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Abstract

Regression analysis aims at the revelation of interdependencies and
causalities between variables observed in the population. That is, a struc-
ture between regressors and regressants that causes the realization of the
finite population is assumed, the so-called data generating process or a
superpopulation model. When data points occurr in an inherent cluster-
ing, mixed models are a natural modelling approach.
Given the finite population realization, a consistent estimation of the su-
perpopulation parameters is possible. However, regression analysis sel-
domly takes place at the level of the finite population. Rather, a survey
is conducted on the population and the analyst has to use the sample for
regression modeling. Under a correct regression setup, derived estima-
tors are consistent given the sample is non-informative. Though, these
conditions are hard to verify, especially when the survey design is com-
plex, employing clustering and unequal selection probabilities. The use of
sampling weights may reduce a consequent estimation bias as they could
contain additional information about the sampling process conditional on
which the data generating process of the sampled units becomes closer to
the one of the whole population.
Common estimation procedures that allow for survey weights in general-
ized linear mixed models require one unique survey-weight per sampling
stage which are consequently nested and correspond to the random ef-
fects analyzed in the regression. However, the data inherent clustering
(e.g. students in classes in schools) possibly does not correspond to the
sampling stages (e.g. blocks of houses where the students’ families live).
Or the analyst has no access to the detailed sample design due to dis-
closure risk or the selection of units follows an unequal sampling prob-
ability scheme. Or the survey weights vary within clusters due to cali-
bration. Therefore, we propose an estimation procedure that allows for
unit-specific survey weights: The Monte-Carlo EM (MCEM) algorithm
whose complete-data log-likelihood leads to a single-level modeling prob-
lem that allows a unit-specific weighting. In the E-step, the random effects
are considered to be missing data. The expected (weighted) log-likelihood
is approximated via Monte-Carlo integration and maximized with respect
to the regression parameters. The method’s performance is evaluated in
a model-based simulation study with finite populations.
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1 Introduction

Research institutes often conduct surveys using a complex survey design, either
due to costs or due to optimality considering the precision of total estimators.
This, on the other hand, complicates regression analysis using these surveys be-
cause the sampling might be informative. Further, there remains the question
about the correctness of the modelling. In both cases, survey weights can con-
tain the additional information conditional on which the sample’s distribution
corresponds to that of the finite population and thus allows conclusions about
the superpopulation. Therefore, it may be useful to include survey weights in
the analysis in order to get less biased regression parameters. An overview about
the use of survey weights in regression analysis in general is given in [15].
A common regression setup is that of Generalized Linear Mixed Models (GLMMs).
The maximum-likelihood (ML) estimators require to integrate on the random
effects assumed to be in the regression model but not explicitely observed in
the sample data. These integration turns survey-weighting problematic when
the sampling stages are not supposed to correspond to the random effects struc-
ture. For example take a survey with clusters on house blocks. It is probable
that children of the same block go to the same school. When an analysis about
school performance is conducted, however, random effects on schools and classes
are sensible which do not perfectly cover house blocks. Furthermore, weight
calibration to known population totals by the survey designer or nonresponse
adjustments could return unit-specific survey weights even if the regression set-
up reflected a clustered survey designs with equal selection probabilities within
clusters.
For nested random effects, there is the chance to do a pseudo-likelihood es-
timation where each integral is weighted with respect to its inverse inclusion
probability [18]. In the linear mixed model case (LMM), this approach is equiv-
alent to iterative generalized least squares [16]. Besides the inconvenients listed
above, the survey weights enter the likelihood as exponent and therefore their
scaling is relevant for the estimation process [18]. In order to avoid this scaling
problem, it is more convenient to consider the log-likelihood. Taking the log-
arithm, the survey weights are simple prefactors whose scale does not matter.
In that sense, our estimation approach is similar to the estimating equations
(that are often the score function) proposed in [20], although the cited authors
consider exclusively the LMM scenario and restrict themselves to the two-stage
cluster sampling scheme which simplifies formulas. However, we chose to keep
the random effects structure (nested and/or crossed) as flexible as possible.
Additionally, we want a single survey-weight per unit to be sufficient for the re-
gression analysis rather to require the data user to have access to the inclusion
probabilities of every stage of the survey design.
Given a realization of the random effects, population observations are considered
to be independent, which turns the model under the sample to an estimation
problem with missing (unobserved) data. Once we manage to predict the ran-
dom effects, the mixed model reduces to a single-level regression where survey
weights are easily implemented. Having the regression parameters, random ef-
fect predictions can be updated, leading to an iterative procedure well known as
Expectation Maximization (EM) algorithm [5]. However, the expected (survey-
weighted) log-likelihood can be difficult or even impossible to derive analytically
when the dependent variable is binary or count data; for this reason we approx-
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imate it through Monte-Carlo (MC) integration.
Section 2 introduces the estimation algorithm, discusses briefly the estimators
consistency and highlights the problematic of the computational implementa-
tion. Section 3 handles briefly the variance estimation of the estimated re-
gression parameters. Afterwards, a simulation study demonstrates the possible
gains of the survey-weighted GLMM. The final section discusses possible further
research and concludes.

