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Abstract: Special investment vehicles (SIVs), extremely popular financial structures for the creation
of highly-rated tranched securities, experienced spectacular demise in the 2007–2008 financial crisis.
These financial vehicles epitomize the shadow banking sector, characterized by high leverage,
undiversified asset pools, and long-dated assets supported by short-term debt, thus bearing material
rollover risk on their liabilities which led to defeasance. This paper models these vehicles, and shows
that imposing leverage risk control triggers can be optimal for all capital providers, though they may
not always be appropriate. The efficacy of these risk controls varies depending on anticipated asset
volatility and fire-sale discounts on defeasance. Despite risk management controls, we show that a
high failure rate is inherent in the design of these vehicles, and may be mitigated to some extent by
including contingent capital provisions in the ex-ante covenants. Post the recent subprime financial
crisis, we inform the creation of safer SIVs in structured finance, and propose avenues of mitigating
risks faced by senior debt through deleveraging policies in the form of leverage risk controls and
contingent capital.

Keywords: special investment vehicle; structured finance; leverage risk controls; contingent capital

1. Introduction

In the mid-2000s, market segmentation and an ever-increasing demand for safe debt resulted in
a marked shift in the supply of investable debt from the commercial banking system to the shadow
banking system [1], which provided presumably safe assets via special investment vehicles (SIVs).

This mode of financing peaked in 2007, at approximately $22 trillion [2].1 Much of this debt was
rated AAA, and deemed safe. There were twenty-nine major structured investment vehicles (SIVs)
created before the financial crisis, none of which remain today, that held an estimated $400 billion in
assets [3]. Senior debt issued by these SIVs, which were a special type of special purpose vehicle
(SPV), sustained an average 50% loss, belying their supposed safety, and lower priority capital
notes experienced almost 100% loss [4]. Our purpose is to discuss the design and risks inherent
in structured finance vehicles, to point out their weaknesses, and to provide recommendations
for improvement in the design and risk management of these highly leveraged vehicles, keeping
expected losses at acceptable levels for all participants in the capital structure of the SIV.

Structured-finance balance sheets comprise a pool of assets (most often mortgage-backed
securities and other asset-backed securities, with rating restrictions). The liabilities that fund these
assets are tranched, with senior and mezzanine notes being supported by subordinated capital
notes, also known as the equity tranche. The bulk of the financing comes from senior debt,

1 For reference, traditional banking liabilities at this time were approximately $14 trillion [2].

J. Risk Financial Manag. 2016, 9, 12; doi:10.3390/jrfm9040012 www.mdpi.com/journal/jrfm

http://www.mdpi.com/journal/jrfm
http://www.mdpi.com
http://www.mdpi.com/journal/jrfm


J. Risk Financial Manag. 2016, 9, 12 2 of 21

usually comprising 85%–95% of the financing (e.g., see [5] (p. 29)), and with the view to be rated
as AAA by the major accredited rating agencies based on stressed simulation models that target
expected percentage losses not exceeding 0.01%.2 This pooling and tranching process is fraught with
asymmetric information and lemons issues, as well as with liquidity problems. When the markets for
collateral assets experience shocks, widening spreads on mortgages and asset-backed securities can
lead to the demise of these structured finance vehicles due to their high leverage and asset-liability
gap (i.e., the funding of longer-duration assets with shorter-duration debt).

Every limited liability corporation manages leverage, attempting to reach some optimal level,
with banks and other financial institutions taking on more leverage than do manufacturing or tech
firms. The SIVs we consider here are less diversified in their asset pools and are sometimes more
highly leveraged than commercial banks, which are regulated to a leverage ratio of assets to equity
of 11–12 times (based on risk-based capital of 8%–9% [8]). In contrast, a few of the SIVs in the crisis
had leverage ratios that exceeded this range.3 SIVs also face rollover risk in their entire liability
pool, which is usually not the case for banks, which are insured by the Federal Deposit Insurance
Corporation (FDIC). Hence, in order to manage this risk, SIVs will impose a leverage risk constraint,
stipulating that the vehicle be shuttered in an orderly manner if leverage rises above a given level.
This risk control is designed to limit losses to debt holders, but might also lead to a greater incidence of
demise amongst these vehicles. Indeed, in the financial crisis, we saw that a majority of these vehicles
of various types did indeed enter defeasance. This introduces the problem of asset liquidation, which
must often offer at a discount. We account for these issues in our modeling to determine the optimal
risk management prescriptions for SIVs.

Overall, this paper explores SIV design and risk management, assuming these issues as given.
This paper is different from others in the literature in that it focuses on potential risks borne from
the risk controls themselves, and also recommends a better ex-ante structure and risk management
covenants to manage these vehicles in times of dropping asset values. Because optimal structured
finance design can be sensitive to even small changes in the underlying parameters, more appropriate
dynamic risk controls or alternate capital structures are predicated, and we will discuss these in
ensuing sections.

The main contributions of this paper are as follows. First, we show that expected percentage
losses to senior-debt holders may be managed by the introduction of a maximum leverage threshold,
where the assets-to-debt ratio must remain above a prescribed level (denoted K). Most SIVs created
before the crisis tended to have one or more leverage constraints of this nature, also referred to as
market-value triggers. If violated, the vehicle’s assets are sold down in an orderly manner to repay
outstanding debt. This is known as “defeasance” of the vehicle. We show that ex-ante expected
losses can be mitigated when such a leverage threshold is introduced optimally, thereby justifying
the imposition of these risk controls, provided they are properly set.

Second, designing a SIV involves a delicate tradeoff considering asset volatility as well as the
anticipated fire-sale discounts, and becomes a particularly difficult exercise in the presence of high
estimation error.4 This consideration is particularly important given the highly uncertain nature
of fire-sale discounts in times of distress, whereby one SIV’s defeasance may easily trigger that of
another SIV, pushing up fire-sale discounts even higher. For instance, Cheyne Finance recovered 44%
of par value in initial liquidation rounds [10],5 and Sigma Finance recovered 15% [3]. Overall, stress

2 This cutoff is based on the Rating Methodology guide published by Moody’s Investors Service. See Exhibit 2 of [6] (p.10).
See also [7] for issues relating to rating SIVs.

3 More generally, SIVs form a subset of special purpose vehicles (SPVs), of which some, such as special derivatives vehicles
and closed-end yield funds, were leveraged in the range of 12–30 times. However, most of these vehicles also took leverage
in a lower range, less than 15x.

4 For more on estimating fire sale discounts, see [9].
5 Cheyne was one of the largest SIVs created in 2005 before the onset of the financial crisis, and was the first to include

subprime assets in its pool.



J. Risk Financial Manag. 2016, 9, 12 3 of 21

tests of SIV design must not only account for swings in spread volatility (i.e., extreme pool risk) but
must also account for the potentially vast swings in fire-sale discounts under defeasance.6 We show
that the qualitative structural prescriptions for an SIV’s risk controls are not affected by the levels of
asset volatility or fire sale discounts, but of course, the exact quantitative specifications will vary.

Third, we consider contingent capital as one approach to enhancing the risk management of a
SIV. We show that pre-committed equity infusions reduce ex-ante expected percentage losses to both
senior- and capital-note holders, reduce the probability of defeasance, and extend the expected life of
the vehicle. In addition, we believe that a SIV sponsor’s ex-ante commitment to provide contingent
capital sends a strong signal to the markets that the quality of their SIV and under collateral is
better than that of vehicles that do not incorporate a mandated capital infusion. Contingent capital
is analogous to deposit insurance which has the added benefit of mitigating rollover risk [14],
particularly when applied prior to a state of financial crisis [15], which in the SIV setting, means
prior to approaching defeasance.

Our paper may also be framed as an analysis of the risk management of economic catastrophe
bonds. For instance, the senior tranches of securitized pools have been shown to be similar to
economic catastrophe bonds, failing under extreme situations, but offering lower compensation than
investors should require [16]. Through the use of a one-time committed capital infusion, we mitigate
the senior notes’ likeness to these economic catastrophe bonds. Furthermore, related work has shown
that small errors in parameter estimates of the collateral assets can lead to a large variation in the risk
assessment of the senior tranches [17]. We show that risk controls on the liability side are also very
relevant to this assessment, i.e., small changes in the leverage threshold can have a material impact
on expected losses.

