intervals showed that
this semi-parametric INAR bootstrap is very promising for applications, as it showed a good
performance for the different model parametrizations and innovations’ distributions considered
for our analyses. Therefore, future research should investigate further applications of the novel
semi-parametric INAR bootstrap, e.g., for the bias correction of estimators, or for diagnostic
tests of the INAR model structure.
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processing of it to make it amenable to data analysis. We are also very grateful to Prof. Dr.
Robert Jung, University of Hohenheim, for his kind support to get access to the data. The
research of Carsten Jentsch was financially supported by the German Research Foundation
DFG via the Collaborative Research Center SFB 884 (Project B6) and the Baden-Württemberg-
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Appendix A. Proofs

A.1. Proof of Lemma 3.1.
Similar to the proof of Theorem 3.1 in Kreiß et al. (2011), we get that

√
nY

+ d→ N (0, Ṽ ), in prob.,

where Ṽ =
∑∞

h=−∞ γṼ (h) with γ
Ỹ

(h) = Cov(Ỹt+h, Ỹt). Here, (Ỹt, t ∈ Z) denotes the companion

process of (Y +
t , t ∈ Z) in the sense of Kreiß et al. (2011). That is,

Ỹt = α1Ỹt−1 + · · ·+ αpỸt−p + ũt, t ∈ Z, (24)

where (ũt) consists of i.i.d. random variables whose marginal distribution is identical to that of
ut with

ut := Xt − ν − α1Xt−1 − · · · − αpXt−p

= Xt − µX − α1(Xt−1 − µX)− · · · − αp(Xt−p − µX). (25)

Now, observe that the INAR(p) process (Xt, t ∈ Z) in (3) and its companion process (Ỹt, t ∈ Z)
in (24) share the same autocorrelation function, that is ρX(h) = ρ

Ỹ
(h), h ∈ Z. Hence, it remains

to show that γX(0) = γ
Ỹ

(0) holds to complete the proof. From the Yule-Walker equations and

causality of the companion process in (24) assured by αi ∈ (0, 1) with
∑p

i=1 αi < 1, we get

γ
Ỹ

(0) = α1γỸ (1) + · · ·+ αpγỸ (p) + σ2ũ, (26)

where σ2ũ = V ar(ũt). Finally, exploiting L(ũt) = L(ut), E(ut) = 0, V ar(ut) ∈ (0,∞) and (25),
we get

σ2ũ = V ar(ut) = γX(0)− α1γX(1)− · · · − αpγX(p)

leading together with (26) to γ
Ỹ

(0) = γX(0). �.

A.2. Proof of Example 3.1 (Sketch). For a (centered) linear process, whereXt =
∑∞

j=−∞ ψj et−j
with (et, t ∈ Z) being i.i.d. with E(e4t ) <∞ and

∑∞
j=−∞ |ψj | <∞, it is well known that

nV ar
(
γ̂(0)

)
→ 2

∞∑
h=−∞

γ2(h) +

(
E(e4t )(
E(e2t )

)2 − 3

)
γ(0)2, (27)

see Proposition 7.3.1 in Brockwell and Davis (1991), for instance. For a causal AR(1) process,
we have ψj = αj for j ≥ 0 and 0 otherwise, and it follows that γ(h) = αh γ(0) with

γ(0) = E(e2t )

∞∑
j=0

ψ2
j =

E(e2t )

1− α2
.

So (27) becomes

nV ar
(
γ̂(0)

)
→ 2γ2(0)

1 + α2

1− α2
+

E(e4t )− 3
(
E(e2t )

)2
(1− α2)2

. (28)

Now we adapt (28) to the AR(1) bootstrap, as it is applied to the DGP Poisson INAR(1). With
analogous arguments as in the proof of Theorem 3.1 in Kreiß et al. (2011) as well as Lemma 5.3 in

Bühlmann (1995, 1997), we have V ar+(e+t ) = E+
(
(e+t )2

) P→ E(e2t ) and E+
(
(e+t )4

) P→ E(e4t ),

where et = (Xt − µX)− α (Xt−1 − µX). So we can further evaluate E(e2t ) to obtain

E+
(
(e+t )2

)
→ (1 + α2) γX(0)− 2αγX(1) = (1− α2) γX(0),

using that γX(1) = αγX(0). To compute E+
(
(e+t )4

)
, let us introduce the notation

µ̄(s1, . . . , sr−1) := E
(
(Xt − µX)(Xt+s1 − µX) · · · (Xt+sr−1 − µX)

)
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for the joint central moments. Then we obtain

E+
(
(e+t )4

)
→ (1 + α4) µ̄(0, 0, 0)− 4α µ̄(1, 1, 1) + 6α2 µ̄(0, 1, 1)− 4α3 µ̄(0, 0, 1).

According to Proposition 1 in Weiß (2012), the Poisson INAR(1) process satisfies

µ̄(k, l,m) = µX · αm + µ2X · αm−l+k + 2µ2X · αm+l−k for 0 ≤ k ≤ l ≤ m,
while γ(0) = µX . So after some computations, we obtain the limit

E+
(
(e+t )4

)
− 3
(
E+

(
(e+t )2

) )2 → (1− 4α2 + 6α3 − 3α4)µX .

Altogether, using (28), it follows that

nV ar+
(
γ̃+(0)

)
→ 2µ2X

1 + α2

1− α2
+ µX

1− 4α2 + 6α3 − 3α4

(1− α2)2
,

so the proof of (14) is complete. �

A.3. Proof of Theorem 4.1.
The basic structure of the proof resembles the proof of Theorem 3.3 in Bühlmann (1997). For
more details, we refer to his technical report (Bühlmann, 1995) and to the proof of Theorem 4.2
in Meyer et al. (2017), where a corresponding result is proved for random fields. The main ar-
guments are the same here, but we have to address the non-linear and discrete-valued structure
of INAR processes caused by the randomness of the binomial thinning operations in the model
equations (3). In particular, this randomness inherent to the recursive autoregressive structure
of INAR processes requires different arguments. We will sketch the main steps of the proof in
the following.

First, let Y t = (Xt, . . . , Xt+m−1)
′ and Y ∗t = (X∗t , . . . , X

∗
t+m−1)

′ denote sub-sequences of the
original INAR process (Xt, t ∈ Z) and the corresponding bootstrap process (X∗t , t ∈ Z). The
general strategy to show bootstrap consistency for the statistic Tn is to neglect the function f
and to prove that

1
√
nm

nm∑
t=1

(
g(Y t)− E

(
g(Y t)

)) d−→ N (0,Σ), (29)

as well as

1
√
nm

nm∑
t=1

(
g(Y ∗t )− E∗

(
g(Y ∗t )

)) d−→ N (0,Σ) (30)

in probability, where

Σ :=

∞∑
h=−∞

Cov
(
g(Y h), g(Y 0)

)
.

Under the smoothness conditions in Assumption 1, it is straightforward to treat the function
f by using the Delta method such that it suffices to show (29) and (30). As the proof of (29)
follows by the same (and simpler) arguments, we shall execute only the proof of (30) in the
following.

From Lemma B.2, we know that the INAR bootstrap process has a corresponding INMA(∞)
representation

X∗t =

∞∑
k=0

u′([Â◦∗]tj=t−k+1)ε
∗
t−k.