2 Estimation Procedure

2.1 Population Loglikelihood

Let U , |U| = N denote the universe from which sample S, |S| = n is drawn
under a complex survey design. This means that we employ a frequentist
approach where each unit indexed i in the population, i ∈ U , i = 1, . . . , N ,
has a positive probability of being sampled. This inclusion probability is de-
noted by πi := P (δS(i) = 1), where δS(i) is the ith coordinate projection
from an adequate probability space (Ω,A, P ) to

(
{0, 1}N ,P

(
{0, 1}N

))
and

IS = (δS(1), . . . , δS(N))
T

. The N × 1 vector w is the vector of survey weights,
which contain information on the sampling design, w = w(P ). Usually, survey
weight wi is the inverse inclusion probabilty. In the aftermath of sampling, the
weights may be adapted to non-response and/or calibrated to known population
values of auxiliary variables.
Assume that the finite population is a realization of the following superpopula-
tion model, that is, we employ the term superpopulation in the sense of [13], [4]
and [20]. In other words, the finite population is a realization of a Generalized
Linear Mixed Model (GLMM):

ηi = xTi β + zTi γ (2.1)

µi = g(ηi) (2.2)

Yi ∼ F (µi,ϕ) (2.3)

G ∼ N(0,Σ) (2.4)

where xi and zi are non-random explanatory variables. While xi is linked to
the linear prediction ηi through a fixed effects vector β, zi interacts with the
multivariate gaussian random effects realization G = γ. F is a distribution from
the exponential family with corresponding density f , scale parameter ϕ and
inverse link function g. Because ϕ is only a scaling parameter whose estimation
is no problem and can be separately done [22], we omit it in the following
formulas. As Σ is a positive definite symmetric matrix, let σ denote the vector
of distinct matrix elements in it, Σ = Σ(σ). Further, for brevity, write ψT :=
(βT ,σT )T . When assuming the canonical link, log f has the following shape:

log f(yi|γ,ψ) = yiηi − a(ηi) + b(yi) (2.5)

with ∂a(ηi)
∂ηi

= µi. Note that the term b(yi) does not depend on the parameter
vector ψ and can be ignored later on for optimization. To conclude the notation,
take xi and zi as ith row of matrices X and Z. Consequently, X ∈ RN×p and
Z ∈ RN×q.
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This leads to the finite population likelihood

L(y, X, Z,ψ,γ) =
∏
i∈U

f(yi,xi, zi,γ,ψ)

∝
∏
i∈U

f(yi|xi, zi,γ,ψ) · φ(γ|σ), (2.6)

where φ(·|σ) is the density of the mulitvariate normal N(0,Σ). Due to bet-
ter readability, we omit X and Z in the following, though the functions are
conditioned on them. Taking the logarithm of (2.6) leads to

LL(y,ψ,γ) =
∑
i∈U

log f(yi|γ,ψ) + log φ(γ|σ). (2.7)

We define the finite population parameter vector ψpop and the subvectors βpop

and σpop it is composed of, as

ψpop = arg max
ψ

LL, (2.8)

That means, ψpop would be the maximum likelihood estimate of the superpop-
ulation parameter if the total finite population U was observed. βpop exists and
is unique for the common Generalized Linear Models (GLM) such as Poisson-
regression under the log-link, logistic regression and standard linear regression
[22]. The population covariance matrix Σ(σpop) is unique, too, thus ψpop is
well defined. Later on, we will develop an EM [5] based algorithm to get an
estimator of (2.8). Note that the EM-algorithm converges always to stationary
points [3] and as (2.7) is globally concave, this means convergence to the global
maximum of LL. As the maximum is unique, this means that the parameter
estimate will converge to the maximizer, that is ψpop, too [23].
Even at the finite population level, the random effect realization G = γ is un-
observed and thus direct evaluation of (2.7) is not possible. A common way to
circumvent this problem is the application of the EM-algorithm [5], a method
that has readily been applied to mixed models [8]. The expectation of (2.7)

is calculated given a parameter estimate ψ̂s (E-step). Then, the expectation

is maximized, yielding parameter estimate ψ̂s+1 (M-step) that allows a new
evaluation of the expectation. Concretely, the expectation of (2.7) is

Em (LL) =
∑
i∈U

∫
(log f(yi|γ,ψ)) · h(γ|y,σ)dλ(γ)

