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Abstract 
    This paper re-examines the validity of the Phillips-Curve framework using US data. We make 
three main innovations. First, we introduce into the well-known Calvo price staggering framework, 
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longer required to derive the Phillips relationship and thus that questions of regime dependency 
can be addressed. Second, we engage on a careful modeling of long-run supply in the economy, 
which permits more data-coherent measures of output gaps and real marginal costs indicators 
consistent with underlying, frictionless supply. Finally, we include two types of labor adjustment 
costs reflecting the intensive and extensive participation decisions. As regards the latter, we 
introduce the concept of “effective” working hours into the production technology which generates 
an overtime function directly into the mark-up equation. This, it turns, out has first-order 
implications for the cyclicality and econometric fit of the mark-up implied by the Phillips-curve 
representation.  
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1. Introduction 
 
New Keynesian Phillips Curves (NKPCs) have become increasingly popular for analyzing inflation 

dynamics and accounting for real and nominal economic interactions. The specification - predicated 

on rational expectations, monopolistic competition and price staggering - models current inflation, 

tπ , as a function of its future expectation and some fundamental driving variable:  

 

[ ] tttt xE λπβπ += +1  

 

where β  is a discount factor ( 1<β ); )0( >λλ , the slope of the Phillips curve, is a composite 

parameter arising from the optimization environment; and x  is the assumed fundament (e.g., real 

marginal costs) implying . The literature on the performance and plausibility of 

NKPCs is by now substantial (e.g., Roberts, 1995; Galí and Gertler, 1999; Rudd and Whelan, 

2007; McAdam and Willman, 2004). In this paper, however, we estimate NKPCs on aggregate US 

data correcting for what we believe are three fundamental (and arguably neglected) point of issue.  

∑
∞

=
+=

0j
jt

j
t xδλπ

First, we consider the case where the coefficients of the NKPC rather than being constant 

are a function of economic conditions (i.e., state dependent rather than time dependent). Second, 

relates to modeling the intensive employment margin; in so doing, we introduce the concept of 

“effective labor hours”. An innovative aspect of our framework is that the former margin turns out 

to have a key spillover onto firms’ optimal pricing decisions. Finally, we estimate the underlying 

supply side allowing the elasticity of substitution to deviate from unity and for technical progress 

to deviate from Harrod-Neutrality. Accordingly, we avoid the common practise of using labor 

income share as the default representation of real marginal costs.  

Taken together, these three innovations may shed light on a key question arising from the 

Phillips curve literature: namely the cyclicality of the difference between factor cost prices and real 

unit labor costs.    

 

2 A Time-Varying Calvo-Price Setting Signal 

 

Let us start with the most general Calvo-NKPC framework, namely one which incorporates 

“intrinsic” inflation persistence via “rule-of-thumb” price re-setters (although, note, our framework 

follows equally well assuming no rule-of-thumb price setters).1 In our set up the Calvo price reset 

signal is presumed to be state dependent, a corollary of which is that at the beginning of each 

period firms receive a time-varying signal regarding price setting in the following three-valued 

manner: 

  

(1) With a (note: time-varying) probability tθ  firm j receives the signal indicating that the firm is 

not allowed to change its price, i.e. . j
t

j
t PP 1−=

                                                 
1 Hereafter, for simplicity and consistent with many other studies, we use the term NKPC (rather than hybrid 
NKPC, or H-NKPC) to denote a Phillips curve with intrinsic persistent (i.e., a backward-looking component). 
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(2) With a probability ( )ωθt−1  firm j is allowed to change its price following a backward-looking 

pricing rule, as in Galí and Gertler (1999), ( ) *
121 / −−−== ttt

b
t

j
t PPPPP , where  is the average price 

level selected by firms able to change price at time t-1, and where 

*
1−tP

[ ]1,0∈ω  represents the 

fraction of firms able to reset prices but who do so in this rule-of-thumb manner.  

