
Sartakhti, Javad Salimi; Manshaei, Mohammad Hossein; Archetti, Marco

Article

Game theory of tumor-stroma interactions in multiple
myeloma: Effect of nonlinear benefits

Games

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Sartakhti, Javad Salimi; Manshaei, Mohammad Hossein; Archetti, Marco (2018) :
Game theory of tumor-stroma interactions in multiple myeloma: Effect of nonlinear benefits,
Games, ISSN 2073-4336, MDPI, Basel, Vol. 9, Iss. 2, pp. 1-11,
https://doi.org/10.3390/g9020032

This Version is available at:
https://hdl.handle.net/10419/179192

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/g9020032%0A
https://hdl.handle.net/10419/179192
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


games

Article

Game Theory of Tumor–Stroma Interactions in
Multiple Myeloma: Effect of Nonlinear Benefits

Javad Salimi Sartakhti 1,*, Mohammad Hossein Manshaei 2 and Marco Archetti 3,* ID

1 Department of Electrical and Computer Engineering, Kashan University, Kashan 8731753153, Iran
2 Department of Electrical and Computer Engineering, Isfahan University of Technology,

Isfahan 8415683111, Iran; manshaei@cc.iut.ac.ir
3 School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
* Correspondence: salimi@kashanu.ac.ir (J.S.S.); m.archetti@uea.ac.uk (M.A.)

Received: 4 April 2018; Accepted: 22 May 2018; Published: 28 May 2018
����������
�������

Abstract: Cancer cells and stromal cells often exchange growth factors with paracrine effects that
promote cell growth: a form of cooperation that can be studied by evolutionary game theory. Previous
models have assumed that interactions between cells are pairwise or that the benefit of a growth
factor is a linear function of its concentration. Diffusible factors, however, affect multiple cells and
generally have nonlinear effects, and these differences are known to have important consequences
for evolutionary dynamics. Here, we study tumor–stroma paracrine signaling using a model
with multiplayer collective interactions in which growth factors have nonlinear effects. We use
multiple myeloma as an example, modelling interactions between malignant plasma cells, osteoblasts,
and osteoclasts. Nonlinear benefits can lead to results not observed in linear models, including
internal mixed stable equilibria and cyclical dynamics. Models with linear effects, therefore, do not
lead to a meaningful characterization of the dynamics of tumor–stroma interactions. To understand
the dynamics and the effect of therapies it is necessary to estimate the shape of the benefit functions
experimentally and parametrize models based on these functions.

Keywords: game theory; cancer; stroma; tumor microenvironment; nonlinear benefits

1. Introduction

1.1. From Intra-Tumor Cooperation to Tumor–Stroma Interactions

Cancer cells secrete growth factors that promote proliferation by stimulating growth, resistance
against apoptosis and against the immune system, or angiogenesis. Clones producing different
essential growth factors can rely on each other for survival [1], and non-producer clones can free-ride
on the growth factors produced by its cooperative neighbours [2]. The production of growth factors by
cancer cells therefore is an example of intra-tumor cooperation and can be studied in the framework
of evolutionary game theory. Concepts from game theory have been used to describe competition
between cancer cells as pairwise games [3,4] with up to four strategies [5–9], and more recently as
multiplayer public goods games to model the interactions between different clones within a tumor
in well-mixed populations [10,11], in spatially structured populations that resemble monolayers
in vitro [12–14], and to analyse the Warburg effect [15–18]; experiments with cancer cells have been
used to test the theory [2].

Cancer cells also interact with non-cancerous stromal cells by exchanging diffusible factors [19–22]
and these interactions with the tumor microenvironment are a fundamental part of cancer progression.
While this is often referred to as “cooperation” between cancer and stroma, the secretion of growth
factors by the stroma is often triggered by the cancer cells themselves, which recruit and activate
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stromal cells by producing diffusible cytokines; these cytokines stimulate the stroma to release growth
factors that sustain tumor growth. Stromal cells, therefore, are manipulated by the cancer cells to
produce growth factors that are beneficial to the tumor. A form of proper cooperation exists among
the cancer cells themselves, as the cytokines they produce are a type of public good that can be
exploited by non-producer cancer cells. Such a paracrine tumor–stroma signaling system, therefore,
has non-trivial strategic interactions, which can also be studied in the framework of evolutionary
game theory, but have received relatively less attention so far. Tumor–stroma interactions have been
analysed in the context of prostate cancer [8], multiple myeloma [5,23], and MMP–TIMP (matrix
metalloproteinases and tissue inhibitors of metalloproteinases) interactions [24].