+

∫
(log φ(γ|σ)) · h(γ|y,σ)dλ(γ), (2.9)

where h is the conditional distribution density of γ given y. We will refer to h
as “posterior” density because it contains - in contrast to φ - information about
the realizations of Y , meaning that it includes information after the finite pop-
ulation has been sampled from the superpopulation. In contrast, φ may be
referred to as “prior”. However, we stress that the framework is not Bayesian,
we consider the superpopulation parameter ψ as fixed. Em denotes expectation
under the model, in order to distinguish from expectation under the sampling
design, that is marked with subscript d.
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As the population U is not completely observed in practice, we seek to com-
bine estimation and maximization of (2.9) with sampling design randomization,
characterized by probability measure Pd, that possibly hurts the self-weighting
property: This means, we do not exclude the possibility that the unweighted
sample does not obey the model defined in (2.1) to (2.4) [19, chap 5.3]. How-
ever, this property is necessary for consistent parameter estimation under an un-
weighted regression model. This means, possibly f(y,γ, IS) 6= Pd(IS) · f(y,γ).

IS = (δS(1), . . . , δS(N))
T

, δS being an indicator function for the index set S.
In other words, the sampling design is not ignorable and inference may be mis-
leading [15].
For any element ψ in the parameter space, (2.7) and (2.9) may be seen as fi-
nite population totals which can be estimated through the Horvitz-Thompson
estimator [7] when having available only a sample S ⊂ U :

Êm (LL) =
∑
i∈U

wi · δS(i) ·
∫

(log f(yi|γS ,ψ)) · h(γS |y,σ)dλ(γS)

+

∫
(log φ(γS |σ)) · h(γS |y,σ)dλ(γS), (2.10)

γS , being the subvector of random effects in the population that has made it
into the sample:

γ =

(
γS
γU\S

)
.

This idea is similar to [4], though we calculate the HT of an expected likelihood
and not of the likelihood itself. Note that h is not available, neither, when not
the complete vector y is known, but only elements of the sample S, which means,
that h must be estimated, too. Therefore, we prefer the following definition of
̂Em(LL) that we use henceforth:

̂Em (LL) =
∑
i∈U

wi · δS(i) ·
∫

(log f(yi|γS ,ψ)) · ĥ(γS |y,σ)dλ(γ)

+

∫
(log φ(γS |σ)) · ĥ(γS |y,σ)dλ(γS) (2.11)

Therefore, (2.11) is not completely equivalent to a classical HT-estimator. How-
ever, we can profit from the fact that h is proportional to expLL and LL could
be estimated consistently as outlined in the previous paragraph if the random
effect realizations were observed. The exact implementation of the estimation
of ĥ is described in the next section.
Another note of caution be on the term log φ(γ|σ). This term actually has - up
to a normalizing constant - the structure

log φ(γ|σ) = −1

2
γTΣ−1γ − log det Σ.

Consequently, if the random effects do not include all random effects present in
the population, i.e. if the domains are unplanned and γS 6= γ, the second term
of (2.11) needs further attention: Then, of course the covariance matrix ΣS is

5



neither the population covariance matrix Σ. Then, (2.11) is not any longer a
consistent estimator of the expected population likelihood as

−1

2
γTΣ−1γ − log det Σ 6= −1

2
γTSΣ−1S γS − log det ΣS

and thus, the proportionality of h to expLL does not hold neither. On the
other hand, log φ(γS |γ) may be estimated at the sample level, that is, under the
measure δS(i) rather than δU (i). Therefore, if the first term of (2.11) could be
modified to return a consistent estimate of a simple random sample likelihood,
the proportionality and consistency would be restablished. Referring to the
proposition of Stolz-Cesàro, we propose to rescale the weights to

wi∑
i∈S wi

· |S|.

In the following, we assume the survey-weights to be adequatly rescaled and do
not further distinguish between γS and γ.

2.2 Parameter Estimation

When (2.9) is considered to be a total, then ψpop is a functional of a total.
Furthermore, for common GLMM regressions, LL is twice continuously differ-
entiable and thus ψpop is implicitely defined as the solution to

∇LL(y,ψ,γ) = 0. (2.12)

So arg max is a continuous and differentiable function. Therefore, a natural
choice to estimate γpop is the plug-in estimator

ψ̂ = arg max
ψ

̂Em (LL). (2.13)

To get ψ̂, the EM-algorithm [5] is applied to the sample rather than to the
(unavailable) finite population. For the moment, assume that we had access to
h, and therefore (2.10) rather than (2.11) could be applied. Then, the algorithm
would be in pseudo-code