 

(3) With a probability ( )( )ωθ −− 11 t  firm j receives the signal that allows it to reset its price on 

the profit-maximization level, .  f
t

j
t PP =

 

 As we shall see, the advantage of the three-valued signal is that in the beginning of each 

period, before the outcome of the signal is known, each firm faces exactly the same optimization 

problem, (i.e. in an ex-ante sense, all firms are profit-maximizers). By contrast, in the conventional 

approach there is a fixed, ex-ante classification of firms into profit-maximizers or non profit-

maximizers and thus uncertainty concerns only whether the firm is or is not allowed to change its 

price. If allowed, the firm knows with ex-ante certainty whether it belongs to the rule-of-thumb or 

profit-maximizing group and hence ex-ante there are two behaviorally different groups of firms: 

profit maximizers and rule-of-thumb price setters. 

 Given this, the aggregate price level, , (lower case denoting logs) can then be taken as 

the simple weighted sum of the reset and lagged price:2 

tp

 

( ) 1
*1 −+−≡ ttttt ppp θθ          (1) 

     

where 

 

( ) b
t

f
tt ppp ωω +−= 1*           (2) 

 

Inserting (2) into (1), and subtracting  from both sides and rearranging, yields, 1−tp

 

( )[ ] [ ])()1()1(1 2
*

1 −− −+−−=−+ tt
f

ttttt ppp ωωθπωθθ      (3) 

 

where tt p∆=π  denotes inflation. Furthermore, using (1) to solve for  and inserting into (3), 

we derive, 

*
1−tp

 

( )( t
f

tt
t

t
t

t pp −−+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

− −
−

ωπ
θ
ωπω

θ
θ 1

11 1
1

)

                                                

      (4) 

 

 
2 See Appendix A of McAdam and Willman (2007b) shows the formal derivation. 
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To proceed, we require a derivation of the profit-maximizing price, as well as operationalizing 

of the time-varying Calvo signal, 

f
tP

tθ , to which we now turn.  

 
 
3 Regime Dependency of the Signal 
 
Although still exogenous to firms, we assume that the Calvo signal maps to the fundamentals of 

firms’ overall price-setting environment, namely inflation and market structure. Specifically, in a 

high-inflation environment price changes are presumed more frequent than otherwise.3 Similarly, 

price changes in highly-competitive markets are presumed to be more frequent than in less 

competitive ones.4 In terms of the no reset relationship we have ( )επθ ,~ tt g , where 1−≤−ε  is 

the price elasticity of demand, this would imply 0, <επ gg . The following, simple functional form 

captures these ideas:  

 

( ) ε
ε

πθθθ −
−

−
+⋅≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅= 1

1

1
1 t

t

t
t P

P
        (5) 

 

where  and[ 10,θ∈ ] [ ]θ0,θ t ∈  0≥∀ tπ .5 Thus it can be easily demonstrated that the higher is 

inflation and the more competitive is the economy, the more likely is a probability to reset prices, 

i.e., tθ−1  tends to 1. With positive inflation, parameter θ  in (5), note, sets the upper bound to 

the time-varying price-fixing probability, tθ , which materializes either under zero inflation or pure 

monopoly.  

Moreover, a puzzling feature of estimated NKPCs is their apparent tendency to over-estimate price 

stickiness, given by ( )θ−1/1 .6 One aspect of this puzzle may be that in time-dependent models, 

firms change prices only on a periodic basis. Accordingly, time-dependent pricing rules might lead 

to stickier prices than state-dependent ones for a continuum of shocks. In addition, since this 

duration is typically estimated from diffuse inflation histories (recall Chart 1) which, importantly, 

deviate markedly from zero inflation, some bias might be expected. Our framework, however, 

might shed light on this puzzle since here θ  provides an upper limit for average contract duration 

which, as already stated, precisely materializes only under zero inflation (i.e., the maintained 

hypothesis of the standard NKPC). Whilst in our framework, price stickiness and duration are 

time-varying, and can be recursed from (5) for a given ε . 

                                                 
3 For instance, the ECB’s ‘Inflation Persistence Network’ found that sectors with a higher inflation rate and higher 
inflation variability, typically exhibit more frequent price changes (e.g., Altissimo, Ehrmann and Smets, 2006, see 
also Cecchetti, 1986) 
4 Again, this is consistent with the evidence, e.g., Levy et al. (1997). 
5 Whilst equation (5) may be justified as a quasi demand schedule for price resetting, it remains, like that of the 
original Calvo and Taylor (1980) frameworks, not predicated on any explicit micro-foundations. Our signal is 
essentially a way of incorporating the acknowledged real world feature of price staggering in a tractable manner, 
albeit in a way that goes beyond Calvo (1983). As Calvo comments, “Like cash-in-advance, price stickiness models 
fill a vacuum in general equilibrium theory without which one cannot even begin to address some basic policy 
issues in monetary economics. Unfortunately, the micro foundations are still weak.”, Macroeconomic Dynamics, 9, 
2005, 123-145. 
6 Smets and Wouters (2003), for example, estimate price durations in the euro area at around 2.5 years, which 
contrasts with comparable micro evidence which suggests around 1 year (e.g., see the summary paper of Altissimo, 
Ehrmann and Smets, 2006). 