1.2. From Two-Player Games to Collective Interactions with Nonlinear Effects

One problem with early models of tumor–stroma interactions, as with early models of intra-tumor
cooperation, is that they assume pairwise interactions between cells. Cells, however, compete with
more than one neighbor, and multiple cells contribute to the overall amount of growth factors available
to a cell. A model with collective interactions [23] has been shown to lead to different results compared
to a model [5] with pairwise interactions, with implications for disease progression and treatment
(in particular, this new model suggests that reducing the number of malignant plasma cells below a
critical threshold can lead to their extinction and thus to restore a healthy balance between osteoclast
and osteoblast).

Even this approach, however, made an unrealistic assumption: that the effect of the growth factors
exchanged by the cells is a linear function of its concentration. While linear effects are more amenable
to analytical study, it is known that most growth factors have a nonlinear, often sigmoid, effect on
cell proliferation, and that nonlinear effects can lead to very different dynamics [25,26]. We decided,
therefore, to analyse tumor–stroma interactions using a multiplayer public goods game with nonlinear
benefits, sacrificing analytical tractability for the sake of realism. Our goal is to understand whether
nonlinear effects lead to qualitatively different results in the dynamics and equilibria in the study of
tumor–stroma interactions, in particular in multiple myeloma (a type of cancer of plasma cells [27,28]).

1.3. Multiple Myeloma as a Modelling Case Study

We use multiple myeloma as a case study, continuing a previous extension to multiplayer linear
games [23] of an earlier model with pairwise interactions [5]. In multiple myeloma, interleukin-6 (IL6),
which promotes tumor proliferation, is produced not only by malignant plasma cells, but also by
bone marrow stromal cells and osteoblasts; the stroma, however, is induced to produce IL6 by
cytokines secreted by the multiple myeloma cells themselves [29,30], including FGF-beta [31], IL-1 [32],
TNF-alpha [33], TGF-1 [34], and VEGF [35]. More in general, in multiple myeloma three types of
cells contribute to bone resorption and bone formation by exchanging diffusible factors: malignant
plasma cells (multiple myeloma, MM), osteoclasts (OC), and osteoblasts (OB). MM cells produce
cytokines that activate OC and inhibit OB, altering the normal OB–OC equilibrium of healthy cells
(and inducing, among other symptoms, bone fracture typical of multiple myeloma). OC and OB
also secrete growth factors that affect each other and MM cells [36,37]. Our model is consistent with
assumptions used previously in a model with linear benefits [23]—which was itself an extension
with collective interactions of a pairwise game [5]—with the difference that here we use nonlinear
benefit functions.