The rest of the paper proceeds as follows. In Section 2, we present the model set up, and in
Section 3 we describe the implementation of our model using trees. In Section 4 we undertake
a numerical analysis of our base model and present results, including validation of the results for
varying asset volatility and fire sale discounts. In Section 5, we demonstrate how to mitigate risk to
senior notes and capital notes via contingent capital, an innovation that was not implemented ex-ante
in SIVs, and that we prescribe moving forward. In Section 6, we discuss and conclude.

2. Model

2.1. Basic Set up

We develop a parsimonious model of structured finance and SIV design. At time t, the aggregate
value of the asset pool is denoted as A(t), the senior-note liabilities are denoted as B(t), and the
capital-note liabilities are denote as C(t), with A(t) = B(t) + C(t). For simplicity, we impose only
two liability tranches, the senior notes (which we refer to as the debt of the SIV) and the capital notes
(which we refer to as the equity), abstracting away from multiple layers of mezzanine tranches in
between (which, in any case, did not exist in all SIVs). For simplicity, we assume that senior debt
is issued as a pure-discount note, especially given that it is short-term, and the initial face values of
the capital and senior notes are denoted DC and DB, respectively. At inception (i.e., at time t = 0),
B(0) < DB represents the initial price of senior notes with face value DB, and the residual value of
the liabilities represents the upfront equity financing, i.e., C(0) = DC = A(0)− B(0).

Investors in senior notes seek safe assets with assured returns, and hence, SIVs are designed
with the intent to attain a high quality credit rating for the senior notes. We will assume here that
this reflects a pre-specified expected loss from default [18]. For our examples we assume an expected

6 Fire sales also matter as they result in increasing correlations of distressed assets (see [11–13]), which further increases
overall pool risk.
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loss of L0 = 0.10%, i.e., 10 bps (of face value of senior debt). The expected loss to these investors is
critically dependent on the following factors:

1. The credit quality of the asset pool, i.e., its volatility σ, defined later in the stochastic process
Equation (3),

2. The size of the senior tranche (DB) and subordinated capital notes tranche (DC), and
3. The risk controls outlined by the SIV, i.e., the leverage control threshold K, which sets the

minimum acceptable level of the ratio of assets to senior debt. If this risk control is violated,
then the vehicle is usually terminated and an orderly sell down of the assets is triggered.

The capital-note holders retain the residual after repayment of the senior notes and management
fees borne by the SIV.7 Capital-note holders bear first losses on the SIV’s assets. The SIV makes a
spread between the rate of return on the assets and the rate of interest paid on the senior notes, from
which the capital note holders are compensated. This spread arises because the assets held are of
longer maturity than that of the senior notes, which are periodically rolled over. Hence, the maturity
of the senior notes is shorter than that of the capital notes and the weighted average maturity of all
assets and liabilities of the SIV.

2.2. Risk Controls and Defeasance

To afford the senior notes additional protection, the SIV covenants typically include safeguards
pertaining to asset quality in addition to requirements regarding the duration and liquidity of the
assets in the collateral pool. In addition to these asset restrictions, the SIV is monitored on an ongoing
basis, primarily through a leverage test, whereby the ratio of collateral value to senior-note obligations
must meet a pre-specified cutoff.8 Failure to meet these requirements forces the SIV into “defeasance”,
whereby the assets of the SIV must be sold to wind down operations. The proceeds are used to first
pay off the senior note holders, with the residual used to pay off the capital (equity) note holders.

We define a SIV’s (inverse) leverage ratio covenant at any point in time t as

A(t)
DB
≥ K (1)

where K is the lower bound on the ratio of collateral assets, A(t), to senior notes, DB, that is permitted
by the SIV. For example, a SIV with assets worth 100 and senior notes with a face value of 92, has a
leverage ratio of 100/92 = 1.087. Suppose a lower limit of K = 1.04 is placed on the leverage ratio.
Then the SIV enters defeasance (i.e., enforcement mode) when A(t) = DB · K = 92× 1.04 = 95.68.
We denote this boundary as H = DB · K. Assuming a frictionless market with no fire-sale discounts,
at any time t < T, senior-note holders are due the riskless value DBe−r(T−t), (here r is the risk free
rate, and the payout is the value of the discount bond, which has accreted value since inception, until
rollover maturity T). Capital-note holders are left with a payout that is far less than DC; i.e., a 4.32%
drop in the value of the assets held by the SIV results in a disproportionately greater loss to the
capital-note investors, who suffer first losses.

In reality, defeasance likely occurs when markets are under stress and other financial institutions
(including other SIVs) are also attempting to unwind. Thus, assets are unlikely to be sold at full
market value but rather at fire-sale prices, at some percentage discount δ. Hence, the anticipated
recovery is only a fraction (1− δ) < 1 of the assets’ value at defeasance, i.e., ((1− δ) · DB · K).

7 If the capital-note holders are the sponsors/managers of the SIV, then they also collect management fees.
8 Other tests are also imposed, such as those on liquidity and asset-pool composition, but these tests are less likely to trigger

defeasance than the leverage test, which is essentially a trigger corresponding to a pre-specified drop in collateral value.
Thus, the SIV risk-model trigger is akin to a barrier in the [19] class of structural default models.
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2.3. Rollover Risk

An SIV invests in an asset pool of securities that have much higher duration than that of its
liabilities. Senior notes mature and are rolled over at intervals ranging from as small as one month to
a year (and sometimes more). Rollover may not occur for two reasons. For one, if assets fall to a level
(A(t) ≤ DBK) that violates the leverage ratio covenant, the vehicle will enter defeasance prior to any
rollover decision, as discussed in the previous section.

Second, conditional on the leverage ratio not being violated, i.e., A(t) > DBK, ∀t < T,
senior-debt investors will decline to roll over their investment if, on the roll date, the level of the SIV’s
assets are insufficient to ensure that the ex-ante expected losses to senior notes are no greater than L0;
i.e., if A(T) ≤ A∗, where A∗ is the minimum level of assets required to keep expected losses on senior
notes DB within required quality levels (i.e., E(LB) ≤ L0). In short, the vehicle fails to survive when
senior debt holders refuse to roll over their debt, because the expected percentage losses have now
exceeded L0.

We define D∗B > DB as the level of maximal debt, given K, satisfying the constraint E(LB) ≤ L0.
That is, at D∗B, the loss constraint is exactly met, E(LB) = L0. Note that D∗B is a function of K, i.e.,
may be written as D∗B[K]. This implies a relationship between A∗ and D∗B, given K, which is that

A∗[K] = A0 ·
DB

D∗B[K]
≤ A0 (2)

To summarize, rollover occurs when assets at maturity are greater than A∗. Thus, if assets
do not decline in value by more than A0 − A∗, then rollover occurs, and we may assume that
the equity holders maintain their equity to support assets of A0 so that the problem then repeats
itself, when debt is rolled over. Capital note holders will withdraw excess equity so as to maximize
return on equity. Because keeping excess equity reduces leverage and reduces the expected return
on equity, withdrawal of excess equity capital reinitializes the SIV to its original risk-return trade-off.
This configuration leads to a series of one period repeated problems, and the value of debt at inception
of the rollover period is based on the outcomes of a single period. This approach makes our solution
simple, as we need only to solve a one-period problem to understand the ongoing risk and return
behavior of these SIVs.

While we accommodate for rollover risk in the model, we do not include the more complicated
case of staggered rollover dates for the senior debt in the SIV, which occurs when where there are
multiple time tranches with varying rollover dates. This paper was aimed at focusing on the design
of risk management controls for SIVs. We take up the case of staggered rollover dates in a follow up
paper that focuses mostly on that particular risk, and we offer a novel solution to that form of rollover
risk (see [20]). For earlier work in the topic of rollover risk, not specific to SIVs, see [21,22].