BOOTSTRAPPING INAR MODELS 25

We truncate the INMA(∞) representation of X∗t and consider X
∗(q)
t , q ∈ N0, in the following,

where

X
∗(q)
t =

q∑
k=0

u′([Â◦∗]tj=t−k+1)ε
∗
t−k,

see also the proof of Lemma B.2. The random vectors Y
(q)
t and Y

(q)∗
t are defined in an analogous

way as Y t and Y ∗t above.

Since g is differentiable with hth derivative fulfilling a Lipschitz condition by Assumption 1,
a Taylor series expansion of order h and Minkowski’s inequality allows to show that

E∗
(
|gu(Y

(q)∗
t )|2+2/(h+1)

)
= OP (1) for all 1 ≤ u ≤ d (31)

holds, where we have to use that E∗(ε
∗2(h+2)
t ) = OP (1) from Assumption 3(ii) implies that

E∗(X
∗2(h+2)
t ) = OP (1) by Lemma B.2. For details, we refer to Meyer et al. (2015, proofs of

equation (7.5) and Lemma 7.2) and Bühlmann (1995, p.22).

To continue with the proof, note that the random variable X
∗(q)
t is composed of {ε∗t , . . . , ε∗t−q}

and {Â◦∗t , . . . , Â◦∗t−q+1}. As {ε∗t , t ∈ Z} and {Â◦∗t , t ∈ Z} are i.i.d. random variables and opera-

tions, respectively, we have that {X∗(q)t } is a q-dependent process. Using a truncation argument
for the function g as in Bühlmann (1995, p.21), this allows us to show

Cov∗

(
1
√
nm

nm∑
t=1

gu(Y
∗(q)
t ),

1
√
nm

nm∑
t=1

gv(Y
∗(q)
t )

)
=
(
Σ̃(q)

)
uv

+ oP (1) for all 1 ≤ u, v ≤ d,

where, for Ỹ
(q)

t = (X̃
(q)
t , . . . , X̃

(q)
t+m−1)

′,

Σ̃(q) :=

q+m−1∑
h=−(q+m−1)

Cov
(
g(Ỹ

(q)

h ), g(Ỹ
(q)

0 )
)
.

Here, (X̃
(q)
t , t ∈ Z) is the truncated INMA(q) process corresponding to the INMA(∞) represen-

tation of the companion INAR process (X̃t, t ∈ Z). This INMA(∞) representation is assured to
exist again by Lemma B.2. Now, the Cramér-Wold device is applied to show the convergence of

1
√
nm

nm∑
t=1

(
c′g(Y

∗(q)
t )− E∗(c′g(Y

∗(q)
t ))

)
for c = (c1, . . . , cd)

′ ∈ Rd, and we define `(x) = c′g(x) =
∑d

u=1 cugu(x) for x ∈ Rm. The

q-dependence of the bootstrap INAR process (X
∗(q)
t ) allows to use a big-block-small-block ar-

gument together with Lindeberg’s CLT for triangular arrays. Here, it remains to show the
Lindeberg condition, which can be proved using the same arguments as in Bühlmann (1995,
top of page 22). Here, to make use of the bound from Yokoyama (1980) for sums of strictly

stationary processes, note that the process (X
∗(q)
t ) satisfies this property for each fixed n ∈ N

and that, analogous to (31),

E∗
(
|`(Y (q)∗

t )|2+2/(h+1)
)

= OP (1)

holds, which altogether proves asymptotic normality and we get

1
√
nm

nm∑
t=1

(
g(Y

∗(q)
t )− E∗(g(Y

∗(q)
t ))

)
d−→ N (0, Σ̃(q)) (32)
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in probability. Using again the smoothness properties of g, a Taylor series expansion and
Minkowski’s inequality, one can show, as q →∞, that∣∣∣∣∣∣

q+m−1∑
h=−(q+m−1)

Cov
(
g(Ỹ

(q)

h ), g(Ỹ
(q)

0 )
)
−

q+m−1∑
h=−(q+m−1)

Cov
(
g(Ỹh), g(Ỹ0)

)∣∣∣∣∣∣ = o(1)

and ∣∣∣∣∣∣
∑

|h|>q+m−1

Cov
(
g(Ỹh), g(Ỹ0)

)∣∣∣∣∣∣ = o(1),

leading to

lim
q→∞

Σ̃(q) = Σ̃ = Σ,

where we used Assumption 4 to get the last identity. Now, to conclude the proof of (30),

it remains to show that truncating the INMA(∞) process X∗t to get X
∗(q)
t is negligible. By

exploiting the q-dependence of (X
∗(q)
t ), this can be done similarly to Bühlmann (1995, pages

23/24) using again a suitable Taylor series expansion of `(·); see also Meyer et al. (2017, proof
of Theorem 4.2). �

A.4. Proof of Corollary 4.1.
To make use of Theorem 4.1, the goal in the following is to show that the parametric Assumption
5 together with the parametric INAR bootstrap implementation implies Assumptions 3 and 4.

First of all, Yule-Walker estimates α̂1, . . . α̂p in Step 1 of the parametric INAR bootstrap scheme
are known to satisfy Assumption 3(i). To show part (ii), we get easily

d1(Ĝ,G) = d1(Gθ̂, Gθ0) =
∞∑
k=0

|G
θ̂
(k)−Gθ0(k)| = oP (1) (33)

from the
√
n-consistency

√
n(θ̂ − θ0) = OP (1) and the continuity of θ 7→ Gθ. Similarly, we

prove next that the convergence in probability of E∗G
θ̃
(ε∗st ) → E∗Gθ0

(ε∗st ) = EG(εst ) < ∞ for

s = 2(h+2) holds with h specified by Assumption 1. This shows in particular, that Assumption
3(ii) holds with Gc = G. Let ε, η > 0. Then, for all M ∈ N, we have

P
(
|E∗G

θ̃
(ε∗st )− E∗Gθ0

(ε∗st )| ≥ ε
)

≤ P

(
M∑
k=0

ks|G
θ̂
(k)−Gθ0(k)| ≥ ε/3

)
+ P

( ∞∑
k=M+1

ks|G
θ̂
(k)| ≥ ε/3

)

+P

( ∞∑
k=M+1

ks|Gθ0(k)| ≥ ε/3

)

≤ P

( ∞∑
k=0

|G
θ̂
(k)−Gθ0(k)| ≥ ε/(3M s)

)
+ P

( ∞∑
k=M+1

ks|G
θ̂
(k)| ≥ ε/3, |̂θ − θ0| < δ

)

+P
(
|θ̂ − θ0| ≥ δ

)
+ P

( ∞∑
k=M+1

ks|Gθ0(k)| ≥ ε/3

)
= I + II + III + IV.



BOOTSTRAPPING INAR MODELS 27

By Assumption 5, term II can be bounded by

P

(
sup

θ∈Bθ0,δ

∞∑
k=M+1

ks|Gθ(k)| ≥ ε/3, |θ̂ − θ0| < δ

)
≤ P

(
sup

θ∈Bθ0,δ

∞∑
k=M+1

ks|Gθ(k)| ≥ ε/3

)

Now, we can choose M large enough such that the latter term as well as term IV equal zero.

Further, from the smoothness condition in Assumption 5 and the
√
n-consistency of θ̂, we can

choose n0 = n0(M, ε, η, δ) large enough such that I ≤ η/2 and III ≤ η/2. Altogether this leads
to

P
(
|E∗G

θ̃
(ε∗st )− E∗Gθ0

(ε∗st )| ≥ ε
)
≤ η.