2. Results

2.1. Stability (Bistability) Depends on the Shape of the Benefit Functions

The most fundamental result of previous models is described in Figure 1: OB and OC cells
are at a mixed equilibrium, balancing each other until MM cells are introduced in the population:
if enough MM cells are introduced, the population evolves to a stable equilibrium on the MM–OC edge,
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which explains the potential for bone fractures observed in multiple myeloma. This result is obtained
for the special case si,j→0 (linear benefits) in our model, and is consistent with previous models of
linear benefits [23]. Observe, however (Figure 2), that if benefits are nonlinear this is not necessarily
the case: the OB–OC equilibrium can persist irrespective of the number of MM cells introduced in
the population or disappear entirely, depending on the shape of the benefit functions (in Figure 2
the position of the inflection point). While a model with linear benefits predicts a bistable system,
nonlinear benefits can have both or only one of the two stable equilibria observed in linear models.
Further examples are shown in Figures 3 and 4, where additional mixed equilibria, not observed
with linear benefits, arise with nonlinear benefits; in other cases, instead, the dynamics are similar
(Figure 5). Unfortunately, given the huge number of combinations of parameters in the nonlinear
model, any useful generalization is impossible. To understand and predict the dynamics of the system
we need to know the shape of the benefit functions.
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Figure 2. Bistability with nonlinear benefits. The top panels show the benefit function for different 
values of hi,j. In the bottom panels, the distance from each vertex is inversely proportional to the 
frequency of each type; arrows show the direction of the dynamics; colors show the average fitness of 
the population. N = 10; cOC = 0.1; cOB = 0.2; cMM = 0.3; BOC,OC = 0; BOC,OB = 1; BOC,MM = 1.1; BOB,OC = 1; BOB,OB 
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Figure 1. Bistability with linear benefits. The distance from each vertex is inversely proportional to
the frequency of each type. Arrows show the direction of the dynamics; colors show the average
fitness of the population. N = 10; cOC = 0.1; cOB = 0.2; cMM = 0.3; BOC,OC = 0; BOC,OB = 1; BOC,MM = 1.1;
BOB,OC = 1; BOB,OB = 0; BOB,MM = 0; BMM,OC = 1.1; BMM,OB = −0.3; BMM,MM = 0; si,j→0.
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Figure 2. Bistability with nonlinear benefits. The top panels show the benefit function for different
values of hi,j. In the bottom panels, the distance from each vertex is inversely proportional to the
frequency of each type; arrows show the direction of the dynamics; colors show the average fitness
of the population. N = 10; cOC = 0.1; cOB = 0.2; cMM = 0.3; BOC,OC = 0; BOC,OB = 1; BOC,MM = 1.1;
BOB,OC = 1; BOB,OB = 0; BOB,MM = 0; BMM,OC = 1.1; BMM,OB = −0.3; BMM,MM = 0; si,j = 20.
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Figure 3. Nonlinear benefits can lead to an additional mixed equilibrium on the OB–OC edge.
The distance from each vertex is inversely proportional to the frequency of each type. Arrows
show the direction of the dynamics; colors show the average fitness of the population. N = 25;
ci = 0.1; BOC,OC = 0.6; BOC,OB = 1.1; BOC,MM = 2; BOB,OC = 1; BOB,OB = 0.6; BOB,MM = 0; BMM,OC = 3;
BMM,OB = −0.5; BMM,MM = 1; hOC,OC = 0; hOC,OB = 0.01; hOC,MM = 0.2; hOB,OC = 0.05; hOB,OB = 0.05;
hOC,MM = 0.2; hMM,OC = 0.5, hMM,OB = 0.5; hMM,MM = 0.5. Nonlinear: sOC,OC = 50; sOC,OB = 30; sOC,MM

= 50; sOB,OC = 30; sOB,OB = 30; sOB,MM = 30; sMM,OC = 5; sMM,OB = 20; sMM,MM = 50; Linear: si,j→0.
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Figure 4. Nonlinear benefits can lead to an additional mixed equilibrium on the MM–OC edge.
The distance from each vertex is inversely proportional to the frequency of each type. Arrows show the
direction of the dynamics; colors show the average fitness of the population. N = 20; cOC = 1.5; cOB = 0.5;
cMM = 2; BOC,OC = 0.6; BOC,OB = 1.1; BOC,MM = 2.3; BOB,OC = 1; BOB,OB = 0.5; BOB,MM = 0; BMM,OC = 3;
BMM,OB = −0.5; BMM,MM = 1.5; hOC,OC = 0; hOC,OB = 0; hOC,MM = 0; hOB,OC = 0; hOB,OB = 0; hOB,MM = 0;
hMM,OC = 0.3, hMM,OB = 0.5; hMM,MM = 0.1. Nonlinear: sOC,OC = 10; sOC,OB = 10; sOC,MM = 100; sOB,OC

= 10; sOB,OB = 10; sOB,MM = 20; sMM,OC = 10; sMM,OB = 10; sMM,MM = 100; Linear: si,j→0.



