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Abstract: An interaction system has a finite set of agents that interact pairwise, depending on the
current state of the system. Symmetric decomposition of the matrix of interaction coefficients yields
the representation of states by self-adjoint matrices and hence a spectral representation. As a result,
cooperation systems, decision systems and quantum systems all become visible as manifestations
of special interaction systems. The treatment of the theory is purely mathematical and does not
require any special knowledge of physics. It is shown how standard notions in cooperative game
theory arise naturally in this context. In particular, states of general interaction systems are seen
to arise as linear superpositions of pure quantum states and Fourier transformation to become
meaningful. Moreover, quantum games fall into this framework. Finally, a theory of Markov
evolution of interaction states is presented that generalizes classical homogeneous Markov chains to
the present context.

Keywords: cooperative game; decision system; evolution; Fourier transform; interaction system;
measurement; quantum game

1. Introduction

In an interaction system, economic (or general physical) agents interact pairwise, but do not
necessarily cooperate towards a common goal. However, this model arises as a natural generalization
of the model of cooperative TU games, for which already Owen [1] introduced the co-value
as an assessment of the pairwise interaction of two cooperating players1. In fact, it turns out that
the context of interaction systems provides an appropriate framework for the analysis of cooperative
games (cf. Faigle and Grabisch [3]). It is therefore of interest to investigate interaction systems in their
own right.

A second motivation comes from strong arguments (put forth most prominently by Penrose [4])
that the human mind with its decisions and actions constitutes a physical quantum system and
should therefore be modelled according to the laws of quantum mechanics. This idea has furthered
a seemingly new and rapidly growing branch of game theory where in so-called quantum games the
players are assumed to execute actions on quantum systems according to the pertinent laws of physics2.
The actions of the quantum players typically transform quantum bit vectors according to the same
mechanisms attributed to so-called quantum computers. Many classical games of economic or behavioral
interest have been studied in this setting. The Prisoners’ Dilemma, for example, has been found to
offer a Pareto optimal Nash equilibrium in the quantum model where no such equilibrium exists in
the classical variant (Eisert et al. [7]).

1 see also Grabisch and Roubens [2] for a general approach
2 see, e.g., the surveys Grabbe [5] and Huo et al. [6]
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The quantum games discussed in the literature are generally non-cooperative. Although cooperative
game theory has been applied to quantum theory3 Zhang et el. [9], a cooperative quantum game theory
has not really developped4. In general, it is felt that quantum game theory has a highly physical side
to it5 and that there is a gap between physics and rational game theoretic behavior6.

Therefore, it may be surprising that the mathematical analysis of interaction systems exhibits no
conceptual gap to exist between the “classical” and the “quantum” world in game theory. In particular,
no special knowledge of quantum mechanics (or physics in general) is needed to understand game
theoretic behavior mathematically. Both aspects are faces of the same coin. The quantum aspects
arise from the choice of terminology in the mathematical structural analysis rather than from innately
physical environments. However, much structural insight is gained from the study of classical
interaction and decision systems in terms of quantum theoretical language.

The key in the analysis is the symmetry decomposition of the matrix of interaction coefficients αxy

associated with a state α of an interaction system. The decomposition allows us to represent states by
self-adjoint matrices. Spectral decomposition then shows that interaction states have real eigenvalues.
Moreover, each state is represented by a linear combination of pure density matrices. The connection
to physical quantum models is now immediate: the axioms of quantum theory stipulate that quantum
states can be described as convex combinations of pure density matrices. It follows that interaction
systems subsume (finite-dimensional) quantum systems as special cases. We develop the mathematical
details in Sections 2 and 3. Section 4 treats measurements on interaction systems as linear functionals
on the space of interaction matrices and provides a probabilistic interpretation that is commensurate
with the probabilistic interpretation of measurements in standard physical quantum theory.

Section 5 approaches a binary decision system with a single decision maker as a system with two
”interacting” alternatives. Decision systems with n decision makers arise as tensor products of n single
decision systems. Again, the relation with quantum models is immediate: The states of an n-decision
system are described by complex n-dimensional vectors of unit length in exactly the same way as such
vectors are assumed to describe the states of an n-dimensional quantum system in the Schrödinger
picture of quantum theory.

The latter yields a very intuitive interpretation of quantum games: the players select their
strategies as to move some decision makers into accepting an alternative that offers financial rewards
to the individual players, where the financial reward is given as a linear functional on the space to
decision states (Section 5.4).

The choice of a set-theoretic representation of the decision states shows how classical cooperative
TU games may be viewed as particular decision states of a finite set of decision makers. The associated
probabilistic interpretation exhibits in particular Aubin’s [13] fuzzy games as decision instances where
the decision makers (or “players”) take their decisions probabilistically but independently from
one another.

The model of quantum computing7 views computation as the application of certain linear
operators on quantum states. We point out in Section 5.3 how well-known linear transformations
(e.g., Möbius or Walsh transform) in cooperative games theory arise as tensor products of simple
transformations on single decision systems. Moreover, we show that the classical Fourier transform is
well-defined in the context of interaction systems, while it does not seem to exist when attention is
restricted to the classical space of TU games.

We finally present a linear model for the evolution of interaction systems and discuss its
“Markovian” aspects. In addition to the application examples in the course of the treatment,

3 e.g., Vourdas [8],
4 Iqbal and Toor [10] discuss a 3 player situation
5 see, e.g., Levy [11]
6 cf. Wolpert [12]
7 see, e.g., Nielsen and Chang [14]
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the appendix contains a worked out example of an interaction system with two agents. The discussion
is restricted to finite-dimensional systems. An extension to infinite systems is outlined in Section 7.

The main points of our contribution are:

• Interaction systems provide a general model for interaction and decision-making. Their analysis
with vector space methods yields isomorphic representations in real and complex space,
which also suggests quantum theoretic interpretations.

• Hermitian eigenvalue theory of interaction exhibits measurements on interaction and decision
systems as stochastic variables that measure these eigenvalues.

• The dual interpretation of decision systems refines the model of multichoice games and reveals
fuzzy games as cooperative systems without entangled states. Moreover, the probabilistic
interpretation of decision analysis refines Penrose’s model for human decision-making.

• A comprehensive theory of Fourier transformation exists for interaction systems.
• The dual interpretation suggests novel concepts of “Markov evolution” of cooperation.

2. Interaction Systems

We define a (general) interaction system as a triple X = (X,A, W), where X is a set of agents,
A the set of states of X, and W is the range of values for the interaction between agents. We assume
that in any state α ∈ A, agents x, y ∈ X interact pairwise and that the associated interaction coefficient
αxy ∈W is a measure for the interaction. We collect interaction coefficients into the interaction matrix
A = A(α) = [αxy] ∈ WX×X with coefficients Axy = αxy. For convenience, we assume 0 ∈ W and
interpret αxy = 0 as the absence of an interaction between x and y in state α.

We make no special assumption on the nature of the agents in X. These may be any physical or
abstract entities nor do we assume that interaction is symmetric. Thus, an activity matrix A may differ
from its transpose AT .

Example 1 (Cooperative games). Let N = {1, . . . , n} be a finite set of players involved in a cooperative
effort in view of achieving some goal, and consider N = 2N = {S | S ⊆ N} the associated collection of
coalitions. Then, a matrix V ∈ WN×N is a (generalized) cooperative game (with value range W) if
VST = 0 holds for all S 6= T. The function v : N →W with v(S) = VSS is the characteristic function of the
game, and v(S) is the quantitative result of the cooperation (achieved benefit, saved cost, etc.) for the members in
S (assuming that the players in N \ S show no activity).

