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Abstract: The paper compares portfolio optimization with the Second-Order Stochastic Dominance 

(SSD) constraints with mean-variance and minimum variance portfolio optimization. As a 

distribution-free decision rule, stochastic dominance takes into account the entire distribution of 

return rather than some specific characteristic, such as variance. The paper is focused on practical 

applications of the portfolio optimization and uses the Portfolio Safeguard (PSG) package, which 

has precoded modules for optimization with SSD constraints, mean-variance and minimum 

variance portfolio optimization. We have done in-sample and out-of-sample simulations for 

portfolios of stocks from the Dow Jones, S&P 100 and DAX indices. The considered portfolios’ SSD 

dominate the Dow Jones, S&P 100 and DAX indices. Simulation demonstrated a superior 

performance of portfolios with SD constraints, versus mean-variance and minimum variance 

portfolios. 

Keywords: stochastic dominance; stochastic order; portfolio optimization; portfolio selection;  

Dow Jones Index; S&P 100 Index; DAX index; partial moment; conditional value-at-risk; CVaR 

 

1. Introduction 

Standard portfolio optimization problems are based on several distribution characteristics, such 

as the mean, variance and Conditional Value-at-Risk (CVaR) of the return distribution. For instance, 

Markowitz’ [1] mean-variance approach uses estimates of the mean and covariance matrix of the 

return distribution. Mean-variance portfolio theory works quite well when return distributions are 

close to normal. 

This paper considers the portfolio selection problem based on the Stochastic Dominance (SD) 

rule. Stochastic dominance takes into account the entire distribution of return, rather than some 

specific characteristics. The SD was introduced in mathematics by Mann and Whitney [2] and 

Lehmann [3]. Later on, the SD concept was adopted in theoretical studies in economics. There is a 

very extensive literature on the theoretical aspects of SD, for instance the role of SD rules and their 

relation with mean-variance rules are discussed in the monograph by Levy [4]. Muller and 

Stoyan [5], Shaked and Shanthikumar [6] and Whitmore and Findlay [7] provide extensive 

discussions of the stochastic dominance relations and other comparison methods for  

random outcomes. 

This paper deals with the practical aspects of portfolio optimization problems with SD 

constraints. Lizyayev [8] published an overview of various approaches for testing of SD efficiency 

and finding efficient portfolios. The problem of constructing mean-risk models, which are consistent 

with the second-degree stochastic dominance relation, was considered by Ogryczak and 
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Ruszczynski [9]. Dencheva and Ruszczynski [10] and Kuosmanen [11] developed the first algorithms 

to identify a portfolio that dominates a given benchmark by solving a finite dimension optimization 

problem. Dentcheva and Ruszczynski’s [10] optimization approach was further developed in 

Dentcheva and Ruszczynski [12] and Rudolf and Ruszczynski [13]. Dentcheva and Ruszczynski [14] 

introduced inverse stochastic dominance constraints, which were later employed in Kopa and 

Chovanec’s [15] refined method for testing stochastic dominance efficiency. Dentcheva and 

Ruszczynski [16] developed an efficient cutting plane algorithm using inverse stochastic dominance 

constraints. Roman et al. [17] suggested a portfolio optimization algorithm for SD efficient 

portfolios. They used SD with a multi-objective representation of a problem with CVaR in the 

objective. Fabian et al. [18,19] considered the cutting plane method to solve the optimization 

problem with SD constraints. 

Lizyayev [8] suggests to classify all approaches into three categories: (1) majorization; (2) revealed 

preference; and (3) distribution-based approaches. With this classification, Dentcheva and 

Ruszczynski [12,14], Rudolf and Ruszczynski [13], Roman et al. [17] and Fabian et al. [18,19] fall into 

the distribution-based category. 

This paper considers the optimization problem statement with the Second-Order Stochastic 

Dominance (SSD) constraints similar to Rudolf and Ruszczynski [13]. We concentrated on 

implementation issues of portfolio optimization and conducted a numerical case study. We used the 

Portfolio Safeguard (PSG) [27] optimization package of AORDA1 which has precoded functions for 

optimization with SSD constraints. We solved optimization problems for stocks in the Dow Jones, 

S&P 100 and DAX indices and found portfolios for which SSD dominate these indices. We have done 

out-of-sample simulations and compared the performance of these portfolios with the 

mean-variance portfolios based on constant and time-varying covariance matrices. These 

simulations have limited usefulness because they were conducted for some specific indices and 

specific time periods. Nevertheless, the paper shows that the portfolio optimization with SSD 

constraints can be done quite easily, and our findings may be quite helpful to financial  

optimization practitioners. 