Games 2018, 9, 32 5 of 11

Games 2018, 9, x FOR PEER REVIEW  5 of 11 

 

 
Figure 5. Nonlinear benefits and linear benefits can lead to similar dynamics. The distance from each 
vertex is inversely proportional to the frequency of each type. Arrows show the direction of the 
dynamics; colors show the average fitness of the population. N = 20; cOC = 0.1; cOB = 0.2; cMM = 0.3; BOC,OC 
= 0.55; BOC,OB = 1.1; BOC,MM = 0.6; BOB,OC = 1; BOB,OB = 0.5; BOB,MM = 0; BMM,OC = 0.8; BMM,OB = −0.5; BMM,MM = 
1.5; hOC,OC = 0; hOC,OB = 0; hOC,MM = 0; hOB,OC = 0; hOB,OB = 0; hOB,MM = 0; hMM,OC = 0.3, hMM,OB = 0.02; hMM,MM = 
0.1. Nonlinear: sOC,OC = 10; sOC,OB = 10; sOC,MM = 100; sOB,OC = 10; sOB,OB = 10; sOB,MM = 20; sMM,OC = 10; sMM,OB 
= 10; sMM,MM = 100; Linear: si,j→0. 

2.2. Nonlinear Benefits Can Lead to the Coexistence of Three Types and Cyclical Dynamics 

Nonlinear benefits introduce a new type of equilibrium, never observed in linear models, in 
which all three types coexist (Figure 6). Coexistence of the three types can also be reached with 
cyclical oscillations that converge to a stable equilibrium (Figure 7) and even persist as a limit cycle 
(Figure 8): two types of dynamics that are never observed in linear models (and, more in general, in 
public goods games with constant group size). 

 
Figure 6. Nonlinear benefits can lead to an interior mixed equilibrium. The distance from each vertex 
is inversely proportional to the frequency of each type. Arrows show the direction of the dynamics; 
colors show the average fitness of the population. N = 20; ci = 0.1; BOC,OC = 0.45; BOC,OB = 0.9; BOC,MM = 2; 
BOB,OC = 0.9; BOB,OB = 0.3; BOB,MM = 0; BMM,OC = 2; BMM,OB = −0.3; BMM,MM = 0.9; hOC,OC = 0.05; hOC,OB = 0.05; 
hOC,MM = 0.5; hOB,OC = 0.05; hOB,OB = 0.05; hOB,MM = 0.5; hMM,OC = 0.5, hMM,OB = 0.5; hMM,MM = 0.5. Nonlinear: 
sOC,OC = 10; sOC,OB = 10; sOC,MM = 50; sOB,OC = 10; sOB,OB = 10; sOB,MM = 10; sMM,OC = 50; sMM,OB = 50; sMM,MM = 50; 
Linear: si,j→0. 

Figure 5. Nonlinear benefits and linear benefits can lead to similar dynamics. The distance from
each vertex is inversely proportional to the frequency of each type. Arrows show the direction of the
dynamics; colors show the average fitness of the population. N = 20; cOC = 0.1; cOB = 0.2; cMM = 0.3;
BOC,OC = 0.55; BOC,OB = 1.1; BOC,MM = 0.6; BOB,OC = 1; BOB,OB = 0.5; BOB,MM = 0; BMM,OC = 0.8; BMM,OB

= −0.5; BMM,MM = 1.5; hOC,OC = 0; hOC,OB = 0; hOC,MM = 0; hOB,OC = 0; hOB,OB = 0; hOB,MM = 0; hMM,OC

= 0.3, hMM,OB = 0.02; hMM,MM = 0.1. Nonlinear: sOC,OC = 10; sOC,OB = 10; sOC,MM = 100; sOB,OC = 10;
sOB,OB = 10; sOB,MM = 20; sMM,OC = 10; sMM,OB = 10; sMM,MM = 100; Linear: si,j→0.