It remains to show that Assumption 4 holds. Following the truncation argument in Bühlmann
(1995, p.21), this is easily obtained from Lemma B.3. �

A.5. Proof of Corollary 4.2.
We make use of Theorem 4.1 and show that the semi-parametric INAR bootstrap implementa-
tion based on the estimation approach of Drost et al. (2009) implies Assumptions 3 and 4.

First of all, note that Theorem 2 in Drost et al. (2009) holds under the assumptions of this
corollary. Then, we get immediately from (22) that the coefficient estimates α̂1, . . . α̂p in Step 1
of the semi-parametric INAR bootstrap scheme satisfy Assumption 3(i). To show part (ii), we
get also immediately from (22) that

d1(Ĝ,G) = d1(Ĝsp, G) =

∞∑
k=0

|Ĝsp(k)−G(k)| = oP (1) (34)

holds. Similarly, we can prove next convergence in probability E∗
Ĝ

(ε∗st )→ E∗G(ε∗st ) = EG(εst ) <∞
for s ≤ 2(h + 2) with h specified by Assumption 1. This shows in particular, that Assumption

3(ii) holds with Gc = G. From Ĝ(k) = 0 for k > Mn := max {X1, . . . , Xn}, we get

|E∗
Ĝsp

(ε∗st )− E(εst )| = |
∞∑
k=0

ksĜ(k)−
∞∑
k=0

ksG(k)| = |
Mn∑
k=0

ksĜ(k)−
∞∑
k=0

ksG(k)|

≤
Mn∑
k=0

ks|Ĝ(k)−G(k)|+
∞∑

k=Mn+1

ksG(k)

≤ M s
n

(
Mn∑
k=0

|Ĝ(k)−G(k)|

)
+

∞∑
k=Mn+1

ksG(k)

=: A1 +A2.

If the support of {εt} is bounded, then A2 = 0 after one observation Xt attains a value greater or
equal to the largest possible innovation, which happens with probability tending to one. If the
support is unbounded, Mn →∞ such that A2 = o(1) as by Assumption 2, we have EG(εst ) <∞,
i.e., (ksG(k))k is summable. Concerning the first summand, we make use of (22). This leads to

A1 =
M s
n√
n

(
√
n

Mn∑
k=0

|Ĝ(k)−G(k)|

)
≤ M s

n√
n

(
√
n

∞∑
k=0

|Ĝ(k)−G(k)|

)
= OP

(
M s
n√
n

)
.
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Further, for all x, k ≥ 0, we get from the Markov inequality

P (M s
n/
√
n > x) = P (Mn > x1/sn1/(2s)) = P (∪ni=1{Xi > x1/sn1/(2s)})

≤
n∑
i=1

P (Xi > x1/sn1/(2s)) = nP (X1 > x1/sn1/(2s))

≤ n
E(Xk

1 )

xk/snk/(2s)
=
E(Xk

1 )

xk/s
n1−k/(2s),

and the last right-hand side converges to zero if k > 2s as well as E(Xk
1 ) <∞. As we can choose

k > 4(h + 2), this implies that M s
n/
√
n = oP (1) holds for s ≤ 2(h + 2), which concludes that

Assumption 3(ii) is fulfilled. Finally, it remains to show that Assumption 4 holds. Following the
truncation argument in Bühlmann (1995, p.21), this is easily obtained from Lemma B.3. �

Appendix B. Auxiliary results

Lemma B.1 (Basic properties of the INAR(p) process).
Under Assumption 2 with s = 1, the INAR(p) recursion (3) has a strictly stationary solution
(Xt, t ∈ Z) with E(Xt) = µε/(1 −

∑p
i=1 αi) < ∞. Precisely, by introducing the notation Xt :=

(Xt, . . . , Xt−p+1)
′, εt = (εt, 0, . . . , 0)′, u := (1, 0, . . . , 0)′ and

A =


α1 α2 · · · · · · αp
1 0 · · · · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0


and entry-wise binomial thinning ◦t, the INAR(p) recursion (3) can be represented as a p-
dimensional INAR(1) recursion

Xt = A ◦tXt−1 + εt, t ∈ Z (35)

such that Xt = u′Xt holds. The INAR(p) process can be represented as an INMA(∞) process,
that is,

Xt =
∞∑
k=0

u′([A◦]tj=t−k+1)εt−k, t ∈ Z, (36)

where we set [A◦]tj=s := A ◦t A ◦t−1 · · ·A◦s for s ≤ t and [A◦]tj=t+1 := 1 for the empty index

set. The convergence of (36) is in L1-sense and almost surely. If Assumption 2 holds for some
h ∈ N, i.e., E(εht ) <∞, it holds E(Xh

t ) <∞ and the convergence of (36) holds in Lh-sense.

Proof. By using the model equation (35) recursively q-times, we get

Xt =

q∑
k=0

([A◦]tj=t−k+1)εt−k + [A◦]tj=t−qXt−q+1 = X
(q)
t + [A◦]tj=t−qXt−q+1, (37)

where X
(q)
t =

∑q
k=0([A◦]

t
j=t−k+1)εt−k and X

(q)
t = u′X

(q)
t . As [A◦]tj=t−qXt−q+1 is always a

vector with non-negative entries, it suffices to show that

E(|Xt −X(q)
t |) ≤ E(|Xt −X(q)

t |1) = E(|[A◦]tj=t−qXt−q+1|1) = 1′pE([A◦]tj=t−qXt−q+1)→ 0(38)
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as q →∞ to prove the L1-convergence of (36), where 1p = (1, . . . , 1)′ denotes the p-dimensional
vector of ones and | · |1 denotes the 1-norm. By conditioning, we get with standard arguments

E
(
[A◦]tj=t−qXt−q+1

)
= E

(
E
(
A ◦t [A◦]t−1j=t−qXt−q+1

∣∣∣ [A◦]t−1j=t−qXt−q+1

))
=

∑
k∈Np0

E
(
A ◦t [A◦]t−1j=t−qXt−q+1

∣∣∣ [A◦]t−1j=t−qXt−q+1 = k
)
P
(

[A◦]t−1j=t−qXt−q+1 = k
)

=
∑
k∈Np0

E
(
A ◦t k

∣∣∣ [A◦]t−1j=t−qXt−q+1 = k
)
P
(

[A◦]t−1j=t−qXt−q+1 = k
)

=
∑
k∈Np0

E (A ◦t k)P
(

[A◦]t−1j=t−qXt−q+1 = k
)

(39)

=
∑
k∈Np0

AkP
(

[A◦]t−1j=t−qXt−q+1 = k
)

= AE
(

[A◦]t−1j=t−qXt−q+1

)
.

By successive application of the above, we get E
(

[A◦]tj=t−qXt−q+1

)
= Aq+1µX1p. As αi ∈

(0, 1) such that
∑p

i=1 αi < 1, all eigenvalues of A have modulus less than one; see, e.g., Latour

(1998), Lemma 2.2. Hence, we get µX1′pA
q+11p → 0 as q →∞ such that (38) holds. By similar

arguments as used above, we get also

E(Xt) = u′
∞∑
k=0

AkE(εt−k) = u′(Ip×p −A)−1uµε =
µε

1−
∑p

i=1 αi
.