If the range W is such that, for every S ∈ N , v(S) is a closed convex set of RS (representing the possible
payment vectors S can receive), the cooperative game is a so-called NTU game8. A cooperative game with
W ⊆ R, i.e., characteristic function v : N → R is a TU (Transferable Utility) game (We will revisit
cooperative games from a different point of view (namely as binary decision systems with |N| decision makers)
in Section 5.2 below.).

TU games can be generalized by allowing for any S ∈ N , another coalition T ⊆ N \ S exists that
opposes the goal of S (with the players in N \ (S ∪ T) being inactive). Such a situation gives rise to a so-called
bicooperative game9 and is usually modelled by a biset function v that assigns to any pair (S, T) of disjoint
coalitions a quantity v(S, T). In other words, a bicooperative game corresponds to an interaction matrix
V ∈ RN×N such that VST = 0 holds if S ∩ T 6= ∅. Note that a bicooperative game is neither symmetric nor
skew-symmetric in general.

In our subsequent mathematical analysis, we will restrict ourselves to interaction systems
X = (X,A, W) with the property

8 Non Transferable Utility game; cf. Aumann and Peleg [15]
9 see Bilbao et al. [16], Labreuche and Grabisch [17]
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• |X| < ∞ and W ⊆ R

and use the simple notation X = (X,A)10. Such interaction systems are ubiquitous in applications.
A fundamental interaction model in (noncooperative) game theory is X2 = ({I, I I},SI × SI I), where I
and I I are two players/agents with respective strategy sets SI and SI I , together with a function L : SI ×
SI I → R. In the state α = (sI , sI I), the interaction function L yields the symmetric interaction matrix

A(α) =

(
0 L(α)

L(α) 0

)
.

We do not make any a priori assumptions as to the strategic goals of the agents.
Further assumptions lead to further game theoretic notions of course. As an illustration, suppose
that agent I in X2 tries to maximize L by the choice of sI ∈ SI while I I aims at minimizing L by the
selection of sI I ∈ SI I . Then, one might be interested in the core c(L) of this game, i.e., in the set of
(Nash) equilibria

c(L) = {(s∗I , s∗I I) | L(sI , s∗I I) ≤ L(s∗I , sI I) ∀(sI , sI I) ∈ SI × SI I}.

In the case of a cooperative TU-game (see Example 1 above) with the characteristic function
v : N → R, one has the associated Lagrange function

Lv(x, y) = x(N)− ∑
S∈N

yS(x(S)− v(S)) (x ∈ RN
+ , y ∈ RN+ ),

where x(S) = ∑i∈S xi. In this context, an interaction system of type X2 arises with strategic sets
SI = RN

+ and SI I = RN+ . Let core(v) denote the set of optimal solutions of the linear program

max
x∈RN

+

x(N) s.t. x(S) ≤ v(S) ∀S ∈ N .

Then, one easily verifies the well-known11 relation

core(v) = {x ∈ RN | (x, y) ∈ c(Lv) for some y ∈ RN }.

Our emphasis in the following will be on the interaction system underlying an economical or
physical model and the study of system parameters and system dynamics rather than optimization
aspects. Let us first give some more examples of interaction systems.

Example 2 (Buyers and sellers). The set X of agents is partitioned into buyers and sellers. Let txy be the
amount of transaction done between x and y. Thus, txy = 0 holds if x and y are both buyers or both are
sellers. In general, we have txy + txy = 0. It follows that the corresponding transaction state is described by the
transaction matrix A = [txy]. A is skew-symmetric (i.e., AT = −A holds).

Example 3 (Communication networks). Assume that agents in X can communicate pairwise and model this
ability by a (directed or undirected) graph or, equivalently, by a matrix A which represents the current state of
communication, where Axy indicates the level (quality) of communication (or information) flowing from x to y.
Note that A need not be symmetric.

Example 4 (Influence networks). Assume that the set X of agents forms a network and that agents
communicate or interact through this network. Through communication or interaction, the opinion of the agents

10 see also the discussion in Section 7
11 see, e.g., [18]
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on a given topic or decision to be made may be subject to change due to mutual influence12. The corresponding
influence matrix A reflects the amount and type of influence that agents exert amongst themselves. More precisely,
a nonzero coefficient Axy indicates that agent x listens or is sensitive to the opinion of agent y. Axy > 0 measures
the extent to which x follows the opinion of y (with Axy = 1 meaning that x fully follows y) and Axy < 0
indicates the extent to which x will adopt an opinion opposite to the opinion of y. A need not be symmetric nor
skew-symmetric.

Example 5 (Interaction in 2-additive games). Take X to be the set of players of a TU-game v : 2X → R.
Grabisch and Roubens [2] introduced the notion of an interaction index to model the interaction inside any
coalition S ⊆ X. v is said to be k-additive if the interaction in coalitions of size greater than k is zero. It follows
that 2-additive games are completely determined by the interaction index Ixy for pairs of agents together with
the interactions Ix of singletons, which corresponds to their Shapley value. The resulting interaction matrix I,
with coefficients Ixy for any x 6= y and Ixx = Ix for x ∈ X, is symmetric. The index Ixy was initially proposed
by Owen [1] under the name “co-value”.

3. Symmetry Decomposition and Hermitian Representation

Returning to a general interaction system X = (X,A), recall that the space RX×X of all possible
interaction matrices is a |X|2-dimensional Euclidean vector space. Moreover, RX×X is a real Hilbert
space relative to the inner product

〈A|B〉 = ∑
x,y∈X

AxyBxy = ∑
x∈X

(AT B)xx = tr(AT B),

where tr(C) denotes the trace of a matrix C. The associated norm is the so-called Frobenius norm

‖A‖ =
√
〈A|A〉 =

√
∑

x,y∈X
|Axy|2.

We define ‖α‖ = ‖[αxy]‖ as the norm of the state α ∈ A. Denote by S+X the subspace of symmetric
and by S−X the subspace of skew-symmetric matrices in RX×X . For any C ∈ S+X and B ∈ S−X , one has

〈C|B〉 = 〈CT |BT〉 = −〈C|B〉 and hence 〈C|B〉 = 0.

Setting A+ = 1
2 (A + AT) ∈ S+X and A− = 1

2 (A − AT) ∈ S−X , one finds that A ∈ RX×X is
the superposition

A = A+ + A− (1)

of a symmetric and a skew-symmetric matrix. It follows that S+X and S−X are orthogonal complements
in RX×X and that the symmetry decomposition Equation (1) of A is uniquely determined and obeys
the Pythagorean law

‖A‖2 = ‖A+‖2 + ‖A−‖2.

A convenient way of keeping track of the symmetry properties of A is its Hermitian representation
with the complex coefficients Âxy = A+

xy + iA−xy

Â = A+ + iA− ∈ CX×X , (2)

12 see, e.g., Grabisch and Rusinowska [19,20]
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where C = R+ iR denotes the field of complex numbers with the imaginary unit i =
√
−1. Thus,

Â = A holds if and only if A is symmetric. Moreover, the Hermitian space

HX = {A+ + iA− | A ∈ RX×X} = S+X + iS−X ⊆ CX×X

is isomorphic with RX×X as a real Hilbert space. Recalling the conjugate of the complex matrix
C = D + iF with D, F ∈ RX×X, as the matrix C = D − iF and the adjoint as the matrix C∗ = CT ,
the inner product becomes

〈A|B〉 = tr(AT B) = tr(Â∗ B̂) = 〈Â|B̂〉 (A, B ∈ RX×X).