2.2. Nonlinear Benefits Can Lead to the Coexistence of Three Types and Cyclical Dynamics

Nonlinear benefits introduce a new type of equilibrium, never observed in linear models, in which
all three types coexist (Figure 6). Coexistence of the three types can also be reached with cyclical
oscillations that converge to a stable equilibrium (Figure 7) and even persist as a limit cycle (Figure 8):
two types of dynamics that are never observed in linear models (and, more in general, in public goods
games with constant group size).
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colors show the average fitness of the population. N = 20; ci = 0.1; BOC,OC = 0.45; BOC,OB = 0.9; BOC,MM

= 2; BOB,OC = 0.9; BOB,OB = 0.3; BOB,MM = 0; BMM,OC = 2; BMM,OB = −0.3; BMM,MM = 0.9; hOC,OC = 0.05;
hOC,OB = 0.05; hOC,MM = 0.5; hOB,OC = 0.05; hOB,OB = 0.05; hOB,MM = 0.5; hMM,OC = 0.5, hMM,OB = 0.5;
hMM,MM = 0.5. Nonlinear: sOC,OC = 10; sOC,OB = 10; sOC,MM = 50; sOB,OC = 10; sOB,OB = 10; sOB,MM = 10;
sMM,OC = 50; sMM,OB = 50; sMM,MM = 50; Linear: si,j→0.
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Figure 7. Nonlinear benefits can produce oscillations leading to an interior mixed equilibrium.
The distance from each vertex is inversely proportional to the frequency of each type. Arrows show
the direction of the dynamics; colors show the average fitness of the population. N = 10; cOC = 0.1;
cOB = 0.12; cMM = 0.14; BOC,OC = 1; BOC,OB = 1; BOC,MM = 1; BOB,OC = 0.7; BOB,OB = 0.7; BOB,MM = 0.7;
BMM,OC = 0.9; BMM,OB = 0.9; BMM,MM = 0.9; hOC,OC = 0.4; hOC,OB = 0.7; hOC,MM = 0.1; hOB,OC = 0.7; hOB,OB

= 0.4; hOB,MM = 0.2; hMM,OC = 0.4, hMM,OB = 0.3; hMM,MM = 0.7. Nonlinear: sOC,OC = 20; sOC,OB = 20;
sOC,MM = 5; sOB,OC = 10; sOB,OB = 10; sOB,MM = 50; sMM,OC = 10; sMM,OB = 5; sMM,MM = 5; Linear: si,j→0.

Games 2018, 9, x FOR PEER REVIEW  6 of 11 

 

 
Figure 7. Nonlinear benefits can produce oscillations leading to an interior mixed equilibrium. The 
distance from each vertex is inversely proportional to the frequency of each type. Arrows show the 
direction of the dynamics; colors show the average fitness of the population. N = 10; cOC = 0.1; cOB = 
0.12; cMM = 0.14; BOC,OC = 1; BOC,OB = 1; BOC,MM = 1; BOB,OC = 0.7; BOB,OB = 0.7; BOB,MM = 0.7; BMM,OC = 0.9; BMM,OB 
= 0.9; BMM,MM = 0.9; hOC,OC = 0.4; hOC,OB = 0.7; hOC,MM = 0.1; hOB,OC = 0.7; hOB,OB = 0.4; hOB,MM = 0.2; hMM,OC = 
0.4, hMM,OB = 0.3; hMM,MM = 0.7. Nonlinear: sOC,OC = 20; sOC,OB = 20; sOC,MM = 5; sOB,OC = 10; sOB,OB = 10; sOB,MM 
= 50; sMM,OC = 10; sMM,OB = 5; sMM,MM = 5; Linear: si,j→0. 

 
Figure 8. Nonlinear benefits can lead to a limit cycle. The distance from each vertex is inversely 
proportional to the frequency of each type. Arrows show the direction of the dynamics; colors show 
the average fitness of the population. N = 20; cOC = 1.2; cOB = 1.0; cMM = 1.8; BOC,OC = 1.1; BOC,OB = 1.1; 
BOC,MM = 1.1; BOB,OC = 0.95; BOB,OB = 1.1; BOB,MM = 1.5; BMM,OC = 1.8; BMM,OB = −0.35; BMM,MM = 0.35; hOC,OC = 
0; hOC,OB = 0; hOC,MM = 0; hOB,OC = 0; hOB,OB = 0; hOB,MM = 0; hMM,OC = 0.2, hMM,OB = 0.2; hMM,MM = 0.2. Nonlinear: 
sOC,OC = 4; sOC,OB = 4; sOC,MM = 40; sOB,OC = 4; sOB,OB = 4; sOB,MM = 4; sMM,OC = 6; sMM,OB = 6; sMM,MM = 1000; Linear: 
si,j→0. 

