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Non-Technical Summary 

 
The volatility of the aggregate stock market is often measured by the VIX, a volatility index 
computed on the basis of prices of options written on the S&P 500 index. This volatility varies 
in a pronounced fashion, which implies that volatility is not constant over time, and these 
fluctuations constitute a significant source of risk for market participants. In addition to that, it 
is not only the level of volatility (measured by the VIX), which is substantially time-varying, but 
also the volatility of this volatility. This ‘volatility of volatility’ (vol of vol) is also measured by an 
index, the so-called VVIX, which, analogously to the VIX, is computed from option prices, here 
from contracts written on the VIX. In case this vol of vol is time-varying, it can also be an 
important risk factor for market participants, since it expresses how much volatility itself is likely 
to fluctuate over a given future horizon.  
 
In our paper we show that vol of vol is indeed such a significant risk factor which affects the 
cross-section and the time-series of index and VIX option returns, beyond volatility risk itself. 
It is worth noting that volatility and vol of vol (i.e., the VIX and the VVIX) are only weakly related 
to each other in a statistical sense, so that their fluctuations cannot really be traced back to 
just one underlying risk factor. The difficult part is now to extract information on the premium 
that market participants require to bear volatility or vol of vol risk. We follow an idea proposed 
by Bakshi and Kapadia (2003) for the identification of the sign of the volatility risk premium and 
use option hedging errors for that purpose. We find that delta-hedged index and VIX option 
returns are negative on average, and are more negative for strategies which are more exposed 
to volatility and volatility-of-volatility risks. Volatility and volatility of volatility significantly and 
negatively predict future delta-hedged option payoffs. The evidence is consistent with a no-
arbitrage model featuring time-varying market volatility and volatility-of-volatility factors, both 
of which have negative market price of risk. This means that market participants consider 
options with high payoffs when volatility or vol of vol are high as insurance against bad states, 
and thus are willing to accept a negative expected return. 
 
The results of our analysis are important in the sense that they add to our understanding of the 
structure and dynamics of risk premia in capital markets, which in turn is highly relevant for 
private investors as well as institutional money managers. 
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Abstract

We show that time-varying volatility of volatility is a significant risk factor which

affects the cross-section and the time-series of index and VIX option returns, beyond

volatility risk itself. Volatility and volatility-of-volatility measures, identified model-

free from the option price data as the VIX and VVIX indices, respectively, are only

weakly related to each other. Delta-hedged index and VIX option returns are negative

on average, and are more negative for strategies which are more exposed to volatility

and volatility-of-volatility risks. Volatility and volatility of volatility significantly and

negatively predict future delta-hedged option payoffs. The evidence is consistent with a

no-arbitrage model featuring time-varying market volatility and volatility-of-volatility

factors, both of which have negative market price of risk.
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1 Introduction

Recent studies show that volatility risks significantly affect asset prices and the macroecon-

omy.1 In the data, asset market volatility is often captured by the volatility index (VIX).

Calculated in real time from the cross-section of S&P500 option prices, the VIX index pro-

vides a risk-neutral forecast of the index volatility over the next 30 days. The VIX index

exhibits substantial fluctuations, which in the data and in many economic models drive the

movements in asset prices and the risk premia. Interestingly, the volatility of the VIX index

itself varies over time. Computed from VIX options in an analogous way to the VIX, the

volatility-of-volatility index (VVIX) directly measures the risk-neutral expectations of the

volatility of volatility in the financial markets. In the data, we find that the VVIX has sep-

arate dynamics from the VIX, so that fluctuations in volatility of volatility are not directly

tied to movements in market volatility. We further show that volatility-of-volatility risks

are a significant risk factor which affects the time-series and the cross-section of index and

VIX option returns, above and beyond volatility risks. The evidence is consistent with a

no-arbitrage model which features time-varying market volatility and volatility-of-volatility

factors which are priced by the investors. In particular, volatility and volatility of volatil-

ity have negative market prices of risk, so that investors dislike increases in volatility and

volatility of volatility, and demand a risk compensation for the exposure to these risks.

Our no-arbitrage model extends the one-factor stochastic volatility specification of equity

returns in Bakshi and Kapadia (2003). Specifically, we introduce a separate time-varying

volatility-of-volatility risk factor which drives the conditional variance of the variance of

market returns.2 We use the model to characterize the payoffs to delta-hedged equity and

VIX options. The zero-cost, delta-hedged positions represent the gains on a long position in

1See e.g. Bansal and Yaron (2004), Bloom (2009), Bansal, Kiku, Shaliastovich, and Yaron (2014),
Fernandez-Villaverde and Rubio-Ramı́rez (2013) for the discussion of macroeconomic volatility risks, and
Coval and Shumway (2001), Bakshi and Kapadia (2003), Campbell, Giglio, Polk, and Turley (2012) for
market volatility risks.

2We use the terms “variance” and ”volatility” interchangeably unless specified otherwise.
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the option, continuously hedged by an offsetting short position in the underlying asset. As

argued in Bakshi and Kapadia (2003), delta-hedged option payoffs most cleanly isolate the

exposures to volatility risks, and thus are very useful to study the pricing of volatility-related

risks.3 Indeed, we show that the expected payoff on the delta-hedged index option positions

capture risk compensations for both volatility and volatility-of-volatility risks, while for VIX

options, the expected gains primarily reflect the compensation for volatility-of-volatility risk.

Imposing a standard linear risk premium assumption, we can further decompose the risk

premia components of the expected gains on the index options into the product of the

market price of risk, the risk exposure, and the time-varying quantity of each source of risk.

For VIX options, the expected gains do not generally admit a linear factor structure, so we

resort to numerical calibration techniques to support our theoretical arguments.

The model delivers clear, testable predictions for expected option returns and their rela-

tion to volatility and volatility-of-volatility risks. In the model, if investors dislike volatility

and volatility of volatility, so that the market prices of these risks are negative, delta-hedged

equity and VIX option gains are negative on average. In the cross-section, the average re-

turns are more negative for option strategies which have higher exposure to the volatility

and volatility-of-volatility risks. Finally, in the time series, higher volatility and volatility of

volatility predict more negative delta-hedged option gains in the future.

We find that the model implications for volatility and volatility-of-volatility risks are

strongly supported in the cross-section of index and VIX option returns. First, we use the

VIX and VVIX indices to validate our volatility measures, and compare and contrast their

dynamics. In our monthly 2006 - 2016 sample, the VVIX behaves quite differently from the

VIX, consistent with a setup of our model which separates market volatility from volatility

of volatility. Using predictive regressions, we show that the VIX is a significant predictor of

the future realized variance of market returns, while the VVIX significantly forecasts future

3For example, unlike delta-hedged positions, zero-beta straddles analyzed in Coval and Shumway (2001)
are not dynamically rebalanced and may contain a significant time-decay option premium component.
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realized variation in the VIX index itself.

On average, the risk-neutral volatilities of the market return and market volatility cap-

tured by the VIX and VVIX exceed the realized volatilities of returns and the VIX. The

difference between the risk-neutral and physical volatilities of market returns is known as

the variance premium (variance-of-variance premium for the VIX), and the findings of pos-

itive variance and variance-of-variance premium suggest that investors dislike variance and

variance-of-variance risks, and demand a premium for being exposed to these risks.

We next turn to the asset-price evidence from the equity index and VIX option markets.

In line with our model, we consider discrete-time counterparts to the continuously-rebalanced

delta-hedged gains; this approach is similar to Bakshi and Kapadia (2003)4. Consistent

with the evidence in previous studies, the average delta-hedged returns on out-of-the-money

equity index calls and puts are significantly negative in our sample. The novel evidence in

our paper is that the average delta-hedged returns on VIX options are also negative at all

strikes and statistically significant for all the contracts except for the out-of-the-money puts

and in-the-money calls. Estimates of the loss for call options range from -0.25% of the index

value for in-the-money VIX calls to -1.20% for out-of-the-money calls. The negative average

returns on index and VIX options directly suggest that the market prices of volatility and

volatility-of-volatility risks are negative.

We then show that the cross-sectional spreads in average option returns are significantly

related to the volatility and volatility-of-volatility risks. In lieu of calculating exact model

betas, we compute option exposures using the Black and Scholes (1973) vega and volga.

The two quantities vary intuitively with the moneyness of the option in the cross-section,

and help us proxy for the betas of the options to the underlying risks. Empirically, we

document that average option returns are significantly and negatively related to our proxies

for volatility and volatility-of-volatility risks. Hence, using the cross-section of equity index

4We consider several checks to show the robustness of our results to the measurements of delta.
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options and VIX options, we find strong evidence for a negative market price of volatility

and volatility-of-volatility risks.

Finally, we consider a predictive role of our volatility measures for future option returns.

In the model, expected delta-hedged gains are time-varying and are driven by the volatility

and volatility of volatility (by volatility of volatility for VIX options). In particular, as

option betas are all positive, when the market prices of volatility-related risks are negative,

both volatility measures should forecast future returns with a negative sign. This model

prediction is consistent with the data.

Related Literature. Our paper is most closely related to Bakshi and Kapadia (2003) who

consider the implications of volatility risk for equity index option markets. We extend their

approach to include volatility-of-volatility risk, and bring evidence from VIX options. To

help us focus on the volatility-related risks, we consider dynamic delta-hedging strategies

where a long position in an option is dynamically hedged by taking an offsetting position in

the underlying. Delta-hedged strategies are also used in Bertsimas, Kogan, and Lo (2000),

Cao and Han (2013) and Frazzini and Pedersen (2012), and are a standard risk management

technique of option traders in the financial industry (Hull (2011)). In an earlier study, Coval

and Shumway (2001) consider the returns on zero-beta straddles to identify volatility risk

sensitive assets.

We also contribute to a growing literature which address the role of volatility-of-volatility

risks in asset pricing. Zhang and Zhu (2006) and Lu and Zhu (2010) highlight the nature

and importance of volatility risks by analyzing the pricing of VIX futures. Related to our

findings, Park (2015) shows that the VVIX has predictive power for VIX option returns.

Hollstein and Prokopczuk (2017) study the cross-section of stocks and find that stocks with

a strongly negative return exposure to volatility of volatility have higher returns on average.

This is consistent with our evidence for a negative market price of volatility-of-volatility

risk. Branger, Hülsbusch, and Kraftschik (2017) analyze the information contained in the
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VVIX term structure. They find that it predicts S&P500 and VIX straddle returns and is

incremental to the information contained in the VIX term structure which has been analyzed

by Johnson (2017). This is in line with our finding that variance dynamics are richer than

that of the square-root process typically considered in the literature, and is consistent with

the evidence in Christoffersen, Jacobs, and Mimouni (2010), Menćıa and Sentana (2013),

and Branger, Kraftschik, and Völkert (2016).

In a structural approach, Bollerslev, Tauchen, and Zhou (2009) consider a version of the

Bansal and Yaron (2004) long-run risks model which features recursive utility and fluctua-

tions in the volatility and volatility of volatility of the aggregate consumption process. They

show that in equilibrium, investors require compensation for the exposure to volatility and

volatility-of-volatility risks. With preference for early resolution of uncertainty, the market

prices of the two risks are negative. As a result, the variance risk premium is positive on av-

erage, and can predict future equity returns. Bollerslev et al. (2009) and Drechsler and Yaron

(2011) show that the calibrated version of such a model can account for the key features of

equity markets and the variance premium in the data. Our empirical results are consistent

with the economic intuition in these models and complement the empirical evidence in these

studies.