A readily verified but important observation identifies the Hermitian matrices as precisely the
self-adjoint matrices:

C ∈ HX ⇐⇒ C∗ = C (C ∈ CX×X).

The fact that RX×X and HX are isomorphic Hilbert spaces allows us to view the interaction
matrices A and their Hermitian representations Â as equally valid representatives of interaction states.
We denote by

α̂ = Â = A+ + iA−

the Hermitian representation of the state α with interaction matrix A = [αxy].

3.1. Binary Interaction

We illustrate the preceding concepts with the interaction of just two agents x, y, i.e., X = {x, y}.
A basis for the symmetric space S+X is given by

I =

(
1 0
0 1

)
, π1 =

(
1 0
0 −1

)
, π2 =

(
0 1
1 0

)
.

The skew-symmetric space S−X is 1-dimensional and generated by

π3 =

(
0 −1
1 0

)
.

Thinking of the interaction of an agent with itself as its activity level, one can interpret these
matrices as follows:

(i) I: no proper interaction, the two agents have the same unit activity level.
(ii) π1: no proper interaction, opposite unit activity levels.

(iii) π2: no proper activity, symmetric interaction: there is a unit “interaction flow” from x to y and
a unit flow from y to x.

(iv) π3: no proper activity, skew-symmetric interaction: there is just a unit flow from x to y or,
equivalently, a (−1)-flow from y to x.

The corresponding Hermitian representations are Î = I, π̂1 = π1, π̂2 = π2 and

π̂3 = iπ3 =

(
0 −i
i 0

)
.

Remark 1. The self-adjoint matrices π̂1, π̂2, π̂3 are the well-known Pauli spin matrices that describe the
interaction of a particle with an external electromagnetic field in quantum mechanics. Details of the underlying
physical model, however, are irrelevant for our present approach. Our interaction analysis is purely mathematical.
It applies to economic and game theoretic contexts equally well.
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Remark 2. The relation π2
3 = −I (i.e., “π3 =

√
−I”) exhibits π3 in the role of an “imaginary unit” in R2×2.

Indeed, the 2-dimensional matrix space

C = {aI + bπ3 | a, b ∈ R} ⊆ R2×2

is closed under matrix multiplication and algebraically isomorphic with the field C of complex numbers.

3.2. Spectral Theory

It is a fact in linear algebra that a complex matrix C ∈ CX×X is self-adjoint if and only if there is
a diagonal matrix Λ with diagonal elements λx ∈ R and a unitary matrix U ∈ CX×X (i.e., U∗ = U−1)
that diagonalizes C in the sense

Λ = U∗CU. (3)

The real numbers λx are the eigenvalues and form the spectrum of C ∈ HX. The corresponding
column vectors Ux of U are eigenvectors of C and yield a basis for the complex vector space CX .

If α is a state of X = (X,A), we refer to the eigenvalues of its self-adjoint representation α̂ simply as
the eigenvalues of α. A state thus has always real eigenvalues. If the interaction matrix [αxy] is symmetric,
then α̂ = [αxy] holds and the eigenvalues of [αxy] and α̂ coincide. In general, however, an interaction
matrix [αxy] does not necessarily have real eigenvalues.

The diagonalization Equation (3) implies the spectral representation

C = ∑
x∈X

λxUxU∗x (4)

with pairwise orthogonal vectors Ux ∈ CX of unit length ‖Ux‖ =
√

U∗x Ux = 1 and real numbers λx.
Equation (4) shows that the members of HX are precisely the real linear combinations of (self-adjoint)
matrices of the form

uu∗ with u ∈ CX s.t. ‖u‖2 = u∗u = 1.

Remark 3. In quantum theory, a matrix of the form uu∗ with u ∈ CX of length ‖u‖ = 1 is termed a pure
density (matrix). In the so-called Heisenberg picture, the states of a |X|-dimensional quantum system are
thought to be represented by the convex linear combinations of pure densities. We find that the states of a general
interaction system can be represented by linear (but not necessarily convex) combinations of pure densities.

4. Measurements

By a measurement on the interaction system X = (X,A), we understand a linear functional
f : RX×X → R on the space of all possible interaction instances. f (A) is the value observed when the
agents in X interact according to A. Thus, there is a matrix F ∈ RX×X such that

f (A) = 〈F|A〉 = 〈F̂|Â〉 for all A ∈ RX×X . (5)

Remark 4. The second equality in Equation (5) shows that our measurement model is compatible with the
measurement model of quantum theory, where a “measuring instrument” relative to a quantum system is
represented by a self-adjoint matrix F̂ and produces the value 〈F̂|Â〉 when the system is in the quantum state Â.
However, many classical notions of game theory can also be viewed from that perspective.

We give some illustrating examples.

• Cooperative games. A linear value for a player in a cooperative game (sensu Example 1) is a linear
functional on the collection of diagonal interaction matrices V. Clearly, any such functional
extends linearly to all interaction matrices A. Thus, the Shapley value [21] (or any linear value



Games 2017, 8, 48 8 of 25

(probabilistic, Banzhaf, egalitarian, etc.) can be seen as a measurement. Indeed, taking the example
of the Shapley value, for a given player i ∈ N, the quantity

φi(v) = ∑
S⊆N\i

(n− s− 1)!s!
n!

(v(S ∪ i)− v(S))

with s = |S|, acts linearly on the diagonal matrices V representing the characteristic function v.
Similar conclusions appl+y to bicooperative games.

• Communication Networks. The literature on graphs and networks13 proposes various measures
for the centrality (Bonacich centrality, betweenness, etc.) or prestige (Katz prestige index) of a
given node in the graph, taking into account its position, the number of paths going through it,
etc. These measures are typically linear relative to the incidence matrix of the graph and thus
represent measurements.

Further important examples arise from payoff evaluations in n-person games below (cf. Remark 10)
and Markov decision problems (cf. Section 6.2).

4.1. Probabilistic Interpretation

If Â = ∑x∈X λxUxU∗x is the spectral representation of the self-adjoint matrix Â, then the
measurement Equation (5) takes the form

f (A) = ∑
x∈X

λx〈F̂|UxU∗x 〉 = ∑
x∈X

∑
y∈X

λxµy〈VyV∗y |UxU∗x 〉, (6)

where F̂ = ∑y∈X µyVyV∗y is the spectral representation of F̂. Equation (6) has an immediate intuitive
probabilistic interpretation, of fundamental importance in quantum theory, when we set

pxy = 〈VyV∗y |UxU∗x 〉 = tr(VyV∗y UxU∗x 〉.

Indeed, Lemma 1 (below) implies pxy ≥ 0. Moreover, since the Vy and Ux yield unitary bases of
CX , we have

∑
x,y∈X

pxy = ∑
x∈X

∑
y∈X
〈VyV∗y |UxU∗x 〉 = ∑

x∈X
〈I|UxU∗x 〉 = 〈I|I〉 = 1;

i.e., the pxy constitute a probability distribution on the set X× X of agent pairs (x, y) and

f (A) = ∑
x,y∈X

λxµy pxy (7)

is the expected value of the corresponding eigenvalue products λxµy.