Figure 8. Nonlinear benefits can lead to a limit cycle. The distance from each vertex is inversely
proportional to the frequency of each type. Arrows show the direction of the dynamics; colors show
the average fitness of the population. N = 20; cOC = 1.2; cOB = 1.0; cMM = 1.8; BOC,OC = 1.1; BOC,OB = 1.1;
BOC,MM = 1.1; BOB,OC = 0.95; BOB,OB = 1.1; BOB,MM = 1.5; BMM,OC = 1.8; BMM,OB =−0.35; BMM,MM = 0.35;
hOC,OC = 0; hOC,OB = 0; hOC,MM = 0; hOB,OC = 0; hOB,OB = 0; hOB,MM = 0; hMM,OC = 0.2, hMM,OB = 0.2;
hMM,MM = 0.2. Nonlinear: sOC,OC = 4; sOC,OB = 4; sOC,MM = 40; sOB,OC = 4; sOB,OB = 4; sOB,MM = 4;
sMM,OC = 6; sMM,OB = 6; sMM,MM = 1000; Linear: si,j→0.
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2.3. Therapies That Target Growth Factors May Be More Effective Than Chemotherapy

Perturbations of the equilibria can reveal the effect of therapies against multiple myeloma
and help understand the evolution of resistance to therapies. Figure 9 shows an example. At the
OB–OC equilibrium, a mutant MM clone invades the population and leads to a MM–OC equilibrium:
the typical fundamental result of current models (see Figure 1). A therapy that reduces the fraction of
MM cells (such as chemotherapy that targets MM cells) immediately reduces the average fitness of
the population; MM cells, however, eventually increase in frequency again and the population moves
back to the previous MM–OC equilibrium. A therapy that increases the position of the inflection point
(see Figure 2), for instance targeting the growth factors produced by the stroma and by the tumor
(the inflection point increases when some of the growth factors are removed or made unavailable
by the therapy because additional growth factors must be secreted—hence more producer cells are
necessary—in order to achieve the same pre-therapy benefit level), instead, could lead to a spontaneous
extinction of the MM types and a reduction of fitness; that is, a reduction in the speed of tumor growth.
Understanding the effects of the two approaches quantitatively requires an estimation of the shape of
the benefit functions.
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Figure 9. Therapies that target growth factors may be more effective than chemotherapy targeting MM
cells. The distance from each vertex is inversely proportional to the frequency of each type. Arrows
show the direction of the dynamics; colors show the average fitness of the population. Changes in
frequency due to therapies that reduce the amount of MM cells (left) with constant hi,j = 0.3; or therapies
that increase the value of hi,j from 0.3 to 0.7 (right). Circles show the original population before MM
mutants arise (white), unstable states (gray), and stable states (black); colored curves show frequency
changes driven by clonal selection; dotted black lines show frequency changes driven by therapy.
At the OB–OC equilibrium (0), a mutant MM clone invades the population (1) and leads to an MM–OC
equilibrium (2); if hi,j does not change, a therapy that reduces the fraction of MM cells (3, left) suddenly
reduces the average fitness of the population, but the population immediately bounces back to the
previous equilibrium (4, left). A therapy that increases hi,j to h*i,j (3, right) instead leads to a spontaneous
extinction of the MM types and a reduction in fitness (4, right). Other parameters are: N = 10; cOC = 0.1;
cOB = 0.2; cMM = 0.3; BOC,OC = 0; BOC,OB = 1; BOC,MM = 1.1; BOB,OC = 1; BOB,OB = 0; BOB,MM = 0; BMM,OC

= 1.1; BMM,OB = −0.3; BMM,MM = 0; si,j = 20.

3. Discussion

In summary, in addition to the pure equilibria and the two-type mixed equilibria observed in
linear models [23], two additional results arise when benefits are nonlinear benefits: a mixed stable
equilibrium with three types; and cyclical dynamics of the three types. This reconciles evolutionary
game theory models with observations in real tumors (where the three types of cells can clearly
coexist—something that previous linear models could not account for).
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Our results, however, also show that it is impossible to generalize the results and predict the
dynamics of the system without knowing exactly the shape of the benefit functions; small changes can
lead to very different dynamics. In order to understand the dynamics and to be able to predict the
effect of therapies, the shape of these benefit functions must be estimated from experimental data.