Finally, it is worth noting that in our paper we abstract from jumps in equity returns,

and focus on diffusive volatilities as the main drivers of asset prices and risk premia. For

robustness, we confirm that our predictability results are robust to controlling for jump risk

measures such as the slope of the implied volatility curve, realized jump intensity (Barndorff-

Nielsen and Shephard (2006) and Wright and Zhou (2009)), and risk-neutral skewness (Bak-

shi, Kapadia, and Madan (2003)). Hence, we argue that the VIX and VVIX have a significant

impact on option returns even in the presence of stock market and volatility jumps; we leave

a formal treatment of jumps for future research. Reduced-form models which highlight the

role of jumps include Bates (2000), Pan (2002), and Duffie, Pan, and Singleton (2000), among
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others. Muravyev (2016) documents that inventory risk faced by market-makers also affects

option prices.

Our paper proceeds as follows. In Section 2 we discuss our model which links expected

delta-hedged equity and volatility option gains to risk compensations for volatility and

volatility-of-volatility risk. We also discuss an illustrative numerical example to show the re-

lation between VIX option gains and the volatility-related risks. Details about this study can

be found in the online appendix that supplements our paper. In Section 3, we describe the

construction of both the model-free implied variance measures and high-frequency realized

variance measures, and summarize their dynamics in the time-series. Section 4 provides the

empirical evidence from option prices by empirically implementing the delta-hedged option

strategies in our model. Section 5 presents robustness tests for alternative measures of vari-

ance, as well as robustness of the results in the presence of jump risks. Section 6 concludes

the paper.

2 Model

In this section we describe our model for stock index returns, as well as for equity and

volatility option prices. Our model is an extension of Bakshi and Kapadia (2003) and features

separate time-variation in the market volatility and volatility of volatility. Both volatility

risks are priced, and affect the level and time-variation of the expected asset payoffs.
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2.1 Dynamics of Equity and Equity Option Prices

Under the physical measure (P) the stock index price St evolves according to:

dSt
St

= µ(St, Vt, ηt)dt+
√
VtdW

1
t ,

dVt = θ(Vt)dt+
√
ηtdW

2
t ,

dηt = γ(ηt)dt+ φ
√
ηtdW

3
t ,

(2.1)

where W i (i = 1, 2, 3) are the Brownian motions which drive stock returns, the stock return

variance, and the variance of variance, respectively. The Brownian components can be

correlated, i.e., we assume dW i
t dW

j
t = ρi,j dt for all i 6= j. Vt is the variance of instantaneous

returns, and ηt is the variance of innovations in Vt. Note that the drift of the variance Vt only

depends on itself, and not on the stock price St or the volatility of volatility ηt. Similarly,

the drift of the volatility of volatility ηt is a function of the volatility of volatility ηt.

Under the risk-neutral measure (Q) the stock price St follows a similar process, but with

the drifts adjusted by the risk compensations for the corresponding risks:

dSt
St

= rfdt+
√
VtdW̃

1
t ,

dVt = (θ(Vt)− λVt )dt+
√
ηtdW̃

2
t ,

dηt = (γ(ηt)− ληt )dt+ φ
√
ηtdW̃

3
t .

(2.2)

In this representation, the W̃ i represent Brownian motions under the risk-neutral measure

Q. λVt captures the compensation for variance risk, and ληt reflects the compensation for

innovations in the stochastic variance of variance. If investors dislike variance and variance-

of-variance risks, the two risk compensations are negative. In this case, the variances have

higher drifts under the risk-neutral than under the physical measure.

Let Ct(K, τ) denote the time t price of a call option on the stock with strike price K and
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time to maturity τ. Assume the risk-free rate rf is constant. To simplify the presentation,

we further abstract from dividends. While we focus our discussion on call options, the case

of put options follows analogously. Given the specified dynamics of the stock price under

the two probability measures, the option price is given by a twice-differentiable function C

of the state variables: Ct(K, τ) = C(St, Vt, ηt, t). By Itô’s Lemma,

dCt =
∂C

∂S
dSt +

∂C

∂V
dVt +

∂C

∂η
dηt + btdt, (2.3)

for a certain drift component bt.

The discounted option price e−rf tCt is a martingale under Q and thus has zero drift. We

use Itô’s Lemma again to obtain that:

∂C

∂S
Strf +

∂C

∂V

(
θ(Vt)− λVt

)
+
∂C

∂η
(γ(ηt)− ληt ) + bt − rfCt = 0. (2.4)

This implies that:

bt = rf

(
Ct −

∂C

∂S
St

)
− ∂C

∂V
(θ(Vt)− λVt )− ∂C

∂η
(γ(ηt)− ληt ). (2.5)

Let Πt,t+τ stand for the delta-hedged option gain for call options:

Πt,t+τ ≡ Ct+τ − Ct −
∫ t+τ

t

∂C

∂S
dSu −

∫ t+τ

t

rf

(
Cu −

∂C

∂S
Su

)
du. (2.6)

The delta-hedged option gain represents the gain on a long position in the option, continu-

ously hedged by an offsetting short position in the stock, with the net balance earning the

risk-free rate.

Combining equations (2.3) and(2.5) and noting that Ct+τ = Ct +
∫ t+τ
t

dCu, we see that
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the delta-hedged gain for call options is given as

Πt,t+τ ≡ Ct+τ − Ct −
∫ t+τ

t

∂C

∂S
dSu −

∫ t+τ

t

rf

(
Cu −

∂C

∂S
Su

)
du

=

∫ t+τ

t

λVu
∂C

∂V
du+

∫ t+τ

t

ληu
∂C

∂η
du+

∫ t+τ

t

∂C

∂V

√
ηudW

2
u +

∫ t+τ

t

∂C

∂η
φ
√
ηudW

3
u .

(2.7)

Since the expectation of Itô integrals is zero, the expected delta-hedged equity option

gains are given by

Et [Πt,t+τ ] = Et
[∫ t+τ

t

λVu
∂C

∂V
du

]
+ Et

[∫ t+τ

t

ληu
∂C

∂η
du

]
. (2.8)

The expected option gains depend on the risk compensation components for the volatility

and volatility-of-volatility risks (λVt and ληt ), and the option price exposures to these two

sources of risks (∂C
∂V

and ∂C
∂η

).

For tractability, following the literature let us further assume that the risk premium

structure is linear:

λVt = λV Vt, ληt = ληηt, (2.9)

where λV is the market price of the variance risk and λη is the market price of the variance-

of-variance risk. We can further operationalize (2.8) by applying Itô-Taylor expansions

(Milstein (1995)). This gives us a linear factor structure (see details in Appendix A):

Et [Πt,t+τ ]

St
= λV βVt Vt + ληβηt ηt. (2.10)

The sensitivities to the risk factors are given by:

βVt =
∞∑
n=0

τ 1+n

(1 + n)!
ΦV
t,n > 0, βηt =

∞∑
n=0

τ 1+n

(1 + n)!
Φη
t,n > 0, (2.11)
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where ΦV
t,n and Φη

t,n are positive functions which depend on the moneyness of the option and

on the sensitivities ∂C
∂V

and ∂C
∂η

, respectively. Hence, the expected payoff on the delta-hedged

option position combines the risk compensations for the volatility and volatility-of-volatility

risks. The two risk compensations are given by the product of the market price of risk,

the exposure of the asset to the corresponding risk, and the quantity of risk. In particular,

options are positive-beta assets with respect to both volatility and volatility-of-volatility

risks. Hence, if investors dislike volatility and volatility-of-volatility risks so that their market

prices of risks are negative, the expected option payoffs are negative as well.

2.2 Dynamics of VIX Option Prices

The squared VIX index for a time to maturity τ is the annualized risk-neutral expectation

of the quadratic variation of returns from time t to t+ τ , given by:

V IX2
t =

1

τ
EQ
t

[∫ t+τ

t

Vs ds

]
. (2.12)

Given our model assumptions, the VIX index is a function of the stock market variance:

V IXt = V IX(Vt). For example, in a linear model where the variance drift θ(Vt) is linear in

Vt, the squared VIX is a linear function of the stock market variance Vt.

Let Ft be the time t price of a VIX futures contract expiring at t + τ . Under the

assumptions of no arbitrage and continuous mark-to-market, Ft is a martingale under the

risk-neutral measure Q:

Ft = EQ
t [V IXt+τ ] = EQ

t [V IX(Vt+τ )] . (2.13)

Under our model structure, the futures price F is a function of the market variance Vt and

volatility of volatility η. Under economically plausible scenarios, the futures price is monotone

10



in the two volatility processes.5 Knowing Ft and ηt is sufficient for Vt, so we can re-write the

economic states

[
Vt ηt

]
in terms of

[
Ft ηt

]
.

Let C∗t be the time t price of a VIX call option, whose underlying is a VIX forward

contract. The option price is given by a twice differentiable function C∗ of the state variables,

so that C∗t (K, τ) = C∗(Ft, ηt, t). By Itô’s Lemma:

dC∗t =
∂C∗

∂F
dFt +

∂C∗

∂η
dηt + b∗tdt, (2.14)

for a drift component b∗t .

Under the risk-neutral measure Q, the discounted VIX option price process e−rf tC∗t is a

martingale, so it must have zero drift:

∂C∗

∂F
DQ[Ft] +

∂C∗

∂η
(γ(ηt)− ληt )− rfC∗t + b∗tdt = 0, (2.15)

where DQ[Ft] is the infinitesimal generator applied to F , i.e., the conditional expectation of

dFt under Q.

This implies that

b∗t = rfC
∗
t +

∂C∗

∂η
ληt −

∂C∗

∂η
γ(ηt)−

∂C∗

∂F
DQ[Ft]

= rfC
∗
t +

∂C∗

∂η
ληt −

∂C∗

∂η
γ(ηt),

(2.16)

where the second line follows from the fact that Ft is a martingale under Q, so that its drift

is equal to zero.

Combining (2.16) with (2.14), we obtain the equation for the delta-hedged VIX option

5See also Zhang and Zhu (2006), Lu and Zhu (2010), and Branger et al. (2016) for VIX futures pricing
models.
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gain:

Π∗t,t+τ = C∗t+τ − C∗t −
∫ t+τ

t

∂C∗

∂F
dFs −

∫ t+τ

t

rfC
∗
sds

=

∫ t+τ

t

∂C∗

∂η
ληsds+

∫ t+τ

t

∂C∗

∂η
φ
√
ηsdW

3
s .

(2.17)

The delta-hedged VIX option gain in Equation (2.17) is the counterpart to the delta-hedged

equity option gain in Equation (2.7). The difference comes from the fact that the short stock

position serving as the hedge in the case of equity options is funded at rf , while for VIX

futures the hedging position is zero cost.

