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Abstract: We study a discrete-time interaction risk model with delayed claims within
the framework of the compound binomial model. Using the technique of generating
functions, we derive both a recursive formula and a defective renewal equation for the
expected discounted penalty function. As applications, the probabilities of ruin and the
joint distributions of the surplus one period to ruin and the deficit at ruin are investigated.
Numerical illustrations are also given.
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1. Introduction

In the last decade, risk models with time-correlated claims have been extensively studied in insurance
and actuarial literature. For instance, see [1–6] and the reference therein. Among them, risk models with
delayed claims (incurred, but not reported or reported, but not settled claims) have received considerable
attention. Yuen and Guo [1] study a delayed claims risk model within the framework of the compound
binomial model and obtain recursive formulas for the finite time ruin probabilities. Xiao and Guo [7]
further investigate the aforementioned risk model and derive a recursive equation for the joint distribution
of the surplus immediately prior to ruin and deficit at ruin. Bao and Liu [8] generalize the model
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in [1] by considering random premium income; both the probability of ultimate ruin and the joint
distribution of the surplus prior to and at ruin are studied. When dividend payments are ruled by a
constant dividend barrier in the model studied by [1], Wu and Li [9] investigate the expected present
value of total dividends. Meanwhile, attention has also been paid to risk models whose aggregate claim
process is a book of insurance business. For instance, see [10–15], among many others. In the case of
two classes of business, Wu and Yuen [16] consider an interaction risk model with delayed claims and
derive a recursive equation for the finite time survival probabilities. More results about risk models with
delayed claim settlements can be found in [17–19].

In this paper, we propose a discrete-time interaction risk model that involves two classes of insurance
claims, namely Class 1 and Class 2. In each time period, the probability of having a main claim in
Class i (i = 1, 2) is pi (0 < pi < 1) and the probability of no main claim is qi = 1 − pi. Thus, the
number of main claims in Class i (i = 1, 2) is a binomial process {Ni(t), t ∈ N} with parameter pi.
Independence is assumed between {N1(t), t ∈ N} and {N2(t), t ∈ N}. The claim amount random
variables (r.v.s) in Class 1 and Class 2 are denoted by {Xj, j ∈ N+} and {Yj, j ∈ N+}, which are
two sequences of independent and identically distributed (i.i.d.) positive and integer valued r.v.s. For
i, j ∈ N, we define

fij(k) = Pr

(
i∑

m=1

Xm +

j∑
n=1

Yn = k

)
, k ∈ N. (1)

The genetic r.v.s of {Xj, j ∈ N+} and {Yj, j ∈ N+} are denoted by X and Y with mean µX and µY ,
respectively. It is assumed that each main claim in one class induces a by-claim in the other class. Each
main claim in Class i (i = 1, 2) and its associated by-claim in the other class may occur simultaneously
with probability ρi (0 ≤ ρi ≤ 1) or the occurrence of the by-claim may be delayed to the next time
period with probability %i = 1− ρi.

Under the above assumptions, claims in each of the classes can be classified into two groups, one
for main claims in the current class and one for by-claims induced by the main claims occurring in the
other class. Note that the interaction comes from the assumption that main claims and by-claims within
the same class are identically distributed. Although this assumption seems to be barely satisfactory,
we imagine it could make sense in some special circumstances. For example, an insurer provides
warehousing companies with a type of “full coverage” insurance. More precisely, risk management
services are provided for: (i) the goods stored; and (ii) the warehouses of the company. In this case,
a spontaneous fire of the goods might lead to an explosion and destroy the warehouses. On the other
hand, a destruction of the warehouses would probably cause severe damage to the goods.

The total claim amount process is given by

S(t) = S1(t) + S2(t), t ∈ N+,

where Si(t) (i = 1, 2) is the total claims (including main claims and by-claims) in Class i in the first t
time period. If we suppose that the insurance company collects a unit amount of premium in each time
period, then the surplus process can be written as

U1(t) = u+ t− S(t), t ∈ N, (2)
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where U1(0) = u is the initial surplus. This leads to the definition of the time of ruin

T =

min {t > 0, U1(t) < 0} , if such a t exists,

∞, otherwise.