2.4. The Stochastic Asset Process

We begin by modeling the asset-price A(t), defined by the following process:

dA(t)
A(t)

= µ dt + σ dW(t) (3)

where µ > r > 0 is the expected growth rate of the assets over time, used to pay returns to both
classes of note holders. The risk free rate of interest is denoted by r. Asset volatility is modulated by
coefficient σ, and W(t) is a standard Wiener process. Under this process the evolution of the asset
price may be written in non-differential form as:

A(t + h) = A(t) exp
[(

µ− 1
2

σ2
)

h + σW(h)
]

(4)
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where h is a discrete time step for the model. Therefore, the terminal value of A(T) follows the
lognormal distribution. Valuation of the capital and senior notes is achieved under the risk-neutral
framework by replacing µ with risk free rate r in the expressions above.

3. Model Implementation

To examine the role of risk management covenant K, we price senior notes and capital notes
with and without the presence of this covenant (leverage ratio trigger). We denote the defeasance
trigger level as H = DB · K, and valuing the liabilities (senior notes and capital notes) of the SIV
with the leverage trigger is analogous to a barrier option pricing problem. In addition to valuation of
the securities in the structure, we are also interested in the risk features of the notes issued, such as
expected percentage loss on the securities, as well as the probability of defeasance at the barrier and
the probability with which senior debt holders decline to roll over at maturity. Furthermore, we may
also be interested in the moments of the returns to these securities. Some of these quantities are
produced under the risk-neutral probability measure and others are computed under the physical
probability measure.

For ease of computation and tractability, we implement the model using binomial trees.
We describe our approach briefly so that the reader may have sufficient detail with which to replicate
the model.

The tree is set up with constant time step h (time is denoted in years). An asset price A(t) at
any node will evolve to two possible values, A(t + h) = {u · A(t), d · A(t)}, with u = eσ

√
h and

d = e−σ
√

h = 1/u.9 The risk-neutral probability of an up move is q = R−d
u−d , where R = erh.

With this set up, as shown in [23], the evolution of the stochastic process for A(t) is arbitrage-free.
The tree, then, becomes the foundation for the valuation of any security dependent on the value of
the assets, A(t).

3.1. Valuing Senior Debt (PB)

Senior debt is valued on the tree using the standard backward recursion approach, where we
build the tree to rollover maturity T. At the maturity nodes we obtain the terminal payoffs to senior
debt, as follows:

B(T) =


DB if A(T) ≥ A∗

min[DB, A(T)(1− δ)] if H ≤ A(T) < A∗

min[DB, H(1− δ)] if A(T) < H
(5)

Backward recursion is then applied to find the values of senior debt at all times 0 ≤ t < T, through
the following pricing recursion:

B(t) =
1
R
[q · Bu(t + h) + (1− q) · Bd(t + h)] (6)

where the subscripts u, d denote the up and down nodes emanating from B(t). At each stage, we also
check where defeasance has occurred, i.e., whether A(t) ≤ H. In such cases, we set

B(t) = min[B(t), H(1− δ)] (7)

and the initial price of senior debt is denoted PB ≡ B(0), which is determined after backward
recursion on the tree is undertaken using the equations above, from time t = T to time t = 0.

9 e is understood to represent the base of the natural logarithm, and is approximately equal to 2.71828.
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3.2. Expected Percentage Loss on Senior Debt (E(LB))

In similar fashion, we are also able to compute the expected losses on senior notes, the equations
for which are as follows:

LB(T) =


0 if A(T) ≥ A∗

max[0, DB − A(T)(1− δ)] if H < A(T) < A∗

max[0, DB − H(1− δ)] if A(T) ≤ H
(8)

Backward recursion gives the expected loss value as follows:

LB(t) =
1
R
[q · LBu(t + h) + (1− q) · LBd(t + h)] (9)

and if A(t) ≤ H, then
LB(t) = max[0, DB/RT−t − H(1− δ)] (10)

At rollover maturity, we compute losses based on the face value of debt DB, as this is the amount
owed to the senior note holders. That is, even though the initial price paid for the debt is B(0) < DB,
DB reflects the loss of accrued interest. For defeasance at times t < T, we compute losses based on the
discounted value of debt, once again, accounting for accrued interest in the loss computation, as may
be seen in Equation (10). The expected percentage loss based on face value is

E(LB) =
LB(0)

DB
(11)

and the goal is to design our vehicle such that E(LB) ≤ L0.

3.3. Valuing Equity (DC) and Expected Percentage Loss to Equity (E(LC))

The initial value of equity is required to be DC = A(0)− B(0) and the losses to equity may be
assessed at maturity as follows:

LC(T) =


0 if A(T) ≥ A∗

DC −max[0, A(T)(1− δ)− DB] if H < A(T) < A∗

DC −max[0, H(1− δ)− DB] if A(T) ≤ H
(12)

Recursion gives the expected loss value as follows:

LC(t) =
1
R
[q · LCu(t + h) + (1− q) · LCd(t + h)] (13)

and if A(t) ≤ H, then
LC(t) = DC −max[0, H(1− δ)− DB/RT−t] (14)

The expected percentage loss is

E(LC) =
LC(0)

DC
(15)

and we expect that E(LC) >> E(LB) because capital notes are analogous to equity and senior notes
are akin to debt in a standard capital structure. Here LC(0) is in fact the value of a put option on
capital notes, where the put pays off whenever these investors do not recoup their investment (this is
not the expected loss conditional on a loss occurring).
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3.4. Calculating Probability of Defeasance at Barrier and Maturity

The risk-neutral pricing tree we construct for valuing the notes may also be used to determine the
risk-neutral probability of defeasance at the barrier (denoted PDK) and at maturity (denoted PDT).10

Unlike the valuation of notes in the preceding sections, which was undertaken via backward
recursion, these probabilities are computed by making a forward pass through the n-period tree,
from period zero through period n, where of course, T = nh.

Recalling that the probability of an upshift on the tree is q and a downshift is 1− q, we denote the
probability of reaching node i in period j as pij. Since the time step per period is h, the time elapsed
by period j is equal to j · h. We also note that at the end of period j, there are j+ 1 nodes (i.e., economic
states), and we enumerate the nodes in period j from i = 0, 1, 2, ..., j.

At time t = 0, the single node has a probability of p00 = 1, because this state must occur with
certainty. Emanating from this node are two nodes at time t = h (period j = 1); the upper node occurs
with probability p01 = q and the lower node with probability p11 = 1− q. From here on we generate
probabilities using forward accumulation, as follows:

p0j = p0,j−1 · q, i = 0

pij = pi−1,j−1 · (1− q) + pi,j−1 · q, 0 < i < j (16)

pjj = pj−1,j−1 · (1− q), i = j

During the forward pass, we also compute the probability of defeasance in period j, which occurs
when Aij ≤ H for any node (i, j). The first passage time probability to the defeasance barrier is the
probability that defeasance occurs in period j, given that defeasance has not occurred at any period
prior to period j. During the forward pass, at period j, we compute the first passage time probability
as follows:

f j = ∑
∀i:Aij≤H

pij (17)

Once this is calculated and stored, we then set

pij = 0, ∀i : Aij ≤ H, (18)

so that the ensuing periods, first-passage probabilities will be correctly computed using the forward
pass Equation (16), accounting for the event of defeasance.

In short, the risk-neutral probabilities are computed by traversing the tree forward iterating over
Equations (16)–(18), in sequence. The total probability of defeasance at the barrier is then given by
the sum of first-passage probabilities over all periods j:

PDK =
n

∑
j=1

f j (19)

and the total probability of defeasance at maturity is

PDT = ∑
∀i:Ai,n<A∗

pi,n (20)

The total risk-neutral probability of defeasance is

PD = PDK + PDT (21)

10 We also report the physical probabilities of default (PDs), and we use these physical probabilities to calculate expected
returns to senior- and capital-note investors.
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We compute and report all of these values in our assessment of SIV design.

3.5. Expected Time to Defeasance

Using the probabilities pij the expected time to defeasance is the time to defeasance at each t
weighted by the first passage probabilities, conditional on defeasance occurring. It can be computed
as follows:

ETD =
∑j(jh) f j + T · PDT

PD
(22)

Of course, ETD shortens as the leverage barrier K increases.