Taking expectations, we can derive the corresponding expected gain on delta-hedged VIX

options:

Et
[
Π∗t,t+τ

]
Ft

=
1

Ft

∫ t+τ

t

Et
[
∂C∗s
∂ηs

ληs

]
ds. (2.18)

Similar to index options, the expected gain on delta-hedged VIX options depends on the

market price of volatility-related risks and the option exposure to these risks. However, in

contrast to index options, at least for short maturities τ , VIX options are mainly exposed to

volatility-of-volatility risks. Their exposure to these risks, captured by ∂C∗s
∂ηs

, is expected to be

positive, so that the average level of the expected gains on VIX options and its dependence

on the volatility-of-volatility factor is governed by the market price of the volatility risks λη.

Unlike the expected gains for index options in (2.10), the expected gains for VIX options do

not generally admit a linear factor structure because the option price is no longer homoge-

neous in the underlying asset value. We provide a numerical example below to support our

arguments, and then consider the relative importance of the risks in the data.
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2.3 Illustrative Numerical Example

We calibrate the model to match key asset-pricing moments in the data. We use numerical

methods to calculate model-implied delta-hedged VIX option gains in Equation (2.18), and

analyze how the expected VIX option gains depend on the market price of the volatility-

of-volatility risks. The online appendix contains a detailed description of the calibration

approach and the solution technique.

Using numerical solutions, we find that the sign of the expected option gain is pinned

down by the sign of the market price of volatility-of-volatility risk. In particular, we find

that the derivative ∂C∗

∂η
of the VIX option price with respect to the volatility of volatility is

positive for all levels of V and η. As a consequence, the expected gains are negative if and

only if the market price of volatility-of-volatility risks λη is negative.

We also consider the relation between the expected gains and the level of the volatility of

volatility. The option price sensitivity to volatility of volatility, ∂C∗

∂η
, is always positive. The

derivative is mildly decreasing in volatility of volatility, in absolute value. In total, when the

market price of volatility-of-volatility risks is negative, the expected gains are more negative

at times of high volatility of volatility. In this case, volatility of volatility predicts future

VIX option gains with a negative sign.

3 Variance Measures

3.1 Construction of Variance Measures

The VIX index is a model-free, forward-looking measure of implied volatility in the U.S.

stock market, published by the Chicago Board Options Exchange (CBOE). The square of

the VIX index is defined as in Equation (2.12) where τ = 30
365

. Carr and Madan (1998),
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Britten-Jones and Neuberger (2000), and Jiang and Tian (2005) show that V IX2 can be

computed from the prices of call and put options with the same maturity at different strike

prices:

V IX2
t =

2erf τ

τ

[∫ S∗t

0

1

K2
Pt(K)dK +

∫ ∞
S∗t

1

K2
Ct(K)dK

]
, (3.1)

where K is the strike price, Ct and Pt are the put and call prices, S∗t is the fair forward price

of the S&P500 index, and rf is the risk-free rate. The VIX index published by the CBOE

is discretized, truncated, and interpolated across the two nearest maturities to achieve a

constant 30-day maturity.6 Jiang and Tian (2005) show through simulation analysis that

the approximations used in the VIX index calculation are quite accurate.

Since February 2006, options on the VIX have been trading on the CBOE, which give

investors a way to trade the volatility of volatility. As of Q3 2012, the open interest in front-

month VIX options was about 2.5 million contracts, which is similar to the open interest in

front-month S&P500 index option contracts.

We calculate our measure of the implied volatility of volatility using the same method

as the VIX, applied to VIX options instead of S&P500 options. The index, which has since

been published by the CBOE as the “VVIX index” in 2012 and back-filled, is calculated as:

V V IX2
t =

2erf τ

τ

[∫ Ft

0

1

K2
P ∗t (K)dK +

∫ ∞
Ft

1

K2
C∗t (K)dK

]
, (3.2)

where Ft is the VIX futures price, and C∗t , P
∗
t are the prices of call and put options on the

VIX, respectively.7 The squared VVIX is calculated from a portfolio of out-of-the-money call

6More details on the exact implementation of the VIX can be found in the white paper available on the
CBOE website: http://www.cboe.com/micro/vix

7The official index is back-filled until 2007. We apply the same methodology and construct the index for
an additional year back to 2006. The correlation between our measure of the VVIX and the published index
is over 99% in the post-2007 sample. Our empirical results remain essentially unchanged if we restrict our
sample to only the post-2007 period.
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and put options on VIX futures contracts. It captures the implied volatility of VIX futures

returns over the next 30-days, and is a model-free, forward-looking measure of the implied

volatility of volatility.

In addition to the implied volatilities, we can also compute the realized volatilities for the

stock market and the VIX. The construction here follows Barndorff-Nielsen and Shephard

(2004) using high-frequency, intraday data.8 Realized variance is defined as the sum of

squared high-frequency log returns over the trading day:

RVt =
N∑
j=1

r2
t,j. (3.3)

Barndorff-Nielsen and Shephard (2004) show that RVt converges to the quadratic varia-

tion as N →∞. We follow the standard approach of considering 5 minute return intervals.

A finer sampling frequency results in better asymptotic properties of the realized variance

estimator, but also introduces more market microstructure noise such as the bid-ask bounce

discussed in Heston, Korajczyk, and Sadka (2010). Liu, Patton, and Sheppard (2015) show

that the 5 minute realized variance is very accurate, difficult to beat in practice, and is

typically the ideal sampling choice in most applications combining accuracy and parsimony.

We estimate two realized variance measures, one for the S&P500 and one for the VIX.

For the S&P500, we use the S&P500 futures contract and the resulting realized variance

will be denoted RV SPX . For the VIX, we use the spot VIX index and denote the resulting

realized variance of the VIX by RV V IX , which is our measure of the physical volatility of

volatility. For robustness, we also entertain an alternative measure of the realized variance

RV V X∗ which is computed using the 5-minute VIX futures returns. The sample for this

measure is shorter, and starts in July 2012.

8The data are obtained from http://www.tickdata.com.
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3.2 Variance Dynamics

All of our variables are at the monthly frequency. The implied variance measures are given by

the index values at the end of the month, and the realized variance measures are calculated

over the past month and annualized. The sample for the benchmark measures runs from

February 2006 to December 2016.

Table 1 presents summary statistics for the implied and realized variance measures. While

the average level of the VIX is about 22%, the average level of the VVIX is much higher at

about 88%, which captures the fact that VIX futures returns are much more volatile than

market returns: volatility, itself, is very volatile. V V IX2 is also much more volatile and

less persistent than V IX2, with an AR(1) coefficient of 0.33 compared to 0.81 for V IX2.

The VVIX exhibits relatively low correlation with the VIX, with a correlation coefficient

of about 0.27. The mean of realized variance for S&P500 futures returns is 0.024, which

corresponds to an annualized volatility of 15.5%. S&P500 realized variance is persistent

and quite strongly correlated to the VIX index (correlation coefficient of 0.88) and much

more weakly correlated to the VVIX index (correlation coefficient about 0.26). The realized

variance of VIX is strongly related to the VVIX index (correlation of 0.61), and to a much

lesser extent, the VIX index (correlation of 0.18).

In the last row of Table 1 we also consider the realized variance of VIX futures returns,

since the VIX futures contract (not the spot VIX) is the underying asset for VIX options and

there is no simple cost-of-carry relationship between VIX futures and spot VIX. Compared to

spot VIX realized variance, VIX futures realized variance is lower on average, less volatile,

more persistent, and more correlated with VIX. Recall, however, that our data for VIX

futures is from 2012m7 to 2016m12 because of the availability of tick data.

Figure 1 shows the time-series of the VIX and VVIX from February 2006 to December

2016. There are some common prominent moves in both series, such as the a peak during
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the financial crisis. Notably, however, the VVIX also peaks during other times of economic

uncertainty, such as the summer of 2007 (quant meltdown, beginning of the subprime crisis),

May 2010 (Eurozone debt crisis, flash crash), August 2011 (U.S. debt ceiling crisis), and

August 2015 (sell-off driven by the Chinese stock market crash). The movements in VIX

during these events are far smaller than the spikes in the VVIX. The suggests that the VVIX

captures important uncertainty-related risks in the aggregate market, distinct from the VIX

itself.

In Figure 2 we present time-series plots for both S&P500 and VIX realized variances. As

shown in Panel A, the realized and implied variances of the stock market follow a similar

pattern, and S&P500 realized variance is nearly always below the implied variance. There

is a large spike in both series around the financial crisis in October 2008, at which point

realized variance exceeded implied variance. The difference between the mean of V IX2 and

RV SPX is typically interpreted as a variance premium, which is the difference between end-

of-month model-free, forward-looking implied variance calculated from S&P500 index options

and the realized variance of S&P500 futures returns over the past month. Unconditionally,

the average level of the VIX (22%) is greater than the average level of the S&P500 realized

volatility (15.6%), so that the variance premium is positive, consistent with the evidence in

Bollerslev et al. (2009) and Drechsler and Yaron (2011). This also implies a negative market

price of volatility risk.

Panel B of the Figure shows the time series of the realized and implied volatility of the

VIX index. Generally, the implied volatility tends to increase at times of pronounced spikes

in the realized volatility. The implied volatility is also high during other times of economic

distress and uncertainty, such as May 2010 (Eurozone debt crisis and flash crash), and August

2011 (U.S. debt ceiling crisis). During normal times, the VVIX is above the VIX realized

variance, although during times of extreme distress we see the realized variance of VIX can

exceed the VVIX. The average level of the VVIX (87.8%) is greater than the average level
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of the VIX realized volatility (81.8%), so that the volatility-of-volatility premium is also

positive.9 As we see in Table 1, VIX futures realized volatility is lower than VIX index

realized volatility, so the actual magnitude of the volatility-of-volatility risk premium is even

larger when compared to VIX futures. Similar to our discussion of the variance premium,

this evidence suggests that investors dislike volatility-of-volatility risks, and the market price

of these risks is negative.

In addition to unconditional moments, we can also analyze the conditional dependence

of volatility on volatility of volatility. Specifically, we consider the predictability of future

realized variances by the VIX and VVIX, in spirit of Canina and Figlewski (1993), Chris-

tensen and Prabhala (1998), and Jiang and Tian (2005) who use option implied volatilities to

predict future realized volatilities. Following that approach, we consider both univariate and

multivariate encompassing regressions to assess the predictability of future realized variances

by the VIX and VVIX.

In our main specification, the dependent variable is the realized variance (RV ) over the

next month, for both the S&P500 and the VIX. Univariate regressions test whether each

implied volatility measure (the VIX or the VVIX) can forecast future realized variances;

multivariate encompassing regressions compare the relative forecasting importance of the

VIX and VVIX and whether one implied volatility measure subsumes the information con-

tent of the other. The univariate regressions are restricted versions of the corresponding

multivariate encompassing regression. For the S&P500 the regression is given as

RV SPX
t+1 = β0 + β1V IX

2
t + β2V V IX

2
t + β3RV

SPX
t + εt+1. (3.4)

9Song (2013) shows that the average level of his VVIX measure, computed using numerical integration
rather than the model-free VIX construction, is lower than the average realized volatility of VIX. One of the
key differences between his and our computations is the frequency of returns used in the realized variance
computations. Consistent with the literature, we rely on 5-minute returns to compute the realized variances,
while Song (2013) uses daily returns.
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Similarly for the VIX, we have:

RV V IX
t+1 = β0 + β1V IX

2
t + β2V V IX

2
t + β3RV

V IX
t + εt+1. (3.5)

Our benchmark results are presented for all variables calculated in annualized variance units.