2. Optimization Problem Statement with SSD Constraints 

2.1. SSD Constraints Definition 

Denote by FX(t)  the cumulative distribution function of a random variable X . For two 

integrable random variables X and Y, we say that X dominates Y in the second-order, if: 

∫ FX(t)
η

−∞

dt ≤ ∫ FY(t)
η

−∞

dt, ∀ η ϵ R . (1) 

In short, we say that X dominates Y in the SSD sense and denote it by X ≽2 Y. With the partial 

moment function of a random variable X  for a target value η , the SSD dominance can be 

equivalently defined as follows [20]: 

E([η − X]+) ≤ E([η − Y]+), ∀ η ϵ R, (2) 

where [η − X]+  =  max (0, η − X) . Suppose that Y  has a discrete distribution with outcomes,  

yi, 𝑖 =  1, … , 𝑁. Then, Condition (2) can be reduced to the finite set of inequalities: 

E([yi − X]+) ≤ E([𝑦i − Y]+), 𝑖 = 1, … , 𝑁 (3) 

We use further inequalities (3) for defining a portfolio X dominating benchmark Y. 

  

                                                 
1 American Optimal Decision (www.aorda.com), Gainesville, FL 32611, USA. 
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2.2. Portfolio Optimization Problem with SSD Constraints 

Let us denote: 

wj = portfolio weight of the instrument j, 𝑗 = 1, … , 𝑛. 

pi = probability of scenario i, 𝑖 = 1, … , 𝑁, 

rji = return of instrument j on scenario i, 

𝐰 = vector of portfolio weights, 𝐰 = (𝑤1, 𝑤2,, … , 𝑤𝑛)
𝑇
, 

r(𝐰)  = portfolio return as a function of portfolio weights 𝐰, 

r̅(𝐰)  = expected portfolio return as a function of portfolio weights 𝐰. 

Portfolio return on scenario i equals: 

ri(𝐰) = ∑ wjrji

n

j=1

, 𝑖 = 1, … , 𝑁.  

Expected portfolio return equals: 

r̅(𝐰) =  ∑ pi

N

i=1

ri(𝐰) .  

Y stands for the random return of the benchmark portfolio, and y_i denotes the realizations of 

the benchmark portfolio Y(𝑖 = 1, … , 𝑁). We want to find a portfolio SSD dominating the benchmark 

portfolio Y and having minimum cost c(𝐰). We do not allow for shorting of instruments. Let us 

denote by W the set of feasible portfolios: 

W =  {𝐰 ∈  Rn ∶  ∑ wj

n

j=1

= 1; 0 ≤ wj ≤ 1, 𝑗 = 1, … , 𝑛} .  

The optimization problem is formulated as follows: 
maximize 𝐰 r̅(𝐰) 

subject to: 

r(𝐰)  ≽2 Y 

𝐰 ∈  W 

(4) 

Since the benchmark portfolio has a discrete distribution, with (3), we reduce the portfolio 

optimization problem (4) to: 
maximize 𝐰 r̅(𝐰) 

subject to: 

E([yi − r(𝐰)]+) ≤ E([yi − Y]+), 𝑖 = 1, … , 𝑁 

∑ wj
n
j=1 = 1, 

0 ≤ wj ≤ 1, 𝑗 = 1, … , 𝑛 

(5) 

3. Case Study 

3.1. Portfolio Optimization with SSD Constraints: PSG Code 

This section is intended for readers interested in the practical implementation of portfolio 

optimization with SSD constraints. The Introduction referred to many efficient implementations of 

portfolio optimization problems with SSD constraints. However, these implementations are described 

in research papers, and they are not readily available for portfolio optimization practitioners. The 

optimization problem (5) can be directly solved with PSG software without additional coding.  
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PSG is free for academic purposes. We posted at this link2 several instances of solved problems 

(codes, data and solutions) in PSG Run-File (text) format and in PSG MATLAB (MathWorks, Natick, 

MA, USA) format. Below is the code for Problem (5) in PSG Run-File (text) format: 

Maximize 

avg_g(matrix_sde) 

Constraint: =1 

Linear(matrix_budget) 

MultiConstraint: ≤vector_ubound_sd 

pm_pen(vector_benchmark_sd, matrix_sde) 

Box: ≥0, ≤1 

Matrix “matrix_sde” contains a set of scenarios for instruments of the portfolio. The function 

“avg_g (matrix_sde)” calculates the average return of the portfolio defined by the matrix of scenarios. 

Linear function “linear (matrix_budget)” is used in the budget constraint; it is defined by the 

coefficients in the matrix “matrix_budget”. SSD constraints are defined by the partial moment function 

“pm_pen (vector_benchmark_sd, matrix_sde)”, which depends on the “vector_benchmark_sd” 

containing the components of the vector, yi, 𝑖 = 1, … , 𝑁 and the matrix of scenarios “matrix_sde” for 

instruments. The vector “vector_ubound_sd” contains values E([yi − Y]+), 𝑖 = 1, … , 𝑁 . The PSG code 

does not have cycles; basically, it is presenting the problem (5) in analytic format with precoded 

functions. The website link1 also contains data for the PSG MATLAB Toolbox for solving Problem (5) 

with data imported from PSG text format. Furthermore, the MATLAB subroutine for Problem (5) was 

automatically generated from the PSG MATLAB Toolbox. A reader can solve Problem (5) by using the 

PSG MATLAB subroutine without learning the PSG capabilities. This MATLAB subroutine was used 

in cycles in the out-of-sample simulations described in the following section. 