 
 

4



 
 
4 Factor Demands and the Profit-Maximizing Price Level 
 

In the following sections we derive the first-order intertemporal maximization conditions of the firm 

accounting for Calvo-pricing signals. In addition, we account for adjustment costs associated with 

labor in a framework where wage contracts are fashioned in terms of normal working hours with 

a pre-set overtime premium. 

 

 4.1 Effective Labor Hours and Pricing 

 

Typically, around two-thirds of the variation in total hired hours originates from employment; the 

rest from changes in hours per worker, e.g., Kyland (1995), Hart (2004). The relatively small 

proportion of the variation of paid hours per worker can be explained by the fact that typically 

labor contracts are framed in terms of normal working hours. Therefore it is difficult for firms to 

reduce hired hours per worker below the norm and problematic to increase them above that norm 

without increasing marginal costs. Under these conditions it may be optimal for firms to allow the 

intensity at which the hired labor is utilized, to vary in response to shocks. Hired hours may 

therefore underestimate the true variation of the utilized labor input over the business cycle 

leaving effective hours as the correct measure of labor input in the production function. An 

empirical difficulty with the effective hours is that they are not directly observable; although in 

our framework we demonstrate that they can be expressed in terms of observables. 

Hence, as before, assume that output is defined by production function, ( )tHKF tt ,, , where, in 

particular, H is ‘effective’ labor hours (where ttt hNH ≡ : is the number of employees,  

‘effective working hours’ per employee). To illustrate the idea of “effective” labor hours, assume 

an employee is paid for, say, 8 “normal” hours, even though there may be periods when she  

works considerable below that, say, to only 5 hours work with “full” intensity. From the 

production-function standpoint, the logically correct measure of the labor input is 5 hours (i.e., the 

effective labor input) which implies that for effective labor hours the identity  must 

hold. 

N h

ttt hNH ≡

Further, in the spirit of indivisible labor (e.g., Kinoshita, 1987, Trejo, 1991, Rogerson, 1998) 

assume that contracts are drawn up in terms of fixed (or normal) working hours per employee, 

normalized to unity: 1=h . In general, effective hours in excess of normal hours attract a 

premium. Conversely, employers have limited possibilities to decrease paid hours when effective 

hours fall below normal ones. Hence, total wage costs, recalling equation, can be presented as a 

convex function of the deviation of effective hours from normal hours.7 Using a variant of the 

                                                 
7 Whilst, the overtime pay schedule of a single worker takes a kinked form, this is not so at a firm level, if there are 
simultaneously employees working at less than full intensity and those working overtime at full intensity (see the discussion in 
Bils, 1987).  
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“fixed-wage” model of Trejo (1991) for overtime pay, the following function gives a local 

approximation of this relation in the neighborhood of effective hours equaling normal hours: 8 

 

( )[ ] ( ) 0;
2

,
2

≥
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+≡+ h

t

ttth
tttttHtt a

Nh
NhNhaNhWHNAHW        (6) 

 

where Wt is the real straight-time wage rate which each firm takes as given. Conditional on the 

contracted straight-time wage rate and the overtime wage premium function, effective hours are 

completely demand determined. Firms can also freely (but not costlessly) determine the allocation 

of total effective hours into effective hours per employee and the number of employees. 

Setting the number of employees, N, to 100 and W=1, the linear schedule, Figure 2, illustrates 

the dependency of total wage costs if deviations of effective hours from normal hours attract no 

premium, i.e. . Convex curvature in wage costs results for , and the greater the 

curvature, the greater is the incentive to adjust total effective hours, H, by changing the number 

of employees. Indeed, if changing the number of employees is costless, all adjustment is done via 

this margin and, independently from the size of , effective hours H equals N for all periods. 