The first regression in Panel A of Table 2 shows that the VIX can forecast future re-

alized variance of S&P500 returns. This is consistent with the findings of Jiang and Tian

(2005). The VVIX can also forecast future S&P500 realized variance somewhat, although

the statistical significance is weaker than that of the VIX and the magnitude of the regres-

sion coefficient is several times smaller. In the encompassing regression, we see that the

VIX dominates the VVIX in forecasting future S&P500 realized variance. A one standard

deviation increase in V IX2 is associated with a 0.6 standard deviation increase in the real-

ized variance of S&P500 returns next month. The coefficient on the VIX does not change

much when we include the VVIX. Including lags of the realized variances themselves do not

materially change the results. These results are consistent with our model specification.

Panel B of Table 2 shows our predictability results for VIX realized variance, which is

our proxy for physical volatility of volatility. The VIX is not significantly related to future

VIX realized variation; in fact, the point estimate is negative. The t-statistic is nearly zero,

and the adjusted R2 is below zero. In contrast, the VVIX is a significant predictor of future

VIX realized variation. The regression coefficient for the VVIX is about 0.6 in a univariate

regression, and is 0.7 in the multivariate regression. A one standard deviation increase in the

current value of V V IX2 is associated with more than 0.2 standard deviation increase in next

month realized variance of VIX. In Panel C, we use VIX futures realized return volatility as

the proxy for physical volatility-of-volatility and also find that VVIX is a significant predictor

of future realized variance which drives out the VIX in a multivariate regression.

The empirical evidence suggests that fluctuations in the volatility of volatility are not
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directly related to the level of the volatility itself. This is consistent with our two-volatility

model specification in Section 2. In many reduced form and structural models, the volatility

of volatility is directly linked to the level of the volatility. For example, Heston (1993) models

volatility as following a Cox, Ingersoll, and Ross (1985) square-root process. In that case, the

level of volatility itself should forecast future realized volatility of volatility. The evidence in

the data does not support this assumption, and supports richer dynamics of the volatility

process with separate movements in the volatility of volatility.

4 Evidence from Options

In this section we analyze the implications of equity and VIX option price dynamics for the

pricing of volatility and volatility-of-volatility risks in the data. Our model suggests that the

market prices of volatility and volatility-of-volatility risks determine the key properties of the

cross-section and time-series of delta-hedged equity and VIX option gains. Specifically, if the

market prices of volatility and volatility-of-volatility risks are negative, the average delta-

hedged equity and VIX option gains are also negative. In the cross-section, the average

returns are more negative for option strategies which have higher exposure to the volatility

and volatility-of-volatility risks. Finally, in the time series higher volatility and volatility of

volatility predicts more negative gains in the future. We evaluate these model predictions in

the data, and find a strong support that both volatility and volatility-of-volatility risks are

priced in the option markets, and have negative market prices of risks.
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4.1 Delta-Hedged Option Gains

We consider discrete-time counterparts to the continuously-rebalanced delta-hedged gains in

Equations (2.7) and (2.17):

Πt,t+τ = Ct+τ − Ct︸ ︷︷ ︸
option gain/loss

−
N−1∑
n=0

∆tn

(
Stn+1 − Stn

)
︸ ︷︷ ︸

delta hedging gain/loss

+
N−1∑
n=0

rf (∆tnStn − Ct)
τ

N︸ ︷︷ ︸
risk-free rate

,

Π∗t,t+τ = C∗t+τ − C∗t︸ ︷︷ ︸
option gain/loss

−
N−1∑
n=0

∆tn

(
Ftn+1 − Ftn

)
︸ ︷︷ ︸

delta hedging gain/loss

−
N−1∑
n=0

rfC
∗
t

τ

N︸ ︷︷ ︸
risk-free rate

.

(4.1)

∆tn indicates the option delta at time tn, e.g., for a call option, ∆tn = ∂Ctn
∂Stn

, and N is the

number of trading days in the month. This discrete delta-hedging scheme is also used in

Bakshi and Kapadia (2003) and Bertsimas et al. (2000).

At the close of each option expiration, we look at the prices of all options with non-zero

open interest and non-zero trading volume. We take a long position in the option, and

hedge each day using the ∆ according to the Black-Scholes model, with the net investment

earning the risk-free interest rate appropriately.10 To minimize the effect of recording errors,

we discard options that have implied volatilities below the 1st percentile or above the 99th

percentile. All options have exactly one calendar month to maturity; S&P500 options expire

on the third Friday of every month, while VIX options expire on the Wednesday that is 30

days away from the third Friday of the following month.

Table 3 shows average index and VIX delta-hedged option gains in our sample. We

separate options by call or put, and group each option into four bins by moneyness to obtain

eight bins for both S&P500 and VIX options. The column Π
S

gives the delta-hedged option

10This requires an estimate of the implied volatility of the option, which may require an option price. We
use implied volatilities directly backed out from market prices of options whenever possible; if an option does
not have a quoted price on any intermediate date, we fit a cubic polynomial to the implied volatility curve
given by options with quoted prices, and back out the option’s implied volatility. This is similar to typical
option position risk management done by professional traders.
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gain scaled by the initial index level, and the column Π
C

gives the delta-hedged option gain

scaled by the initial option price, which can be interpreted more readily as a “return” in the

traditional sense.

Panel A of Table 3 shows that on average out-of-the-money delta-hedged S&P500 call op-

tions have significantly negative returns. Likewise, delta-hedged put options on the S&P500

also have significantly negative returns at all levels of moneyness. To guard against poten-

tial outliers in option returns, we show that the results are similar using medians rather

than average values; in percentages, delta-hedged index put options are negative about 80%

of the time. This evidence is largely consistent with Bakshi and Kapadia (2003). In the

model, negative average returns on delta-hedged index options imply that volatility and/or

volatility-of-volatility risks have a negative market price of risk. S&P500 option gains dis-

play mild positive serial correlation, which we will account for in our time-series predictive

regressions in the later sections.

Notably, the average gains for in-the-money index calls are positive, which is puzzling

given the evidence for the negative average gains across all the other option contracts.11

Bakshi and Kapadia (2003) and Chen, Shu, and Zhang (2016) document a similar pattern

in different samples. As argued in Bakshi and Kapadia (2003) and Bakshi, Cao, and Chen

(2000), deep in-the-money index call options are quite illiquid, so that the market makers

often do not update call prices in response to changes in index levels. In line with them, we

also find that in-the-money calls are relatively illiquid, compared to out-of-the-money calls or

especially out-of-the-money puts. The corresponding out-of-the-money puts are much more

liquid and have significantly negative delta-hedged gains.

Panel B of Table 3 shows average returns for delta-hedged VIX options. The average

delta-hedged VIX option returns are negative and statistically significant in all bins except

for out-of-the-money puts and in-the-money calls, which are marginally significant. Call

11The median gains are actually zero or below zero for in-the-money calls, so that the distribution of gains
is right-skewed.
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options lose more money as they become more out of the money, regardless of whether we

are scaling by the index or by the option price. Estimates of the loss for call options ranges

from -0.25% of the index value for in-the-money VIX calls to -1.20% of the index value for

out-of-the-money VIX calls. When viewed as a percentage of the option price, delta-hedged

VIX calls return about -1% per month at the money, and -20% out-of-the-money. The call

option returns are negative 60% to 80% of the time. The results for VIX put options are

similar. In the model, negative average returns for delta-hedged VIX options imply that

investors dislike volatility-of-volatility risks, and are systematically paying a premium hedge

against increases in the volatility of volatility. This suggests that the price of the volatility-

of-volatility risk is negative. VIX option gains exhibit weak negative serial correlation, which

we also account for in our time-series predictive regressions in the later sections. For both

the S&P500 and VIX, the delta-hedged option gains are quite volatile.

In the next section, we provide further direct evidence by controlling for the exposures

of the delta-hedged option positions to the underlying risks.

4.2 Cross-Sectional Evidence

As shown in the previous section, the average delta-hedged option gains are negative for

S&P500 and VIX options. Our model further implies (see Equations (2.10) and (2.18))

that options with higher sensitivity to volatility and volatility-of-volatility risks should have

more negative gains. To compute the estimates of option exposures to the underlying risks,

we follow the approach of Bakshi and Kapadia (2003) which relies on using the Black and

Scholes (1973) model to proxy for the true option betas.

Specifically, to compute the proxy for the option beta to volatility risk, we consider the
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vega of the option:

∂C

∂σ
= S

√
τ

2π
e−

d21
2 ∝ e−

d21
2 , (4.2)

where d1 = 1
σ
√
τ

[
log S

K
+
(
rf − q + σ2

2

)
τ
]
, q is the dividend yield, and σ is the implied

volatility of the option. This approach allows us to compute proxies for the exposures of

equity options to volatility risks, and of VIX options to the volatility-of-volatility risks.

To illustrate the relation between the moneyness of the option and the vega-measured

exposure of options to volatility risks, we show the option vega as a function of option

moneyness in Figure 3. Vega represents an increase in the value of the option as implied

volatility increases by one percentage point. Higher volatility translates into higher future

profits from delta-hedging due to the convexity effect; hence both call and put options have

strictly positive vegas. Further, since the curvature of option value is the highest for at-the-

money options, at-the-money options have the highest vega in the cross-section, and thus the

largest exposure to volatility risks. An alternative way to proxy for the option sensitivity to

volatility risks is to use the “gamma” of the option, which represents the second derivative

of the option price to the underlying stock price: Γ = ∂2C
∂S2 . As shown in Figure 3, the shape

of the vega and gamma functions are almost identical, hence, the implied cross-sectional

dispersion in volatility betas by moneyness are very similar as well.

To capture the sensitivity of option prices to the volatility of volatility, we compute the

Black and Scholes (1973) second partial derivative of the option price with respect to the

volatility, which is known in “volga” for “volatility gamma”. Volga is calculated as:

∂2C

∂σ2
= S

√
τ

2π
e−

d21
2

(
d1d2

σ

)
=
∂C

∂σ

(
d1d2

σ

)
, (4.3)

where d2 = d1 − σ
√
τ . Figure 4 shows the plot of volga as a function of the moneyness of

the option. Volga is positive, and exhibits twin peaks with a valley around at-the-money.
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At-the-money options are essentially pure bets on volatility, and are approximately linear

in volatility (see Stein (1989)). Therefore, the volga is the lowest for at-the-money options.

Deep-out-of-the-money options and deep-in-the-money options do not have much sensitivity

to volatility of volatility either, since for the former it is a pure directional bet, and for

the latter the option value is almost entirely comprised of intrinsic value. Options that are

somewhat away from at-the-money are most exposed to volatility-of-volatility risks.