Algorithm 2.1 EM-algorithm for GLMMs

Require: S ∈ N, ψ1, ε > 0

for s = 1, . . . , S do . Start EM-Loop

Calculate Êm(LL) (y,ψs) . E-Step

ψs+1 ← arg max
ψ

Êm(LL) (y,ψ) . M-Step

d← |ψs+1−ψs|
|ψs|

if d < ε then . Stopping rule
S ← s
break;

end if . One EM-Step completed

end for

Ensure: ψ̂ ← ψS
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Note that in (2.1), it is ignored that we do neither know h nor an estimator

for ĥ has been proposed. In addition, even for known h, evaluation of the
integral in (2.10) might be cumbersome: The dimension of the integral equals
the number of elements in γ, the normalizing constant of h, C, is unknown:

h(γ|y,ψ) =

(∏
i∈U

f(yi|β,γ) · φ(γ|σ)

)
· C−1 (2.14)

C =

∫ (∏
i∈U

f(yi|β,γ) · φ(γ|σ)

)
dλ(γ)

Besides, except for the LMM framework, h is a non-standard density from the
exponential family [2]. Therefore, several authors propose to approximate the
E-step in algorithm (2.1) by MC-integration ([12], [2], [24]), leading to a Monte
Carlo EM, MCEM. Assume still that the “posterior” h was known. Then algo-
rithm (2.1) would change to

Algorithm 2.2 MCEM-algorithm for GLMMs

Require: S,B ∈ N, ψ1, ε > 0

for s = 1, . . . , S do . Start EM-Loop

for b = 1, . . . , B do . MC-Loop =̂ E-Step
Sample γb ∼ h(γ|y,ψs, IS)

end for . End E-Step

ψs+1 ← arg max
ψ

∑B
b=1 L̂L(y,ψ,γb) = ÊMC

m (L̂L) . M-Step

d← |ψs+1−ψs|
|ψs|

if d < ε then . Stopping rule
S ← s
break;

end if . One EM-Step completed

end for

Ensure: ψ̂ ← ψS

However, as it was mentioned, h might be a non-standard density, high-
dimensional and is thus not implemented in standard statistical software. There-
fore, sampling from h (or ĥ respectively) is rarely directly possible. An alter-
native is MC-sampling. This was proposed in [12], [2] and [24]. Among the
proposed sampling algorithms are rejection sampling [2] and Metropolis Hast-
ings (MH) [12], [2]. Due to the high-dimensionality of the sampling process, the
rejection rate is relatively high for both algorithms so that the computational
effort was too high in our first simulation studies. Especially, the use of the
“prior” φ as proposal density as proposed in these works is problematic when
the realizations G = γ are relatively far from the origin. In the working pa-
per [24], Quasi-MC with a spherical radial transformation was proposed. This
procedure requires the generation of at least one random orthogonal matrix of
the same dimension as Σ per E-step, which becomes quickly critical, too. For
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this reason, we concentrate on importance sampling like in [12] and [2]. Using
proposal density l, a random draw γb, b = 1, . . . , B has in general the following
importance weight

wMC
b =

(
h(γb)

l(γb)

)
·

(
B∑
b=1

h(γb)

l(γb)

)−1
. (2.15)

Several things about (2.15) are noteworthy: First, it is sufficient to know both,
the proposal density l and the aimed distribution h only up to a normalizing

constant. Division with the sum of importance weights,
∑B
b=1

exp L̂L(γb)
l(γb)

ensures

that the (unknown) normalizing constants, those of l and C (cf. eq (2.14)) cancel
out.
This leads to the next point: h(γb) ∝ expLL(γb). However, given realization
γb, LL can be estimated consistently (even unbiasedly) through

L̂L =
∑
i∈U

wiδS(i) log f(yi|γb,ψ) + log φ(γb|σ)

A possible bias of ĥ(γb) ∝ exp L̂L(γb) cancels out in the importance sample

process when wMC
b is normalized through

∑B
b=1

exp L̂L(γb)
l(γb)

in analogy to (2.15).

Therefore, we have now an (unnormalized) estimator of h, ĥ. Consequently, by
the strong law of large numbers ([14, chap 9])

B∑
b=1

wMC
b L̂L(γb, ψ̂s,y)

a.s−−−−→
B→∞

̂Em(LL)

and as exp L̂L is a consistent estimator of the unnormalized h, we have with
respect to the randomization probability measure Pd

p lim
n→∞

(
lim
B→∞

B∑
b=1

wMC
b L̂L(γb, ψ̂s,y)

)
= p lim

n→∞
̂Em(LL) = Em(LL). (2.16)