To show almost sure convergence, let N ⊂ Ω be the set of ω ∈ Ω, where convergence of
∞∑
k=0

u′([A◦]tj=t−k+1(ω))εt−k(ω)

does not hold true and suppose P (N) > 0. As(
n∑
k=0

u′([A◦]tj=t−k+1(ω))εt−k(ω), n ∈ N

)
is a monotonely increasing sequence, we have

∞∑
k=0

u′([A◦]tj=t−k+1(ω))εt−k(ω) =∞

for all ω ∈ N . Further, on the one hand, we get by the monotone convergence theorem

lim
n→∞

E

(
n∑
k=0

u′([A◦]tj=t−k+1)εt−k

)
= E

(
lim
n→∞

n∑
k=0

u′([A◦]tj=t−k+1)εt−k

)

= E

( ∞∑
k=0

u′([A◦]tj=t−k+1)εt−k

)
.

On the other hand, we have

E

(
n∑
k=0

u′([A◦]tj=t−k+1)εt−k

)
=

n∑
k=0

u′AkE(εt−k) ≤ u′
∞∑
k=0

AkE(εt−k) <∞,
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but this is a contradiction, because

E

( ∞∑
k=0

u′([A◦]tj=t−k+1)εt−k

)
≥ E

(( ∞∑
k=0

u′([A◦]tj=t−k+1)εt−k

)
1(N)

)
=∞P (N) =∞.

This proves P (N) = 0 and consequently almost sure convergence of (36). In particular, (36) is
strictly stationary and solves the INAR(p) recursion (3). By plugging-in, this can be seen from

Xt −
p∑
i=1

αi ◦t Xt−i = u′ (Xt −A ◦tXt−1)

= u′

( ∞∑
k=0

([A◦]tj=t−k+1)εt−k −
∞∑
k=0

A ◦t ([A◦]t−1j=t−k)εt−1−k

)

= u′

( ∞∑
k=0

([A◦]tj=t−k+1)εt−k −
∞∑
k=1

([A◦]tj=t−k+1)εt−k

)
(40)

= u′εt

= εt.

Now, let E(εht ) < ∞ for some h ∈ N. To show finiteness of E(Xh
t ), we make use of the norm

notation ‖Xt‖h = (E(Xh
t ))1/h. By taking the norm on both sides of (3) and using Minkowski’s

inequality, we get

‖Xt‖h ≤
p∑
i=1

‖αi ◦t,i Xt−i‖h + ‖εt‖h. (41)

Note that (41) does always hold as all involved summands are non-negative. Now, we shall
compute ‖αi ◦t,i Xt−i‖h. We get by standard arguments

‖αi ◦t,i Xt−i‖hh = E((αi ◦t,i Xt−i)
h) =

∞∑
k=0

E
(

(αi ◦t,i k)h
)
P (Xt−i = k)

and as αi ◦t,i k ∼ Bin(k, αi), we can make use of equations (3.6) (note the typo there, where
pr/(n− r)! has to be replaced by pj/(n− j)!) and (1.55) in Johnson and Kotz (2005) to rewrite
the last expectation above. We get

E
(

(αi ◦t,i k)h
)

=

h∑
j=0

S(h, j)
k!

(k − j)!
αji =

h∑
j=0

S(h, j)

j∑
l=0

s(j, l)klαji , (42)

where S(h, j) and s(j, l) denote the Stirling numbers of second and first kind, respectively. The
right-hand side of (42) can be decomposed to get

h−1∑
j=0

S(h, j)

j∑
l=0

s(j, l)klαji +
h−1∑
l=0

s(h, l)klαhi + khαhi ,

where S(h, h) = s(h, h) = 1 has been used. Using strict stationarity, this leads to

‖αi ◦t,i Xt−i‖hh =
h−1∑
j=0

S(h, j)

j∑
l=0

s(j, l)‖Xt‖llα
j
i +

h−1∑
l=0

s(h, l)‖Xt‖llαhi + αhi ‖Xt‖hh

≤
h−1∑
j=0

|S(h, j)|
j∑
l=0

|s(j, l)|‖Xt‖llα
j
i +

h−1∑
l=0

|s(h, l)|‖Xt‖llαhi + αhi ‖Xt‖hh.
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By using the above to bound the right-hand side of (41), isolating ‖Xt‖hh on one side of the

inequality and using (a+ b)1/h ≤ a1/h + b1/h for a, b ≥ 0 and h ≥ 1, we get

‖Xt‖h ≤
1

1−
∑p

i=1 αi

 p∑
i=1

h−1∑
j=0

|S(h, j)|
j∑
l=0

|s(j, l)|‖Xt‖llα
j
i +

h−1∑
l=0

|s(h, l)|‖Xt‖llαhi

1/h

+ ‖εt‖h

 .

As the last right-hand side above is composed of a finite weighted sum of ‖εt‖h and ‖Xt‖jj ,
j = 0, . . . , h − 1 only, we get E(Xh

t ) < ∞ from E(εht ) < ∞ and using an induction-type argu-
ment.

Finally, to show the Lh-convergence, we use a similar argument. For notational convenience, we
prove this assertion only for p = 2, but the arguments transfer directly to p > 2 as well. First,
for all vectors v = (v1, v2)

′ ∈ R2, we have

‖v′(Xt −X(q)
t )‖hh = ‖v′[A◦]tj=t−qXt−q+1‖hh =

∑
k∈Np0

E
(

(v′A ◦t k)h
)
P
(

[A◦]t−1j=t−qXt−q+1 = k
)
.(43)

For the expectation on the last right-hand side, due to independence of the thinning operations,
we can write

E
(

(v′A ◦t k)h
)

= E
(

(v1(α1 ◦t,1 k1 + α2 ◦t,2 k2) + v2k1)
h
)

=
h∑
r=0

(
h

r

) r∑
u=0

(
r

u

)
vr1(v2k1)

h−rE ((α1 ◦t,1 k1)u)E
(
(α2 ◦t,2 k2)r−u

)
and by using the same trick as above, i.e., the representation of moments of binomial distributions
with the help of Stirling numbers, the last right-hand side can be expressed as

h∑
r=0

(
h

r

) r∑
u=0

(
r

u

)
vr1(v2k1)

h−r

(
u∑
a=0

S(u, a)

a∑
b=0

s(a, b)kb1α
a
1

)(
r−u∑
c=0

S(r − u, c)
c∑

d=0

s(c, d)kd2α
c
2

)
.

By extracting only the summand with a = b = u and c = d = r − u, we get

h∑
r=0

(
h

r

) r∑
u=0

(
r

u

)
vr1(v2)

h−r

 u∑
a=0

a∑
b=0

r−u∑
c=0

c∑
d=0

(a,b,c,d)6=(u,u,r−u,r−u)

S(u, a)s(a, b)S(r − u, c)s(c, d)kd2k
b+h−r
1 αa1α

c
2


+

h∑
r=0

(
h

r

) r∑
u=0

(
r

u

)
vr1(v2k1)

h−r(k1α1)
u(k2α2)

r−u

=
h∑
r=0

(
h

r

) r∑
u=0

(
r

u

)
vr1(v2)

h−r

 u∑
a=0

a∑
b=0

r−u∑
c=0

c∑
d=0

(a,b,c,d)6=(u,u,r−u,r−u)

S(u, a)s(a, b)S(r − u, c)s(c, d)kd2k
b+h−r
1 αa1α

c
2


+ (v′Ak)h



32 CARSTEN JENTSCH AND CHRISTIAN H. WEISS

Together with (43) and Hölder inequality with p = (b+h−r+d)/(b+h−r) and q = (b+h−r+d)/d
such that 1/p+ 1/q = 1, this leads to