However, in reality, changes in the number of employees are associated with non-trivial costs. 

0=ha 0>ha

ha

 

Figure 2: Wage Costs and Effective Hours 

 

Wage Costs 
180 
160

140

120

 

            )( 1=hh , Effective Labor Hours per Employee 

   

 
4.2. The Theoretical Model 
 
Assume that each firm solves its profit-maximization problem in the beginning of the period with 

full information on all current-period variables - except for the price-setting category to which it 

belongs ex-post. Regarding the Calvo signal itself, the prior probability distribution is known, i.e. 

tttE θθ =  and, hence, the jth firm’s expected price level is,  

    

                                                 
8 Trejo’s (1991) focus was in overtime hours and, therefore, he did not distinguish between effective and paid hours. Hence, our 

formulation is compatible with his when hht ≥ and effective and paid hours are equal. However, our formulation also accounts 

for the possibility that effective hours are below normal (i.e. paid) hours.     

0.8 0.9 1.1 1.2 1.3 1.4

100

1.5

200
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( ) ( ){ }*
11 11 −− +−−+= t

f
tt

j
tt

j
tt ppppE ωωθθ      (7) 

 

Thus, although at the firm level, we find, , 
j

t
j

tt ppE ≠ ttt ppE =  continues to hold at the 

aggregate level (this can be inferred from taking expectations of (1) and (2)).  

Now the profit-maximization problem is identical for each firm independently of the ex-post 

outcome of the Calvo signal. In general form, therefore, each jth firm maximizes, 

 

( ) ( )
⎪⎭

⎪
⎬
⎫
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⎪
⎨
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⎤
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+
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+
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P
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j
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j
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P
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j
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≡=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−−

−

4434421
εε

ε
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where  and  denote nominal wages and the user-cost-of-capital respectively, W Q Z  is a 

convenient factoring term, represents some generalized production technology (e.g. Klump, 

McAdam and Willman, 2007), and  with  being the risk-free, real 

interest rate.  

F

( ) ( ) 1

0
, 11 −

+
=

+ ++≡ Π jt

i

j
ttitt rErR tr

After applying expectation rule (7), we can separate jjYP  and conditional on , on 

one hand, and conditional on all other possible prices, i.e. , on the other:  

jY f
t

j
it PP =+

f
t

j
it PP ≠+
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t
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j
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where 

ε

θθ
θ

−
+

+
=

+ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==Θ Π

1

0
,

1

t

it
t

i
jtt

i

jt
itt P

PEE and it+Ω  is the probability-weighted sales corresponding 

to all possible sales price deflated by the aggregate price level. 
f

t
j
it PP ≠+

The profit-maximization problem of (8) can now be presented as,  
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where the terms containing  are independent from maximized variables. Now, the first-order 

conditions with respect to , ,  and  yield, respectively, 
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The demand function defined by (8b) implies that 
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where MC is the real marginal cost of labor and FH represents the marginal product of effective 

hours . There are in (11’) and (12’) two features worth noting. Firstly, from (11’) we see j
tH
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that the optimal price now has been reduced to depend on the constant θ  instead of the time-

varying tθ . Secondly, real marginal costs depend also on the deviation of effective hours from 

normal, which is the case if  and the adjustment of the number of employees is costly. 

From the point of view of empirical application this might be problematic, because effective hours 

are unobservable. However, in the present framework that is not the case if the production 

function is known and on the bases of (8a) the unobservable  can be expressed in terms of 

observable variable as follows: 

0>ha

j
th

 

( )
j

t

j
t

j
tj

t N
KYF

h
,1−

=                                                         (15) 

 

Furthermore, by assuming that households have access to a complete set of contingent claims, 

and that identical consumers maximize their intertemporal utility, ( )∑ +
i

it
i CUβ , it holds for the 

discount rate : ittR +,

 

( )
( ) 11
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β                  (16) 

 

where C denotes consumption, and β  is the discount factor. For the standard case of logarithmic 

utility and under the assumption that market growth equals consumption growth, i.e. 
t

it

t

it

C
C

Y
Y ++ = , 

equations (11’) (12’) and (16) imply, 
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          (17) 

 

where 
1

1
−

=
ε

µ  and MCN are the mark-up and nominal marginal cost of labor, respectively.  