Lemma 1. Let u, v ∈ Ck be arbitrary vectors with complex coordinates ui and vj. Then, 〈V|U〉 ≥ 0 holds for
the (k× k)-matrices U = uu∗ and V = vv∗.

Proof. Set z = ∑j ujvj. Since Vij = vivj and Uij = uiuj, one finds

〈V|U〉 =
k

∑
i=1

k

∑
j=1

vivjuiuj =
k

∑
i=1

viui · z = zz = |z|2 ≥ 0.

13 see, e.g., Jackson [22]
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Remark 5. While the definition Equation (5) says that the measurement f yields the definite value f (A),
the expression Equation (7) suggests that measurement values on interaction systems are probabilistically
distributed. Whether these intuitively opposing views are contradictory is a philosophical rather than
a mathematical question.

5. Decision Analysis

Consider n decision makers, each of them facing a choice between two alternatives. Depending
on the context, the alternatives can have different interpretations: ‘no’ or ‘yes’ in a voting context, for
example, or ‘inactive’ or ‘active’ if the decision maker is a player in a game theoretic or economic context,
etc. Moreover, the alternatives do not have to be the same for all decision makers. Nevertheless, it is
convenient to denote the alternatives simply by the symbols ‘0’ and ‘1’. This results in no loss of
generality.

5.1. The Case n = 1

We start with a single decision maker with the binary alternatives ‘0’ and ‘1’. Let djk ∈ R
be a measure for the tendency of the decision maker to consider the choice of alternative j but to
possibly switch to alternative k. The 4-dimensional coefficient vector d = (d00, d10, d01, d11) then
represents this state of the decision maker. Moreover, in view of the isomorphism

R4 ∼= (R+ iR)× (R+ iR),

we can represent d by a pair of complex numbers δj:

d̂ = (d00 + id10, d01 + id11) = (δ0, δ1).

In the non-trivial case d 6= 0, there is no loss of generality when we assume d (and hence d̂) to be
unit normalized

‖d‖ =
√

d2
00 + d2

10 + d2
01 + d2

11 = ‖d̂‖ = 1.

Thus, we think of the unit vector set

S = {δ = (δ0, δ1)
T ∈ C2 | ‖δ‖2 = |δ0|2 + |δ1|2 = 1}

as the set of (proper) states of the decision maker.

5.1.1. Decisions and Interactions

While a vector state δ = (δ0, δ1)
T ∈ S describes a state of the decision maker, the decision

framework implies a natural interaction system in the set X = {0, 1} of alternatives. Indeed, the matrix

D = δδ∗ =

(
δ0δ0 δ0δ1

δ1δ0 δ1δ1

)
= D = δδ∗ =

(
|δ0|2 δ0δ1

δ1δ0 |δ1|2

)
(8)

associates with the decision state δ a ”quantum state” with density D, which may be interpreted as the
self-adjoint representation of an interaction state on X. The latter exhibits the alternatives ‘0’ and ‘1’ as
interacting agents in their own right in the decision process.

5.1.2. Decision Probabilities

The decision state vector d̂ = (d00 + id10, d01 + id11) = (δ0, δ1) ∈ S defines a probability
distribution p on X2 = {0, 1}2 with probabilities p(d)jk = d2

jk. Accordingly, the probability for the
alternative ‘k’ to be accepted is

p(d)k = p(d)0k + p(d)1k = |δk|2 (k = 0, 1).
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We arrive at the same probabilities when we apply suitable measurements in the sense of Section 4
on the interaction system on X with the self-adjoint state representation D as in Equation (8). To see
this, let us measure the activity level of k (i.e., the interaction of k with itself). This measurement
corresponds to the application of the matrix Fk = ekeT

k , where ek is the kth unit vector in R2. The value
of this measurement is indeed

〈Fk|D〉 = |δk|2 = p(d)k .

Let us now take another look at earlier examples:

(i) Influence networks: While it may be unusual to speak of “influence” if there is only a single
agent, the possible decisions of this agent are its opinions (‘yes’ or ’no’), and the state of the
agent hesitating between ‘yes’ and ‘no’ is described by (δ0, δ1) ∈ C2 (with probability |δ0|2 to
say ‘no’ and |δ1|2 to say ‘yes’).

(ii) Cooperative games: As before, “cooperation” may sound odd in the case of a single player.
However, the possible decisions of the player are relevant and amount to being either active
or inactive in the given game. Here, (δ0, δ1) represents a state of deliberation of the player that
results in the probability p(d)k for being active (resp. inactive).

5.1.3. Quantum Bits

Denote by |j〉 the event that the decision maker selects alternative j. Thinking of |0〉 and |1〉 as
independent generators of a 2-dimensional complex vector space, we can represent the decision states
equally well as formal linear combinations

δ = δ0|0〉+ δ1|1〉 ((δ0, δ1)
T ∈ S). (9)

The expression Equation (9) is the representation of the states of a 1-dimensional quantum
system in the so-called Schrödinger picture of quantum mechanics. Strong arguments have been put
forward14that the decision process of the human mind should be considered to be a quantum process
and a binary decision state should thus be described as a quantum state.

In the theory of quantum computing15, an expression of the form Equation (9) represents a
quantum bit. |0〉 and |1〉 correspond to the boolean bits of classical computation.

5.1.4. Non-Binary Alternatives

It is straightforward to generalize the decision model to k > 1 alternatives ‘0’, ‘1’, . . ., ‘k − 1’.
We let |j〉 denote the event that ‘j’ is selected. Interpreting ‘j’ as representing an “activity” at the jth of
k possible levels, the decision maker is essentially a player in a multichoice game in the sense of Hsiao
and Raghavan [23]. Decision states are now described by formal linear combinations

δ =
k−1

∑
j=0

δj|j〉 with δj ∈ C s.t. ‖δ‖2 =
k−1

∑
j=0
|δj|2 = 1

and |δj|2 being the probability for alternative j to be taken.

14 see, e.g., Penrose [4]
15 see, e.g., Nielsen and Chuang [14]
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5.2. The Case n ≥ 2

We now extend our framework to the case of several decision makers and consider first the binary
case. We let D denote of the decision system for n = 1 that can be in any state as in Section 5.1.
The system of n > 1 decision makers is then given by the n-fold tensor product:

Dn = D⊗ · · · ⊗D (n times).

To make this precise, recall the tensor product of a vector space V with a fixed basis
B = {b1, . . . , bn} and a vector space W with basis G = {g1, . . . , gm} over the common real or
complex scalar field F. We first define the set B⊗ G of all (formal) products bi ⊗ gj and extend the
products linearly to products of vectors in V and W, i.e., if v = ∑ vibi and w = ∑ wjgj, then

v⊗ w =
( n

∑
i=1

vibi
)
⊗
( m

∑
j=1

wjgj
)
=

n

∑
i=1

m

∑
j=1

(viwj)bi ⊗ gj. (10)

Thus, a coordinate representation of v⊗ w is given by the (n×m)-matrix with coefficients viwj.
Moreover, we note the multiplication rule for the norm:

‖v⊗ w‖2 = ‖v‖2‖w‖2.

The tensor product V ⊗W is the nm-dimensional vector space with basis B⊗ G. It is well-known
that the tensor product of vectors is associative and distributive and linear relative to the scalar field F.