4. Analysis

SIVs of the type considered here are highly-leveraged vehicles in that A0/DB tends to be close
to 1. Correspondingly, A0/DC is a large multiple ranging from 10–30 times leverage. Since many
such vehicles failed in the crisis, a natural question arises as to whether they were designed, ex-ante,
to fail. We may also assess the properties of these SIVs, such as the expected losses for each tranche,
the probability of defeasance, etc. We are also interested in asking whether risk controls on leverage
(denoted by parameter K) would have mitigated the risks of these vehicles. We begin with simple
examples to quantify the properties of SIVs.

4.1. Example: SIV without Risk Controls

At the outset of the SIV, the level of maximal debt D∗B is chosen such that E(LB)/DB = L0. This is
the debt level that is achieved assuming that no leverage risk controls are imposed. We solve for D∗B
numerically, as the computational search is rapid and efficient.11

We consider the initial case in Table 1 as an example. Using these parameter values we compute
the senior debt level D∗B that makes E(LB) = L0. We then set actual face value of debt, DB, to be lower
than this amount, at 99% of D∗B. Table 2 shows the outcomes for the resultant SIV.

Maximal permissible senior debt is D∗B = 87.9253 on initial assets of A0 = 100, and this discount
debt has a price of PB ≡ B(0) = 86.0963, implying an initial leverage of A0/DC = 7.19 (times capital
(equity) notes). If we reduce debt to 99% of maximal allowed, the expected percentage loss on senior
debt drops by half, to E(LB) = 0.0005, and the expected percentage loss to capital note holders falls
from 22% to 15%. The probability of defeasance (which can only occur at maturity since there is
no defeasance trigger K) also declines at the lower level of debt, from 24% at maximal debt levels
to 17% at just below maximal. Since there is no leverage barrier, defeasance cannot occur prior to
maturity, hence the probability of defeasance at the barrier is PDK = 0. Overall, the risks inherent in
an SIV, particularly the risks borne by the capital note holders, are highly sensitive to small changes
in parameter values.

Table 1. Initial case parameters.

Parameter Value

Asset value (A0) 100
Rollover maturity (T) 1 year
Expected return on assets (µ) 0.04
Volatility (σ) 0.03
Risk free rate (r) 0.02
Fire sale discount (δ) 0.10
Stipulated expected percentage loss (L0) 0.0010
Number of periods on the pricing tree (n) 260

11 All code in this paper is implemented using the R programming language.
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Table 2. Results for the special investment vehicles (SIV) when no leverage controls are imposed, i.e.,
K = 0. Results are shown for the case when senior debt is at its maximal amount, D∗B, with expected
percentage losses on senior debt (E(LB)) equal to L0 = 0.0010 (10 bps). Results are also shown for the
case where senior debt is set to 99% of the maximal amount.

Result DB = 0.99D∗
B DB = D∗

B

Leverage threshold (K) 0 0
Maximal debt face value (D∗B) 87.9253 87.9253
Senior debt face value (DB) 87.0460 87.9253
Price of senior notes, if risk free 85.3224 86.1843
Price of senior notes (B(0)) with defeasance risk 85.2831 86.0963
Price of capital notes (DC) 14.7169 13.9037
Expected percentage loss to senior notes (E(LB)) 0.0005 0.0010
Expected percentage loss to capital notes (E(LC)) 0.1539 0.2206
Expected return to senior notes under physical probability (µB) 0.0301 0.0307
Expected return to capital notes under physical probability (µC) 0.1880 0.1608
Probability (risk-neutral) of defeasance at barrier (PDK) 0 0
Probability (risk-neutral) of defeasance at maturity (PDT) 0.1679 0.2374
Total risk-neutral probability of defeasance (PD) 0.1679 0.2374
Expected time to defeasance 1 1
Probability (physical) of defeasance at barrier (PDRN

K ) 0 0
Probability (physical) of defeasance at maturity (PDRN

T ) 0.0721 0.1173

Expected percentage losses to capital-note holders are around 15%–22% of their initial
investment. However, the risk-neutral probability of no defeasance is more than 75%, and in these
cases, the capital-note holders stand to gain from the upside of an at-the-money call option on the
assets. Under the physical probability measure, assuming a growth rate of assets of µ = 4% the
expected return is around 16-18% compared to the risk free rate of r = 2%.) The expected return to
senior notes is around 3%.

4.2. Example: SIV with Risk Controls

As discussed earlier, the SIV may impose a leverage threshold level K < A(0)
DB

to which asset
values drop to trigger defeasance (i.e., orderly wind down) of the vehicle, requiring a sale of the
assets, which leads to incurring an expected fire sale discount of δ = 0.10 (recall base case parameters
presented in Table 1). For illustration, we now consider a leverage trigger at K = 1.05, with results
shown in Table 3.

Table 3. Results for the SIV when leverage controls are imposed, i.e., K = 1.05. Results are shown for
the case when senior debt is at its maximal amount, D∗B, with expected percentage losses on senior
debt (E(LB)) equal to L0 = 0.0010 (10 bps). Results are also shown for the case where senior debt is
set to 99% of the maximal amount.

Result DB = 0.99D∗
B DB = D∗

B

Leverage threshold (K) 1.05 1.05
Maximal debt face value (D∗B) 87.9253 87.9253
Senior debt face value (DB) 87.0460 87.9253
Price of senior notes, if risk free 85.3224 86.1843
Price of senior notes (B(0)) with defeasance risk 85.2831 86.0963
Price of capital notes (DC) 14.7169 13.9037
Expected percentage loss to senior notes (E(LB)) 0.0005 0.0010
Expected percentage loss to capital notes (E(LC)) 0.1539 0.2206
Expected return to senior notes under physical probability (µB) 0.0301 0.0307
Expected return to capital notes under physical probability (µC) 0.1877 0.1598
Probability (risk-neutral) of defeasance at barrier (PDK) 0.0003 0.0011
Probability (risk-neutral) of defeasance at maturity (PDT) 0.1676 0.2363
Total probability of defeasance (PD) 0.1679 0.2374
Expected time to defeasance (ETD) 0.9998 0.9992
Probability (physical) of defeasance at barrier (PDRN

K ) 0.0003 0.0014
Probability (physical) of defeasance at maturity (PDRN

T ) 0.0721 0.1172



J. Risk Financial Manag. 2016, 9, 12 11 of 21

Since there is a leverage barrier, defeasance before maturity is possible, and we see that PDK > 0
in both cases, and the expected time to defeasance ETD < 1. The resultant probability of defeasance
at maturity PDT is smaller when K = 1.05 versus when K = 0, but the total probability of defeasance
PD remains the same. In the following sections we explore more aggressive leverage controls to
assess the behavior of leveraged SIVs.

4.3. Role of Risk Controls

As we change leverage risk control K > 1, we obtain different SIVs, each with different
risk-return properties. In order to make a fair comparison across these SIVs, we adjust the face
value of senior debt so that the initial price of debt, B(0) = PB, is the same across all compared
vehicles. Therefore, if assets are A0 = 100, and the price of senior debt is fixed at PB, then across
all structures, DC (the size of the equity tranche) as well as initial leverage are the same. A natural
question now arises as to what level of K > 1 makes senior debt holders and capital (equity) note
holders better off than when there are no risk controls (K = 0). Is it possible for some K > 1, to achieve
a Pareto-improving solution by mitigating deadweight losses incurred by either party?

To explore this question, we begin by fixing the initial price of debt PB based on a face value
of debt DB that is 99% of the maximal allowed debt D∗B, when K = 0. We then examine how the
risk-return tradeoff to investors varies when anticipated fire sale discounts, δ, are low versus high.
To set ideas, we begin with the base case when δ = 0.05, depicted in Table 4.

Table 4. SIV outcomes when risk control K is varied. The fire sale discount is fixed at δ = 0.05 and DB

is varied such that the price of debt is fixed across all cases to that when K = 0, and DB = 0.99D∗B.