The sample size n is implicitely contained in L̂L, which is an estimated total of
LL, |S| = n. Consequently, the algorithm returns a design-consistent estimator
of the expected log-likelihood in the population. We have alreadey stated that
the maximum point of Em (LL) is unique in our set-up and as the first derivative
is obviously continuous (cf. eq. (2.9)), arg max is a continuous and measurable

function, too. Then however, plugging a consistent estimator ̂Em(LL) into
arg max yields a design-consistent estimator, too. And ψpop is itself a consistent
estimator of the superpopulation parameter ψ [21].
Finally, only the question about a good proposal distribution l is open. An
easy-to-implement suggestion would be the multivariate normal distribution,
especially with the variance matrix Σ(σ), this lead to the importance weight

wMC
b =

(
exp L̂L(γb)

φ(γb|σ)

)
·

(
B∑

b=1

exp L̂L(γb)

φ(γb|σ)

)−1

=
exp

∑
i∈S wif(yi|γb,ψ)∑B

b=1 exp
∑

i∈S wif(yi|γb,ψ)
.

This is equivalent to the proposal suggested in [12] for the MH-algorithm. How-
ever, due to the high-dimensionality, the variability of the importance weights
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may become very high so that this approach is only practicable when the num-
ber of random effects is very small. In SAE, this is rarely the case.
[2] suggests to use as proposal l a multivariate t-distribution where mode and

the Hessian of L̂L match the first and second moments. However, our simu-
lation results were rather good using a multivariate normal. The multivariate
normal can be motivated through a second-order Taylor approximation. For

EM-step s, let ψ̂s be the current estimate of ψpop. Given the estimate, let γ̂s
maximize L̂L. Be Ĥs the Hessian of L̂L evaluated at γ̂s. Then the gradient

∇γL̂L(γ̂, ψ̂s,y) = 0 and the Taylor approximation is:

L̂L(γ, ψ̂s,y) ≈ L̂L(y, ψ̂s, γ̂s) + 0.5 · (γ − γ̂s)T Ĥ−1
s (γ − γ̂s)

exp L̂L(γ, ψ̂s,y) ≈ exp L̂L(γ̂s) · exp
(
−0.5 · (γ − γ̂s)T

(
−Ĥ−1

s

)
(γ − γ̂s)

)
∝ N

(
γ̂s,−Ĥ

−1
s

)
(2.17)

The pseudo-code for the final algorithm inclusive importance sampling in the
E-step is given in algorithm (2.3)

Algorithm 2.3 MCEM-algorithm for GLMMs with Importance Sampling

Require: S,B ∈ N, ψ̂1, ε > 0

for s = 1, . . . , S do . Start EM-Loop

for b = 1, . . . , B do . MC-Loop =̂ E-Step

Calculate γ̂s ← arg max
γ∈Rq

L̂L(γ,ψs,y)

Sample γb ∼ N
(
γ̂s,−Ĥ−1s (L̂L)

)
. Sampling from Proposal

end for

Calculate wMC
b =

exp(L̂L(γb,ψ̂s,y))
0.5 det(Ĥ−1

s ) · exp(0.5 (γb−γ̂s)
T Ĥs(γb−γ̂s))

Normalize wMC
b ← wimp

b∑B
b=1 w

imp
b

. End E-Step

Calculate and set . M-Step

ψ̂s+1 ← arg max
ψ

∑B
b=1 w

MC
b · L̂L(γb,ψ,y)

d← |ψs+1−ψs|
|ψs|

if d < ε then . Stopping rule
break;

end if . One EM-Step completed

end for

Ensure: ψ̂ ← ψ̂s

Nevertheless, algorithm (2.3) is again computationally problematic because
the Hessian Ĥs, again of dimension q × q, must be calculated and inverted in
every E-step. Though, importance sampling has the advantage that none of the
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sampled vectors is rejected and therefore, it is computationally advantageous in
comparison to rejection sampling and MH.
We can think of two potential remedies of the computational effort. First, the
mode γ̂s can be calculated via the BFGS-algorithm. The approximate inverse
Hessian of the final iteration may be used instead of the exact Hessian. Then,
matrix inversion is avoided. Furthermore, using the algorithm of [17], it is
possible to get a squared matrix Cs such that CsC

T
s = −Ĥs, which simplifies

the draw from a multivariate normal distribution with the desired covariance
matrix.
Alternatively, the exact Hessian matrix of L̂L has the following structure

−Ĥs = ZTWsZ + Σ−1s (2.18)

Ws = diag

(
w1δS(1)

∂2 log f(η̂1,s)

∂η̂21,s
, . . . , wNδS(N)

∂2 log f(η̂N,s)

∂η̂2N,s

)
η̂i,s = xTi β̂s + zTi γ̂s, i = 1, . . . , N

The Woodbury-identity yields

−Ĥ−1s = −Σs − ΣsZ
T (W−1 + ZΣsZ

T )−1ZΣs. (2.19)

Although the dimension of W−1 + ZΣsZ
T is large (when omitting the obser-

vations that are not sampled, the dimension is still n × n), it is often a sparse
matrix and symmetric, therefore inversion is relatively cheap. In practice, we
have implemented the first alternative as the sparsity pattern of W−1 +ZΣsZ

T

varies in each regression model.
To conclude, we remind that, as long as the support of log l(·) corresponds to

the support of L̂L, the choice of l has no impact on the expectation of (2.11).
Hence the choice impacts the practical implementation but not the theoretical
considerations outlined before.