We define Dn as the system with the state set

Sn = {δ ∈ C2 ⊗ · · · ⊗C2 | ‖δ‖ = 1}.

The construction becomes immediately clear when bit notation is employed. For any sequence
j1 . . . jn ∈ {0, 1}n, we define the n-bit

|j1 . . . jn〉 = |j1〉 ⊗ · · · ⊗ |jn〉. (11)

The states of Dn now take the form of linear combinations

δ = ∑
k∈{0,1}n

δk|k〉 with δk ∈ C and ∑k |δk|2 = 1. (12)

In state δ, the (joint) decision k ∈ {0, 1}n is reached with probability |δk|2.

Remark 6. Note the relation with the model of k decision alternatives in Section 5.1.4: the representation of δ

in Equation (12) allows us to view Dn as the context of a single decision maker that faces the 2n alternatives |j〉.

As an illustration, consider the case n = 2. The decision system D2 = D⊗D relative to a pair of
binary alternatives represents the states in the form

δ = δ00|00〉+ δ10|10〉+ δ11|11〉+ δ01|01〉 (δij ∈ C, ∑
j,k∈{0,1}

|δjk|2 = 1).

In particular, we have

(α0|0〉+ α1|1〉)⊗ (β0|0〉+ β1|1〉) = ∑
i,j∈{0,1}

αiβ j|ij〉.
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In general, it is often convenient to represent states in set theoretic notation. Thus, we let
N = {1, . . . , n} and identify n-bits with subsets:

k = j1 . . . jn ∈ {0, 1}n ←→ K = {` ∈ N | i` = 1},

which yields the state representation

δ = ∑
K⊆N

δK|K〉 (δK ∈ C, ∑
K⊆N
|δK|2 = 1). (13)

The latter allows us to view a state simply as a valuation α : 2N → C that assigns to each subset
K ⊆ N a complex number αK ∈ C. This generalizes the classical model of cooperative games with n
players to complex-valued cooperative games in a natural way.

The probabilistic interpretation says that the decision n-tuple k = i1 . . . in is realized in a non-trivial
state α of Dn with probability

pα
k =
|αk|2
‖α‖2 , where ‖α‖2 = ∑

k∈{0,1}n
|αk|2. (14)

Coming back to our examples, a similar interpretation as for the single agent case can be given.
Specifically, in the case of the influence network in state α, pα

k in Equation (14) yields the probability that
a given coalition K of agents says ‘yes’ and the other agents say ‘no’, while in the case of cooperative
games, pα

k is the probability for a given coalition K to be active while the remaining players are not.

5.2.1. Entanglement and Fuzzy Systems

We say that a state δ of Dn is reducible if there is a 0 < m < n such that

δ = α⊗ β for some state α of Dm and state β of Dn−m.

In this reducible case, the state δ arises from lower dimensional states α and β that are
probabilistically independent. Indeed, we have ‖δ‖ = ‖α‖ · ‖β‖, δk` = αkβ` and hence

pδ
k` = pα

k · p
β
` for all k ∈ {0, 1}m, ` ∈ {0, 1}n−m.

Already for n = 2, it is easy to see that Dn admits irreducible states. Such states are said to be
entangled.

Aubin [13] has introduced the model of fuzzy cooperation of a set N of n players as a system whose
states are characterized by real vectors

w = (w1, . . . , wn) with 0 ≤ wj ≤ 1.

In state w, player j decides to be active in the cooperation effort with probability wj and inactive
to be with probability 1− wj. A coalition S ⊆ N is assumed to be formed with probability

w(S) = ∏
s∈S

∏
t∈N\S

ws(1− wt)

(see also Marichal [24]). Thus, the players act independently in each “fuzzy” state w. Entangled states
are thus excluded. In particular, one sees that our model of interactive decisions is strictly more general
than the fuzzy model.
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5.3. Linear Transformations

Let again B = {b1, . . . , bn} be a basis of the vector space V and G = {g1, . . . , gm} a basis of
the vector space W over the common scalar field F and consider linear operators L : V → V and
M : W →W. The assignment

L⊗M(b⊗ g) = (Lb)⊗ (Mg) ((b, g) ∈ B× G) (15)

extends to a unique linear operator L⊗M : V ⊗W → V ⊗W since the elements b⊗ g form a basis of
V ⊗W. The operator L⊗M is the tensor product of the operators L and M.

For illustration, let us apply this construction to various linear operators on D and derive several
linear transformations of well-known importance in game theory.

5.3.1. Möbius Transform

The Möbius operator Z on the state vector space of D is the linear operator such that

Z|0〉 = |0〉+ |1〉 and Z|1〉 = |1〉.

Z admits a linear inverse M = Z−1, which is determined by

M|1〉 = |1〉 and M|1〉 = |1〉 − |0〉.

The n-fold tensor product Zn = Z⊗ · · · ⊗ Z, as defined by Equation (15), acts on the states of Dn

in the following way:
Zn|i1 . . . in〉 = Z|i1〉 ⊗ · · · ⊗ Z|in〉.

Setting N = {1, . . . , n} and S = {j ∈ N | ij = 1}, the set theoretic notation thus yields

Zn|S〉 = ∑
T⊇S
|T〉 = ∑

T⊆N
ζST |T〉

with the incidence coefficients

ζST =

{
1, if S ⊆ T,
0, otherwise.

For the inverse Mn = M⊗ · · · ⊗M of Zn, one has similarly

Mn|i1 . . . in〉 = M|i1〉 ⊗ · · · ⊗M|in〉

and thus for any S ⊆ N,
Mn|S〉 = ∑

T⊇S
(−1)|T\S||T〉 = ∑

T⊆N
µST |T〉

with the Möbius coefficients

µST =

{
(−1)|T\S|, if S ⊆ T,

0, otherwise.

Remark 7. The Möbius operator Zn has well-known applications in game theory, decision making and more
generally computer sciences and combinatorics (see Rota [25]). Given a cooperative game v : 2N → R, it can
be expressed in a unique way as a sum of the so-called unimity games uS defined by uS(T) = 1, if T ⊇ S,
and 0, otherwise:

v = ∑
S⊆N

v̂(S)uS
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with the coefficients v̂(S) given by:
v̂(S) = ∑

T⊆S
(−1)|S\T|v(T).

Viewed as a mapping, v̂ is the Möbius transform of v, and the above formula is often referred to as the
Möbius inversion formula. In game theory, it is customary to call v̂(S), S ⊆ N, the Harsanyi dividends.

Note that considering the state representation of v:

ṽ = ∑
S⊆N

v(S)|S〉,

the unanimity game uS has state representation ũS = Zn|S〉, so that we have

ṽ = ∑
S⊆N

v̂(S)Zn|S〉

and ˜̂v = Mnṽ = ∑S⊆N v(S)Mn|S〉.

5.3.2. Hadamard Transform

The Hadamard transform H of D is the linear transformation with the property

H|0〉 = |0〉+ |1〉√
2

and H|1〉 = |0〉 − |1〉√
2

.

The normalizing factor
√

2 is chosen as to make H norm preserving. Note that in both states
H|0〉 and H|1〉 the alternatives 0 and 1 are attained with equal probability

pH|j〉
0 =

1
2
= pH|j〉

1 (j = 0, 1).

