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Abstract: Due to the recent financial crisis and European debt crisis, credit risk evaluation has become
an increasingly important issue for financial institutions. Reliable credit scoring models are crucial
for commercial banks to evaluate the financial performance of clients and have been widely studied
in the fields of statistics and machine learning. In this paper a novel fuzzy support vector machine
(SVM) credit scoring model is proposed for credit risk analysis, in which fuzzy membership is
adopted to indicate different contribution of each input point to the learning of SVM classification
hyperplane. Considering the methodological consistency, support vector data description (SVDD) is
introduced to construct the fuzzy membership function and to reduce the effect of outliers and noises.
The SVDD-based fuzzy SVM model is tested against the traditional fuzzy SVM on two real-world
datasets and the research results confirm the effectiveness of the presented method.

Keywords: fuzzy support vector machine; support vector data description; credit scoring

1. Introduction

During the recent financial crisis, many financial institutions endured great losses from customers’
defaults on loans such as the subprime mortgage crisis in the USA. However, credit-granting
institutions cannot simply refuse all applicants to avoid credit risk as the competition in the growing
credit market has become fierce. Effective credit scoring has become one of the primary techniques
for gaining competitive advantages in credit market which can help financial institutions to increase
credit volume without excessively increasing their exposure to default.

Credit scoring models are developed to discriminate applicants as either accepted or rejected
with respect to the customers’ application form and credit report, which is built on the basis of past
applicants’ characteristics [1–3]. Since even a fraction of improvement in accuracy of credit scoring
might translate into noteworthy future savings, numerous data mining and statistical techniques
have been proposed to derive a satisfied credit scoring model over the past decades. Generally, these
methods can be classified to statistics approaches (e.g., discriminant analysis and logistic regression),
and machine learning approaches (e.g., artificial neural network and support vector machine). Though
traditional statistical methods are relatively simple and explainable, their discriminating ability is still
an argumentative problem due to the nonlinear relationship between default probability and credit
patterns. Additionally, statistical methods must assume posterior probability models while machine
learning approaches commonly operate without this limitation.

Regarding recent credit scoring techniques, artificial neural network [4,5] has been criticized
for its poor performance when incorporating irrelevant attributes or small data sets, while support
vector machine, motivated by statistical learning theory [6,7], is particularly well suited for coping
with a large number of explanatory attributes or sparse data sets [8–11]. Baesens et al. studied
the performance of various state-of-the-art classification algorithms on eight real-life credit scoring
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data sets [12]. Thomas et al. tested 17 consumer credit modeling methods and report that SVM
ranks the highest in term of classification accuracy [13]. Huang et al. constructed hybrid SVM-based
credit scoring models with three strategies for feature selection and model parameter setting [14].
Martens et al. extracted rules from the trained SVM to obtain both accurate and comprehensible
credit scoring models [15]. Niklis et al. developed linear and nonlinear support vector machines risk
assessment and classification models, as well as additive SVM model that well suited the requirements
of credit rating systems, which provided very competitive results [16]. Harris introduced the use of
the clustered support vector machine for credit scorecard development and addresses some of the
limitations associated with traditional nonlinear support vector machine based methods [17]. Cheng
and Li proposed a rating model based on a support vector machine with monotonicity constraints
derived from the prior knowledge of financial experts which helps correct the loss of monotonicity in
data occurring during the collecting process [18].

However, in many real word credit scoring problems, some input training points are corrupted
by noise, and some applicants may be assigned to the wrong side by accident. These points are all
outliers, which do not completely belong to one class, but with different memberships in the two
classes. In this case, standard SVM training algorithm will make the classification boundary to severely
deviate from the optimal hyperplane as SVM is very sensitive to outliers. Lin and Wang introduced
the concept of fuzzy SVM, which applies a fuzzy membership value to each input point according to
its relative importance in the classification and reformulates the SVM such that allows different input
point to make different contributions to the learning of decision surface [19]. Fuzzy SVM can be used
as a remedy for unwanted over fitting caused by treating every data sample equally [20–22], however,
the effects of the membership values when training fuzzy SVM is an interesting issue in the context
of credit scoring modeling [23]. In this study, considering the methodological consistency, a novel
support vector date description based fuzzy membership function is proposed to reduce the effects of
outliers and improves the classification accuracy and generalization, and the effects of the membership
values in fuzzy SVM is investigated and compared to those of SVM.