σ = 0.03; δ = 0.05

K 0 1.005 1.015 1.025 1.035 1.04 1.045

DB 91.8819 91.8819 91.8815 91.8801 91.8639 91.865 91.8612
D∗B 92.8100 92.8146 92.8277 92.8901 96.6184 96.1538 95.6938
PB 90.0210 90.0210 90.0210 90.0210 90.0210 90.0210 90.0210
E(LB) 0.0005 0.0005 0.0004 0.0004 0.0002 0.0002 0.0001
DC 9.9790 9.9790 9.9790 9.9790 9.9790 9.9790 9.9790
E(LC) 0.1480 0.1480 0.1480 0.1482 0.0227 0.0376 0.0604
PDK 0.0000 0.0011 0.0034 0.0091 0.0230 0.0382 0.0623
PDT 0.1679 0.1668 0.1645 0.1588 0.0000 0.0000 0.0000
PD 0.1679 0.1679 0.1679 0.1679 0.0230 0.0382 0.0623
ETD 1.0000 0.9988 0.9958 0.9864 0.7002 0.6614 0.6204
µB 0.0301 0.0301 0.0301 0.0300 0.0298 0.0297 0.0297
µC 0.2984 0.2984 0.2984 0.2986 0.3328 0.3293 0.3227
PDRN

K 0.0000 0.0000 0.0000 0.0019 0.0062 0.0121 0.0230
PDRN

T 0.0721 0.072 0.0716 0.0702 0.0000 0.0000 0.0000

We note that, as required, the expected percentage loss is less than L0, 10 bps, and in fact in all
cases, it is strictly within limits. We also note that the price of senior debt PB is equal across all cases,
i.e., levels of K, as is the value of capital notes DC. Moreover, PDT = 0 when K ≥ 1.035, because at
these levels, H = A∗, so if defeasance is to occur it can only happen prior to maturity.

The more important question, of course, is whether introduction of risk controls (K > 1)
improves the SIV for senior and capital notes. First, as K increases, DB decreases, keeping PB fixed.
Therefore, the continuous discount yield on senior debt (ln(DB/PB)) declines, suggesting the credit
quality improves. Second, the expected percentage loss on senior notes declines monotonically,
but for capital note holders, the expected percentage loss declines initially, but begins to rise again
as K continues to increase. Third, the mean return on senior notes remains the same; in contrast,
the mean return on capital notes initially falls but then begins to rise when K increases to 1.035, which
appears to be a sweet spot for the leverage control K. Finally, the probability of defeasance drops
dramatically by K = 1.035, suggesting that risk controls do indeed help survival of the SIV. Overall,
the results suggest that risk controls can not only enhance the quality of the securities issued by the
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SIV, but can also begin to increase the risk to certain investors when the controls are too stringent.
That is, the most effective point for the leverage threshold K is not too lax (i.e., not too close to 1),
but not too strict either.

The intuition for this result is fairly natural, because the leverage risk barrier trades off the
probability of default against the fire sale losses on default. As we increase K, the PD prior to maturity
increases, but defeasance at higher asset values leads to lower fire sale loss.

4.4. Varying Fire Sale Discounts

We now explore the resulting SIVs and risk-return tradeoffs under varying expected fire-sale
discounts. For comparison, we present Table 5 where we consider δ = {0.02, 0.10}, values that span
the earlier case of δ = 0.05.

Table 5. SIV outcomes when risk control K is varied. The fire sale discount takes two values
δ = {0.02, 0.10} and the price of debt is fixed across all cases to the price of debt when K = 0,
and DB = 0.99D∗B.

σ = 0.03; δ = 0.02

K 0 1.002 1.006 1.01 1.014 1.016 1.018

DB 94.7834 94.7674 94.7676 94.7649 94.7586 94.7536 94.748
D∗B 95.7408 99.8004 99.4036 99.0099 98.6193 98.4252 98.2318
PB 92.8638 92.8638 92.8638 92.8638 92.8638 92.8638 92.8638
E(LB) 0.0005 0.0003 0.0002 0.0002 0.0001 0.0000 0.0000
DC 7.1362 7.1362 7.1362 7.1362 7.1362 7.1362 7.1362
E(LC) 0.1407 0.0227 0.0320 0.0443 0.0595 0.0677 0.0771
PDK 0.0000 0.0230 0.0325 0.0452 0.0623 0.0724 0.0847
PDT 0.1679 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PD 0.1679 0.0230 0.0325 0.0452 0.0623 0.0724 0.0847
ETD 1.0000 0.7002 0.6762 0.6497 0.6204 0.6030 0.5881
µB 0.0301 0.0298 0.0298 0.0297 0.0296 0.0296 0.0295
µC 0.4349 0.4554 0.4541 0.4523 0.4494 0.4474 0.4445
PDRN

K 0.0000 0.0062 0.0097 0.0150 0.0230 0.0282 0.0348
PDRN

T 0.0721 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σ = 0.03; δ = 0.10

K 0 1.01 1.03 1.05 1.07 1.08 1.09

DB 87.046 87.046 87.046 87.046 87.0456 87.0447 87.0287
D∗B 87.9253 87.9253 87.9254 87.9253 87.9322 87.9767 91.7431
PB 85.2831 85.283 85.2831 85.283 85.2831 85.2831 85.2831
E(LB) 0.0005 0.0005 0.0005 0.0005 0.0004 0.0004 0.0003
DC 14.7169 14.717 14.7169 14.717 14.7169 14.7169 14.7169
E(LC) 0.1539 0.1539 0.1539 0.1539 0.1539 0.1540 0.0189
PDK 0.0000 0.0000 0.0000 0.0003 0.0027 0.0076 0.0191
PDT 0.1679 0.1679 0.1679 0.1676 0.1652 0.1604 0.0000
PD 0.1679 0.1679 0.1679 0.1679 0.1679 0.1679 0.0191
ETD 1.0000 1.0000 1.0000 0.9998 0.9967 0.9892 0.7093
µB 0.0301 0.0301 0.0301 0.0301 0.0301 0.0300 0.0298
µC 0.1880 0.1880 0.1880 0.1880 0.1881 0.1881 0.2341
PDRN

K 0.0000 0.0000 0.0000 0.0000 0.0004 0.0015 0.0049
PDRN

T 0.0721 0.0721 0.0721 0.0721 0.0717 0.0706 0.0000

We observe that under a lower discount of δ = 0.02, a small increase in K above 1, e.g.,
at K = 1.002 seems to bring immediate benefit and also delivers the lowest probability of defeasance;
though, compared to the case when K = 0 (i.e., no risk control), any level of risk control K > 1 appears
to reduce the risks borne by both senior- and capital-note holders. The expected return to senior notes
is again not affected materially by K, but the expected return to capital notes is best at lower levels
of (keeping K > 1). In contrast, under a higher fire sale discount of δ = 0.10, tighter risk controls
are required to materially reduce the risk to investors in the SIV. Yield spreads decline and expected
returns improve only at higher levels of K under this greater δ = 0.10.
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The intuition here is straightforward. Leverage risk controls force defeasance earlier than
maturity, at a point when assets have not yet fallen drastically. When there is no defeasance barrier,
asset values may continue to decline all the way to rollover maturity, precipitating huge losses.
However, there is a tradeoff. The defeasance barrier prematurely cuts off the paths of asset prices
that may recover eventually. It therefore raises the probability of defeasance, while limiting the losses
when defeasance occurs. Since expected losses are a composite of the probability of defeasance and
loss on defeasance, there is an optimal point. This optimal level of K is lower when δ is low and higher
when δ is high, as we see from the results in Tables 4 and 5 (keeping in mind that initial leverage is
higher when δ is low and lower when δ is high).

Overall, the probability of defeasance depends on the volatility of the assets σ, and the loss on
defeasance depends on the fire sale discount δ. Hence we portray our results in each table along
these two dimensions. We now consider how these results change when we vary the volatility of the
underlying asset pool.

4.5. Varying Volatility

We now explore the resulting SIVs and risk-return tradeoffs under varying levels of asset
volatility. This variation is especially interesting since the various SIVs that failed during the crisis
had wide ranging levels of asset risk. In Table 6 we compare different cases for σ = {0.05, 0.10},
keeping δ = 0.05.

Table 6. SIV outcomes when risk control K is varied. Volatility takes two values σ = {0.05, 0.10} and
the price of debt is fixed across all cases to the price of debt when K = 0, and DB = 0.99D∗B. Under the
physical measure, we have asset returns µ = {0.05, 0.10}, respectively, for the two values of volatility.