It is easy to check that H is self-inverse (i.e., H−1 = H). It follows that also the n-fold tensor
product Hn = H ⊗ · · · ⊗ H is norm preserving and self-inverse on the vector state space of Dn.
In particular, the 2n state vectors

Hn|i1 . . . in〉 = H|i1〉 ⊗ · · · ⊗ H|in〉 (ij ∈ {0, 1})

are linearly independent. In the set theoretic notation, one finds

Hn|S〉 = 1
2n/2 ∑

T⊆N
(−1)|S∩T||T〉.

Note that, in each of the 2n states Hn|S〉 of Dn, the 2n boolean states |T〉 of Dn are equi-probable.

Remark 8. Both the Möbius as well as the Hadamard transform map state vectors of Dn with real coefficients
onto state vectors with real coefficients. In particular, these transforms imply linear transformations on the space
of characteristic functions of classical cooperative TU-games.

In the classical context, Hn is closely related to the so-called Walsh transform (cf. Walsh [26]),
which is also known as Fourier transform in the theory of so-called pseudo-boolean functions,
i.e., essentially (possibly non-zero normalized) characteristic functions16. This transform is an important
tool in discrete mathematics and game theoretic analysis17.

16 Hammer and Rudeanu [27]
17 see, e.g., Kalai [28], O’Donnell [29]
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We stress, however, that the Hadamard transform is not the same as the classical (discrete) Fourier
transform (below) on Dn if n ≥ 2.

Lastly, we point out an interesting connection of the Hadamard transform with the interaction
transforms of Grabisch and Roubens [2], already alluded to in Example 5. These have been proposed
in the context of cooperative games and are essentially of two types: the Shapley interaction transform,
which extends the Shapley value, and the Banzhaf interaction transform, which extends the Banzhaf
value. The latter is expressed as follows.

The Banzhaf transform of the TU-game v : 2N → R is the pseudo-boolean function IB with
the values

Iv
B(S) =

(1
2

)n−s
∑

T⊆N
(−1)|S\T|v(T) (S ∈ 2N)

and represents the quantity of interaction existing among agents in S. Iv
B(S) > 0 indicates that the

cooperation of all agents in S brings more than any combination of subgroups of S, while Iv
B(S) < 0

implies some redundancy/overlap in the cooperation of agents in S.
By the identification TU-game ‘v↔ state α’, the Hadamard transform becomes a transform Hv on

TU-games with values

Hv(S) =
1

2n/2 ∑
T⊆N

(−1)|S∩T|v(T).

Now, it is easy to check that

Iv
B(S) =

(−2)s

2n/2 Hv(S)

holds, which yields an interpretation of the Hadamard transform in terms of interaction in
cooperative contexts.

5.3.3. Fourier Transformation

We briefly recall the classical discrete Fourier transform of the coordinate space Ck.
Setting ω = e2πi/k ∈ C, one defines the (unitary) Fourier matrix

Ω =
1√
k


ω1 ω2 . . . ωk

ω2 ω4 . . . ω2k

...
... · · ·

...
ωk ω2k . . . ωk2

 ∈ Ck×k.

The Fourier transform of v ∈ Ck is the vector Ωv ∈ Ck. Applied to decision systems, the Fourier
transform of any state vector will also be a state vector.

Remark 9. Note that the Fourier transform of a state vector with real coefficients is not necessarily a real vector.
In the language of TU games, this means that the Fourier transform of a TU game is not necessarily a TU game.
However, the Fourier transform is well-defined and meaningful in the wider model of decision systems.

The Fourier transform extends naturally to interactions. Indeed, for any matrix M ∈ Ck×k,
the linear operator

C 7→ µM(C) = MC M∗ (C ∈ Ck×k)

preserves self-adjointness and thus acts as a linear operator on the Hilbert space Hk of all (k × k)
self-adjoint matrices. In particular, we have

C =
k

∑
i=1

λiuiu∗i =⇒ µM(C) =
k

∑
i=1

M(λiuiu∗i )M∗ =
k

∑
i=1

λi(Mui)(Mui)
∗.
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Hence, if M is unitary, we observe that the spectral decomposition of a self-adjoint matrix C
with eigenvectors ui yields a spectral decomposition of µM(C) with eigenvectors Mui (and the same
eigenvalues).

The choice M = Ω thus yields the Fourier transform for interaction instances

Â 7→ µΩ(Â) = ΩÂΩ∗ (A ∈ Rk×k),

which maps the Hermitian representation of an interaction state onto the Hermitian representation of
another interaction state.

5.4. Decision and Quantum Games

An n-person game Γ involves n players j, each of them having a set Sj of feasible strategies relative
to some system S, which is assumed to be in an initial state α(0). Each player j selects a strategy sj ∈ Sj

and the joint selection s = (s1, . . . , sn) of strategies and then moves the system into a final state α( f ).
The reward of player j is P(j)(α( f )), where P(j) is a pre-specified real-valued functional on the state
space of S.

The n-person game Γ is a decision game if it is played relative to a decision system Dm with binary
alternatives for some m > 0. By their strategic choices, the n players influence the m decision makers
towards a certain decision, i.e., the joint strategy s moves the game to a decision state

δ( f ) = ∑
k∈{0,1}m

δ
( f )
k |k〉 (δ

( f )
k ∈ C, ∑

k∈{0,1}m
|δ( f )

k |
2 = 1).

In the state δ( f ), the m decision makers will accept the alternative k with probability |δ( f )
k |

2,
in which case |k〉 is considered to be the final state of the game and player j receives a pre-specified
reward p(j)

k . Hence, j’s expected payoff is

P(j)(δ( f )) = ∑
k∈{0,1}m

p(j)
k |δ

(j)
k |

2. (16)

Interpreting the decision states of Dm as the states of an m-dimensional quantum system and
regarding δ( f ) as the final state of the game, we arrive at the model of a quantum game with the payoff
functionals P(j).

Remark 10. The payoff functionals P(j) reveal themselves as linear measurements if we represent decision
states not as vectors δ but as density matrices δδ∗:

P(j)(δ) = ∑
k∈{0,1}m

p(j)
k |δk|2 = 〈P(j)|δδ∗〉,

where P(j) is now the diagonal matrix with coefficients P(j)
kk = p(j)

k .

In the quantum games discussed in the literature, the strategies of the individual players typically
consist of the application of certain linear operations on the states18. As an illustration, consider the
generalization of the classical Prisoners’ Dilemma of Eisert et al. [7]:

There are two players relative to the system D2 = D⊗D with states given as

δ = δ00|00〉+ δ01|01〉+ δ10|10〉+ δ11|11〉 (δij ∈ C).

18 see, e.g., Grabbe [5] or Guo et al. [6]
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The game is initialized by a unitary operator U and prepared into the state α(0) = U|00〉.
The players select unitary operators A and B on D, whose tensor product A⊗ B is applied to α(0).
A further application of U∗ results in the final state

α( f ) = U∗(A⊗ B)α(0) = U∗(A⊗ B)U|00〉.

The payoff coefficients p(j)
k , with k ∈ {00, 01, 10, 11}, are the coefficients of the payoff matrix in

the classical Prisoners’ Dilemma.
Strategic choices of operators associated with the Pauli matrices π1 and π2 (Section 3.1),

for example, would act on the states in the following way:

π1|0〉 = |0〉 and π1|1〉 = −|1〉,
π2|0〉 = |1〉 and π2|1〉 = |0〉.