Further, we discuss several numerical runs posted at the link1. The problems were solved with a 

PC with 3.14 GHz. 

PROBLEM_1 describes three instances of portfolio optimization problems considered in the 

following section. We found portfolios of stocks, which SSD dominate, the DAX, Dow Jones and 

S&P 100 indices. The instances have 3046, 3020 and 3020 scenarios (daily returns) and 26, 29 and 90 

variables (stocks from the indices included in the optimization), accordingly. The solution times are 

0.27, 0.05 and 0.21 s, accordingly. The PSG automatic procedure for removing redundant constraints 

removed 8, 0 and 2 constraints in the three instances, accordingly. 

PROBLEM_2 describes a dataset with 30,000 scenarios considered in Fabian et al. [18]. This 

dataset contains many repeated (coinciding) nonlinear constraints. The PSG MultiConstraint setting in 

the problem statement does automatic preprocessing and removes redundant and repeated 

constraints. The initial number of constraints (corresponding to the number of scenarios) is 30,000; the 

automatic PSG preprocessing of constraints reduces this number to 972. The solution time is 1.41 s. 

PROBLEM_3 describes the same dataset as PROBLEM_2 with 30,000 scenarios, but all SSD 

constraints are manually specified in the list. The list includes only 972 constraints, because we 

manually removed repeated constraints. The solution time is 1.40 s. 

PSG is free for academic purposes. The PSG solution times for similar dimensions are 

comparable with the solution times of specialized algorithms described in Dentcheva and 

Ruszczynski [12,14], Dentcheva and Ruszczynski [16], Rudolf and Ruszczynski [13], Roman et al. [17] 

and Fabian et al. [18,19]. The advantage of the described problems and PSG codes is that the 

numerical runs can be easily verified with the data posted at the link1. Similar problems can be 

solved by replacing data in the matrices included in the PSG code. Since PSG codes are specified in 

analytic format, it is possible to modify the codes without significant effort. For instance, additional 

constraints, such as “cardinality”, can be included in the problem statement to limit the number of 

securities in an optimal portfolio. 

                                                 
2  Several example problems with PSG codes, input data and solutions are at this link: 

http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/portfolio-optimization-with-s

econd-orders-stochastic-dominance-constraints/. [Accessed August 17,2016]. 

http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/portfolio-optimization-with-second-orders-stochastic-dominance-constraints/
http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/portfolio-optimization-with-second-orders-stochastic-dominance-constraints/
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3.2. Mean-Variance Portfolios versus Portfolios with SSD Constraints 

This section calculates mean-variance optimal portfolios and optimal portfolio with SSD 

constraints specified by (5) for datasets of stocks from the Dow Jones, S&P 100 and DAX indices. 

The first dataset includes stocks from the Dow Jones Index (DJI), and the DJ Index is considered 

as a benchmark. Similar, the second and third datasets include stocks from the S&P 100 and DAX 

indices, and the S&P 100 and DAX indices were used as a benchmark, respectively. The data were 

downloaded from Yahoo! Finance [28] and include 3020, 3020 and 3046 historical daily returns of 

stocks from 1 January 2004 to 31 December 2015 for the DJ, S&P 100 and DAX indices respectively. 

The lists of stocks in the indices are taken on 31 December 2015. Therefore, we considered only 29 

stocks from the DJ Index, 90 stocks from the S&P 100 Index and 26 stocks from the DAX Index 

(Appendix B contains the list of the stocks selected for this paper). The stock returns on a daily basis, 

rji, were calculated using the logarithm of the ratio of the stock adjusted closing prices, fi , 

rji = ln(fi/fi−1).  

We adjusted for splits the stocks prices of four companies from the DAX Index3. We considered 

daily returns as equally probable scenarios. We calculated SSD-based portfolios described in (5), 

equally weighted, minimum variance and mean-variance portfolios with the constant and 

time-varying covariance matrices. Shorting is not allowed, and the sum of portfolio weights is equal 

to one,  

∑ wj

n

j=1

= 1, 𝑤𝑗 ≥ 0, 𝑗 = 1, … , 𝑛. 

Here is a brief description of the portfolios: 

i. Equally Weighted (EW) 

All stocks in the portfolio are equally weighted. Every stock has the same weight 1/𝑛, where 𝑛 

is the number of stocks in the portfolio. 

ii. Minimum Variance (MinVar) 

The minimum variance portfolio has minimum variance without any constraint on portfolio 

return. Shorting is not allowed, and the sum of the portfolio weights is equal to one. 

iii. Mean-Variance (Mean-Var) 

The mean-variance portfolio [1] uses the mean return and the variance of the stock returns. We 

considered Mean-Var problems having variance in the objective function and the expected 

portfolio return of 8% per year in the constraint. Shorting is not allowed, and the sum of the 

portfolio weights is equal to one. We imposed a 0.2 upper bound constraint on the positions. 