3 Variance Estimation of the Regression Param-
eter

The variance of β̂ could be approximated using the Fisher information matrix
under the EM-algorithm. The relation between the expected and observed data
information matrix is discussed in [9] and requires the expected Hessian and
gradient of the complete data likelihood. However, these are simple to calculate
because we employ MC-integration and thus have the simulated γb, b = 1, . . . , B
and importance weights wimpb available from the last E-step. Therefore, in
analogy to [9], the Fisher information and its estimator may be written as

Iβ = Em (Hβ(ψ,γ))− Em
(
∇βLL · ∇TβLL

)
+ Em (∇βLL) · Em

(
∇TβLL

)
(3.1)

10



And the components can be estimated through the MC-realizations in the last
EM-step:

Ĥβ =

B∑
b=1

Hβ(ψ̂,γb) · w
imp
b (3.2)

Êm
(
∇βLL · ∇Tβ LL

)
=

B∑
b=1

∇βL̂L(ψ̂,γb) · ∇Tβ L̂L(ψ̂,γb) · w
imp
b (3.3)

Êm (∇βLL) =

B∑
b=1

∇βL̂L(ψ̂,γb) (3.4)

In the last EM-Step, the estimated expectation of the log-likelihood should be at
its maximum thus turning the expected score estimate (3.4) to zero. However, as
we may have reached the maximum number of iterations without convergence,
we include that term nonetheless. Note that the estimated log-likelihood, the
draw of γb and hence the likelihood-maximizer ψ̂ take into account survey
weights and so does the estimated Fisher information.
For the components σ of the random effects covariance matrix Σ(σ) we propose
to use the fisher information, too. Here, the second part of the complete data
log-likelihood LL is

−0.5 det Σ− 0.5 γTΣ−1γ

and the expected Fisher information of the k-th component σk is

−0.5 E

(
tr

(
−Σ−1

∂Σ

∂σk
Σ−1

∂Σ

∂σk

)
+ γTΣ−1

∂Σ

∂σk
Σ−1

∂Σ

∂σk
Σ−1γ

)
. (3.5)

While the first term of (3.5) is constant, calculus of the second term is again no
problem thanks to the MC-integration in the previous step.
Though the random effect predictions are not parameters, we can nonetheless
wish to give some Mean Squared Prediction Error of γ̂. γ̂ maximizes L̂L given
ψ̂. Consequently, a Taylor approximation of ∇γ L̂L around γ? yields

0 = ∇γ L̂L(γ̂) ≈ ∇γ L̂L(γ?) + Ĥ (γ̂ − γ?)

⇔ Ed
(
(γ̂ − γ?)2

)
≈ Ĥ−1Vard

(
∇γ L̂L

)
Ĥ−1 (3.6)

The (approximate) Hessian from the last EM-step is available, cf. (2.3) and

Var
(
∇γ L̂L

)
is simply the variance of a total. When Vard

(
∇γ L̂L

)
is identified

with the Hessian, this gives again the Cramér-Rao bound as an approximation
of the squared prediction error.

4 Simulation Study

4.1 Simulation Set-up

In order to account for both - the superpopulation setup and the survey design
- we conduct a model-based simulation study under finite populations. That
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is, in each of the K = 1000 simulation runs, a population of size N = 3000 is
generated according to the following superpopulation model

ηki = 4− 2 · x1,i − x2,i + γkd1 + (1, x1,i) · γkd2 (4.1)

γkd1 ∼ N(0, 22) , d1 = 1, . . . , 20 (4.2)

γkd2 ∼ N
(
0,

(
0.7 0.5
0.5 1.3

))
, d2 = 1, . . . , 30 (4.3)

Y ki ∼ F (4.4)

The parameters are chosen that the linear predictors return sensible expecta-
tions µki under various exponential family distributions F ∈ F , namely the
normal (g = id) and the Bernoulli (g = logit−1) distribution.
Next, in each finite population, we sample once under the following sampling
schemes. First, the population is stratified according to domains d1 = 1, . . . , 20.
All strata are of equal size and allocation is equal, too: Nd1 = 150 and nd1 = 25.
That means, while these domains are planned, domains d2 = 1, . . . , 0 are un-
planned and cross the sampling strata. That is, alternative survey-weighted
estimation procedures as discussed in the introduction, would have troubles to
take into account random effects γd2 and as the domains d2 are unplanned, their
inclusion requires us to rescale the survey weights as previously mentioned. Do-
main affiliation of unit i is constant over all simulation runs. Second, we sample
in each strata with unequal probability. The first design is uninformative, the
inclusion probability for unit i in strata d1 is proportional to the total of X2 in
the respective domain:

πd1,i =
x2,d1,i∑Nd1
i=1 x2,d1,i

.