Eisert et al. show that the set {I, π1, π2} of admissible strategies for each player can guarantee
the existence of a Pareto optimal Nash equilibrium in cases where the classical variant does not admit
such a Nash equilibrium.

Without going into further detail, we mention that the Hadamard transform H often turns
out to be a powerful strategic operator in quantum games (see, e.g., the seminal penny flip game
of Meyer [30]).

6. Markov Evolutions

Interaction among agents may be time dependent. For example, opinions form over time in mutual
information exchange, and game theoretic coalitions form due to changing economic conditions, etc.
Generally, we understand by an evolution of an interaction system X = (X,A) in discrete time t
a sequence ε = (αt)t≥0 of states αt ∈ A.

The evolution ε is bounded if there is some c ∈ R such that ‖αt‖ < c holds for all t, and ε is mean
ergodic if the averages of the state representations

α(t) =
1
t

t

∑
m=1

α̂m ∈ HX

converge to a limit α(∞). We say that ε is a Markov evolution if there is a linear (“evolution”) operator
Φ : HX → HX such that

α̂t+1 = Φtα̂0 , i.e., α̂t+1 = Φα̂t holds for all t ≥ 0.

A Markov evolution is mean ergodic if and only if it is bounded:

Theorem 1. Let φ be a linear operator on Ck. Then, for any a ∈ Ck, the following statements are equivalent:

(i) There is some c ∈ R such that ‖φta‖ ≤ c holds for all t = 0, 1.

(ii) The limit a(∞) = lim
t→∞

1
t

t

∑
m=1

am exists.

Proof. Theorem 2 in Faigle and Schönhuth [31].

The importance of these notions lies in the fact that the mean ergodic evolutions guarantee
the statistical convergence of arbitrary measurements (in the sense of Section 4) on the evolution.
More precisely, we have

Corollary 1. Let φ be a linear operator on Ck. Then for any a ∈ Ck, the following statements are equivalent:
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(i) The evolution sequence (φta)t≥0 is mean ergodic.
(ii) For every linear functional f : Ck → C, the statistical averages

f
(t)

=
1
t

t

∑
m=1

f (φm(a))

converge.

We illustrate this model with two well-known examples.

6.1. Markov Chains

Let π ∈ Rk be a probability distribution and M ∈ Rk×k such that every “state” π(t) = Mtπ is
a probability distribution and hence satisfies ‖πt‖ ≤ k. It follows from Theorem 1 that (π(t))t≥0 is
a mean ergodic Markov evolution.

If M is a probabilistic transition matrix (i.e., all columns of M are probability distributions),
the Markov evolution (π(t))t≥0 is a classical Markov chain, in which case mean-ergodicity is well-known.

Remark 11. In the theory of coalition formation in cooperative game theory, Markov chains are typically
taken as underlying models for the evolutionary formation process.19

Schrödinger’s Wave Equation

Recall that the Schrödinger picture of quantum mechanics describes a state evolution of
a finite-dimensional quantum system by a time dependent function ψ with values ψ(t) ∈ Ck for
some k < ∞, which is supposed to satisfy the differential equation

∂ψ(t)
∂t

=
i
h̄

Hψ(t), (17)

with the matrix H being the so-called Hamiltonian of the system and h̄ Planck’s constant. Assuming H
to be normal (i.e., HH∗ = H∗H), one obtains the solution of Equation (17) in the form

ψ(t) = Utψ(0) (with Ut = e−iHt/h̄).

Note that Ut is unitary. So ‖ψ(t)‖ = ‖ψ(0)‖ is bounded. If H moreover is constant in time,
one finds

ψ(t) = Utψ(0) with U = e−iH/h̄ ∈ Ck×k unitary, (18)

which exhibits the (discrete) Schrödinger evolution (ψ(t))t≥0 as mean-ergodic.

Remark 12. More generally, one sees that arbitrary unitary evolutions in Ck are mean ergodic. This fact is
well-known as von Neumann’s mean ergodic theorem.

The examples show that traditional models for the evolution of interaction systems are quite
restrictive and suggest to study evolutions in a wider context.

Remark 13. For a possible infinite-dimensional evolution model that includes event observations relative to
arbitrary stochastic processes as a special case, see Faigle and Gierz [34].

19 see, e.g., Faigle and Grabisch [32] or the discussion in Bacci et al. [33]
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6.2. Markov Decision Processes

The average Markov decision problem20 involves a system S with a finite set N = {0, 1, . . . , n− 1}
of states. For each x ∈ N, there is a set A(x) of actions. Each action a ∈ A(x) is characterized by
a probability distribution pa

x on N so that pa
xy is the probability of a state transition x 7→ y under a.

Moreover, there is a reward ra
x ∈ R offered for taking the action a ∈ A(x).

A policy is a selection a = {ax|ax ∈ A(x), x ∈ N} of actions. Assuming that S is initially in state 0,
the objective of the decision taker is to select a as to maximize the long term (infinite horizon) average
reward r(∞)

a .
Notice that the policy a determines a random walk on N with transition probabilities pax

xy and
hence a classical Markov chain. Moreover, the reward corresponds to a measurement of the walk.
Indeed, let π

(t)
a be the “Markov state” of the random walk at time t. Then, the average expected reward

at time t is

r(t)a =
1
t

t

∑
m=1

∑
x∈N

rax
x π

(m)
a (x) = 〈ra|π(t)

a 〉,

where ra is the reward vector associated with the policy a and π
(t)
y the expected (average) state of the

walk at time t. In particular, the long term average reward of policy a is

r(∞)
a = 〈ra|π(∞)

a 〉.

Remark 14. The Markov decision model generalizes in a straightforward way to the setting of so-called
quantum Markov chains (see, e.g., Faigle and Gierz [34] for a definition).

7. Discussion

We have introduced interaction systems X = (X,A) as general models for the analysis of
interaction phenomena in cooperative (or other) environments by vector space methods. We have
shown that the states of such systems admit isomorphic representations (real or Hermitian), which
suggest understanding them in a classical physical context as well as, for example, in the context
of quantum systems. This dual aspect of interaction systems exhibits perspective. For example,
the eigenvalue theory allows us to understand measurements on interaction systems of stochastic
variables (Section 4.1).

Moreover, a detailed analysis of decision systems not only refines the notion of multichoice games
but puts fuzzy games into the perspective of decision systems without entangled states (Section 5.2.1).
Moreover, the probabilistic analysis of decision states exhibits Penrose’s [4] well-known quantum
theoretic model for human decision processing as a relaxed version of binary decision-making.

The Hermitian point of view also naturally associates Fourier coefficients to TU games, for
example, and generally yields a Fourier transformation for interaction systems at large. It furthermore
gives rise to a new model of “Markov evolutions” of interaction systems (Section 6), which generalizes
both the classcial Markov chain model with constant transition probabilities and the Schrödinger
quantum evolution model under a constant Hamiltonian.

The latter immediately raises the question of which Markov type evolution model is appropriate
in practice. This question cannot be mathematically decided but requires comprehensive real world
experimentation and data analysis, which exceeds by far the scope of the present paper. However,
simulated data have been obtained by Zhang et al. [9] relative to a game theoretic approach to
a technical communication problem. The data appear to support the quantum theoretic point of view.