‖v′[A◦]tj=t−qXt−q+1‖hh

=

h∑
r=0

(
h

r

) r∑
u=0

(
r

u

)
vr1(v2)

h−r
u∑
a=0

a∑
b=0

r−u∑
c=0

c∑
d=0

(a,b,c,d)6=(u,u,r−u,r−u)

|S(r − u, c)||s(c, d)||S(u, a)||s(a, b)|αa1αc2

×E
(

((1, 0)[A◦]t−1j=t−qXt−q+1)
b+h−r((0, 1)[A◦]t−1j=t−qXt−q+1)

d
)

+ E
(

(v′A[A◦]t−1j=t−qXt−q+1)
h
)

≤
h∑
r=0

(
h

r

) r∑
u=0

(
r

u

)
vr1(v2)

h−r
u∑
a=0

a∑
b=0

r−u∑
c=0

c∑
d=0

(a,b,c,d)6=(u,u,r−u,r−u)

|S(r − u, c)||s(c, d)||S(u, a)||s(a, b)|αa1αc2

×‖(1, 0)[A◦]t−1j=t−qXt−q+1‖b+h−rb+h−r+d‖(0, 1)[A◦]t−1j=t−qXt−q+1‖db+h−r+d + ‖v′A[A◦]t−1j=t−qXt−q+1‖hh.

As the latter inequality holds for arbitrary vector v ∈ R2, we can use it successively to get

‖u′[A◦]tj=t−qXt−q+1‖hh

≤
h∑
r=0

(
h

r

) r∑
u=0

(
r

u

) u∑
a=0

a∑
b=0

r−u∑
c=0

c∑
d=0

(a,b,c,d) 6=(u,u,r−u,r−u)

|S(r − u, c)||s(c, d)||S(u, a)||s(a, b)|αa1αc2

×
q∑

k=0

v1(k)rv2(k)h−r‖(1, 0)[A◦]t−k−1j=t−qXt−q+1‖b+h−rb+h−r+d‖(0, 1)[A◦]t−k−1j=t−qXt−q+1‖db+h−r+d

+‖u′Aq+1Xt−q+1‖hh,

where v1(k) = u′Ak(1, 0)′ and v2(k) = u′Ak(0, 1)′. By using (a+ b)1/h ≤ a1/h+ b1/h for a, b ≥ 0
and h ≥ 1, we have

‖u′[A◦]tj=t−qXt−q+1‖h

≤
h∑
r=0

r∑
u=0

((
h

r

)(
r

u

))1/h u∑
a=0

a∑
b=0

a6=u,b 6=u

r−u∑
c=0

c∑
d=0

c6=r−u,d 6=r−u

(|S(r − u, c)||s(c, d)||S(u, a)||s(a, b)|)1/hαa/h1 α
c/h
2

×
q∑

k=0

v1(k)r/hv2(k)(h−r)/h‖(1, 0)[A◦]t−k−1j=t−qXt−q+1‖(b+h−r)/hb+h−r+d ‖(0, 1)[A◦]t−k−1j=t−qXt−q+1‖d/hb+h−r+d

+‖u′Aq+1Xt−q+1‖h.

By Minkowski’s inequality and stationarity, ‖u′Aq+1Xt−q+1‖h can be bounded by

1′Aq+11‖Xt‖h → 0,

as q → ∞, because all the moduli of all eigenvalues of A are less than one. Further, by the
same reasoning, we get v1(k), v2(k) ≤ 1′Ak1 such that v1(k)r/hv2(k)(h−r)/h ≤ 1′Ak1 as well.

Hence, v1(k)r/hv2(k)(h−r)/h ∼ θk with θ ∈ (0, 1) is geometrically decreasing as k becomes large.
Furthermore, due to extracting the summand with a = b = u and c = d = r − u from the
sums in the first term on the last right-hand side above, 1 ≤ b+ h− r + d ≤ h− 1 does always
hold. Altogether, by using an induction-type argument, this first term above converges to zero
as q →∞ as it contains only moments up to order h− 1. This proves Lh-convergence. �
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Lemma B.2 (Basic properties of the bootstrap INAR(p) process).
Under Assumption 2 with s = 1 and Assumption 3 with s = 1, the INAR(p) bootstrap re-
cursion (15) has (with P -probability tending to one) a strictly stationary solution (X∗t , t ∈ Z)
with E∗(X∗t ) = µε∗/(1 −

∑p
i=1 α̂i) = OP (1). Precisely, the bootstrap INAR(p) process can be

represented as an INMA(∞) process, that is,

X∗t =
∞∑
k=0

u′([Â◦∗]tj=t−k+1)ε
∗
t−k, t ∈ Z, (44)

where X∗t = u′X∗t with X∗t , ε
∗
t , Â and [Â◦∗]tj=s defined similarly as in Lemma B.1, but based

on bootstrap quantities X∗t , ε∗t , estimators α̂1, . . . , α̂p and entry-wise bootstrap binomial thinning
operations ◦∗t . The convergence of (44) is in L1-sense and almost surely in P -probability, respec-
tively. If Assumption 3 holds for some h ∈ N, i.e., E∗(ε∗ht ) = OP (1), it holds E∗(X∗ht ) = OP (1)
and the convergence of (44) holds in Lh-sense in P -probability.

Proof. Similar to the proof of Lemma B.1, we get

E∗(|X∗t −X
∗(q)
t |) ≤ E∗(|X∗t −X

∗(q)
t |1) = µX∗1

′
pÂ

q+1
1p, (45)

where µX∗ = E∗(X∗t−q+1) = OP (1). As with P -probability tending to one, all eigenvalues of Â

have modulus less than one by Assumption 2 and Assumption 3(i), we get

µX∗1
′
pÂ

q+1
1p = oP (1),

which proves L1-convergence in probability of (44). By similar arguments, we get

E∗(X∗t ) = u′(Ip×p − Â)−1uµε∗ =
µ∗ε

1−
∑p

i=1 α̂i
.

Further, from Assumption 3(i), we get that for all ε > 0, there exists a sequence (δn, n ∈ N) with

δn ↘ 0 such that Pn(|Ân−A| < δn) > 1− ε for all n ∈ N. By denoting Ωε,n = {ω : |Ân−A| <
δn}, we get by the same arguments used in the proof of Lemma B.1 and from Assumption 3(i)
that for all sequences (ωn, n ∈ N) with ωn ∈ Ωε,n,

∞∑
k=0

u′([Ân(ωn)◦∗]tj=t−k+1)ε
∗
t−k

converges almost surely with respect to P ∗. This proves almost sure convergence in probability
of (44). To show that (44) solves the INAR(p) bootstrap recursion (15) is completely analogous
to the calculations in (40). �

Lemma B.3 (INAR Boostrap: weak convergence). Suppose that either the assumptions of

Corollary 4.1 or of Corollary 4.2 are satisfied. Then, we have X∗t
d→ Xt in probability as

n→∞, i.e., it holds F ∗(x) := P ∗(X∗t ≤ x)
P→ F (x) := P (Xt ≤ x) as n→∞ for all continuity

points x of F (·). Furthermore, for all t1, . . . , td ∈ Z, we have

(X∗t1 , . . . , X
∗
td

)′
d→ (Xt1 , . . . , Xtd)

′

in probability.