σ = 0.05; δ = 0.05

K 0 1.005 1.015 1.025 1.035 1.04 1.045

DB 88.2537 88.2529 88.2511 88.2465 88.2313 88.2282 88.2175
D∗B 89.1451 89.202 89.2154 89.4477 96.6184 96.1538 95.6938
PB 86.4526 86.4526 86.4526 86.4526 86.4526 86.4526 86.4526
E(LB) 0.0006 0.0006 0.0006 0.0005 0.0003 0.0003 0.0001
DC 13.5474 13.5474 13.5474 13.5474 13.5474 13.5474 13.5474
E(LC) 0.2154 0.2154 0.2155 0.1922 0.0294 0.0405 0.0467
PDK 0.0000 0.0059 0.0105 0.0178 0.0298 0.0411 0.0477
PDT 0.2873 0.2814 0.2767 0.2288 0.0000 0.0000 0.0000
PD 0.2873 0.2873 0.2873 0.2466 0.0298 0.0411 0.0477
ETD 1.0000 0.9959 0.9919 0.9821 0.7268 0.7054 0.6919
µB 0.0305 0.0304 0.0304 0.0303 0.0301 0.0300 0.0299
µC 0.3103 0.3104 0.3105 0.3231 0.3708 0.3688 0.3683
PDRN

K 0.0000 0.0014 0.0027 0.0053 0.0100 0.0151 0.0183
PDRN

T 0.1744 0.1730 0.1716 0.1356 0.0000 0.0000 0.0000

σ = 0.10; δ = 0.05

K 0 1.005 1.015 1.025 1.035 1.04 1.045

DB 78.8195 78.8127 78.8058 78.7994 78.7881 78.7785 78.7717
D∗B 79.6156 80.0876 80.2884 80.9981 96.6184 96.1538 95.6938
PB 77.1988 77.1987 77.1988 77.1988 77.1988 77.1988 77.1988
E(LB) 0.0008 0.0007 0.0006 0.0005 0.0003 0.0002 0.0001
DC 22.8012 22.8013 22.8012 22.8012 22.8012 22.8012 22.8012
E(LC) 0.2421 0.2263 0.2263 0.2091 0.0291 0.0291 0.0343
PDK 0.0000 0.0129 0.0152 0.0213 0.0295 0.0295 0.0349
PDT 0.4160 0.3555 0.3532 0.3014 0.0000 0.0000 0.0000
PD 0.4160 0.3684 0.3684 0.3227 0.0295 0.0295 0.0349
ETD 1.0000 0.9929 0.9912 0.9849 0.7547 0.7547 0.7480
µB 0.0308 0.0306 0.0305 0.0304 0.0302 0.0300 0.0299
µC 0.5415 0.5505 0.5509 0.5586 0.5879 0.5885 0.5885
PDRN

K 0.0000 0.0019 0.0023 0.0037 0.0057 0.0057 0.0071
PDRN

T 0.2218 0.1800 0.1795 0.1436 0.0000 0.0000 0.0000



J. Risk Financial Manag. 2016, 9, 12 14 of 21

As expected, as volatility of the assets increases, allowable leverage, i.e., the maximal amount
of senior notes DB that can be issued while keeping E(LB) ≤ L0, will decline. The probability
of defeasance PD also increases with volatility. However, the improvement of the cases with risk
controls (K > 1) over the case without risk controls (K = 0) is telling. Yield spreads decline
and returns to capital notes increase, as the leverage control K implements the optimal trade off
between probability of defeasance and loss on defeasance. In short, the intuitions and results support
administering risk controls for such structures, and ensure improvements in the quality of liabilities
irrespective of the level of asset risk.

4.6. Summary of Main Properties of the Model

We take pause here to summarize the main features and results of the model.

1. Interaction between risk controls, fire sale discounts, and leverage: K is bounded above by 1
1−δ , so for

higher δ, the range of K that we consider in our examples is greater. Note that DB < A0/K,
else the SIV will encounter defeasance immediately.

2. When defeasance may never occur at maturity: Recall that D∗B is set such that E(LB) = L0, given
K = 0. When K > 1, for low K, maximal debt will be such that D∗B < A0/K. As K increases, it is
possible that D∗B = A0/K. When this is the case, then A∗ = H. To see this, note that

A∗ = A0/D∗B · DB = A0/(A0/K) · DB = DBK = H (23)

So in this case defeasance can never occur at maturity, only before maturity if it occurs at all.
This solidifies the intuition that as K increases, the barrier H approaches the senior note holders
rollover threshold A∗.

3. When risk controls are beneficial: (a) Increasing K without changing the initial leverage of the
SIV results in a decrease in the face value of debt to be repaid, which implied that the yield
on the securities decrease (since initial B0 = PB remains constant), particularly when the fire
sale discount is small (e.g., δ = 0.02). This can be seen also in the corresponding decline in
percentage expected losses to senior debt (E(LB)). (b) The expected percentage losses to equity
(capital notes) also decline with K, but begin to rise again as K becomes increasingly stringent.
Nonetheless, expected losses to capital-note holders (E(LC)) are significantly lower under any
K > 1 than when no risk control is used, i.e., K = 0.

4. The intuitive trade-off in the model: The lower loss on defeasance must to be traded off against the
situation where the total probability of defeasance PD increases as K increases. Note also that in
these structures the PD can be quite high, suggesting that the large-scale demise of SIVs in the
financial crisis was no surprise. We have decomposed PD into the probability of defeasance at
the barrier H prior to maturity (PDK), and the probability of defeasance at maturity (PDT) due
to rollover failure. As is intuitive, when K rises, PDK increases and PDT falls. As noted before,
if D∗B = A0/K, then A∗ = H, so that PDT = 0.

5. Relation of best risk control and fire sale discounts: Considering δ = 0.10 (i.e., a much greater fire sale
discount), the results remain qualitatively similar to those under δ = 0.03. However, K must be
set much higher to lower yield spreads, i.e., proxied by the level of DB relative to PB. Therefore,
as expected fire-sale discounts rise, risk controls must be tightened (again, keeping in mind that
the SIV’s leverage is much higher under δ = 0.02 than under δ = 0.10).

6. Risk controls are more important when volatility is higher: We also see that the PD declines even more
with risk controls (i.e., with greater K) when asset volatility is greater (e.g., when increasing σ

from 0.03 to 0.05 while keeping δ = 0.05).
7. Risk controls on SIVs can be Pareto-improving: At the right K, both E(LB), E(LC) decline. Yield

spreads also decline, and expected returns to capital note holders increase. Thus, the right level
of stringency in the leverage threshold allows all investors to benefit by reducing deadweight
losses otherwise borne by one (or both) of the parties.
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5. Introducing Contingent Capital

In the financial crisis, many SIVs triggered defeasance at the same time, leading to large losses as
fire sale discounts escalated. For example, under a fire-sale discount of δ = 0.10, even with a leverage
threshold of K = 1.07 in place, senior debt holders suffer a percentage loss of (1− (1− δ)K) = 0.037,
which is a substantial percentage loss for debt that is originally rated AAA. At the height of the
crisis, some SIVs liquidated at discounts ranging from 0.30 to 0.50, which are much higher than those
shown in the analyses described here. Static risk controls with large losses on defeasance offer no soft
landing for senior note holders in times of financial crises, indicating that senior note holders should
be further compensated for the “neglected risks” they bear (e.g., see [24]). These additional benefits
may be dynamic and state-dependent, resulting in a value transfer from capital notes to senior notes
in poor states of the economy. Our analysis of the weaknesses of SIVs would surely be incomplete
without offering remedies.

A simple prescription for risk buffering the senior note holders is to enhance the SIV with
a contingent capital clause, whereby capital note holders (or the issuer/sponsor) are required to
provide additional capital to buy back a pre-specified quantity of senior notes at par (adjusted for time
value of money), thus returning the leverage ratio to a safer level. This dynamic risk management
approach is similar to a margin call, whereby the extra infusion/buyback is analogous to the variation
margin. Ex-ante, this built-in capital call discourages the creation of a SIV that the issuer/sponsor
knows to be too risky without sufficient upside, and promotes an equilibrium where mostly viable
SIVs are created.12 Payment of contingent capital could be ensured by credit or liquidity guarantees,
much in the way that conduit sponsors of fully supported ABCP (asset backed commercial paper)
guarantee payment [26]; though, the contingent capital we prescribe below would be far less than
full support.