This paper is organized as follows. Section 2 recalls the background on SVM and fuzzy SVM,
and reports two typical linear and nonlinear fuzzy membership functions. Section 3 highlights the
main novelty of this work. The main aspects of the SVDD-based membership function are detailed.
Section 4 collects the experimental results on two real world credit datasets. Finally, Section 5 draws
the conclusion remarks.

2. SVM and Fuzzy SVM

2.1. Standard Support Vector Machines

In this section, the basic concept of SVM for classification problems is presented. Consider a
two-class problem with a set of l sample points: (x1,y1), ..., (xl,yl). Each xi has a class label yi ∈ {−1,1}
which denotes two classes separately. When the sample points are rigidly linear separable, SVM
classifier tries to search for a hyperplane with the largest margin to separate them by solving the
following quadratic program:

min
1
2
||w||2

subject to yi(wTxi + b) ≥ 1 i = 1, 2, ..., l
(1)

where w is the weight vector and b is the bias term. For linear non-separable separable case,
non-negative slack variables ξi are introduced to measure the amount of violation of the constraints in
Equation (1). The QP problem turns to:
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min 1
2 ||w||2 + C

l
∑

i=1
ξi

subject to yi(wTxi + b) ≥ 1− ξi i = 1, 2, ..., l
ξi ≥ 0 i = 1, 2, ..., l

(2)

where C is a regularized constant determining the tradeoff between margin maximization and
classification violation. In many cases, it’s difficult to obtain a suitable hyperplane in the original input
space by such a linear classifier, thus a nonlinear mapping ϕ(x) that satisfies Mercer’s condition can
be introduced to map the input variable xi into a higher dimensional feature space. To solve the QP
problem, the kernel function K(xi, xj) = ϕ(xi)·ϕ(xj) is introduced to compute the dot product of the data
points in feature space, and the shape of the mapping ϕ is unnecessary to know. Then the optimal
problem turns to the following dual form by constructing a Lagrangian:

min
1
2

l

∑
i=1

l

∑
j=1

αiαjyiyjK(xi, xj)−
l

∑
i=1

αi

subject to
l

∑
i=1

yiαi = 0 0 ≤ αi ≤ C i = 1, 2, ..., l

(3)

where α are the non-negative Lagrange multipliers related to the constraints in Equation (2).
Some commonly used kernel functions are polynomial, sigmoid and radial basis function (RBF).

RBF kernel is employed in this study because of its superiority, which is experimentally demonstrated
by Gestel et al. [24].

2.2. Fuzzy Support Vector Machines

In credit scoring modeling, the applicants may not be exactly assigned to creditworthy or default
ones. In other words, there is a fuzzy membership associated with each applicant, which can be
regarded as the attitude of the corresponding applicants toward one class in the classification. Lin and
Wang proposed the theory of fuzzy support vector machine based on standard SVM [19]. Suppose a
set of labeled sample points with associated fuzzy membership: (x1,y1,s1), ..., (xl,yl,sl). Each xi has a
class label yi ∈ {−1,1} and a fuzzy membership which satisfies 0 < si ≤ 1.

Since the fuzzy membership si is the attitude of the corresponding point toward one class and
the parameter ξi is a measure of the constraints violation, the term siξi can be treated as a measure of
constraints violation with different weights. Then the quadratic problem can be described as:

min 1
2 ||w||2 + C

l
∑

i=1
siξi

subject to yi(wT ϕ(xi) + b) ≥ 1− ξi i = 1, 2, ..., l
ξi ≥ 0 i = 1, 2, ..., l

(4)