Table 4 shows our cross-sectional evidence from the regressions of average option re-

turns on our proxies of options’ volatility and volatility-of-volatility betas. Panel A shows

univariate and multivariate regressions of delta-hedged S&P500 option gains scaled by the

index on the sensitivities of the options to volatility and volatility-of-volatility risks. Our

encompassing regression for delta-hedged S&P500 options is:

GAINSit,t+τ =
Πi
t,t+τ

St
= λ̃1V EGA

i
t + λ̃2V OLGA

i
t + γt + εit,t+τ . (4.4)

Since each date includes multiple options, as in Bakshi and Kapadia (2003) we allow for a

date-specific component in Πi
t,t+1 due to the option expirations, i.e., we include time-fixed

effects represented by γt. Conceptually, our approach is related to Fama and MacBeth (1973)

regressions. Instead of estimating risk betas in the first stage, due to the non-linear structure

of option returns, we measure the exposures from economically motivated proxies for the risk

sensitivities.12

The results in Panel A show that both volatility and the volatility of volatility are priced

in the cross-section of delta-hedged S&P500 option returns. While univariate estimates for

vega are insignificantly different from zero, univariate estimates for volga are significantly

negative at -0.005 with a t-statistic of -4.28. In multivariate regressions, once we control

for the effect of volga, the loading on vega becomes signicantly negative as we expect from

12Song and Xiu (2016) demonstrate an alternative method of estimating risk sensitivities nonparametrically
using local linear regression methods.
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the volatility premium. This demonstrates that especially in a period where we observe

large spikes in volatility, it is important to control for exposure to volatility-of-volatility to

properly see the impact of exposure to volatility on delta-hedged S&P500 option returns.

Panel B of Table 4 presents cross-sectional results for delta-hedged VIX options. As Equa-

tion (2.17) shows, delta-hedged VIX options are mainly exposed to volatility-of-volatility

risks, and the vega for VIX options captures the sensitivity of VIX options to innovations

in the volatility of volatility. The coefficient on vega of -1.23 is negative and statistically

significant. Thus, in the cross-section of both S&P500 options and VIX options, we find

strong evidence of a negative price of volatility-of-volatility risk.

4.3 Time-Series Evidence

In the model, time-variation in the expected delta-hedged option gains is driven by V and η,

and the loadings are determined by the market prices of volatility and volatility-of-volatility

risk. We group options into the same bins as we used for average returns in Table 3, and

average the scaled gains within each bin, so that we have a time-series of option returns

for each moneyness bin. To examine the contribution of both risks for the time-variation in

expected index option payoffs, we consider the following regression:

GAINSit,t+τ =
Πi
t,t+τ

St
= β0 + β1V IX

2
t + β2V V IX

2
t + γGAINSit−τ + ui + εit+τ , (4.5)

where we include fixed effects ui to account for the heterogeneity in the sensitivity of options

in different moneyness bins to the underlying risks. We regress the delta-hedged option gain

scaled by the index from expiration to expiration on the value of the VIX and VVIX indices

at the end of the earlier expiration; in other words, we run one-month ahead predictive

regressions of delta-hedged option returns on the VIX and VVIX. We include lagged gains

to adjust for serial correlation in the residuals, following Bakshi and Kapadia (2003).
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Panel A of Table 5 shows the regression results for the index options. The univariate

regression of delta-hedged S&P500 option gains on V IX2 yields a negative coefficient which

is statistically significant, consistent with Bakshi and Kapadia (2003). V V IX2 also predicts

future S&P500 option gains with a negative coefficient, and in a multivariate regression on

both VIX and VVIX we find both loadings are negative and statistically significant.

It is important to point out that the true loadings on the volatility factors are time-

varying, and generally depend on the underlying volatility and volatility-of-volatility states

(see, e.g., Equation (2.11)). As shown in Bakshi and Kapadia (2003), these loadings are in-

sensitive to volatility for at-the-money options. However, away from the money, the loadings

may depend on the variance risk factors, so that the relation between delta-hedged gains and

the variance-related risk factors is non-linear. To guard against finding a spurious coefficient

on the VVIX, we repeat the exercise using only at-the-money options, and find very similar

results.

Panel B of Table 5 shows the corresponding evidence for VIX options. The VVIX nega-

tively and significantly predicts future VIX option gains. This is consistent with a negative

market price of volatility-of-volatility risk. The results remain very similar for only at-the-

money options.

5 Robustness

5.1 Delta computations

A key input into the computations of delta-hedged option returns is the delta of the option.

The delta hedging insulates option returns from changes in the direction of the underlying,

and allows us to focus on the volatility-related risks. The “true” deltas are not observable,

and depend on the model specification. It is even more challenging to find the “true” delta for
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the VIX options since the VIX is a square root of a portfolio of options and the integrated

volatility is not a traded asset. In our paper we have pursued a typical approach in the

literature to approximate the unknown “true” deltas by the Black-Scholes implied ones (see,

for example, Bakshi and Kapadia (2003) and Duarte and Jones (2007)). In addition, we

consider a variety of checks to show the robustness of our key results to measurements of

delta.

From the theoretical perspective, we use numerical simulations of our illustrative model

in Section 2.3 to compute and compare the “true” and Black-Scholes deltas, and evaluate

the adequacy of the approximation by the Black-Scholes deltas for the VIX options. In the

Online Appendix we show that in our model specification, the two variants of delta are quite

similar, in particular for at-the-money options.

We also consider several robustness checks in the empirical application. First, we use

empirically observed, rather than Black-Scholes implied, deltas to construct delta-hedged

gains. Specifically, we regress changes in option prices on changes in the prices of the

underlying assets, option characteristics, and the interactions between the two, and obtain

the estimate of the empirical delta as a time-varying loading on the underlying price change.

For example, for index calls the regression takes form:

∆Ct+1 = Ct+1 − Ct = const+ αXt + β0∆St+1 + β1∆St+1Xt + εt+1

= const+ αXt + (β0 + β1Xt)∆St+1 + εt+1

(5.1)

so that an empirical estimate of delta is given by β0 + β1Xt. We run separate regressions

for index and VIX calls and puts, and include in Xt option characteristics that are known

to affect option sensitivity to the underlying, such as its moneyness, implied volatility, and

its maturity.

Overall, we find that while empirical estimation is noisy, the main results are quite similar

to the benchmark. The correlation between the empirical and the Black-Scholes deltas is
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about 90% across all the contracts. As shown in Table 6, the results for the average delta-

hedged gains are quite similar to the benchmark specification. Similar to the Black-Scholes

delta hedging, all the gains with the exception of in-the-money calls are negative, nearly all

are significant, and the magnitudes are quite similar across the two specifications.

To provide additional robustness checks, we also considered an exercise similar to Coval

and Shumway (2001) by perturbing the Black-Scholes deltas used in the option hedging. In

Tables 7 and 8, we set the deltas to 0.95 and 1.05 times the value from the Black-Scholes

model, respectively. Our main results are not sensitive to the choice of using Black-Scholes

deltas for option hedging, and remain quite robust.

5.2 Sub-samples

To further investigate robustness of our results, we split our data into two sub-periods of

roughly equal length, a pre-2012 and a post-2012 period. Tables 9 and 10 show the results in

the two sub-periods. As we can see from the tables, the sub-period results are very similar

to the full sample results in Table 3, and show large negative average S&P500 and VIX

option gains, consistent with investors pricing volatility and volatility-of-volatility risks with

negative market prices of risk.

5.3 Sensitivity to Jump Risk Measures

The evidence in our paper highlights the roles of the volatility and volatility-of-volatility

factors, which are driven by smooth Brownian motion shocks. In principle, the losses on

delta-hedged option portfolios can also be attributed to large, discontinuous movements

(jumps) in the stock market and in the market volatility. In this section we verify that

our empirical evidence for the importance of the volatility-related factors is robust to the

inclusion of jump measures considered in the literature.
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Specifically, we consider three measures of jump risks, which we construct for the S&P500

and the VIX. Our first jump measure corresponds to the slope of the implied volatility curve:

SLOPESPX = σSPXOTM − σSPXATM ,

SLOPEV IX = σV IXOTM − σV IXATM .

(5.2)

The OTM contract for the S&P500 options is defined as a put option with a moneyness

closest to 0.9, and for VIX options as a call option with a moneyness closest to 1.1. In

both cases, the ATM option has moneyness of 1. These slopes are positive for both index

and VIX options. Positive slope of the index volatility smile is consistent with the notion

of negative jumps in market returns (see e.g. Bates (2000), Pan (2002), Eraker, Johannes,

and Polson (2003)), while the fact that the implied volatility curve for VIX options slopes

upwards is consistent with positive volatility jumps (Drechsler and Yaron (2011) and Eraker

and Shaliastovich (2008), among others). In this sense, these slope measures help capture

the variation in the market and volatility jumps in the economy.

Our second jump measure incorporates the whole cross-section of option prices, beyond

just the slope of the smile. It is based on the model-free risk-neutral skewness of Bakshi

et al. (2003):

SKEW (t, t+ τ) =
erf τWt,t+τ − 3µt,t+τe

rf τVt,t+τ + 2µ3
t,t+τ[

erf τVt,t+τ − µ2
t,t+τ

]3/2 , (5.3)

where Vt,t+τ ,Wt,t+τ , Xt,t+τ are given by the prices of the volatility, cubic, and quartic con-

tracts, and µt,t+τ is function of them. Importantly, these measures are computed model-free

using only observed option prices. The details for the computations are provided in the

Appendix B.

Finally, our third measure of jump risks is based on high-frequency index and VIX data,

rather than option prices. It corresponds to the realized jump intensity, and relies on the
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bipower variation methods in Barndorff-Nielsen and Shephard (2004), Huang and Tauchen

(2005), and Wright and Zhou (2009). Specifically, while the realized variance defined in (3.3)

captures both the continuous and jump variation, the bipower variation, defined as

BVt =
π

2

(
M

M − 1

) M∑
j=2

|rt,j−1||rt,j| (5.4)

measures the amount of continuous variation returns. Hence, we can use the following test

statistic to determine if there is a jump on any given day:

Jt =
RVt−BVt
RVt√

θ
M

max 1, QVt
BV 2

t

, (5.5)

where θ =
(
π
2

)2
+π−5, and QVt is the quad-power quarticity defined in Huang and Tauchen

(2005) and Barndorff-Nielsen and Shephard (2004). The test statistic is standard normally

distributed. We flag the day as having a jump if the probability exceeds 99.9% both for

index returns and for the VIX. These cut-offs imply an average frequency of jumps of once

every two months for the index, and about three jumps a month for the VIX. This is broadly

consistent with the findings of Tauchen and Todorov (2011), who find that VIX jumps tend

to happen much more frequently than S&P500 jumps. Over a month, we sum up all the

days where we have a jump, and we define our jump intensity measure on a monthly level

as:

RJt =
1

T

T−1∑
i=0

Jt+i,

where T is the number of trading days in the given month.

We use the jump statistics to document the robustness of the link between the volatility

31



and volatility-of-volatility factors and options gains. We consider a regression of the form

GAINSit,t+τ = β0 + β1V IX
2
t + β2V V IX

2
t + β3JUMPt + γGAINSit−τ + ui + εit+τ (5.6)

where JUMPt is one of the above jump risk proxies. We use index jump measures for index

gains, and VIX jump measures for VIX gains.

Table 11 displays our results. Both for S&P500 and VIX options, controlling for SLOPE

does not change the ability of V IX and V V IX to predict future delta-hedged option gains.

Both factors are still significant, and the point estimates β̂1 and β̂2 remain largely unchanged.