As X2 is observed, and we estimate the correct model, survey-weighting should
not have an effect under this sampling design. Therefore, this design is some sort
of control for the estimation quality when weighting is not necessary. Using the
weights nontheless should lead to some loss in efficiency but should not impact
the estimator’s expected outcome. A second sampling scenario is informative
in order to underpin the importance of survey weights when model assumptions
do not hold. For this scenario, we set the inclusion probability

εki = yki − µki (4.5)

π̃d1,i =


0.1, if εkd1,i ≤ τd1,0.25
0.2, if τd1,0.25 < εkd1,i ≤ τd1,0.5
0.4, if εkd1,i > τd1,0.75

(4.6)

πd1,i =
π̃d1,i∑Nd1
i=1 π̃d1,i

· 25

150
, (4.7)

where τd1,p is the p-quantile of the errors εi in domain d1 in the k-th finite pop-
ulation. Consequently, the inclusion probability is a function of an unobserved
model error, is purely at random and is not modeled in the standard regression
models. As the regression concept seeks to minize the random error and obser-
vations with a highly positive error are oversampled, we expect the regression
coefficients to be biased upwards.
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Our benchmark is the regression parameter estimation by the R-package lme4 [6],
which allows a very flexible random effects structure. lme4 estimates GLMMs
by Penalized Least Squares (PLS) which can be rewritten to be equivalent to
the Maximum Likelihood estimate and the REML criterion under a normal rep-
sonse. As we apply the EM algorithm, a fair comparison requires to use the ML
estimation procedure of lme4 rather than REML. When the random variable Y
belongs to another exponential family distribution than the Gaussian, the crite-
rion to be minimized is a Laplace approximation of the deviance. lme4 does not
allow to include survey weights, but the use of prior weights, which, however,
enter inversely the estimation process. Therefore, as some sort of control for the
survey design, we run the lme4 estimation also with the survey weights solely
and as interaction with the explanatories as regressors [15].

4.2 Simulation Results

Like [12], we find that the MCEM-algorithm moves relatively quickly close to
the true parameters but then keeps oscillating, sometimes even removing from
the ML neighbourhood. While the EM-algorithm is designed to increase the log-
likelihood in each step, the MC random component leads to increased volatility
such that this is not always the case. We reduced this volatility using anti-
thetic random draws. Nevertheless, we keep track of the ML values and when
the algorithm cuts off (either because a pre-defined number of oscillations or
the pre-defined alllowed maximum number of detoriations of the ML or conver-
gence is reached), the parameter vector that returned the best simulated ML
is kept. With more fine-tuning of the estimation hyperparameters (number of
MC-draws in the algorithm (2.3), convergence criterion of the BFGS algorithm,
...), we are confident that the jitter in our simulations results would would be
even less.
The simulation results are summarized in the following boxplots, where the true
vectors are (β0, β1, β3) = (4,−2,−1) and (σ1, σ2, σ3, σ4) = (4, 0.7, 0.5, 1.3). Note
that we handled the regression estimation in a very automated way in order to
do 3000 simulation runs. When the survey weights were included as regressors,
the standard lme4 settings sometimes returned an error for the binary data (due
to the necessity to rescale the variables wi ·x1,i and wi ·x2,i) such that for these
boxplots, only 1741 simulations are considered.
Figure (4.1) summarizes the results for the LMM case under the non-informative
design. As the sample obeys exactly the data generating process (DGP), i.e. the
superpopulation model, all parameters should in average equal the superpopu-
lation parameters. The use of survey weights should only inflate the efficiency
of the estimators. For all three estimation procedures, using either algorithm
(2.3) or lme4 with and without survey weights as regressors, this is true except
for the estimates for σ2

2 and σ2
4 of the MCEM algorithm.

One possible explanation for this behaviour is the following: The first term of
(2.11) is estimated using a Hàjek estimator. Though their focus is different from
ours, [11] show in their simulation study that the Hàjek estimator tends in some
cases to overestimate for random clusters. This leads to a greater weight on the
GLM component in the importance sampling process. And the GLM compo-
nent seeks to have a good prediction of the random effects whereas the second
component, log φ(·|σ) counterweights that tendency. Therefore, it is plausible
that the unplanned domain variance components are slightly overestimated.
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Further, we note that the width of the boxplots of our proposed algorithm are
close to that of lme4 o\weights for both the fixed effects and the variance
components.