By constructing a Lagrangian, the quadratic programs can be solved in their dual space just as
that for standard SVM:

min
1
2

l

∑
i=1

l

∑
j=1

αiαjyiyjK(xi, xj)−
l

∑
i=1

αi

subject to
l

∑
i=1

yiαi = 0 0 ≤ αi ≤ siC i = 1, 2, ..., l

(5)

With different value of si, the tradeoff between the maximization of margin and the amount of
constraints violation can be controlled. It is noted that a smaller si makes the corresponding point xi
less important in the training, thus choosing appropriate fuzzy memberships in a given problem is
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of pivotal importance for FSVM. Lin proposed a model by setting a linear fuzzy membership as a
function of the distance between each data point and its corresponding class center [19]. For the above
training sample sequence: (x1,y1,s1), ..., (xl,yl,sl), denote x+ the mean of class with label +1 and x− the
mean of class −1. The radius of class +1 is as follows:

r+ = max|x+ − xi| where yi = 1 (6)

and the radius of class −1 is:

r− = max|x− − xi| where yi = −1 (7)

The fuzzy membership of each sample is

si =

{
1− |x+ − xi|/(r+ + δ) where yi = 1
1− |x− − xi|/(r− + δ) where yi = −1

(8)

with δ > 0 to avoid the case si = 0.
The method performs well as the fuzzy membership is a function of the mean and radius of each

class, and the effect of outlier can be reduced as it contributes little to the final decision plane. However,
the algorithm is carried out in the original input space rather than the feature space, Tang further
proposed a nonlinear membership function defined in the feature space with mapping function ϕ(x)
on the basis of the above method [25]. Define ϕ+ and ϕ− as the centers of the two classes by taking
average on the points mapped to the feature space:

ϕ+ =
1

n+
∑

yi=1
ϕ(xi), ϕ− =

1
n−

∑
yi=−1

ϕ(xi) (9)

where n+ and n− are the numbers of samples in two classes.
The radius is defined similarly to those of Lin:

r+ = max|ϕ+ − ϕ(xi)| where yi = 1
r− = max|ϕ− − ϕ(xi)| where yi = −1

(10)

Then the square of distance is calculated in the feature space:

d2
i+ = ||ϕ− − ϕ(xi)||2 = K(xi, xi)− 2

n+
∑

yj=1
K(xj, xi) +

1
n2
+

∑
i

∑
yj=1

K(xi, xj)

d2
i− = ||ϕ+ − ϕ(xi)||2 = K(xi, xi)− 2

n+
∑

yj=1
K(xj, xi) +

1
n2
+

∑
i

∑
yj=1

K(xi, xj)
(11)

Finally the fuzzy membership of each sample is calculated as:

si =

 1−
√

d2
i+/(r2

+ + δ) where yi = 1

1−
√

d2
i−/(r2

− + δ) where yi = −1
(12)

with δ > 0 to avoid the case si = 0.
The nonlinear version of FSVM outperforms the linear one as it could more accurately represent

the contribution of each sample to the decision surface in the feature space. Both algorithm define the
center and radius by taking average and maxim on sample points, however, they could be defined in a
more explicable way.
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3. Fuzzy SVM with SVDD Membership Function

Methodological consistency has been a major design principle and is expected to improve
the comprehensibility of the modeling paradigm, which, in turn, may avail dispersion in practical
applications [26]. Support Vector Data Description (SVDD) is inspired by the support vector machine
classifier, which searches for a spherically shaped boundary around a dataset to detect novel data or
outliers [27,28]. In this section, a SVDD member function is proposed for FSVM, which is defined in
the feature space as well.

Similar to the SVM hyperplane approach with largest margin between two classes, SVDD
estimates a hypersphere with the minimum volume to find an enclosed boundary containing almost
all target objects, instead of using a hyperplane in SVM. Assume a hypersphere with center a and
radius R, the cost function is defined as below:

min R2 + C
l

∑
i=1

ξi

subject to ||(ϕ(xi)− a)||2 ≤ R2 + ξi, ξi ≥ 0 i = 1, 2, ..., l

(13)

where ξi are slack variables, and the parameter C controls the trade-off between the volume and
the violation.