Proof. Let x be a continuity point of F (x) = P (Xt ≤ x). Then, we have to show that for all
ε, δ > 0 there is an n0 = n0(δ, ε) such that

P (|P ∗(X∗t ≤ x)− P (Xt ≤ x)| ≥ ε) < δ for all sample sizes n > n0.
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Let ε, δ > 0. From Lemma B.2, we get that the bootstrap INAR(p) process has an INMA(∞)
representation, which we can decompose for any q ∈ N0 such that

X∗t =

q∑
k=0

u′([Â◦∗]tj=t−k+1)ε
∗
t−k +

∞∑
k=q+1

u′([Â◦∗]tj=t−k+1)ε
∗
t−k = X

∗(q)
t + (X∗t −X

∗(q)
t ). (46)

Then, as X∗t ≥ X
∗(q)
t , we can write

P ∗(X∗t ≤ x) = P ∗(X
∗(q)
t ≤ x)− P ∗(x− (X∗t −X

∗(q)
t ) < X

∗(q)
t ≤ x)

with P ∗(x − (X∗t −X
∗(q)
t ) < X

∗(q)
t ≤ x) ≤ P ∗((X∗t −X

∗(q)
t ) ≥ 1) ≤ E∗(X∗t −X

∗(q)
t ). Further,

similar to (39), we get

E∗(X∗t −X
∗(q)
t ) = E∗(([Â◦∗]tj=t−q)ε∗t−q−1) + E∗(

∞∑
k=q+2

([Â◦∗]tj=t−k+1)ε
∗
t−k)

= E∗(([Â◦∗]tj=t−q)ε∗t−q−1) + ÂE∗(

∞∑
k=q+1

([Â◦∗]tj=t−k+1)ε
∗
t−k)

= E∗(([Â◦∗]tj=t−q)ε∗t−q−1) + ÂE∗(X∗t −X
∗(q)
t )

leading to

E∗(X∗t −X
∗(q)
t ) = u′E∗(X∗t −X

∗(q)
t ) = u′(I− Â)−1E∗(([Â◦∗]tj=t−q)ε∗t−q−1)

= µ∗εu
′(I− Â)−1Â

q+1
u

Analogously, we have

P (Xt ≤ x) = P (X
(q)
t ≤ x)− P (x− (Xt −X(q)

t ) < X
(q)
t ≤ x)

with P (x− (Xt−X(q)
t ) < X

(q)
t ≤ x) ≤ E(Xt−X(q)

t ) and E(Xt−X(q)
t ) = µεu

′(I−A)−1Aq+1u.
Altogether, this leads to

P (|P ∗(X∗t ≤ x)− P (Xt ≤ x)| ≥ ε)

≤ P
(∣∣∣P ∗(X∗(q)t ≤ x)− P (X

(q)
t ≤ x)

∣∣∣ ≥ ε

3

)
+ P

(
|µ∗εu′(I− Â)−1Â

q+1
u| ≥ ε

3

)
+P

(
|µεu′(I−A)−1Aq+1u| ≥ ε

3

)
=: I + II + III.

Now, note that Â
P→ A and µ∗ε → µε < ∞ hold in the parametric setup of Corollary 4.1 and

in the semi-parametric setup of Corollary 4.2. On the one hand, as all eigenvalues of A have
modulus less than one, we can choose κ > 0 sufficiently small such that all (p × p) matrices B
with ‖B−A‖ ≤ κ have all eigenvalues less than and uniformly away from one. In particular, this

assures existence of (I− Â)−1 in the above with probability tending to one. On the other hand,
we can choose M <∞ such that P (µ∗ε > M) < δ. Considering term II first, for sufficiently large
n = n(κ,M) and sufficiently large q = q(ε, δ, κ,M), this leads to

II ≤ P
(
|µ∗εu′(I− Â)−1Â

q+1
u| ≥ ε

3
, ‖Â−A‖ ≤ κ, µ∗ε ≤M

)
+ P

(
‖Â−A‖ > κ

)
+ P (µ∗ε > M)

< P
(
|µ∗εu′(I− Â)−1Â

q+1
u| ≥ ε

3
, ‖Â−A‖ ≤ κ, µ∗ε ≤M

)
+ 2δ

< 3δ.

As µεu
′(I −A)−1Aq+1u is deterministic, we can find also q large enough such that |µεu′(I −

A)−1Aq+1u| < ε/3 holds leading to III = 0. Hence, it remains to treat I. As X
∗(q)
t and X

(q)
t are
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both finite sums of independent summands (see, e.g., (46)), by Cramér-Wold device, it remains
to show that for all fixed k ∈ N0 that

u′[Â◦∗]tj=t−k+1ε
∗
t−k+1

d→ u′[A◦]tj=t−k+1εt−k+1

in probability, to complete the proof. That is, we have to show that for all continuity points of
P (u′[A◦]tj=t−k+1εt−k+1 ≤ ·), we have

P ∗(u′[Â◦∗]tj=t−k+1ε
∗
t−k+1 ≤ x)

P→ P (u′[A◦]tj=t−k+1εt−k+1 ≤ x).

Note here that the continuity points of P (Xt ≤ ·) and P (u′[A◦]tj=t−k+1εt−k+1 ≤ ·), k ∈ N0 sim-

ply coincide as all corresponding random variables have range N0. Conditioning on ε∗t−k+1 (recall
that ε∗t−k+1 = (ε∗t−k+1, 0, . . . , 0)′) and independence of thinning operations and innovations leads
to

P ∗(u′[Â◦∗]tj=t−k+1ε
∗
t−k+1 ≤ x) =

∑
s∈N0

P ∗(u′[Â◦∗]tj=t−k+1(su) ≤ x)P ∗(ε∗t−k+1 = s)

with an analogous representation also for P (u′[A◦]tj=t−k+1εt−k+1 ≤ x). Now, using both repre-
sentations, for any K ∈ N0, we get

|P ∗(u′[Â◦∗]tj=t−k+1ε
∗
t−k+1 ≤ x)− P (u′[A◦]tj=t−k+1εt−k+1 ≤ x)|

≤
∑
s∈N0

P ∗(u′[Â◦∗]tj=t−k+1(su) ≤ x)|P ∗(ε∗t−k+1 = s)− P (εt−k+1 = s)|

+
∑
s∈N0

s≤K

|P ∗(u′[Â◦∗]tj=t−k+1(su) ≤ x)− P (u′[A◦]tj=t−k+1(su) ≤ x)|P (εt−k+1 = s)

+
∑
s∈N0

s>K

|P ∗(u′[Â◦∗]tj=t−k+1(su) ≤ x)− P (u′[A◦]tj=t−k+1(su) ≤ x)|P (εt−k+1 = s).

Now, for fixed δ > 0, the aim is to show that we can choose K = K(δ) and n = n(K, δ) large
enough such that the last right-hand side above is smaller than δ. The first term above can be
bounded by

∑
s∈N0
|P ∗(ε∗t−k+1 = s) − P (εt−k+1 = s)|, which equals

∑
s∈N0
|G
θ̂
(s) − Gθ(s)| =

oP (1) in the parametric setup and
∑

s∈N0
|Ĝsp(s)−G(s)| = oP (1) in the semi-parametric setup.

The third term can be bounded by
∑

s∈N0,s>K
P (εt−k+1 = s) which becomes arbitrary small for

K chosen sufficiently large in the parametric and semi-parametric setup. For all fixed K ∈ N0,
the second term above is a finite sum and it remains to show that

P ∗(u′[Â◦∗]tj=t−k+1(su) ≤ x)
P→ P (u′[A◦]tj=t−k+1(su) ≤ x)

for all fixed k ∈ N and s ∈ N0. The latter can be shown by successively conditioning and
decomposing using similar arguments as above.