The logarithmic approximation of (17) can be written as, 

  

( ) ( ) (∑
∞

=
+ +−=

0

1
i

itt
if

t mcnEp µβθβθ )          (17‘) 

 

Equation (17’) resembles a conventional profit-maximizing, price-setting rule, but it is worth noting 

that it has been derived to hold for the log levels of the left- and right-hand side variables, i.e. 

not only for the corresponding log differences of the variables from their presumed steady state 
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values, as is usually the case - and where, consequently, the presumed fixed mark-up drops out. 

In fact (17’) corresponds to the specification implied by Rotemberg’s (1987) (two-stage 

optimization) framework but, unlike in that paper, we have explicitly derived it here in the profit-

maximization environment. Furthermore, the derivation of (14’) crucially requires that the reset 
probability is state-dependent, as defined in equation (5). Finally, the definition of marginal costs 

contains also the deviation of effective hours from normal hours.  

 
 

5 The State-Dependent New Keynesian Phillips Curve 
 
Finally, to derive our State-Dependent NKPC we start by inserting equation (17’) into (4) to 
obtain: 
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       (18) 

 

We next shift (18) forward by one period and take expectations at the beginning of period t.   
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We see that the expectation of the left-hand side of (19) is a non-linear function of the next-

period inflation. Therefore, to derive a closed-form solution, we linearize this left-hand-side term 

around current-period inflation: 
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Now, using the approximation (20) in (19), multiplying both sides of (19) by βθ  and subtracting 

it from (18) we end up, after some manipulations, with our reformulated State-Dependent NKPC 

(SD-NKPC): 

 

( ) ( ) tttttttttt
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tt
b
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where,  
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where, as before, . ( ) επθθ −+⋅= 11 tt

We see that although equation (21) notionally resembles the conventional hybrid NKPC, it differs 

in three key respects. 

First, and most obviously, all “coefficients” are time-varying, resulting from the dependency 

of tθ  on inflation. Moreover, it can be shown that the SD-NKPC parameters are increasing in 

inflation except for that capturing inflation volatility, 0,, >πππ λγγ fb 0<πξ . Our formulation thus 

turns out therefore to be consistent with Ball, Mankiw and Romer’s (1988) well-known finding of 
a positive correlation between the slope of the Phillips curve and inflation (or trend inflation). 

Finally, conditional on estimates of the state-dependent NKPC, the time-varying Calvo re-set signal 

and time-varying duration would then be solved recursively by inserting the estimate of θ , into 

 and ( ) επθθ −+⋅= 11 tt ( ) 11 −− tθ , respectively. Note, equation (21) can be expressed in terms of θ , 

tθ  or, as here, both. For estimation purposes, though, we would replace tθ  by .9 The 

time-varying Calvo signal and its duration over time would then be solved by inserting the 

estimate of 

( ) επθ −+ 11 t

θ , into (5) and (  respectively.  ) 11 −− tθ

A natural consequence of this framework is that question of monetary and inflation regime 

can now be examined directly since our SD-NKPC is not dependent on a linearization of the reset 

price around any given value of inflation. Whereas the standard NKPC is valid locally only around 

a zero-inflation regime, or, at best, a low and stable one.  

Second, our NKPC specification differs in being derived directly from the log-levels of the 

underlying variables, without relying on deviations from a zero (or indeed non-zero) inflation steady 

state.  

Finally, looking at the last right-hand term in (18), the equation contains second-order 

inflation terms. The importance of this is strengthened the higher is inflation, on one hand, and 

the more volatile it is, on the other. However, for steady inflation, i.e., tt ππ =+1 , this term 

disappears independently from the value of that steady rate. Also, it is straightforward to see that 

the time-varying coefficients asymptotically approach those of the hybrid NKPC, when inflation 

converges to zero, i.e. the linearization point of conventional equation.10 Likewise the second-order 

inflation term vanishes when 0→tπ . Hence, equation (21) indicates that in an inflation regime at 

                                                 
9 The aggregate elasticity of demand, ε , or equivalently the mark-up, µ , which enters ξ , meanwhile would 

require either prior estimation or calibration. 
10 Although, note that tt πξ ∀≠ 0 . 
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or close to zero with relatively small inflation variability, the conventional (hybrid) NKPC should 

give a good approximation to (21).    