SLOPE itself is not significant at conventional levels for S&P500 options but significantly

positive for VIX options. The risk-neutral skewness also does not affect the predictive ability

of V IX and V V IX, although, again, it is significant for VIX options. The two estimates

of β3 have the correct signs, since skewness is negative for S&P500 options and positive for

VIX options; this is broadly similar to the findings of Bakshi and Kapadia (2003). Finally,

we control for realized jump intensity RJ and we see a similar result where the statistical

significance of V IX and V V IX as well as their point estimates are largely unchanged. RJ

seems to marginally predict future S&P500 option gains; for VIX options, however, RJ does

not seem to predict future VIX option gains.

Hence, our evidence suggests that the VIX and VVIX have a significant impact on op-

tion returns even in the presence of stock market and volatility jumps. We leave a formal

treatment of jumps for future research.

5.4 Alternative Variance Specifications

Our results for the predictability of realized by implied variance are robust to alternative

specifications of volatility. Specifically, we consider regressing in volatility units or log-
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volatility units, rather than variance. The robustness regressions follow the form:

√
RV x

t,t+1 = β0 + β1V IXt + β2V V IXt + εt+1 (5.7)

ln
√
RV x

t,t+1 = β0 + β1 lnV IXt + β2 lnV V IXt + εt+1 (5.8)

where x refers to SPX or V IX.

In Table 12, we see that the point estimates and significance are very close to our baseline

specification in variance units.

6 Conclusion

Using S&P500 and VIX options data, we show that a time-varying volatility of volatility is

a separate risk factor which affects option returns, above and beyond market volatility risks.

We measure volatility risks using the VIX index, and volatility-of-volatility risk using the

VVIX index. The two indices, constructed from the index and VIX option data, capture

the ex-ante risk-neutral uncertainty of investors about future market returns and VIX in-

novations, respectively. The VIX and VVIX have separate dynamics, and are only weakly

related in the data: the correlation between the two series is under 30%. On average, risk-

neutral volatilities identified by the VIX and VVIX exceed the realized physical volatilities

of the corresponding variables in the data. Hence, the variance premium and variance-of-

variance premium for VIX are positive, which suggests that investors dislike variance and

variance-of-variance risks.

We show the pricing implications of volatility and volatility-of-volatility risks using op-

tions market data. Average delta-hedged option gains are negative, which suggests that

investors pay a premium to hedge against innovations in not only volatility but also the

volatility of volatility. In the cross-section of both delta-hedged S&P500 options and VIX
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options, options with higher sensitivities to volatility-of-volatility risk earn more negative

returns. In the time-series, higher values of the VVIX predict more negative delta-hedged

option returns, for both S&P500 and VIX options.

Our findings are consistent with a no-arbitrage model which features time-varying market

volatility and volatility-of-volatility factors. The volatility factors are priced by the investors,

and in particular, volatility and volatility of volatility have negative market prices of risks.
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A Delta-Hedged Equity Options

The state vector is xt =

[
St Vt ηt

]′
. Under the linear risk premium structure, λVt = λV Vt and

ληt = ληηt. Note that since Ct is homogeneous of degree 1 in the underlying St and the strike price

K, ∂C
∂V and ∂C

∂η are also homogeneous of degree 1 in St and K. Define a pair of functions:

g1(xt) = λVt
∂Ct
∂Vt

g2(xt) = ληt
∂Ct
∂ηt

(A.1)

We can re-write Equation (2.8) as:

Et [Πt,t+τ ] = Et
[∫ t+τ

t
g1(xu)du

]
+ Et

[∫ t+τ

t
g2(xu)du

]
. (A.2)

Define operators L and Γ such that:

L[.] dt =
∂[.]

∂S
µtStdt+

∂[.]

∂V
θ(Vt)dt+

∂[.]

∂η
γ(ηt)dt+

∂[.]

∂t
dt

+
1

2

∂2[.]

∂S2
[dSt, dSt] +

1

2

∂2[.]

∂V 2
[dVt, dVt] +

1

2

∂2[.]

∂η2
[dηt, dηt]

+
∂2[.]

∂S∂η
[dSt, dηt] +

∂2[.]

∂S∂V
[dSt, dVt] +

∂2[.]

∂V ∂η
[dVt, dηt]

Γ[.] =

[
∂[.]

∂S
St
√
Vt,

∂[.]

∂V

√
ηt,

∂[.]

∂η
φ
√
ηt

]
.

(A.3)

Then, for u > t, Itô’s Lemma implies that:

g1(xu) = g1(xt) +

∫ u

t
Lg(xu′)du

′ +

∫ u

t
Γg(xu′)dWu′ .

The integral in the first expectation on the right-hand side of Equation (A.2) becomes:

∫ t+τ

t
g1(xu)du =

∫ t+τ

t

[
g1(xt) +

∫ u

t
Lg(xu′)du

′ +

∫ u

t
Γg(xu′)dWu′

]
du

= g1(xt)τ +
1

2
Lg1(xt)τ

2 +
1

6
L2g1(xt)τ

3 + ...+ Itô Integrals

=

∞∑
n=0

τ1+n

(1 + n)!
Lng1(xt) + Itô Integrals,
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and likewise for the second integral in (A.2). We can use this to re-write (A.2) as:

Et [Πt,t+τ ] = Et
[∫ t+τ

t
g1(xu)du

]
+ Et

[∫ t+τ

t
g2(xu)du

]
=
∞∑
n=0

τ1+n

(1 + n)!
Ln [g1(xt)] +

∞∑
n=0

τ1+n

(1 + n)!
Ln [g2(xt)] .

(A.4)

Note that g1(xt) = α1(Vt, τ ;K)St, and g2(xt) = α2(ηt, τ ;K)St. By Lemma 1 of Bakshi and Kapadia

(2003), Ln[g1(xt)] and Ln[g2(xt)] will also be proportional to St, which implies that:

Ln [g1(xt)] = λV VtΦ
V
t,nSt ∀n

Ln [g2(xt)] = ληηtΦ
η
t,nSt ∀n.

Therefore, we have:

Et [Πt,t+τ ] =
∞∑
n=0

τ1+n

(1 + n)!
Ln [g1(xt)] +

∞∑
n=0

τ1+n

(1 + n)!
Ln [g2(xt)]

= St
[
λV βVt Vt + ληβηt ηt

]
,

which implies that:

Et [Πt,t+τ ]

St
= λV βVt Vt + ληβηt ηt, (A.5)

where the sensitivities to the risk factors are given by:

βVt =
∞∑
n=0

τ1+n

(1 + n)!
ΦV
t,n > 0

βηt =

∞∑
n=0

τ1+n

(1 + n)!
Φη
t,n > 0.

(A.6)

The betas are positive since ∂Ct
∂Vt

> 0 and ∂Ct
∂ηt

> 0.
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B Risk-Neutral Skewness

The prices of the volatility, cubic, and quartic contracts Vt,t+τ ,Wt,t+τ , Xt,t+τ are given

Vt,t+τ =

∫ ∞
St

2(1− log K
St

)

K2
Ct(t+ τ ;K)dK +

∫ St

0

2(1 + log St
K )

K2
Pt(t+ τ ;K)dK,

Wt,t+τ =

∫ ∞
St

6 log K
St
− 3(log K

St
)2

K2
Ct(t+ τ ;K)dK

−
∫ St

0

6 log St
K + 3(log St

K )2

K2
Pt(t+ τ ;K)dK,

Xt,t+τ =

∫ ∞
St

12(log K
St

)2 − 4(log K
St

)3

K2
Ct(t+ τ ;K)dK

+

∫ St

0

12(log St
K )2 + 4(log St

K )3

K2
Pt(t+ τ ;K)dK,

and µt,t+τ = erf τ − 1− e
rf τ

2 Vt,t+τ − e
rf τ

6 Wt,t+τ − e
rf τ

24 Xt,t+τ .

To construct these measures, we use out-of-the-money options to mitigate liquidity concerns.

Following Shimko (1993), each day we interpolate the Black-Scholes implied volatility curve at

the observable strikes using a cubic spline, and then calculate option prices to compute the above

moments. We construct these measures for both S&P500 options and VIX options. Our implied

volatility slope and risk-neutral skewness measures are calculated using options with the same

maturity as our test assets.
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Tables and Figures

Table 1: Summary Statistics

variable mean std. AR(1) corr. V IX2 corr. V V IX2

V IX2 0.048 0.053 0.812 1.000 0.269

V V IX2 0.771 0.214 0.333 0.269 1.000

RV SPX 0.024 0.050 0.631 0.880 0.258

RV V IX 0.670 0.727 0.182 0.182 0.609

RV V X∗ 0.306 0.181 0.284 0.726 0.640

The table shows summary statistics for the implied and realized variances of S&P500 and the VIX index. The implied variances

are computed from the option data: V IX2 corresponds to
(
V IX
100

)2
and V V IX2 stands for

(
V V IX
100

)2
. Realized variances are

annualized and computed using 5-minute data on S&P500 returns (RV SPX); log VIX index innovations (RV V IX); and VIX

futures returns (RV VX∗). The data are monthly from 2006m2 to 2016m12; VIX futures high-frequency data are from 2012m7

to 2016m12.
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Table 2: Predictability of Realized Variance Measures

V IX2 V V IX2 R2
adj

slope t-stat. slope t-stat.

Panel A: S&P500 Index

RV SPXt,t+1 0.604 [4.82] 39.42

0.039 [1.48] 2.01

0.605 [4.53] -0.001 [-0.10] 38.95

Panel B: VIX Index

RV V IXt,t+1 -0.607 [-0.57] -0.35

0.612 [3.56] 2.49

-1.384 [-1.34] 0.704 [4.05] 2.67

Panel C: VIX Futures

RV V X∗
t,t+1 3.215 [3.07] 2.55

0.243 [2.24] 7.19

-0.935 [-0.46] 0.282 [2.34] 5.49

The table shows the evidence from the projections of future realized variances of S&P500 and the VIX index on the current

implied variances. Numbers in brackets indicate Newey-West t-statistics with 6 lags. The data are monthly from 2006m2 to

2016m12; VIX futures high-frequency data are from 2012m7 to 2016m12.
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Table 3: Delta-Hedged Option Gains

Π
S (%) Π

C (%)

moneyness mean t-stat. median % < 0 std. AR(1) mean t-stat. median

Panel A: S&P500

Call 0.950 to 0.975 0.07 [ 3.23] 0.00 50% 0.55 0.36 1.61 [ 3.71] 0.01

0.975 to 1.000 0.04 [ 2.63] -0.02 52% 0.50 0.19 2.38 [ 3.72] -0.79

1.000 to 1.025 -0.04 [-2.64] -0.05 57% 0.44 0.09 -2.45 [-1.74] -5.90

1.025 to 1.050 -0.08 [-6.51] -0.05 62% 0.38 0.14 -32.98 [-9.00] -22.50

Put 0.950 to 0.975 -0.14 [-7.86] -0.18 81% 0.54 0.35 -19.27 [-9.01] -28.74

0.975 to 1.000 -0.16 [-9.89] -0.19 75% 0.50 0.20 -10.24 [-7.93] -16.89

1.000 to 1.025 -0.22 [-13.17] -0.22 75% 0.48 0.04 -8.77 [-13.99] -10.85

1.025 to 1.050 -0.25 [-12.11] -0.23 78% 0.47 0.05 -5.84 [-12.72] -5.97

Panel B: VIX

Call 0.800 to 0.900 -0.25 [-1.66] -0.59 62% 2.26 -0.03 -1.38 [-1.54] -3.12

0.900 to 1.000 -0.77 [-3.83] -1.26 70% 2.95 -0.09 -6.76 [-3.80] -12.40

1.000 to 1.100 -0.84 [-3.54] -1.37 71% 3.24 -0.17 -10.03 [-3.34] -16.29

1.100 to 1.200 -1.20 [-5.04] -1.52 77% 3.16 -0.13 -19.01 [-4.81] -25.49

Put 0.800 to 0.900 -0.50 [-1.67] -0.90 64% 2.69 -0.06 -12.76 [-1.55] -25.18

0.900 to 1.000 -0.80 [-3.73] -1.29 71% 3.05 -0.14 -10.91 [-3.08] -21.59

1.000 to 1.100 -0.84 [-3.42] -1.45 70% 3.31 -0.18 -6.13 [-3.17] -11.02

1.100 to 1.200 -1.17 [-4.86] -1.31 77% 3.16 -0.14 -5.53 [-4.77] -6.45

The table shows average delta-hedged option gains on the S&P500 and VIX options across their moneyness. Options have one

month to maturity, are grouped into an equal-weighted portfolio inside the moneyness bin, and are held till expiration. The

delta-hedge is computed using the Black-Scholes formula, with daily rebalancing and the margin difference earning the risk-free

rate. The delta-hedged option gains Π are scaled either by the index or by the option price. The t-statistics are testing the null

that the delta-hedged option gain is equal to zero. The % < 0 column shows the fraction of observations with negative gains.