The above optimal hypersphere problem can be solved by constructing the Lagrangian, which
results in:

max
l

∑
i=1

αiK(xi, xi)−
l

∑
i=1

l

∑
j=1

αiαjK(xi, xj)

subject to ∑
i=1

αi = 1, 0 ≤ αi ≤ C i = 1, 2, ..., l
(14)

The training samples with nonzero αi are support vectors and are used to describe the
hypersphere boundary.

Denote a+ and a− as the centers of class +1 and class −1 in the feature space respectively.
According to K-T condition, the center of the each class can be calculated as:

a+ = ∑
yi=1

αixi, a− = ∑
yi=−1

αixi (15)

The radius of class +1 is then defined by

r+ = max|a+ − ϕ(xi)| where yi = 1 (16)

and the radius of class −1 by

r− = max|a− − ϕ(xi)| where yi = −1 (17)

The square of the distance between any sample xi with class label yi = 1 and the class center a+ in
the feature space can be calculated as:

d2
i+ = K(xi, xi)− 2 ∑

yj=1
α+j K(xj, xi) + ∑

i
∑

yj=1
α+i α+j K(xi, xj) (18)

The square of the distance between the sample of class −1 and its corresponding class center a−
is derived similarly:

d2
i− = K(xi, xi)− 2 ∑

yj=−1
α−j K(xj, xi) + ∑

i
∑

yj=−1
α−i α−j K(xi, xj) (19)
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By definition , the radius r+ is the distance from the center a+ of the hypersphere of class +1 to
any of its support vectors on the boundary, and r− is the corresponding radius of class −1.

r+ = dsv+, r− = dsv− (20)

Then the fuzzy membership si of each input sample xi can be defined as follows:

si =

 1−
√

d2
i+/(r2

+ + δ) where yi = 1

1−
√

d2
i−/(r2

− + δ) where yi = −1
(21)

where δ > 0 is a small constant used to avoid the case si = 0. In this paper, δ is set to 1×10−3 for all three
models. Once the coefficients si are derived, fuzzy SVM for classification can be modeled according to
Equation (4) in Section 2.

The fuzzy memberships are calculated in the feature space with a more explainable center and
radius. As the class center and radius are defined in the minimum SVDD hypersphere including all the
class targets, the fuzzy membership are more explicit and interpretable in the feature space compared
to those average and maxim algorithm. In addition, the above formulas are similar to that of Jiang’s,
and are expected to reduce the effect of outliers as well.

4. Experimental Results and Discussion

In this section, two real-world credit datasets, the Australian and German credit data sets, are
adopted to evaluate the performance of the proposed SVDD-FSVM method. Experimental results are
compared with those of linear and nonlinear fuzzy SVMs. Australian credit data set, with 307 instances
of accepted customers and 383 instances of rejected customers, contains 14 attributes, where six are
continuous attributes and eight are categorical attributes. For confidentiality reasons, all attribute
names and values have been changed to meaningless symbols. The German credit dataset is more
unbalanced, consisting of 700 examples of creditworthy applicants and 300 examples of default
applicants, with 24 numeric features describing 19 attributes. The attributes of each applicant are
depicted in Table 1, with 4 attributes changed to dummy variables. Both data sets are made public
from the UCI Repository of Machine Learning Databases, and are generally adopted as benchmarks to
compare the performance of various classification models.

Table 1. Input variables of German data set.

Original
Attributes

Input
Variables

Variable
Type Attribute Description

A1 V1 qualitative Status of existing checking account
A2 V2 numerical Duration in month
A3 V3 qualitative Credit history
A4 V4,V5 dummy Purpose (V4: new car, V5: used car)
A5 V6 numerical Credit amount
A6 V7 qualitative Savings account/bonds
A7 V8 qualitative Present employment since
A8 V9 qualitative Personal status and sex
A9 V10,V11 dummy Other debtors/guarantors (V10: none, V11: co-applicant)

A10 V12 numerical Present residence since
A11 V13 qualitative Property
A12 V14 numerical Age in years
A13 V15 qualitative Other installment plans
A14 V16,V17 dummy Housing (V16: rent, V17: own)
A15 V18 numerical Number of existing credits at this bank