 
 
6. The Long-Run Supply-Side System  
 
Before being applicable for empirical estimation the real marginal cost must be operationalized. 

Deviating from a general practice we do not rely the a priory assumption of the Cobb-Douglas 

production function but allow both the elasticity of substitution between capital and labor to differ 

from unity as well as technical progress from Harrod neutrality. To increase the robustness of our 

results we estimate the underlying production technology by applying the system approach, i.e. we 

estimate the first order conditions of maximization as a system. Our estimation task is alleviated 

by the fact that for identifying the technology parameters we need to estimate only the steady 

state form of the profit maximization system determined by (8a) and (11)-(14), i.e. we assume 

that adjustment costs, ; thus, (10) reduces to 0=NA tt NH = , (i.e., 1== hht  and, hence, normal 

working hours  equals ‘effective’ hours ). Now the supply-side system can be re-expressed as: tN tH

 

( ) tt

t

tt

tt

N
F

Y
N

YP
NW

∂
∂

+
=

µ1
              (21) 

 

t

t

t

t

NF
KF

W
Q

∂∂
∂∂

=                      (22) 

 

( tNKFY ttt ,,= )                                     (23) 

 

where δ+= tt rq  is the user cost of capital.  

  
 
6.1 “Normalized” CES Production with Time-Varying Factor Augmenting Technical Progress. 
 
 
6.1.1 Normalization of Production functions 
 
In estimating system (21-23), our technology assumption is the “normalized” CES production 

function allowing for time-varying factor-augmenting technical progress. The importance of explicitly 

normalizing CES functions was discovered by de La Grandville (1989), further explored by Klump 

and de La Grandville (2000), and Klump and Preißler (2000), and first implemented empirically by 

Klump, McAdam and Willman (2007).  

Normalization starts from the observation that a family of CES functions whose members are 

distinguished only by different substitution elasticities need a common benchmark point. Since the 

elasticity of substitution is defined as a point elasticity, one needs to fix benchmark values for the 

level of production, factor inputs and marginal rate of substitution, or equivalently for per-capita 

production, capital intensity and factor income shares. Normalization is crucial when dealing with 

CES functions: (a) It is necessary for identifying in an economically meaningful way the constants 
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of integration which appear in the solution to the differential equation from which the CES 

production function is derived. (b) it is necessary for securing the neo-classical property of a 

strictly positive relationship between the elasticity of substitution and the level of output, (c) it is 

(implicitly or explicitly) employed in all empirical studies of CES functions,11 (d) it is convenient 

when biases in technical progress are to be empirically determined (as in this paper).  

The normalized production function is given by12, 
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Y                                                 (24) 

 

where 0π  is the capital share evaluated at the normalization point (subscript 0) and  define 

the (indexed) level of technical progress from factor i and where 

)(tgi

[ ]∞∈ ,0σ  is the elasticity of 

substitution13.  

       We suggest normalization points should be calculated from sample averages (denoted by a 

bar). However, due to the non-linearity of the CES functional form, sample averages (arithmetic 

or geometric) need not exactly coincide with the implied fixed point of the underlying CES 

function. That would be the case only if the functional form is log-linear i.e. Cobb Douglas with 

constant technical growth. Therefore, we capture and measure the possible emergence of such a 

problem by introducing an additional parameter,ζ , which should be close to unity. This allows us 

to express the fixed point in terms of the geometric sample averages of output and inputs, 

NNKKYY ==⋅= 000 ,,ζ , and the arithmetic sample averages of capital income share and 

time: tt == 00 ,ππ . Distribution parameter π  can be calculated directly from the data or it can 

be estimated jointly with the other parameters of the model. We apply the former approach. 

  

6.1.2 Flexible Modeling of Technical Progress 

 

Recall that neo-classical growth theory suggests that, for an economy to posses a steady state 

with positive growth and constant factor income shares, the elasticity of substitution must be 

unitary (i.e., Cobb Douglas) or technical change must exhibit labor-augmentation (i.e., Harrod 

Neutrality).  