The data are monthly from 2006m2 to 2016m12.
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Table 4: Delta-Hedged Option Gains by Volatility Risk Sensitivities

Vega = ∂C
∂σ Volga = ∂2C

∂σ2

slope t-stat. slope t-stat.

Panel A: SPX Options

Πt,t+1

St
0.009 [0.61]

-0.005 [-4.28]

-0.104 [-4.40] -0.013 [-6.21]

Panel B: VIX Options

Πt,t+1

St
-1.23 [-3.35]

The table shows the evidence from the cross-sectional regressions of the delta-hedged S&P500 and VIX option gains on the vega

and volga of the options. Regressions include time fixed effects, and option characteristics are computed using the Black-Scholes

formula. Number is brackets indicate Newey-West t-statistics. The data are monthly from 2006m2 to 2016m12.
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Table 5: Predictability of Delta-Hedged Option Gains

V IX2 V V IX2 GAINSt−1

slope t-stat. slope t-stat. slope t-stat.

Panel A: SPX Options

Πt,t+τ
St

-0.69 [-3.42] 0.24 [4.08]

-0.26 [-2.87] 0.23 [4.16]

-0.50 [-3.41] -0.23 [-2.75] 0.26 [4.20]

Panel B: SPX Options (ATM only)

Πt,t+τ
St

-0.53 [-2.81] 0.16 [3.43]

-0.25 [-2.41] 0.18 [3.22]

-0.35 [-2.28] -0.24 [-2.29] 0.19 [3.38]

Panel C: VIX Options

Πt,t+τ
St

-1.01 [-3.38] -0.10 [-7.07]

Panel D: VIX Options (ATM only)

Πt,t+τ
St

-0.77 [-4.43] -0.11 [-6.89]

The table shows the evidence of predictability of future delta-hedged S&P500 and VIX option gains by the implied volatility

and volatility-of-volatility measures. The regressions across all monenyness bins include moneyness fixed effects; the regressions

for the ATM options are for the moneyness ranges between 0.975 to 1.025 for the index and 0.9 to 1.1 for the VIX options. Lag

gains are included to correct for serial correlation of the residuals. Number is brackets indicate Newey-West t-statistics. The

data are monthly from 2006m2 to 2016m12.
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Table 6: Delta-Hedged Option Gains: Empirical Delta

Π
S (%) Π

C (%)

moneyness mean t-stat. median % < 0 std. AR(1) mean t-stat. median

Panel A: S&P500

Call 0.950 to 0.975 0.09 [ 1.89] 0.08 47% 1.24 0.10 1.99 [ 1.97] 1.61

0.975 to 1.000 0.02 [ 0.44] -0.08 54% 1.17 0.13 0.47 [ 0.31] -3.99

1.000 to 1.025 -0.11 [-2.48] -0.40 64% 1.40 0.00 -3.73 [-0.50] -39.12

1.025 to 1.050 -0.27 [-4.97] -0.69 66% 1.63 -0.03 -129.30 [-3.38] -142.13

Put 0.950 to 0.975 -0.10 [-2.34] -0.06 52% 1.31 0.13 -21.93 [-2.94] -5.67

0.975 to 1.000 -0.16 [-4.11] -0.27 59% 1.19 0.18 -12.36 [-4.24] -21.07

1.000 to 1.025 -0.26 [-5.81] -0.45 67% 1.33 0.03 -9.84 [-5.61] -21.78

1.025 to 1.050 -0.43 [-6.28] -0.74 72% 1.56 -0.03 -9.41 [-5.93] -18.69

Panel B: VIX

Call 0.800 to 0.900 -0.44 [-1.72] -1.03 62% 3.84 -0.12 -2.43 [-1.64] -5.94

0.900 to 1.000 -0.70 [-2.33] -1.33 60% 4.43 -0.14 -6.18 [-2.29] -11.05

1.000 to 1.100 -0.24 [-0.66] -0.15 51% 4.95 -0.10 -1.82 [-0.38] -1.66

1.100 to 1.200 -0.55 [-1.44] 0.39 48% 5.09 -0.07 -7.85 [-1.15] 6.42

Put 0.800 to 0.900 -2.44 [-3.24] -3.58 77% 6.76 0.37 -67.33 [-3.07] -93.83

0.900 to 1.000 -1.42 [-2.92] -2.98 69% 6.91 -0.06 -19.25 [-2.16] -45.96

1.000 to 1.100 -0.86 [-1.81] -1.45 58% 6.44 -0.01 -6.76 [-1.72] -11.84

1.100 to 1.200 -1.37 [-3.08] -1.40 60% 5.82 -0.03 -6.62 [-3.05] -7.10

The table shows average delta-hedged option gains on the S&P500 and VIX options across their moneyness constructed using

the empirical, regression-based estimates of the option deltas. The included factors that affect the sensitivity of option price

to change in underlying and are given by the moneyness, implied volatility, and maturity. Delta-hedging is done with daily

rebalancing and the margin difference earning the risk-free rate. The delta-hedged option gains Π are scaled either by the index

or by the option price. The t-statistics are testing the null that the delta-hedged option gain is equal to zero. The % < 0

column shows the fraction of observations with negative gains. The data are monthly from 2006m2 to 2016m12.
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Table 7: Delta-Hedged Option Gains: 0.95 × ∆BS Delta

Π
S (%) Π

C (%)

moneyness mean t-stat. median % < 0 std. AR(1) mean t-stat. median

Panel A: S&P500

Call 0.950 to 0.975 0.07 [ 3.63] 0.04 45% 0.51 0.36 1.70 [ 4.21] 0.81

0.975 to 1.000 0.05 [ 3.29] -0.01 52% 0.46 0.23 2.62 [ 4.38] -0.30

1.000 to 1.025 -0.03 [-2.50] -0.05 57% 0.42 0.07 -2.08 [-1.54] -4.97

1.025 to 1.050 -0.08 [-6.86] -0.05 62% 0.36 0.11 -31.52 [-8.87] -22.31

Put 0.950 to 0.975 -0.14 [-7.24] -0.20 83% 0.61 0.35 -20.09 [ -8.85] -31.90

0.975 to 1.000 -0.17 [-9.01] -0.22 77% 0.59 0.20 -11.02 [ -7.68] -20.48

1.000 to 1.025 -0.23 [-11.36] -0.26 75% 0.60 0.05 -9.34 [-12.36] -13.36

1.025 to 1.050 -0.28 [-10.16] -0.31 74% 0.62 0.06 -6.47 [-10.75] -7.71

Panel B: VIX

Call 0.800 to 0.900 -0.38 [-2.17] -0.83 61% 2.65 -0.05 -2.13 [-2.03] -4.46

0.900 to 1.000 -0.90 [-4.06] -1.70 69% 3.26 -0.12 -7.80 [-3.94] -14.21

1.000 to 1.100 -0.94 [-3.65] -1.65 73% 3.50 -0.15 -11.05 [-3.36] -20.47

1.100 to 1.200 -1.32 [-5.38] -1.73 79% 3.25 -0.13 -20.90 [-5.11] -29.08

Put 0.800 to 0.900 -0.44 [-1.51] -0.73 63% 2.62 0.07 -11.33 [-1.44] -23.15

0.900 to 1.000 -0.73 [-3.52] -1.03 70% 2.95 -0.14 -10.13 [-2.99] -16.30

1.000 to 1.100 -0.74 [-3.14] -0.79 66% 3.20 -0.18 -5.48 [-2.97] -6.53

1.100 to 1.200 -1.05 [-4.31] -0.86 69% 3.18 -0.12 -4.97 [-4.30] -4.87

The table shows average delta-hedged option gains on the S&P500 and VIX options across their moneyness, when the Black-

Scholes delta is reduced to 0.95 × ∆BS . Options have one month to maturity, are grouped into an equal-weighted portfolio

inside the moneyness bin, and are held till expiration. The delta-hedge is computed using the Black-Scholes formula, with daily

rebalancing and the margin difference earning the risk-free rate. The delta-hedged option gains Π are scaled either by the index

or by the option price. The t-statistics are testing the null that the delta-hedged option gain is equal to zero. The % < 0

column shows the fraction of observations with negative gains. The data are monthly from 2006m2 to 2016m12.
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Table 8: Delta-Hedged Option Gains: 1.05 × ∆BS Delta

Π
S (%) Π

C (%)

moneyness mean t-stat. median % < 0 std. AR(1) mean t-stat. median

Panel A: S&P500

Call 0.950 to 0.975 0.07 [ 2.68] -0.04 56% 0.64 0.29 1.51 [ 3.03] -0.86

0.975 to 1.000 0.04 [ 1.96] -0.07 56% 0.57 0.13 2.15 [ 2.98] -2.61

1.000 to 1.025 -0.04 [-2.66] -0.08 60% 0.48 0.10 -2.82 [-1.87] -9.11

1.025 to 1.050 -0.08 [-6.06] -0.05 63% 0.40 0.14 -34.43 [-8.96] -25.11

Put 0.950 to 0.975 -0.13 [ -8.46] -0.16 79% 0.48 0.34 -18.45 [-9.05] -25.34

0.975 to 1.000 -0.15 [-10.66] -0.17 72% 0.43 0.19 -9.47 [-7.97] -13.93

1.000 to 1.025 -0.20 [-14.58] -0.19 76% 0.40 0.01 -8.20 [-14.76] -8.48

1.025 to 1.050 -0.22 [-13.33] -0.20 80% 0.38 0.01 -5.21 [-13.55] -5.15

Panel B: VIX

Call 0.800 to 0.900 -0.11 [-0.77] -0.45 57% 2.26 0.06 -0.63 [-0.71] -2.54

0.900 to 1.000 -0.63 [-3.29] -0.99 67% 2.84 -0.03 -5.73 [-3.37] -9.49

1.000 to 1.100 -0.75 [-3.26] -1.04 68% 3.12 -0.16 -9.01 [-3.17] -12.89

1.100 to 1.200 -1.08 [-4.56] -1.39 77% 3.14 -0.12 -17.11 [-4.38] -21.77

Put 0.800 to 0.900 -0.56 [-1.79] -1.19 67% 2.80 0.06 -14.20 [-1.63] -32.17

0.900 to 1.000 -0.87 [-3.85] -1.60 70% 3.20 -0.13 -11.69 [-3.12] -24.20

1.000 to 1.100 -0.93 [-3.59] -1.94 73% 3.51 -0.17 -6.79 [-3.28] -13.46

1.100 to 1.200 -1.30 [-5.18] -1.72 79% 3.28 -0.14 -6.10 [-5.02] -8.40

The table shows average delta-hedged option gains on the S&P500 and VIX options across their moneyness, when the Black-