Even though, in the absence of measures of the shape of the benefit functions, we cannot yet
provide an exact description of the dynamics and suggest how to calibrate therapies, our results suggest
that a therapy will be more effective if, in addition, or even in alternative, to reducing the amount
of MM cells, it increases the value of the inflection point of the benefit functions, which could be
achieved, for example, using monoclonal antibodies against the growth factors produced by the tumor
and the stroma (still an experimental approach [38,39]). Monoclonal antibodies increase the value of
the inflection point because they make some of the secreted growth factors unavailable to the tumor;
hence, further growth factors must be produced—hence more producer cells are necessary—in order
to achieve the same pre-therapy benefit level. Reducing the amount of MM cells, instead, does not
affect the shape of the benefit function. In other words, therapies that change the parameters of the
game may be more effective, and lead to a stable outcome, than therapies that change the frequency of
the players.

More in general, besides multiple myeloma, our results show that models with linear benefits
(not to mention models with pairwise interactions) do not provide a reliable characterization of the
dynamics of tumor–stroma interactions, and that unexpected types of dynamics, such as cyclical
dynamics, can arise due to nonlinearities.

4. Materials and Methods

Let us call xOC, xOB, and xMM the frequencies of three types of cells, respectively OC (osteoclasts),
OB (osteoblasts), and MM (malignant plasma cells), in the population (xOC + xOB + xMM = 1). N is the
number of cells within the diffusion range of the growth factors (hence, equal to group size), which we
assume is the same for all types and all growth factors. Fitness is calculated by considering the payoffs
obtained in the randomly formed groups weighted by the probability that such groups occur. In a
well-mixed population, the probability that a group contains nOC, nOB, and N − nOC − nOB individuals
(excluding the focal cell itself) of type OC, OB, and MM, respectively, is given by(

N − 1
nOC, nOB

)
xOC

nOC ·xOB
nOB ·xMM

N−nOB−nOC−1. (1)

The payoffs for OC, OB, and MM are, respectively:

VOC = bOC,OC(nOC + 1) + bOB,OC(nOB) + bMM,OC(N − 1 − nOC − nOB) − cOC (2)

VOB = bOC,OB(nOC) + bOB,OB(nOB + 1) + bMM,OB(N − 1 − nOC − nOB) − cOB (3)

VMM = bOC,MM(nOC) + bOB,MM(nOB) + bMM,MM(N − nOC − nOB) − cMM (4)

where ci is the cost of producing growth factors by type i and bi,j is a function that indicates the effect
on type j of the growth factors produced by type i. Note that each player’s strategy has also an effect
on itself. The fitness of type i is given by

Wi =
N−1

∑
nOC=1

N−1−nOC

∑
nOB=0

(
N − 1

nOC, nOB

)
xOC

nOC ·xOB
nOB ·xMM

N−nOB−nOC−1·Vi. (5)

The frequencies change based on the replicator dynamics:

xOC
′ = xOC(WOC −W *) (6)
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xOB
′ = xOB(WOB −W *) (7)

xMM
′ = xMM(WMM −W *) (8)

where W * = xOCWOC + xOBWOB + xMMWMM. To introduce nonlinearities, we assume a benefit function
defined by

bi,j(ni) =

[
li,j(ni)− li,j(0)

][
li,j(N)− li,j(0)

] (9)

the normalized version of the logistic function

li,j(ni) =
Bi,j

1 + esi,j(hi,j−ni/N)
(10)

where ni is the number of cells of type i; the parameters define the effect of the growth factors produced
by type i on type j: Bi,j defines the maximum benefit; hi,j defines the position of the inflection point:
hi,j→1 gives increasing returns and hi,j→0 diminishing returns; si,j defines the steepness of the function
at the inflection point (si,j→∞ models a threshold public goods game; si,j→0 models a linear benefit
(Figure 10); and the normalization in (9) in prevents the logistic function (10) from becoming constant
for si,j→0).
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