To recap, the eventualities for the SPV are binary: either asset values rise or they fall. (a) In the
case when asset values rise, maintaining additional equity beyond that under the original structure
results in a reduction in leverage of the vehicle, which reduces the expected return to equity holders.
This was discussed in Section 2.3. Therefore, at the rollover date, equity holders withdraw just the
amount of equity needed to restore the original risk-return trade-off. This feature also makes the
solution stationary, as it reinitializes the SPV so that at the horizon, conditional on no defeasance,
the model repeats itself; (b) In the case when asset values fall (as in the remedial case analyzed in
this section), the risk of defeasance increases as does the expected deadweight loss (from fire sales),
which makes it rational to inject equity in an optimal trade-off against bearing liquidation losses.
An alternative solution is to defer withdrawal of equity capital on the rollover date when asset values
have risen, leaving an extra buffer in place from good times that might make redundant the need
to later inject contingent capital or at least reduce the size of the injection. It also acts as a capital
commitment mechanism on equity holders. The model may be suitably modified to determine under
what parameters either approach is more appropriate. The solution would depend, of course, on
investors’ risk aversion and how equity holders’ other assets are correlated with those held by the SIV.

We now examine the net benefits of capital calls. Our chosen method requires that when the
defeasance trigger is accessed at stopping time t, i.e., when the asset values decline to a level such
that A(t)/DB = K, then we have a capital infusion I provided by the capital note holders (or SIV
sponsor/underwriter) to pay down DB to some level D′B < DB such that A(t)/D′B > K. This remedy
recapitalizes the SIV, replacing senior notes with capital notes without altering or liquidating the
assets of the SIV.

12 Basel III envisages requiring contingent capital in addition to Tier 1 capital from banks. While this is not yet under
consideration in the US, the Independent Commission on Banking [25] recommended that UK banks be required to hold an
additional 7%–10% of contingent capital, also known as bail-in capital, where debt would automatically convert to equity
on breaching a trigger level of leverage.
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In effect, this capital infusion results in a partial deleveraging of the SIV, since the amount
of senior debt is reduced relative to the assets in the vehicle. This remedy effectively postpones
the liquidation of the SIV, and postpones or possibly eliminates the deadweight fire sale losses on
defeasance, allowing time for the SIV’s assets to recover. The capital note holders also stand to benefit
when deadweight costs are eliminated or even delayed, but they bear the costs of this waiting period
since they are the ones providing the additional capital. Thus, although the ex-ante expected losses
to senior note holders are definitively lower when the SIV’s covenants require contingent capital
infusions, the question remains as to whether the expected losses to capital note holders decline as
well. Another issue is that since defeasance is postponed, it is possible that defeasance at a lower
barrier, H′, increases losses to capital note holders even further when the vehicle is shut down.
We examine these issues by extending our model.

Since fire-sale discounts make defeasance costly to one or both of the tranches in the SIV,
our analysis explores whether contingent capital infusions can be Pareto-improving. When the barrier
H is breached, we undertake an infusion I by capital note holders, to partially pay off senior debt at
par value, adjusted for the time value of money. Therefore, new senior debt is D′B = DB − I, and the
new barrier is set at H′ = D′BK. Implementation of this new structure on the pricing lattice requires
modifying the original model, such that when asset levels are between H′ and H, computations are
made using D′B instead of DB. We also make adjustments to the probability structure on the tree to
account for the fact that defeasance will now take place at H′ < H.

Our original model equations are extended as follows:

D′B = DB − I (24)

H′ = D′BK (25)

We now implement a lattice pricing problem with two barriers, H and H′. First, we compute the
price of senior debt P′B = B′(0), the expected present value of losses to senior debt L′B(0), and expected
present value of losses to capital notes L′C(0), assuming that the defeasance barrier is H′ < H and
face value of debt is D′B < DB. We denote this the “auxiliary” lattice, i.e., the lattice to which we
drop if the assets dip below H and an infusion of contingent capital occurs. We then price senior debt
that originates with face value DB on a “primary” lattice, and during backward recursion, if assets
A(t) ≤ H, then we replace the value of senior debt on the primary lattice with the value of debt from
the auxiliary lattice plus the value of the infusion I that is made at that point.

The time T equations for pricing senior debt on the primary and auxiliary lattices are as follows:

B′(T) =


D′B if A(T) ≥ A∗

min[D′B, A(T)(1− δ)] if H′ < A(T) < A∗

min[D′B, H′(1− δ)] if A(T) ≤ H′
(26)

B(T) =


DB if A(T) ≥ A∗

min[DB, A(T)(1− δ)] if H < A(T) < A∗

B′(T) if A(T) ≤ H
(27)

Values of senior debt at all times 0 ≤ t < T, are computed through the following
pricing recursion:

B′(t) =
1
R
[q · B′u(t + h) + (1− q) · B′d(t + h)] (28)

B(t) =
1
R
[q · Bu(t + h) + (1− q) · Bd(t + h)] (29)
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where the subscripts {u, d} denote the up and down nodes emanating from B′(t), B(t). We modify
the recursion equations on the auxiliary lattice to account for defeasance when A(t) < H′.

B′(t) = min[B′(t), H′(1− δ)], if A(t) < H′ (30)

Further, we modify the recursion equations on the primary lattice to account for the fact that an
amount I is paid to senior-debt holders if A(t) < H.

B(t) = B′(t) + I, if A(t) < H (31)

The expected present value of losses on senior debt is computed as follows:

LB(0) = DBe−rT − B(0) (32)

which is the difference in price between risk free debt and senior debt issued by the SIV. The expected
percentage loss on senior debt is:

E(LB) =
LB(0)

DB
(33)

The losses on capital notes are recomputed using primary and auxiliary lattices as well, for LC
and L′C, respectively. The equations at maturity are as follows:

L′C(T) =


0 if A(T) ≥ A∗

min[DC, max[0, DC − (A(T)(1− δ)− D′B)]] if H′ < A(T) < A∗

min[DC, max[0, DC − (H′(1− δ)− D′B)]] if A(T) ≤ H′
(34)

LC(T) =


0 if A(T) ≥ A∗

DC −max[0, A(T)(1− δ)− DB] if H < A(T) < A∗

L′C(T) if A(T) ≤ H
(35)

Recursion gives the expected loss value as follows, on both primary and auxiliary lattices:

L′C(t) =
1
R
[q · L′Cu(t + h) + (1− q) · L′Cd(t + h)] (36)

LC(t) =
1
R
[q · LCu(t + h) + (1− q) · LCd(t + h)] (37)

And if A(t) ≤ H′, then
L′C(t) = DC −max[0, H′(1− δ)− D′B/RT−t] (38)

Finally, if A(t) ≤ H, then
LC(t) = L′C(t) + I (39)

which leads to the expected percentage losses to capital notes

E(LC) =
LC(0)

DC
(40)

The expected returns on senior notes and capital notes will both also be recomputed taking into
account whether or not an infusion has occurred.

Using the same parameters as in Table 4, we now consider the case whereby the required infusion
is I = 2 to illustrate a SIV with a contingent capital clause in place. The results, which we present in
Table 7, indicate that contingent capital manages deadweight losses in a Pareto-improving manner.
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Table 7. SIV outcomes with infusions when risk control K is varied. The fire sale discount is fixed
at δ = 0.05 and the face value of debt is taken to be the same as the identical case without infusions.
Compare this table (upper panel) with the results from Table 4 (included now in the lower panel).
The required infusion here is I = 2, whereas in Table 4 no infusions are required.