Scholes delta is increased to 1.05 × ∆BS . Options have one month to maturity, are grouped into an equal-weighted portfolio

inside the moneyness bin, and are held till expiration. The delta-hedge is computed using the Black-Scholes formula, with daily

rebalancing and the margin difference earning the risk-free rate. The delta-hedged option gains Π are scaled either by the index

or by the option price. The t-statistics are testing the null that the delta-hedged option gain is equal to zero. The % < 0

column shows the fraction of observations with negative gains. The data are monthly from 2006m2 to 2016m12.
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Table 9: Delta-Hedged Option Gains: Pre-2012 Sub-Sample

Π
S (%) Π

C (%)

moneyness mean t-stat. median % < 0 std. AR(1) mean t-stat. median

Panel A: S&P500

Call 0.950 to 0.975 0.12 [ 2.67] -0.04 54% 0.76 0.40 2.48 [ 2.94] -0.85

0.975 to 1.000 0.04 [ 1.12] -0.02 53% 0.64 0.26 1.61 [ 1.52] -0.94

1.000 to 1.025 -0.08 [-2.92] -0.11 61% 0.58 0.11 -5.83 [-3.00] -11.16

1.025 to 1.050 -0.13 [-4.92] -0.07 63% 0.51 0.12 -28.22 [-5.74] -17.53

Put 0.950 to 0.975 -0.12 [-3.31] -0.25 81% 0.77 0.38 -12.24 [-3.23] -28.10

0.975 to 1.000 -0.19 [-5.98] -0.31 75% 0.66 0.24 -9.36 [-4.68] -18.05

1.000 to 1.025 -0.27 [-8.64] -0.34 72% 0.62 0.05 -9.64 [-9.24] -12.92

1.025 to 1.050 -0.30 [-8.58] -0.30 76% 0.57 0.06 -6.51 [-8.80] -7.33

Panel B: VIX

Call 0.800 to 0.900 -0.62 [-2.96] -0.65 68% 2.16 -0.10 -3.74 [-3.10] -3.66

0.900 to 1.000 -1.49 [-5.63] -2.01 75% 2.62 -0.21 -13.00 [-5.48] -15.61

1.000 to 1.100 -1.02 [-3.16] -1.46 73% 2.90 -0.10 -11.97 [-2.72] -20.79

1.100 to 1.200 -1.38 [-4.25] -1.60 80% 2.89 -0.08 -22.24 [-3.72] -29.28

Put 0.800 to 0.900 -0.65 [-1.75] -1.37 64% 2.64 -0.10 -14.14 [-1.28] -34.73

0.900 to 1.000 -1.40 [-4.94] -1.96 74% 2.77 -0.21 -19.34 [-3.98] -32.81

1.000 to 1.100 -0.97 [-2.82] -1.56 74% 3.05 -0.13 -7.01 [-2.48] -12.75

1.100 to 1.200 -1.29 [-3.88] -1.38 79% 2.87 -0.07 -6.12 [-3.68] -7.49

The table shows average delta-hedged option gains on the S&P500 and VIX options across their moneyness, in the pre-2012

sub-sample. Options have one month to maturity, are grouped into an equal-weighted portfolio inside the moneyness bin, and

are held till expiration. The delta-hedge is computed using the Black-Scholes formula, with daily rebalancing and the margin

difference earning the risk-free rate. The delta-hedged option gains Π are scaled either by the index or by the option price.

The t-statistics are testing the null that the delta-hedged option gain is equal to zero. The % < 0 column shows the fraction

of observations with negative gains. The data are monthly from 2006m2 to 2011m12.
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Table 10: Delta-Hedged Option Gains: Post-2012 Sub-Sample

Π
S (%) Π

C (%)

moneyness mean t-stat. median % < 0 std. AR(1) mean t-stat. median

Panel A: S&P500

Call 0.950 to 0.975 0.03 [ 2.05] 0.01 46% 0.27 -0.07 0.88 [ 2.40] 0.31

0.975 to 1.000 0.05 [ 3.21] -0.01 51% 0.35 -0.14 3.00 [ 3.83] -0.40

1.000 to 1.025 0.00 [ 0.21] -0.03 54% 0.29 -0.08 0.22 [ 0.11] -3.70

1.025 to 1.050 -0.05 [-5.08] -0.04 62% 0.20 0.17 -36.85 [-6.95] -32.35

Put 0.950 to 0.975 -0.15 [-13.37] -0.14 81% 0.26 0.02 -24.72 [-10.37] -29.33

0.975 to 1.000 -0.14 [ -9.75] -0.15 75% 0.32 -0.03 -10.96 [ -6.49] -15.59

1.000 to 1.025 -0.17 [-11.76] -0.18 77% 0.31 -0.11 -8.06 [-10.69] -9.39

1.025 to 1.050 -0.20 [ -9.91] -0.21 82% 0.31 -0.01 -5.11 [ -9.87] -5.39

Panel B: VIX

Call 0.800 to 0.900 0.07 [ 0.36] -0.25 57% 2.30 -0.05 0.64 [ 0.50] -1.57

0.900 to 1.000 -0.17 [-0.61] -0.87 66% 3.08 -0.08 -1.63 [-0.65] -6.79

1.000 to 1.100 -0.71 [-2.07] -1.21 69% 3.49 -0.23 -8.52 [-2.07] -13.85

1.100 to 1.200 -1.05 [-3.06] -1.32 75% 3.36 -0.19 -16.37 [-3.10] -19.43

Put 0.800 to 0.900 -0.25 [-0.50] -0.86 65% 2.79 0.22 -10.54 [-0.85] -20.76

0.900 to 1.000 -0.26 [-0.85] -0.90 68% 3.19 -0.13 -3.43 [-0.68] -12.19

1.000 to 1.100 -0.74 [-2.15] -1.18 66% 3.50 -0.22 -5.46 [-2.06] -8.49

1.100 to 1.200 -1.08 [-3.15] -1.26 76% 3.38 -0.19 -5.08 [-3.15] -5.49

The table shows average delta-hedged option gains on the S&P500 and VIX options across their moneyness, in the post-2012

sub-sample. Options have one month to maturity, are grouped into an equal-weighted portfolio inside the moneyness bin, and

are held till expiration. The delta-hedge is computed using the Black-Scholes formula, with daily rebalancing and the margin

difference earning the risk-free rate. The delta-hedged option gains Π are scaled either by the index or by the option price.

The t-statistics are testing the null that the delta-hedged option gain is equal to zero. The % < 0 column shows the fraction

of observations with negative gains. The data are monthly from 2012m1 to 2016m12.
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Table 11: Predictability of Delta-Hedged Option Gains: Robustness to Jump Measures

V IX2 V V IX2 SLOPE SKEW RJ GAINSt−1

slope t-stat. slope t-stat. slope t-stat. slope t-stat. slope t-stat. slope t-stat.

Panel A: SPX Options

Πt,t+τ
St

-0.64 [-2.49] -0.21 [-3.25] -1.44 [-1.02] 0.27 [4.00]

-0.49 [-2.58] -0.23 [-2.92] -0.01 [-0.15] 0.26 [4.06]

-0.49 [-3.44] -0.23 [-2.75] 0.01 [1.81] 0.26 [4.20]

Panel B: VIX Options

Πt,t+τ
St

-0.98 [-3.19] 2.55 [2.60] -0.10 [-7.14]

-0.76 [-2.17] 0.34 [3.64] -0.10 [-7.58]

-1.39 [-3.59] 0.03 [1.12] -0.08 [-3.55]

The table shows the evidence of predictability of future delta-hedged S&P500 and VIX option gains by the implied volatility and

volatility-of-volatility measures, controlling for the jump risk measures. The cross-sectional regressions include moneyness fixed

effects, and lag gains are included to correct for serial correlation of the residuals. The jump measures are as follows. SLOPE is

the slope of the implied volatility smile, calculated as Black-Scholes implied volatility of an out-of-the-money (K
S

= 0.9) minus

the implied volatility of an at-the-money put option (K
S

= 1) for S&P500 options, and between a K
S

= 1.1 call option and

an at-the-money call option for the VIX options. RJ is the realized jump variation calculated using high-frequency S&P500

futures tick data for the S&P500 and VIX tick data for the VIX. SKEW is the model-free measure of risk-neutral skewness.

Number is brackets indicate Newey-West t-statistics. The data are monthly from 2006m2 to 2016m12.
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Table 12: Predictability of Realized Variance Measures: Alternative Specifications

V IX V V IX lnV IX2 lnV V IX2

slope t-stat. slope t-stat. slope t-stat. slope t-stat.

Panel A: S&P500√
RV SPXt,t+1 0.723 [6.37]

0.128 [1.63]

0.732 [5.98] -0.023 [-0.52]

lnRV SPXt,t+1 0.964 [8.70]

0.528 [1.38]

0.986 [8.26] -0.215 [-1.07]

Panel B: VIX√
RV V IXt,t+1 0.200 [-0.57]

0.687 [5.10]

-0.495 [-1.42] 0.789 [5.15]

lnRV V IXt,t+1 -0.069 [-0.68]

0.752 [5.18]

-0.161 [-1.57] 0.873 [4.80]

The table shows the evidence from the alternative projections of future realized variances of S&P500 and the VIX index on the

current implied volatility and volatility of volatility measures. The realized and implied variances are modified to be expressed

in standard deviation or log units. Numbers in brackets indicate Newey-West t-statistics with 6 lags. The data are monthly

from 2006m2 to 2016m12.
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Figure 1: Volatility and Volatility-of-Volatility Measures

The figure shows the time-series of the volatility and volatility-of-volatility measures. The solid blue line is the VIX and the

dashed red line is the VVIX. Monthly data from 2006m2 to 2016m12
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Figure 2: Realized and Implied Variance Measures

The figure shows the time-series of the realized and implied variances for the S&P500 (top panel) and the VIX (bottom panel).

The blue solid lines are the realized variances, and red dashed lines are the implied variances. All measures are in annualized

variance units. Monthly data from 2006m2 to 2016m12
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Figure 3: Vega and Gamma by Moneyness

The figure shows the Black-Scholes gamma and vega of the option by option moneyness for average levels of volatility.

57



Figure 4: Volga by Moneyness

The figure shows the Black-Scholes volga of the option by option moneyness for average levels of volatility.
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