The numerical code was implemented with MATLAB R2012b [29]. We have used the PSG 

riskprog subroutine for MATLAB environment to solve MinVar and mean-variance portfolio 

problems. The calculations were performed on a notebook having a 2.5-GHz CPU and 8 GByte  

of RAM. 

Table 1 shows the expected yearly returns of the portfolios for the considered approaches. 

Table 1. Expected yearly returns of portfolios. EW, Equally Weighted; MinVar, Minimum Variance; 

Mean-Var, Mean-Variance; SSD, Second-Order Stochastic Dominance. 

Portfolios DJI S&P 100 DAX 

EW 0.04014 0.08509 0.09139 

MinVar 0.03419 0.08795 0.13362 

Mean-Var 0.08327 0.08327 0.08327 

SSD 0.08762 0.24250 0.17922 

Benchmark 0.04374 0.04287 0.08439 

                                                 
3  Deutsche Boerse AG (DB1.DE), Fresenius SE & Co. KGaA (FRE.DE), Infineon Technologies AG (IFX.DE) 

and Merck & Co. (MRK.DE) stock prices are adjusted for splits. 
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The SSD dominating portfolios can be used for actual investments. At least in the past, these 

portfolios SSD dominated the corresponding indices. Moreover, the expected yearly return of the 

portfolio SSD dominating the DJ index equals 0.08762 and significantly exceeds the DJ index return 

in this period. Similar observations are valid for the portfolio of S&P 100 and DAX indices;  

the expected yearly returns of portfolio SSD dominating the benchmarks equal 0.24250 and  

0.17922, respectively. 

We compared solving times of SSD constrained optimization (using the PSG subroutine) with 

the MinVar and Mean-Var approaches (using the PSG riskprog subroutine). Data loading and 

solving times are given in Table 2; all problems are solved almost instantaneously. 

Table 2. Loading and solving times (in seconds) with PSG in the MATLAB environment. 

 DJI S&P 100 DAX 

Problem Loading Solving Loading Solving Loading Solving 

SSD constrained (PSG code) 2.11 0.12 1.39 0.19 1.80 0.11 

MinVar (PSG riskprog) 0.27 0.01 0.33 0.01 0.26 0.01 

Mean-Var (PSG riskprog) 0.38 0.01 0.44 0.02 0.38 0.01 

3.3. Out-Of-Sample Simulations 

We have evaluated the out-of-sample performance of several variants of mean-variance 

portfolios and SSD constrained portfolios. We considered a time series framework where the 

estimation period (750 and 1000 days) is rolled over time. Portfolios are re-optimized on every first 

business day of the month using the recent historical daily returns (750 or 1000). We kept constant 

positions during the month. We set a 9% per year return constraint in Mean-Var problem. If the 

expected return 9% per year is not feasible (in the beginning of the month), then we set a 6% 

expected return constraint, and if we still do not have feasibility, we reduce the expected return to 

3% and then to 0%. 

The classical mean-variance model considers the constant covariance matrix. For the out-of-sample 

simulations, we also considered the time-dependent covariance matrix using the Constant and Dynamic 

Conditional Correlation GARCH (CCC and DCC) models in the MinVar and Mean-Var approaches. 

Further, we briefly describe the estimation procedure for the time-dependent covariance matrices. 

We considered constant and dynamic conditional correlation GARCH models for estimation of 

large time-dependent covariance matrices [21–24]. We estimated the time-dependent covariance 

matrix using 𝐻𝑡  with a simple GARCH(1,1) model. The CCC-GARCH model assumes that 

correlations are constant, 𝑅 = 𝜌𝑖𝑗 , and that covariances may change over time, and the 

time-dependent covariance matrix 𝐻𝑡  is extracted from this model, where 𝐻𝑡 = 𝐷𝑡𝑅𝐷𝑡 . The 

DCC-GARCH model assumes that correlations may change over time, and time-dependent 

covariance matrix 𝐻𝑡  is extracted from the model, where 𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 . Here, 𝐷𝑡  is the diagonal 

matrix from a univariate GARCH model, and 𝑅𝑡 is the time-dependent correlation matrix [25]. This 

paper assumes the simplest conditional mean return equation where 𝑟𝑗̅ = 𝑁−1 ∑ 𝑟𝑗𝑖
𝑁
𝑖=1  is the sample 

mean, and the deviation of returns (𝑟𝑡 − 𝑟̅)  is conditionally normal with zero mean and 

time-dependent covariance matrix 𝐻𝑡  [26]. We used 𝐻𝑡  in MinVar and Mean-Var problems. For the 

estimation of the time-dependent covariance matrix, we used the MFE Toolbox4 [30]. The difficulty 

in the estimation of the covariance matrices with the DCC model is that the time-dependent 

conditional correlation matrix has to be positive definite for all time moments. We observe that with 

small in-sample time intervals (such as 250 days), the variance-covariance matrix may not be 

positive definite. Therefore, we have used 750 and 1000 days as the in-sample periods. 