Figure 4.1: LMM under Non-informative Design
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Next, we inspect the non-informative design under a binary response. The
results are plotted in (4.2). Results are similar to the LMM setting. However,
our method shows a little less stability concerning the covariance matrix of the
unplanned domain. This seems plausible because the root of the score function
has no closed form solution, which is known from the GLM literature, and may
be remedied by increasing the size of the MC-sample. Like in the LMM setting,
we find the variance components of the unplanned domains upward-biased. This
makes us confident that our hypothesis holds.
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Figure 4.2: GLMM under Non-informative Design
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Concerning the fixed effects, note that the inclusion of survey-weights as
covariates in the regression model leads to lower efficiency than our proposed
MCEM-based approach.
Finally, we turn to the informative design that was described in equations (4.5)
to (4.7). A summarizing plot is given in figure (4.3).

Figure 4.3: LMM under Informative Design
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It can be seen that the LMM without survey weights is biased upwards for β0
as it was expected from the informativeness set-up. However, surprisingly, the

15



estimator of β1 and β2 seem to be unbiased. As x2 is not associated with an un-
observed random vector, whereas there are for both the intercept and x1 random
components, this may be due to less confusion of the unobserved components
with the oversampled errors εi. Furthermore, it is notable that the inclusion of
the survey weights as regressors does not work in the intended way, at least not
when the aim is inference on the regression coefficients of the vector (1, x1, x2)T .
That could be to the (imperfect) collinearity between x1,i and x1,i · wi, which
attributes some of the influence of x1 to the product. Notwithstanding, we
find that the MC-average of fixed effects estimates of the proposed MCEM -
algorithm is closer to the true superpopulation values than those estimates using
lme4. On the other hand, we find the variance components of the unplanned
domain slightly biased. There seem to be two reasons: First, the problem of
the Hàjek estimator explained above. Second, the proposed procedure might
attribute correctly the sampling design to an unobserved component but fails
to distinguish between the error component ε and the random effects of d2. This
is still not perfect, but considering applications of multilevel modelling, such as
small area estimation, a correctly estimated intercept is more important because
solely the fixed effects determine the point estimates of unsampled domains.
Under the informative design and a binary response, the ignorance of the survey
design leads to more severe problems as is illustrated in figure (4.4).

Figure 4.4: GLMM under Informative Design
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Leaving the method lme4 w\weights that does obviously not work even in
the fixed effects estimation we get figure (4.5)
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Figure 4.5: GLMM under Informative Design - Zoom
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Though the MC-average still deviates a little from the superpopulation pa-
rameters β, we find that the boxes are by far more centered around the “true”
values than in the GLMM regression without survey weights (lme4 o\weights).
In addition, we can now even recognize some advantage of the use of survey
weights concerning the variance components estimation. That the biases of the
unplanned domain variance components go into the same direction like in the
LMM setting makes us confident that the given explanations hold.

5 Discussion

In this paper, we proposed to use a well known approach of GLMM estimation,
the Monte-Carlo EM-algorithm ([12], [2] and [24]) for the inclusion of survey
weights. To the best of our knowledge, survey weighting in GLMMs has until
now come from another direction ([16], [18], and [20]) that makes it difficult to
include a single, unit-specific survey weight and crossed random effect patterns.
Besides the theoretical approach, we have discussed the computational problems
that come from a flexible covariance matrices and consequent high dimension-
ality of random variables in γ that must be simulated simultaneously. A final
simulation study revealed that besides the numerical problems that come with
a high-dimensional Monte-Carlo integration in the E-step, the fixed effects esti-
mates are not harmed by survey weighting when the design is non-informative
and do profit when the design is informative. When the domains, for which a
random effect pattern is intended, we get the same evidence for the variance
component estimation. However, further investigation is necessary in how to
stabilize the variance component estimation for unplanned domains, especially,
when the endogenous variable is binary.
We can think of several applications of the proposed estimation procedure. For
example, small area estimation often uses a multilevel framework in order to
increase the efficiency of mean estimates in small domains [1] . However, those
estimates are only model-unbiased under the correct model and non-informative
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sampling. One could use survey weights in order to protect the point estimates
from the possible invalidity of the model assumptions. Another, yet to be stud-
ied appication, would be to use rather nonresponse propensities than survey
weights in order to correct for a missing at random nonresponse pattern. How-
ever, though we managed to deal with a large size of random effects, there are
also open questions concerning the handling of the stochastic volatiliy mentioned
above.
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