Finally, the joint convergence can be shown by the Cramér-Wold device and by following the
lines of the proof above. �

Appendix C. Further Details about Simulations and Data Example

C.1. Semiparametric Estimation Procedure. Given a time series x1, . . . , xn, the estimation
procedure of Drost et al. (2009) computes a distribution with support in

{
0, . . . ,max {x1, . . . , xn}

}
for the innovations, and values for the autoregressive parameters α1, . . . , αp. As initial val-
ues for the αi, Drost et al. (2009) suggest to use the corresponding Yule-Walker estimates
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α̂1;YW, . . . , α̂p;YW as obtained from the sample autocorrelation function. As the initial distribu-
tion, Drost et al. (2009) recommend the use of the uniform distribution on

{
0, . . . ,max {x1, . . . , xn}

}
,

which, however, will usually deviate heavily from the true distribution of the ε. We experimented
with two other non-parametric initializations:

• Poisson approximation: use the Poisson distribution with mean x (1 − α̂1;YW − . . . −
α̂p;YW), truncate it to

{
0, . . . ,max {x1, . . . , xn}

}
.

• ε-identification: Given the values of xt; xt−1, . . . , xt−p for p + 1 ≤ t ≤ n, consider the
probability ft(i) := P (Xt = xt | Xt−1 = xt−1, . . . , Xt−p = xt−p, εt = i) as a function of i
(by using α̂1;YW, . . . , α̂p;YW instead of the true autoregressive parameters), and define
ε̂t := arg maxi ft(i). Use the frequency distribution of ε̂p+1, . . . , ε̂n.

We compared both initialization approaches via simulations and realized nearly no difference in
the ML estimates resulting from the approach by Drost et al. (2009). Therefore, we finally used
the second one for initialization. For autoregressive order p = 1, we immediately obtain that

P (Xt = k | Xt−1 = l1, εt = i) =

(
l1

k − i

)
αk−i (1− α)l−k+i (47)

for max {0, k − l1} ≤ i ≤ k, and 0 otherwise. Similarly, for p = 2, we have

P (Xt = k | Xt−1 = l1, Xt−2 = l2, εt = i)

=

min {l1,k−i}∑
r=max {0,k−i−l2}

(
l1
r

)
αr1 (1− α1)

l1−r ·
(

l2
k − i− r

)
αk−i−r2 (1− α2)

l2−k+i+r (48)

for max {0, k − l1 − l2} ≤ i ≤ k, and 0 otherwise. Note that both distributions (47) and (48)
might become one-point distributions (i.e., support of size 1), which implies that εt is identified
exactly. This happens, for instance, if l1 = . . . = lp = 0, i.e., if the last p observations were
equal 0, also see Section 2.1.

For numerical computation of the estimates, we used MATLAB’s fmincon function (constrained
nonlinear optimization, algorithm active-set), where the constraints were chosen such that all
parameter restrictions of a stationary INAR(p) model are satisfied (the boxes for each estimate
were bounded by 10−6 and 1 − 10−6). Remember that the coefficients α1, . . . , αp > 0 of an
INAR(p) model have to satisfy the condition

∑p
j=1 αj < 1 to be strictly stationary.

C.2. Centering Schemes. In the sequel, we state briefly the different centering schemes for
the semi-parametric INAR-Bootstrap (spINAR-Bootstrap), the parametric (Poisson) INAR-
Bootstrap (pINAR-Bootstrap), the Circular Block Bootstrap (CBB), the AR-Bootstrap (AR-

Bootstrap), and the Markov Bootstrap (MB). We provide expressions for centering X
∗
, γ̂∗(0),

γ̂∗(1) and p̂∗0; any of the remaining estimators is a function in X, γ̂(0), γ̂(1), p̂0, so we applied

the corresponding function to cent
(
X
∗)
, . . . to obtain an appropriate centering scheme.

spINAR. The semiparametric estimation approach leads to the estimated (thinning) INAR co-
efficients α̂1;sp, . . . , α̂p; sp and innovations’ probabilities ĝsp(k) for k = 0, . . . ,max {X1, . . . , Xn}.
Using the latter, we compute µ̂ε; sp :=

∑max {X1,...,Xn}
k=0 k · ĝsp(k) and σ̂2ε; sp :=

∑max {X1,...,Xn}
k=0 k2 ·

ĝsp(k)−µ̂2ε; sp. The probability generating function equals p̂gfε; sp(z) :=
∑max {X1,...,Xn}

k=0 zk ·ĝsp(k).
Centering of . . .

• X∗: µ̂ε; sp
/

(1− α̂1;sp − . . .− α̂p; sp).
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• γ̂(0)∗: cent
(
X
∗) · α̂1;sp +

σ̂2
ε; sp

µ̂ε; sp

1 + α̂1;sp
for p = 1, and for p = 2:

cent
(
X
∗) · 1− α̂2

1;sp − α̂2
2;sp +

( σ̂2
ε; sp

µ̂ε; sp
− 1
)

(1− α̂1;sp − α̂2;sp)

1− α̂2
1;sp − α̂2

2;sp − 2 α̂2
1;sp

α̂2;sp

1−α̂2;sp

.

• γ̂(1)∗: cent
(
γ̂(0)∗

)
· (1− 1

n) α̂1;sp for p = 1, and cent
(
γ̂(0)∗

)
· (1− 1

n)
α̂1;sp

1−α̂2;sp
for p = 2.

• p̂∗0: For p = 1, we utilize a result in Jazi et al. (2012) to compute cent
(
p̂∗0
)

:=
∏M
j=0 p̂gfε; sp(1−

α̂j1;sp) =: a(M), where M is the smallest value such that
∣∣a(M)− a(M − 1)

∣∣ ≤ 10−6.

For p = 2, we ran an additional bootstrap loop and chose cent
(
p̂∗0
)

as the mean zero
frequency.

Note that (for simplicity) the centering for the sample variance and sample autocovariance
is based on computations for γ̃∗(0) = 1

n

∑n
t=1(X

∗
t − E∗(X∗t ))2 and γ̃∗(1) = 1

n

∑n
t=1(X

∗
t+1 −

E∗(X∗t+1))(X
∗
t − E∗(X∗t )) instead of γ̂∗(0) and γ̂∗(1), respectively.

pINAR. The centerings for the pINAR bootstrap make use of Yule-Walker estimators X for the
marginal mean µX and α̂1;YW, . . . , α̂p;YW (computed from the sample autocorrelation function
according to the Yule-Walker equations of the INAR(p) model). Centering of . . .

• X∗: X.
• γ̂(0)∗: Because of the Poisson assumption concerning the innovations (equidispersion!),

we choose again X for p = 1, and for p = 2:

cent
(
X
∗) · 1− α̂2

1;YW − α̂2
2;YW

1− α̂2
1;YW − α̂2

2;YW − 2 α̂2
1;YW

α̂2;YW

1−α̂2;YW

.

• γ̂(1)∗: cent
(
γ̂(0)∗

)
· (1− 1

n) α̂1;YW for p = 1, and cent
(
γ̂(0)∗

)
· (1− 1

n)
α̂1;YW

1−α̂2;YW
for p = 2.