  

                                                 
4  The CCC-GARCH and DCC-GARCH models are estimated by using MFE Toolbox for MATLAB software 

produced by Kevin Sheppard. 
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Figures 1–6 show the out-of-sample compounded daily returns of the portfolios. 

 

Figure 1. Compounded (on daily basis) returns of portfolios consisting of DJ stocks, t = 750. CCC, 

Constant Conditional Correlation; DCC, Dynamic Conditional Correlation. 

 

Figure 2. Compounded (on daily basis) returns of portfolios consisting of DJ stocks, t = 1000. 

 

Figure 3. Compounded (on daily basis) returns of portfolios consisting of S&P 100 stocks, t = 750. 
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Figure 4. Compounded (on daily basis) returns of portfolios consisting of SP100 stocks, t = 1000. 

 

Figure 5. Compounded (on daily basis) returns of portfolios consisting of DAX stocks, t = 750. 

 

Figure 6. Compounded (on daily basis) returns of portfolios consisting of DAX stocks, t = 1000. 

The out-of-sample performances of portfolios are represented in Tables 3–8. The tables include 

yearly compounded portfolio returns for the years 2007–2015, the Total compounded Return (T_R) 

and the Sharpe Ratio (Sh_R). 

In Table 3 (DJ stocks, t = 750), the SSD constrained portfolio has the highest T_R (1.3961) and 

Sh_R (0.5761) higher than all considered portfolios, except DCC Mean-Var and CCC Mean-Var. 
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Table 3. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for 

DJ stocks (t = 750). 

Portfolios 2007 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R 

EW 1.0514 0.8322 1.1166 1.0611 1.0280 1.0561 1.1243 1.0501 1.0010 1.3300 0.5398 

MinVar 1.0712 0.9169 1.0445 1.0147 1.0549 1.0433 1.0764 1.0253 0.9932 1.2557 0.4736 

Mean-Var 1.0666 0.8344 1.0600 1.0565 1.0776 1.0393 1.0498 1.0728 1.016 1.2771 0.5303 

CCC MinVar 1.074 0.9285 0.9971 1.0085 1.0585 1.0295 1.0725 1.0429 1.0116 1.2363 0.4230 

CCC Mean-Var 1.0805 0.8312 1.0499 1.0557 1.0742 1.0361 1.058 1.0722 1.0545 1.3252 0.5801 

DCC MinVar 1.0755 0.9209 1.0174 1.0076 1.0680 1.0310 1.0710 1.0475 1.0145 1.2725 0.4977 

DCC Mean-Var 1.0814 0.8394 1.0623 1.0558 1.0785 1.0373 1.0636 1.0690 1.0538 1.3649 0.6422 

SSD 1.1202 0.8023 1.0873 1.1037 1.0109 1.0640 1.0827 1.0666 1.0421 1.3961 0.5761 

Benchmark 1.0531 0.6157 1.1540 1.0958 1.0321 1.0652 1.2584 1.0688 0.9661 1.1715 0.1660 

In Table 4 (DJ stocks, t = 1000), the SSD constrained portfolio has the highest T_R (1.5317) and  

Sh_R (0.9008). 

Table 4. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for 

DJ stocks (t = 1000). 

Portfolios 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R 

EW 0.8322 1.1166 1.0611 1.0280 1.0561 1.1243 1.0501 1.0010 1.2650 0.4948 

MinVar 0.9132 1.0424 1.0162 1.0495 1.0583 1.0773 1.0309 0.9821 1.1719 0.3458 

Mean-Var 0.8614 1.0930 1.0724 1.0832 1.0278 1.0512 1.0564 1.0021 1.2509 0.5384 

CCC MinVar 0.9515 1.0168 1.0184 1.0444 1.0427 1.0700 1.0592 1.0006 1.2169 0.4356 

CCC Mean-Var 0.8129 1.0824 1.0692 1.0808 1.0382 1.0874 1.0657 1.0375 1.2692 0.5521 

DCC MinVar 0.9403 1.0236 1.0198 1.0513 1.0272 1.0719 1.0568 1.0075 1.2097 0.4303 

DCC Mean-Var 0.8134 1.0791 1.0695 1.0840 1.0409 1.0848 1.0671 1.0494 1.2866 0.5785 

SSD 0.8416 1.0914 1.1057 1.0848 1.0449 1.1149 1.1013 1.0836 1.5317 0.9008 

Benchmark 0.6157 1.1540 1.0958 1.0321 1.0652 1.2584 1.0688 0.9661 1.1124 0.1325 

In Table 5 (S&P 100 stocks, t = 750), the SSD constrained portfolio has the highest T_R (3.0027) and  

Sh_R (0.9157). 

Table 5. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for 

S&P 100 stocks (t = 750). 