Under Cobb Douglas, the direction of technical change is irrelevant for income distribution since it 

is not possible to determine any biases in technical change. In contrast, pronounced trends in 

factor-income distribution witnessed in many industrialized countries support the more general CES 

function and make biases of technical progress a central issue. For CES, though, a steady state 

with constant factor income shares is only possible if technical progress is purely labor 

augmenting. Acemoglu (2003) was able to derive this same result in a model with endogenous 

                                                 
11 However, if the normalization point is implicitly defined, then all baseline values are equal to one, and the baseline factor 
income shares become equal to one half. This may be an interesting theoretical case but is of limited empirical relevance. 
12 The reader is directed to McAdam and Willman (2007a) for a more extensive discussion of normalization. 
13 If factors are perfect substitutes in production ∞=σ  (i.e., linear production function) and if non-substitutable 0=σ  

(Leontief); 1=σ  signifies Cobb-Douglas.  
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innovative activities but demonstrated that, over significant periods of transition, capital-augmenting 

progress can be expected resulting from endogenous changes in the direction of innovations. 

Indeed, abstracting from theory, it would be surprising if the decline in the price (and rise in 

usage) of goods such as computers and semi-conductors since the 1970s had not induced some 

capital-augmenting technical change. 

Earlier work on CES functions, moreover, tended to assume constant technical growth. However, 

following recent debates about biases in technical progress over time, it is not obvious that 

growth rates should always be constant; accordingly, we follow an agnostic approach and model 

technical progress drawing on a well-known flexible, functional form (Box and Cox, 1964):  
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Technical progress, ( )tg  is, thus, a function of time, t (around its normalization point) and a 

curvature parameter, iλ  with a growth rate of iγ  at the point of normalization. When λ =1 

(=0) [<0], technical progress displays linear (log-linear) [hyperbolic] dynamics: 
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Thus, if 0≥iλ , the steady-state level of technical progress accruing from factor i tends to infinity 

but is bounded otherwise. If 1=iλ  the growth of technical progress is constant (i.e., the “text-

book” case) but asymptotes to zero for any 1<iλ . This flexible (Box-Cox) modeling of technical 

progress allows the data to decide on the presence and dynamics of factor-augmenting technical 

change rather than being imposed a priori.15   

 

6.3 Estimates of the Supply Side 

 
Combing our previous sections, we can write down our final estimated supply side system: 
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14 Note we scaled the Box-Cox specification by t0 to interpret  Nγ and Kγ  directly as the rates of labor- and capital-

augmenting technical change at the fix point. 
15 Assuming a specific, albeit flexible, function form for technical progress has the added advantage of circumventing problems 
related to Diamond et al.’s (1978) non-identification theorem. 
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where 
KqNw

Kq
+

=πv  is the capital share evaluated at the fixed point (sample mean). Thus we 

can see that under Cobb-Douglas, equations (27) and (28) collapse to equating factor income 

shares to their normalization value plus a stochastic component. 

Table 1 gives the estimation of the above supply side system for the unconstrained (CES) 

and imposed Cobb-Douglas case. In both cases, we can see that the aggregate mark-up is 

identified at around 11%-12%.  

 

7. NKPC Empirical Results:  

 
Tables 2 and 3 give the results of estimating the NKPC under a number of guises: under time-

dependent and state dependent pricing; where real marginal costs are determined by Cobb-Douglas 

or CES supply side; and, finally, where the deviation of effective hours from normal hours are 

incorporated. (We also, for completeness, show free and constrained estimates of the discount 

factor and examples where real marginalized costs are expressed in deviation from their sample 

mean). Overall, most results appear economically plausible – parameters are generally significant at 

the 1% level and measures of price stickiness, given by ( ) 11 −−θ  in time-dependent case, are in 

many cases comparable to that of typical micro evidence, i.e., 4-7 quarters. 

Further, in most cases – CES or Cobb-Douglas – we see that our derivation of the 
overtime premia has statistically significant spillover effects onto optimal pricing. Our estimates of 

the share of backward-looking price setters is a little more mixed: overall, we are almost as likely 

to find the share above as below 0.5. However for our preferred method, namely state-dependent 

forms, we tend to find a relatively high share of backward-looking price setters, around 0.7. 