A16 V19,V20,V21 dummy Job (V19: unemployed/unskilled (non-resident), V20:
unskilled (resident), V21: skilled employee/official)

A17 V22 numerical Number of people being liable to provide maintenance for
A18 V23 qualitative Telephone
A19 V24 qualitative foreign worker
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The input variables are normalized with respect to their maximum values and the fuzzy
membership of each input instance is then derived by the SVDD operation. To visualize the SVDD
hypersphere, the variables are projected to the two dimensional plane by principal component
analysis, which is a popular multivariate statistic tool aiming to handle high dimensional, noisy, and
correlated data by defining a reduced set of latent variables (referred to as principal components) [29].
The boundaries of class +1 and class –1 of Australian dataset for the first fold partition are pictured in
Figure 1 and those of German dataset are pictured in Figure 2. Both hyperspheres are calculated with a
confidence limit of 98%. Though the two principal components contain over 90% of the information
(measured by variance) of the original data in both sets, the figures show that the rejected applicants
and accepted applicants can hardly be distinguished by a simple boundary in two dimensional plane.
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Figure 1. Principal components plot of SVDD for Australia data set.

For comparison purpose, the detailed performance of SVDD-FSVM is tested against linear FSVM
and nonlinear FSVM. This study assessed the three credit scoring methods in terms of accuracy and
other major assessment metrics such as sensitivity and specificity. Denote the number of default clients
classified as accepted ones by DA and classified as rejected ones by DR. Let the number of creditworthy
clients classified as accepted ones be CA and classified as rejected ones be CR. Then these evaluation
criteria measuring the efficiency of the classification are defined as:

Sensitivity = CA
CA+CR

Speci f icity = DR
DR+DA

Accuracy = CA+DR
CA+CR+DA+DR

(22)
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In this study, the credit dataset is randomly partitioned into identical training and test sets using
5-fold cross validation and a grid search is employed to find the optimal parameters [30]. The average
comparison results on German and Australian dataset are shown in Tables 2 and 3 respectively.

Table 2. Performance on the Australian test data set.

Methods Sensitivity (%) Specificity (%) Accuracy (%)

SVDD-FSVM 87.53 86.84 87.25
Nonlinear FSVM 89.87 85.13 87.10

Linear FSVM 86.95 86.48 86.67

Table 3. Performance on the German test data set.

Methods Sensitivity (%) Specificity (%) Accuracy (%)

SVDD-FSVM 89.59 48.60 77.30
Nonlinear FSVM 92.15 41.75 77.00

Linear FSVM 95.18 23.42 73.60

The result listed in Table 2 indicates that the SVDD-FSVM outperformed the other two FSVMs on
Australia data set, with overall accuracy of 87.25, comparing with those of 87.10 and 86.67 obtained
from the corresponding nonlinear and linear FSVM models, respectively. Though the sensitivity,
specificities and accuracy of German dataset in Table 3 are relatively lower than those of Australia
data set as the German data structure is considered more unbalanced than the Australian data set,
SVDD-FSVM still yields the best results among all the three approaches, with the specificity especially
improved, which is considered more important than the sensitivity for the credit risk control of
financial institutes.

5. Conclusions

This paper has presented methods for using fuzzy support vector machines to establish credit
scoring models. Comparing with standard SVM, fuzzy SVM imposes a fuzzy membership to each
input point such that different input points can make different contributions to the learning of decision
surface, which enhances the SVM in reducing the effect of outliers and noises in data points with
unmodeled characteristics. As choosing a proper fuzzy membership function is quite important to
solving classification problem with FSVM, the SVDD version of fuzzy membership is proposed for
methodological consistency consideration, which is a function of the distance between each input
point and its corresponding SVDD hypersphere center. The SVDD-FSVM credit scoring model overall
yields the best performance among all the three models when appropriately trained on two real-world
credit data sets. The results indicate that the proposed method provides classification accuracy and
reliability, and is supposed to have promising potential for practical use.
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