Portfolios 2007 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R 

EW 1.0974 0.5795 1.2285 1.1490 0.9799 1.1736 1.3212 1.1218 0.9566 1.4633 0.3491 

MinVar 1.1968 0.7712 1.0044 1.1932 1.2649 1.0415 1.0066 1.2232 0.9882 1.7728 0.5230 

Mean-Var 1.1194 0.7686 0.9846 1.0979 1.2306 1.0874 1.1595 1.1758 1.0365 1.7588 0.5944 

CCC MinVar 1.2349 0.7155 1.1241 1.1393 1.1796 1.0030 1.0836 1.2031 0.9720 1.6966 0.4367 

CCC Mean-Var 1.1455 0.7369 1.0323 1.0861 1.2263 1.0246 1.1561 1.1812 0.9634 1.5644 0.4227 

DCC MinVar 1.2397 0.6330 1.0904 1.1972 1.1968 0.9936 1.0928 1.2168 0.9782 1.5844 0.3940 

DCC Mean-Var 1.1289 0.7363 1.1177 1.0927 1.2164 1.0040 1.1480 1.2090 1.0062 1.7312 0.5401 

SSD 1.3903 0.6163 1.2721 1.2017 1.0769 1.1489 1.4382 1.2542 1.0270 3.0027 0.9157 

Benchmark 1.0255 0.5803 1.1532 1.0846 0.9839 1.1240 1.2667 1.0958 0.9908 1.1319 0.1342 

In Table 6 (S&P 100 stocks, t = 1000), the SSD constrained portfolio has the highest T_R (1.9756) 

and Sh_R (0.7110). 
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Table 6. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for 

S&P 100 stocks (t = 1000). 

Portfolios 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R 

EW 0.5795 1.2285 1.149 0.9799 1.1736 1.3212 1.1218 0.9566 1.3335 0.3054 

MinVar 0.7704 1.0417 1.1724 1.2598 0.9527 1.0614 1.1961 0.9929 1.4233 0.3610 

Mean-Var 0.7882 1.0245 1.0786 1.2111 1.1292 1.1872 1.1692 0.9513 1.5728 0.5141 

CCC MinVar 0.7513 1.2639 1.1479 1.2204 0.9831 1.1287 1.259 0.9049 1.6817 0.4441 

CCC Mean-Var 0.7679 1.0836 1.1525 1.2024 1.0901 1.1622 1.2241 0.9551 1.7079 0.5720 

DCC MinVar 0.7006 1.3141 1.13 1.2188 0.9647 1.1227 1.2569 0.901 1.5551 0.3810 

DCC Mean-Var 0.7067 1.0691 1.1331 1.2236 1.1016 1.1708 1.2256 0.9758 1.6157 0.5068 

SSD 0.6225 1.1775 1.2189 1.1021 1.2194 1.2811 1.1809 1.0876 1.9756 0.7110 

Benchmark 0.5803 1.1532 1.0846 0.9839 1.124 1.2667 1.0958 0.9908 1.1038 0.1231 

In Table 7 (DAX stocks, t = 750), the SSD constrained portfolio has T_R (1.9364) higher than all 

considered portfolios, except CCC MinVar, and Sh_R (0.5164) higher than all considered portfolios, 

except CCC MinVar and DCC MinVar. 

Table 7. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for 

DAX stocks (t = 750). 

Portfolios 2007 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R 

EW 1.1476 0.5003 1.2887 1.1687 0.8119 1.2526 1.2034 1.0217 1.1013 1.2582 0.1883 

MinVar 1.1195 0.5865 1.1608 1.0742 1.1487 1.1591 1.1537 1.0698 1.2479 1.7328 0.5114 

Mean-Var 1.1417 0.5697 0.9906 1.152 1.0535 1.1599 1.1906 1.075 1.1504 1.3824 0.3366 

CCC MinVar 1.1079 0.7095 1.1388 1.1007 1.1439 1.1457 1.0697 1.0452 1.3173 1.9558 0.6235 

CCC Mean-Var 1.1373 0.5882 0.9504 1.1763 1.1112 1.1242 1.0702 1.0914 1.2195 1.3729 0.3126 

DCC MinVar 1.1123 0.7185 1.1219 1.0965 1.1861 1.1346 1.0466 1.0429 1.3018 1.9358 0.6118 

DCC Mean-Var 1.1334 0.5993 0.9764 1.1661 1.1019 1.1105 1.0407 1.1002 1.2220 1.3685 0.2998 

SSD 1.2125 0.6067 0.9658 1.2335 0.9980 1.2800 1.3673 1.0785 1.1449 1.9364 0.5164 

Benchmark 1.2082 0.5555 1.1891 1.1411 0.8181 1.2671 1.2414 1.0123 1.0656 1.3213 0.2248 

In Table 8 (DAX stocks, t = 1000), the SSD constrained portfolio has T_R (1.4897) and Sh_R 

(0.39520) higher than all considered portfolios, except MinVar, CCC MinVar and DCC MinVar. 

Table 8. Yearly compounded returns, Total compounded Return (T_R) and Sharpe Ratio (Sh_R) for 

DAX stocks (t = 1000). 