• p̂∗0: Because of the Poisson assumption, we choose exp (−X) for p = 1, while we ran an
additional bootstrap loop for p = 2.

CBB. Centering of . . .

• X∗: X.
• γ̂(0)∗: γ̂(0).

• γ̂(1)∗:
(
1− dn/ben

)
1
n

∑n
t=1(Xt+1 −X)(Xt −X), where we set Xn+1 = X1, and where b

is the block length.
• p̂∗0: p̂0.

AR. Let ε̃t denote the centered AR residuals, see Section 3, and let σ̂2ε; AR := 1
n−p

∑n
t=p+1 ε̃

2
t .

Since for a continuous AR model, the probability of observing a zero equals 0, we treated the
frequency of the event “Xt < 0.5” as the “zero frequency”. Centering of . . .

• X∗: X.

• γ̂(0)∗:
σ̂2ε; AR

1− α̂2
1;YW

for p = 1, and
σ̂2ε; AR

1− α̂2
1;YW − α̂2

2;YW − 2 α̂2
1;YW

α̂2;YW

1−α̂2;YW

for p = 2.

• γ̂(1)∗: cent
(
γ̂(0)∗

)
· (1− 1

n) α̂1;YW for p = 1, and cent
(
γ̂(0)∗

)
· (1− 1

n)
α̂1;YW

1−α̂2;YW
for p = 2.

• p̂∗0: We ran an additional bootstrap loop and chose cent
(
p̂∗0
)

as the mean “zero fre-
quency”.
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MB. Centering of . . .

• X∗: X.
• γ̂(0)∗: γ̂(0).

• γ̂(1)∗: cent
(
γ̂(0)∗

)
· (1− 1

n) α̂1;YW for p = 1, and cent
(
γ̂(0)∗

)
· (1− 1

n)
α̂1;YW

1−α̂2;YW
for p = 2.

• p̂∗0: p̂0.

C.3. Asymptotic Approximations for p = 1. If the considered estimators are applied to
a Poisson INAR(1) process, these estimators are asymptotically unbiased and normally dis-
tributed, with the asymptotic variances (inflated by n) given by

• X: µX
1+α
1−α (Weiß and Schweer, 2016);

• γ̂(0): 2µ2X
1+α2

1−α2 + µX
1+α
1−α (Weiß and Schweer, 2016);

• Îdisp: 2 1+α2

1−α2 (Schweer and Weiß, 2014);

• γ̂(1): µ2X
1+4α2−α4

1−α2 + µX
α(1+α)
1−α (Weiß and Schweer, 2016);

• ρ̂(1): 1− α2 + α(1−α)
µX

(Weiß and Schweer, 2016);

• X
(
1− ρ̂(1)

)
: µε + 1+α

1−α µ
2
ε (Weiß and Schweer, 2016);

• p̂0: e−µX (1− e−µX ) + 2e−2µX
∑∞

j=1
µjX
j!

αj

1−αj (Weiß et al., 2016);

• Îz.i.:
eµX−1
µ2X

− 1
µX

1+α
1−α + 2

µ2X

∑∞
j=1

µjX
j!

αj

1−αj (Weiß et al., 2016);

• Îz.m.: eµX − 1 − µX
1+α
1−α + 2

∑∞
j=1

µjX
j!

αj

1−αj (Weiß et al., 2016).

C.4. Additional Results for Data Example. The time series of iceberg counts from Sec-
tion 5.3 is of length n = 1632 and consists of values between 0 and 7. The sample estimates for
the considered statistics are

x ≈ 0.778 γ̂(0) ≈ 0.819 Îdisp ≈ 1.053 γ̂(1) ≈ 0.415 ρ̂(1) ≈ 0.507

x
(
1− ρ̂(1)

)
≈ 0.383 p̂0 ≈ 0.463 Îz.i. ≈ 8.655 · 10−3 Îz.m. ≈ 6.752 · 10−3.

If using the semi-parametric approach of Drost et al. (2009) to fit an INAR(1) or INAR(2)
model, with the initialization approach described in Appendix C.1, one obtains

p α̂1;sp α̂2;sp ĝsp(0) ĝsp(1) ĝsp(2) ĝsp(3) ĝsp(4) ĝsp(5) ĝsp(6) ĝsp(7) µ̂ε; sp σ̂2ε; sp
1 0.528 0.698 0.250 0.043 0.005 0.002 0.001 0.000 0.000 0.368 0.405
2 0.474 0.162 0.760 0.205 0.029 0.003 0.003 0.000 0.000 0.000 0.283 0.313

These estimates were used for the respective semi-parametric INAR(p) bootstrap.

The parametric INAR(p) bootstrap (Poisson innovations), and also the AR(p) bootstrap, used
the following YW estimates: α̂1;YW ≈ 0.507, µ̂ε; YW ≈ 0.383 for p = 1, and α̂1;YW ≈ 0.412,
α̂2;YW ≈ 0.188, µ̂ε; YW ≈ 0.311 for p = 2. As a result, the parametrically-fitted Poisson INAR
models have slightly different properties than the semi-parametric ones as tabulated before:

p α̂1;p α̂2;p ĝp(0) ĝp(1) ĝp(2) ĝp(3) ĝp(4) ĝp(5) ĝp(6) ĝp(7) µ̂ε; p σ̂2ε; p
1 0.507 0.682 0.261 0.050 0.006 0.001 0.000 0.000 0.000 0.383 0.383
2 0.412 0.188 0.733 0.228 0.035 0.004 0.000 0.000 0.000 0.000 0.311 0.311

The circular block bootstrap used block length 33.
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Any bootstrap procedure was done with 10,000 replications. The following 95 % confidence
intervals were obtained:

p spINAR pINAR CBB AR asymp
x 1 0.699 0.855 0.703 0.849 0.678 0.877 0.700 0.851 0.703 0.852

2 0.670 0.878 0.683 0.871 0.682 0.868
γ̂(0) 1 0.687 0.939 0.716 0.916 0.657 0.968 0.709 0.921 0.717 0.921

2 0.625 0.990 0.661 0.961 0.706 0.922

Îdisp 1 0.933 1.162 0.962 1.139 0.913 1.186 0.915 1.179 0.964 1.142
2 0.906 1.185 0.930 1.166 0.899 1.194

γ̂(1) 1 0.314 0.505 0.333 0.491 0.291 0.524 0.337 0.489 0.334 0.496
2 0.257 0.551 0.286 0.527 0.329 0.496

ρ̂(1) 1 0.459 0.559 0.459 0.560 0.438 0.585 0.467 0.551 0.457 0.557
2 0.451 0.571 0.448 0.577 0.460 0.560

x
(
1− ρ̂(1)

)
1 0.335 0.426 0.337 0.424 0.308 0.450 0.331 0.430 0.339 0.428
2 0.329 0.432 0.325 0.433 0.318 0.439

p̂0 1 0.423 0.502 0.425 0.501 0.410 0.514 0.426 0.499 0.424 0.501
2 0.416 0.510 0.419 0.506 0.418 0.508

Îz.i. 1 −0.043 0.063 −0.040 0.059 −0.054 0.076 −0.043 0.060 −0.041 0.058
2 −0.044 0.067 −0.042 0.064 −0.049 0.069

Îz.m. 1 −0.035 0.049 −0.032 0.045 −0.044 0.059 −0.029 0.042 −0.032 0.045
2 −0.043 0.055 −0.038 0.050 −0.034 0.048
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