σ = 0.03; δ = 0.05; Infusions: I = 2

K 0 1.005 1.015 1.025 1.035 1.04 1.045

DB 91.8819 91.8819 91.8815 91.8801 91.8639 91.8650 91.8612
PB 90.0210 90.0231 90.0267 90.0337 90.0399 90.0423 90.0395
E(LB) 0.0005 0.0004 0.0004 0.0003 0.0001 0.0000 0.0000
DC 9.9790 9.9769 9.9733 9.9663 9.9601 9.9577 9.9605
E(LC) 0.1480 0.1482 0.1486 0.1494 0.0144 0.0212 0.0362
PDK 0.0000 0.0001 0.0002 0.0007 0.0027 0.0041 0.0076
PDT 0.1679 0.1678 0.1677 0.1672 0.0075 0.0101 0.0185
PD 0.1679 0.1679 0.1679 0.1679 0.0102 0.0142 0.0260
ETD 1.0000 1.0000 0.9998 0.9993 0.9464 0.9371 0.9304
µB 0.0301 0.0300 0.0300 0.0298 0.0296 0.0295 0.0295
µC 0.2984 0.2987 0.2994 0.3009 0.3384 0.3384 0.3374
PDRN

K 0.0000 0.0000 0.0000 0.0001 0.0004 0.0007 0.0015
PDRN

T 0.0721 0.0721 0.0719 0.0716 0.0000 0.0000 0.0000

σ = 0.03; δ = 0.05; No infusions

K 0 1.005 1.015 1.025 1.035 1.04 1.045

DB 91.8819 91.8819 91.8815 91.8801 91.8639 91.865 91.8612
D∗B 92.8100 92.8146 92.8277 92.8901 96.6184 96.1538 95.6938
PB 90.0210 90.0210 90.0210 90.0210 90.0210 90.0210 90.0210
E(LB) 0.0005 0.0005 0.0004 0.0004 0.0002 0.0002 0.0001
DC 9.9790 9.9790 9.9790 9.9790 9.9790 9.9790 9.9790
E(LC) 0.1480 0.1480 0.1480 0.1482 0.0227 0.0376 0.0604
PDK 0.0000 0.0011 0.0034 0.0091 0.0230 0.0382 0.0623
PDT 0.1679 0.1668 0.1645 0.1588 0.0000 0.0000 0.0000
PD 0.1679 0.1679 0.1679 0.1679 0.0230 0.0382 0.0623
ETD 1.0000 0.9988 0.9958 0.9864 0.7002 0.6614 0.6204
µB 0.0301 0.0301 0.0301 0.0300 0.0298 0.0297 0.0297
µC 0.2984 0.2984 0.2984 0.2986 0.3328 0.3293 0.3227
PDRN

K 0.0000 0.0001 0.0006 0.0019 0.0062 0.0121 0.0230
PDRN

T 0.0721 0.0720 0.0716 0.0702 0.0000 0.0000 0.0000

First, we examine the risk/return implications for the senior notes. Expected percentage losses
here are lower (than those in the SIV without contingent capital infusions), and the price of senior
notes increases correspondingly across all values of leverage risk control K, implying that credit
spreads decline. The mean expected return declines as expected since the risk of these securities
is lower, though only marginally. As expected, the senior notes are less risky under a structure with
contingent capital infusions in place.

Next, we examine the risk/return implications for the capital notes. The expected percentage
losses here remain the same (as those in the SIV without contingent capital infusions) when the
leverage threshold K is low, but at higher values of K, expected losses are appreciably lower compared
to the case without contingent capital infusions. The initial investment required by capital notes DC
also is lower than in the no-infusion scenario; i.e., this new structure is able to support greater leverage
from the onset of the vehicle. Finally, the expected return on the capital notes for higher levels of K
exceed that in the no-infusion scenario by approximately 100 bps.

Finally, we observe that the probability of defeasance is also dramatically reduced, as expected
for higher levels of K, by 2 to 3 times. Overall, contingent capital infusions manage the deadweight
losses of defeasance in a Pareto-improving manner. Intuitively, keeping defeasance at bay is
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advantageous, even for the capital note holders who are required make infusions to stave off asset
liquidations.

Other Remedies

In addition to these recapitalizing approaches, we can attempt other remedies as well.
For example, senior-note holders can be paid a rate of interest that is indexed to their credit rating
or to that of the asset pool. As the credit rating falls, higher interest rates can be paid based on
a predetermined menu, whereby the capital to make such payments come from the management
fees first, and then from cash flows to capital note holders.Ex-post, this approach compensates the
senior notes for bearing additional risk, though payment of the higher rate is contingent on the SIV’s
survival. More importantly, this approach discourages the SIV’s issuers, ex-ante, from constructing
an SIV they know to be fragile.

Alternatively, we can restore the value of the asset pool by requiring the SIV issuer/sponsor
to purchase the lower rated assets that have dropped in value and to replace them with higher
quality assets, thereby bringing the leverage ratio A(t)/DB back in compliance with the leverage
threshold K. In effect, the capital-note holders write credit protection (i.e., a spread option) on
the pool’s lower rated assets. Payment is triggered when the value of the asset pool drops below
the leverage threshold, and thus, also avoids or at least delays liquidation of the SIV. Once again,
this ex-ante prevents knowingly fragile structured finance deal from being created.

Ultimately, in any of these remedies, “own” risk of the capital-note holders is certainly an issue.
However, given that such SIVs are typically issued by deep-pocket financial firms (or too-big-to-fail
banks), own risk is less of a factor. Furthermore, that these capital infusions are borne by the equity
holders likens this structure to a risk-based deposit insurance premium to be borne by the bank itself,
which has advantages to purely increasing capital requirements [27]; or, in the case of the SIV, equates
to advantages over simply issuing a smaller senior tranche.

6. Concluding Comments

We developed a parsimonious model to analyze the design of structured finance deals and the
special investment vehicles (SIVs) created to operationalize them. Our findings are as follows: First,
high levels of leverage make these vehicles likely to fail when asset values drop even by a small
amount, because of rollover risk. Second, the presence of fire-sale discounts, i.e., deadweight costs
of defeasance, leads to fragile structures that are not designed to sustain the levels of risk inherent in
the asset pool, or to ensure repayment of principal to senior note holders commensurate with a top
quality credit rating. Third, losses are sensitive to risk controls, i.e., the permitted level of leverage.
Fourth, risk controls vary with pool risk (i.e., volatility of the underlying assets) and expected fire
sale discounts. Hence, in the presence of parameter uncertainty, designing apt risk management
for such SIVs is a difficult exercise. Fifth, abandoning risk controls altogether may not be optimal
for any liability holders, i.e., both senior notes and capital notes, though risk controls that are too
stringent may begin to falter in their purpose. Sixth, contingent capital is clearly a design feature
that is worth incorporating, but was absent in the design of SIVs prior to the financial crisis (though
we note that in some cases, sponsors ex-post, willfully provided equity capital or purchased assets
of their failing SIVs). The confluence of these design characteristics suggests that SIVs were not as
resilient to economic shocks as they should have been, and features of the design contributed to the
demise of many SIVs.

Overall, the fact that ratings and risks are highly sensitive to the fire-sale discount, pool volatility,
and risk controls suggests that the senior tranche should be much smaller, and that more capital notes
(i.e., a larger equity tranche) are required to sustain high-quality ratings on senior notes, as suggested
in [28,29]. We recommend using contingent capital clauses that make the senior notes safer, while
also improving the quality of the capital notes. Whereas contingent capital offers remediation ex-post
to SIV vulnerabilities, it also likely prevents unviable SIVs from being created ex-ante, since some of
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the ex-post costs are borne by the creators of the SIV through their holdings of capital notes. When
capital infusions are not possible to enforce, and contingent capital is not forthcoming, risk reduction
through deleveraging the vehicle in a timely manner can also reduce expected percentage losses to
both, senior debt and capital notes.

Our paper does not examine information effects.13 Our paper argues that setting the appropriate
degree of risk controls is difficult, and errors often exacerbate the effect of a drop in pool asset values;
i.e., a new form of “neglected” risk (see [24]). Given the presence of neglected risks, we propose
that contingent capital and deleveraging be built in to SIV covenants as important risk management
policy prescriptions.

The financial crisis of 2008 was largely marked by the failure of many special investment vehicles
in general, and structured investment vehicles in particular. This analysis of the pathology of the
crisis and our recommendations for remediation provide guidance for the future evolution of the
shadow banking sector. This paper argues that highly leveraged structures must be accompanied
by clear and effective risk guidelines, and at the very least, a mandated contingent capital structure,
or ex-ante deleveraging policy.
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