Portfolios 2008 2009 2010 2011 2012 2013 2014 2015 TR Sh_R 

EW 0.5003 1.2887 1.1687 0.8119 1.2526 1.2034 1.0217 1.1013 1.0561 0.0864 

MinVar 0.5959 1.147 1.0714 1.148 1.1541 1.1371 1.0747 1.2772 1.5177 0.4489 

Mean-Var 0.5674 1.1364 1.1333 0.9793 1.2333 1.1667 1.0971 1.1036 1.2478 0.2632 

CCC MinVar 0.7675 1.1449 1.0959 1.1587 1.1423 1.0678 1.0656 1.3261 1.9355 0.6753 

CCC Mean-Var 0.5429 1.1534 1.1725 1.0332 1.1796 1.0376 1.0802 1.2337 1.2447 0.2435 

DCC MinVar 0.7561 1.1786 1.1032 1.183 1.1505 1.0281 1.0607 1.2619 1.8520 0.6315 

DCC Mean-Var 0.5688 1.1566 1.1647 1.0249 1.1996 1.0188 1.0792 1.1939 1.2427 0.2429 

SSD 0.6165 1.0476 1.2101 0.9354 1.2022 1.302 1.1201 1.1483 1.4897 0.3952 

Benchmark 0.5555 1.1891 1.1411 0.8181 1.2671 1.2414 1.0123 1.0656 1.0718 0.1042 

Appendix A shows the weights of SSD constrained portfolios at the last month of the 

out-of-sample period and portfolio weights with all in-sample data. Appendix B shows company 

codes and names for the Dow Jones, SP500 and DAX indices. 

4. Conclusions 

This paper used Portfolio Safeguard (PSG) for portfolio optimization with SSD constraints.  

The algorithms are very efficient and can be run on a regular PC. The index portfolio optimization 

instances have 3046, 3020 and 3020 scenarios (daily returns) and 26, 29 and 90 variables, accordingly. 

The solution times are 0.27, 0.05 and 0.21 s for these instances. Another instance with 76 variables and 

972 scenarios was optimized during 1.4 s. We have done out-of-sample simulations and compared 



J. Risk Financial Manag. 2016, 9, 11 11 of 14 

 

SSD constrained portfolios with the minimum variance and mean-variance portfolios. The portfolios 

were constructed from the stocks of the DJ, S&P 100 and DAX indices. The SSD constrained portfolio 

demonstrated quite good out-of-sample performance and in the majority of cases had the highest 

compounded return and Sharpe ratio (among the considered portfolios). We think that SSD 

constrained optimization can be widely used in actual portfolio management, similar to 

mean-variance optimization. 
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Appendix A 

Table A1. Weights of SSD constrained portfolios at the last month of the out-of-sample period and 

weights with all in-sample data. Stocks with zero positions for all periods (750, 1000 and 3020 days 

for DJ and S&P 100 and 750, 1000 and 3046 days for DAX) are skipped. 

DJ Weights S&P 100 Weights DAX Weights 

Code 
750 

Days 

1000 

days 

3020 

Days 
CODE 

750 

Days 

1000 

Days 

3020 

Days 
Code 

750 

Days 

1000 

Days 

3046 

Days 

AAPL 0 0 0.2 AAPL 0 0 0.2 ADS.DE 0 0 0.075 

DIS 0.2 0.2 0.2 ALL 0 0.028 0 ALV.DE 0 0.0555 0 

HD 0.2 0.2 0.2 AMZN 0.021 0.016 0.031 BAYN.DE 0 0.066 0.2 

MCD 0 0 0.2 BIIB 0 0 0.086 CON.DE 0.2 0.2 0.2 

MSFT 0.2 0.2 0 BMY 0.016 0 0 DAI.DE 0.063 0.132 0 

NKE 0.2 0.2 0.2 CVS 0 0.004 0 DB1.DE 0.137 0 0 

UNH 0.2 0.2 0 DIS 0.086 0.101 0 DPW.DE 0 0.2 0 

    GD 0.046 0 0 DTE.DE 0.2 0 0 

    GILD 0.063 0.155 0.127 FRE.DE 0.2 0.2 0.2 

    HD 0.021 0.2 0 SDF.DE 0 0 0.125 

    LMT 0.2 0.2 0.043 IFX.DE 0.2 0 0 

    LOW 0.001 0.023 0 MRK.DE 0 0.1466 0.2 

    MCD 0 0 0.113     

    MO 0.186 0.172 0.2     

    MSFT 0.058 0 0     

    NKE 0.2 0.005 0.2     

    RTN 0.016 0.096 0     

    SBUX 0.045 0 0     

    WBA 0.041 0 0     

Appendix B 

Table B1. DJ and DAX company codes and names. 