Our mathematical analysis was restricted to interactions of a finite set X of agents and hence
to finite-dimensional Hilbert spaces. It is possible to extend the theory to countable sets X and

20 cf. Puterman [35], Lozovanu and Pickl [36]
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infinite-dimensional Hilbert spaces HX. The corresponding interaction matrices then represent
so-called Hilbert-Schmidt operators (i.e., matrix operators with finite Frobenius norm). We will not go
into further detail here.
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Appendix A. An Example with Two Agents

Let us illustrate the main notions and results introduced in the paper. For simplicity, we consider
a set X two agents and interaction matrices of the form

A =

(
w1 1− w1

1− w2 w2

)

with w1, w2 ∈ [0, 1]. A is row-stochastic but not symmetric unless w1 = w2. A’s entries are generally
interpreted as interaction/activity levels, so that w1, w2 are the activity levels of agents 1 and 2,
while 1−w1, 1−w2 are their interaction levels. Following Example 4, we understand A as an influence
matrix. In this case, agent i would listen to the opinion of the other agent with weight 1− wi, and to
himself with weight wi.

We first apply the symmetry decomposition and find

A+ =

(
w1 1− 1

2 W
1− 1

2 W w2

)
, A− =

(
0 − 1

2 ∆W
1
2 ∆W 0

)

with the shorthand W = w1 + w2 and ∆W = w1 − w2. Therefore, the self-adjoint representation is

Â =

(
w1 1− 1

2 W − i 1
2 ∆W

1− 1
2 W + i 1

2 ∆W w2

)

with the eigenvalues

λ =
W ±

√
(W − 2)2 + 2∆W2

2
.

The corresponding eigenvectors are

u1 =
1√

8 + 2W2 − 8W + 4∆W2 − 2∆W
√

D


√

4 + W2 − 4W + ∆W2

(1− 1
2 W + i ∆W

2 )(−∆W +
√

D)√
1 + 1

4 W2 −W + ∆W2

4

 ,

u2 =
1√

8 + 2W2 − 8W + 4∆W2 + 2∆W
√

D


√

4 + W2 − 4W + ∆W2

(1− 1
2 W + i ∆W

2 )(−∆W −
√

D)√
1 + 1

4 W2 −W + ∆W2

4

 .
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One can see that calculations can become rapidly quite complex. In order to clarify the results,
we perform a quantum theoretically standard change of variables and set

E0 =
W
2

,

∆ =

√
1
2

∆W2 + 1 +
1
4

W2 −W,

tan θ =
2
√

1 + 1
4 W2 −W + 1

4 ∆W2

∆W
,

e−iϕ =
1− 1

2 W − i 1
2 ∆W√

1 + 1
4 W2 −W + 1

4 ∆W2
.

Then, the eigenvalues are
λ1 = E0 + ∆, λ2 = E0 − ∆,

and the unit eigenvectors take the form

u1 =

(
cos(θ/2)

eiϕ sin(θ/2)

)
, u2 =

(
− sin(θ/2)
eiϕ cos(θ/2)

)
. (A1)

The eigenvalues are shown in Figure A1. One sees that they tend to coincide to 1 when both
agents have high activity level and low interaction, while they are very much apart when interaction
is high.
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Figure A1. Eigenvalues λ1, λ2 of Â.

Let us compute the evolution of the system by applying Schrödinger’s equation, taking the
Hamiltonian to be the self-adjoint matrix Â, and ψ(0) = e1 = (1 0)T .
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ψ(t) represents the state of the agents at timer t. Expressed in the (u1, u2) basis, we find, with the
(reduced) Planck constant h̄ = h/2π,

ψ(t) = cos(θ/2)e−
i
h̄ λ1tu1 − sin(θ/2)e−

i
h̄ λ2tu2

and, in the standard (e1, e2) basis, using Equation (A1):

ψ(t) = e−
i
h̄ E0t

(
cos(t∆/h̄)− i cos θ sin(t∆/h̄)
−ieiϕ sin(θ) sin(t∆/h̄)

)
.

The probability of transition from state e1 = (1 0)T to e2 = (0 1)T after time t is given by

Pr = ‖〈e2|ψ(t)〉‖2 = sin2 θ sin2(t∆/h̄).

This probability has period πh̄/∆ and maximal value sin2 θ. In our case, we have

sin2 θ =
tan2 θ

tan2 θ + 1
= 1− ∆W2

4 + W2 − 4W + 2∆W2 ,

which is the maximal value of the probability of transition. Its period is

πh̄√
1
2 ∆W2 + 1 + 1

4 W2 −W
.

Figure A2 shows the oscillatory nature of the probability of transition. The amplitude and period
of these oscillations are shown in Figures A3 and A4. When both agents have a high activity level with
low interaction, the period tends to infinity so that the probability of transition tends to 0: there is no
evolution. Otherwise, the period is almost constant to a low value around 1 unit of time, while the
amplitude is close to its maximal value when the agents have a low activity and a high interaction:
clearly, interaction creates strong and rapid oscillations between the two states. In addition, the
amplitude is minimal when one of the agents has no interaction while the other one has.

0
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0.8

1

0 5 10 15 20

Figure A2. Probability of transition from state e1 to e2 in 1/h̄ unit times with w1 = 0.9, w2 = 0.1.
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Figure A3. Amplitude of probability of transition.
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Figure A4. Period of probability of transition in πh̄ units of time.

Let us consider slightly different interaction matrices A′, A′′:

A′ =

(
w1 w1 − 1

w2 − 1 w2

)
, A′′ =

(
w1 1− w1

w2 − 1 w2

)

with w1, w2 ∈ [0, 1]. In A′, the antidiagonal elements are nonpositive, which, when A′ is interpreted as
an influence matrix, corresponds to an anticonformist attitude, since the agent has a tendency to adopt
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an opinion opposite to the one of the other agent. A′′ represents a mixed situation where agent 1 is
conformist and agent 2 is anticonformist. The corresponding self-adjoint matrices are

Â′ =

(
w1

1
2 W − 1 + i 1

2 ∆W
1
2 W − 1− i 1

2 ∆W w2

)
,

Â′′ =

(
w1

1
2 ∆W + i( 1

2 W − 1)
1
2 ∆W − i( 1

2 W − 1) w2

)
.

Observe that, since in all cases the term A12 is the same, all parameters E0, ∆, θ remain the same,
and only ϕ changes. Consequently, the eigenvalues and probability of transition are the same, and
only the evolution of ψ changes.

In the particular situation

A =

(
0 1
1 0

)
,

the agents display no activity (or no self-confidence) and interact positively (or follow the other’s
opinion fully). The eigenvalues are±1, θ = π

2 and ∆ = 1, yielding a maximal amplitude for probability
transition and a period equal to πh̄. e−iϕ = 1 holds and the evolution is

ψ(t) = cos(t/h̄)

(
1
0

)
− i sin(t/h̄)

(
0
1

)
.

Another extreme case is

A =

(
0 −1
−1 0

)
,

where the two agents have negative interaction or are pure anticonformists. The eigenvalues are ±1,
θ = π

2 and ∆ = 1, yielding a maximal amplitude for probability transition and a period equal to πh̄.
Again, e−iϕ = −1 holds with evolution

ψ(t) = cos(t/h̄)

(
1
0

)
+ i sin(t/h̄)

(
0
1

)
.

Note that, in both cases, the state is oscillating with maximal amplitude, which is well in line with
the intuition that the opinion is very unstable in case every agent just copies the activity/opinion of
the other or does exactly the opposite.
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