 

8. Conclusions 
 

In this paper, we sought to make three principal contributions to the field of Phillips-Curve 

modeling, in the New-Keynesian tradition. These three contributions can we hope make a 

constructive input into understanding inflation dynamics and real and nominal interactions in the 

economy, but also commenting on the cyclicality of the mark-up over time (which is a key 

concern for understanding economic fluctuations and informing stabilization policy). 
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Table 1: 
Alternative Supply-Side Estimations 

 

Parameter Cobb-Douglas CES 

ζ  1.0351 
(0.0021) 

1.0342 
(0.0022) 

0.0073 
(0.0001) 

0.0076 
(0.0002) Nγ  

Nλ  -0.1513 
(0.0350) 

-0.0862 
(0.0585) 

0.0056 
(0.0009) 

0.0057 
(0.0011) 1Nγ  

1Nλ  1.0000 
(0) 

1.0000 
(−) 

0.0073 
(0.0001) 

0.0042 
(0.0005) Kγ  

Kλ  -0.1513 
(0.0350) 

-0.5630 
(0.1490) 

σ  
1.0000 
(−) 

0.6039 
(0.0121) 

ε  1.0853 
(0.0062) 

1.0883 
(0.0063) 

µ  11.7233 11.3210 
   
 -4.21227 -4.1832 
 -7.18798 -7.1225 
 -3.91570 -3.8365 

Log Det, -20.4177 -20.51452 
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Table 2: 
Alternative Estimates of the New Keynesian Phillips Curve (Cobb-Douglas Supply) 

 

 

Parameter Time-Dependent State-Dependent 
          

MC (Centralized)        

θ  
0.8458 
(0.0209) 

0.8558 
(0.0217) 

0.7853 
(0.0563) 

0.8914 
(0.0353) 

0.7867 
(0.0682) 

0.9043 
(0.0205) 

0.9030 
(0.0215) 

0.7658 
(0.0959) 

0.7639 
(0.1077) 

β  
1.0017 
(0.0144) 

0.9900 
(−) 

0.9900 
(−) 

0.9900 
(−) 

0.9900 
(−) 

0.9900 
(−) 

0.9799 
(0.0169) 

0.9900 
(−) 

0.9900 
(−) 

ω  
0.4089 
(0.0772) 

0.4163 
(0.0766) 

0.6062 
(0.1391) 

0.5132 
(0.1357) 

0.6148 
(0.1689) 

0.4682 
(0.0754) 

0.4726 
(0.0753) 

0.7387 
(0.0723) 

0.8159 
(0.0752) 

ha  − − 0.4400 
(0.1933) 

0.3076 
(0.5847) 

0.4593 
(0.2477) − − 0.6575 

(0.3149) 
0.9885 
(0.3869) 

J-test 0.6312 0.7251 0.7298 0.5535 0.7506 0.6248 0.51948 0.7237 0.8226 
Duration 
(Quarters) 6.4831 6.9367 4.6568 9.2058 4.6877 10.4504 10.3065 − − 

 
 

Table 3:  
Alternative Estimates of the New Keynesian Phillips Curve (CES Supply) 

 
Parameter Time-Dependent State-Dependent 

           
MC (Centralized)       

θ  
0.8044 
(0.0339) 

0.8821 
(0.0132) 

0.8719 
(0.0302) 

0.7436 
(0.0264) 

0.7532 
(0.0769) 

0.9102 
(0.0154) 

0.9078 
(0.0346) 

0.9006 
(0.0329) 

0.8307 
(0.0399) 

0.9091 
(0.0148) 

β  
0.9900 
(−) 

0.9900 
(−) 

1.0024 
(0.0218) 

0.9900 
(−) 

0.9900 
(−) 

0.9900 
(−) 

0.9762 
(0.0249) 

0.9900 
(−) 

0.9900 
(−) 

0.9900 
(−) 

ω  
0.4748 

(0.1205) 
0.3008 
(0.0790) 

0.2902 
(0.1732) 

0.7187 
(0.0330) 

0.7115 
(0.0738) 

0.3726 
(0.0849) 

0.3784 
(0.1821) 

0.3982 
(0.1315) 

0.7663 
(0.0335) 

0.6649 
(0.0404) 

ha  
0.6724 
(0.1724) − − − 0.9939 

(0.2119) − − 0.2638 
(0.7254) 

1.5808 
(0.3278) − 

J-test 0.9192 0.8909 0.8251 0.7790 0.7025 0.7126 0.6611 0.6080 0.8948 0.8009 
Duration (Quarters) 5.1131 8.4803 7.8059 – – 11.1361 10.851 10.0643 − − 
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