 
DAX DJ 

Code Name Code Name 

1 EOAN.DE E.ON SE AAPL Apple Inc. 

2 ADS.DE Adidas AG AXP American Express Company 

3 ALV.DE Allianz SE BA The Boeing Company 

4 BAS.DE BASF SE CAT Caterpillar Inc. 

5 BAYN.DE Bayer AG CSCO Cisco Systems, Inc. 

6 BEI.DE Beiersdorf AG CVX Chevron Corporation 

7 BMW.DE Bayerische Mot. Werke Aktienges. DD E. I. du Pont de Nemours and Company 

8 CBK.DE Commerzbank AG DIS The Walt Disney Company 

9 CON.DE Continental Aktiengesellschaft GE General Electric Company 

10 DAI.DE Daimler AG GS The Goldman Sachs Group, Inc. 

11 DB1.DE Deutsche Boerse AG HD The Home Depot, Inc. 

12 DBK.DE Deutsche Bank AG IBM Int. Business Machines Corporation 
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13 DPW.DE Deutsche Post AG INTC Intel Corporation 

14 DTE.DE Deutsche Telekom AG JNJ Johnson & Johnson 

15 FME.DE Fres. Med. Care AG & Co. KGAA JPM JPMorgan Chase & Co. 

16 FRE.DE Fresenius SE & Co. KGaA KO The Coca-Cola Company 

17 HEI.DE Heidelberg Cement AG MCD McDonald’s Corp. 

18 SDF.DE K + S Aktiengesellschaft MMM 3M Company 

19 IFX.DE Infineon Technologies AG MRK Merck & Co. Inc. 

20 LHA.DE Deutsche Luft. Aktiengesellschaft MSFT Microsoft Corporation 

21 LIN.DE Linde Aktiengesellschaft NKE Nike, Inc. 

22 MRK.DE Merck KGaA PFE Pfizer Inc. 

23 MUV2.DE Münchener R.G.A. PG The Procter & Gamble Company 

24 SAP.DE SAP SE TRV The Travelers Companies, Inc. 

25 SIE.DE Siemens Aktiengesellschaft UNH UnitedHealth Group Incorporated 

26 TKA.DE ThyssenKrupp AG UTX United Technologies Corporation 

27   VZ Verizon Communications Inc. 

28   WMT Wal-Mart Stores Inc. 

29   XOM Exxon Mobil Corporation 

Table B2. S&P 100 company codes and names. 

 
Code Name Code Name 

1 AAPL Apple Inc. IBM International Business Machines 

2 ABT Abbott Laboratories INTC Intel Corporation 

3 ACN Accenture plc JNJ Johnson & Johnson Inc. 

4 AIG American International Group Inc. JPM JP Morgan Chase & Co 

5 ALL Allstate Corp. KO The Coca-Cola Company 

6 AMGN Amgen Inc. LLY Eli Lilly and Company 

7 AMZN Amazon.com LMT Lockheed-Martin 

8 APA Apache Corp. LOW Lowe’s 

9 APC Anadarko Petroleum Corp. MCD McDonald’s Corp. 

10 AXP American Express Inc. MDLZ Mondelēz International 

11 BA Boeing Co. MDT Medtronic Inc. 

12 BAC Bank of America Corp MET MetLife Inc. 

13 BAX Baxter International Inc. MMM 3M Company 

14 BIIB Biogen Idec MO Altria Group 

15 BK Bank of New York MON Monsanto 

16 BMY Bristol-Myers Squibb MRK Merck & Co. 

17 BRK.B Berkshire Hathaway MS Morgan Stanley 

18 C Citigroup Inc. MSFT Microsoft 

19 CAT Caterpillar Inc. NKE Nike 

20 CL Colgate-Palmolive Co. NOV National Oilwell Varco 

21 CMCSA Comcast Corporation ORCL Oracle Corporation 

22 COF Capital One Financial Corp. OXY Occidental Petroleum Corp. 

23 COP ConocoPhillips PEP PepsiCo Inc. 

24 COST Costco PFE Pfizer Inc. 

25 CSCO Cisco Systems PG Procter & Gamble Co 

26 CVS CVS Caremark QCOM Qualcomm Inc. 

27 CVX Chevron RTN Raytheon Company 

28 DD DuPont SBUX Starbucks Corporation 

29 DIS The Walt Disney Company SLB Schlumberger 

30 DOW Dow Chemical SO Southern Company 

21 EBAY eBay Inc. SPG Simon Property Group, Inc. 

32 EMC EMC Corporation T AT&T Inc. 

33 EMR Emerson Electric Co. TGT Target Corp. 

34 EXC Exelon TWX Time Warner Inc. 

35 F Ford Motor TXN Texas Instruments 

36 FCX Freeport-McMoran UNH UnitedHealth Group Inc. 

37 FDX FedEx UNP Union Pacific Corp. 
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38 FOXA Twenty-First Century Fox, Inc. UPS United Parcel Service Inc. 

39 GD General Dynamics USB US Bancorp 

40 GE General Electric Co. UTX United Technologies Corp 

41 GILD Gilead Sciences VZ Verizon Communications Inc. 

42 GS Goldman Sachs WBA Walgreens Boots Alliance 

43 HAL Halliburton WFC Wells Fargo 

44 HD Home Depot WMT Wal-Mart 

45 HON Honeywell XOM Exxon Mobil Corp 
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