It is obvious that U1(T − 1) is the surplus one period prior to ruin, and |U1(T )| is the deficit at ruin.
The expected discounted penalty function is defined as

m1(u) = E
[
vTw

(
U1(T − 1), |U1(T )|

)
1{T<∞} |U1(0) = u

]
.

Here, v ∈ (0, 1] is the one-period discount factor, w : N×N+ → R+ is the so-called penalty function
and 1{·} is the indicator function.

It is not difficult to verify that ES(1) = (p1 + p2ρ2)µX + (p1ρ1 + p2)µY . Additionally, for
t = 2, 3, . . ., it holds that

ES(t) = ES(t− 1) + (p1 + p2) (µX + µY )

= (p1 + p2ρ2)µX + (p1ρ1 + p2)µY + (t− 1) (p1 + p2) (µX + µY ) .

To guarantee that Equation (2) has a positive drift, we further assume

(p1 + p2) (µX + µY ) = 1− λ, (3)

where λ > 0 is the relative safety loading parameter.
The rest of paper is structured as follows. In Section 2, the explicit expression for the generating

function of m1(u) is derived by introducing three supplementary surplus processes. In Section 3, we
derive not only the recursive formula, but also the defective renewal equation for m1(u). Based on these
results, the joint distributions of the surplus one period prior to ruin and the deficit at ruin, as well as the
probabilities of ruin are studied in Section 4. Numerical illustrations are also given in Section 4.

2. The Generating Function of the Expected Discounted Penalty Function

To deal with m1(u) in detail, we need to define the following supplementary surplus processes

U2(t) = u+ t− S(t)− X̃, (4)

U3(t) = u+ t− S(t)− Ỹ , (5)

U4(t) = u+ t− S(t)− X̃ − Ỹ , (6)

where X̃ and Ỹ are independent r.v.s having the same distribution function with X and Y , respectively.
The expected discounted penalty function associated with the surplus process {Ui(t), t ∈ N} is denote
by mi(u) for 1 ≤ i ≤ 4.

By conditioning on the occurrence (or not) of claims and their amounts (if necessary) in the next
period in risk process Equation (2), one finds, for u ∈ N+,
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m1(u− 1) = vq1q2m1(u) + vp1q2
{
%1(m3 ∗ f10(u) + w10(u)) + ρ1(m1 ∗ f11(u) + w11(u))

}
+ vq1p2

{
%2(m2 ∗ f01(u) + w01(u)) + ρ2(m1 ∗ f11(u) + w11(u))

}
+ vp1p2

{
%1%2(m4 ∗ f11(u) + w11(u)) + %1ρ2(m3 ∗ f21(u) + w21(u))

+ ρ1%2(m2 ∗ f12(u) + w12(u)) + ρ1ρ2(m1 ∗ f22(u) + w22(u))
}
, (7)

where ∗ is the convolution factor, fij is the probability mass function defined by Equation (1) and

wij(u) =

0, u = 0,∑∞
k=u+1w(u− 1, k − u)fij(k), u = 1, 2, . . . ,

For k ∈ N, we define

γ1(k) =
(
p1q2ρ1 + q1p2ρ2

)
f11(k + 1) + p1p2ρ1ρ2f22(k + 1),

γ2(k) = p2%2
(
q1f01(k + 1) + p1ρ1f12(k + 1)

)
,

γ3(k) = p1%1
(
q2f10(k + 1) + p2ρ2f21(k + 1)

)
,

γ4(k) = p1p2%1%2f11(k + 1),

then Equation (7) can be rewritten as

1

v
m1(u− 1) = q1q2m1(u) +

4∑
i=1

mi ∗ γi(u− 1) + σ1(u)p, (8)

where

σ1(u) =
(
0, w10(u), w01(u), w11(u), w21(u), w12(u), w22(u)

)
,

p =
(
q1q2, p1q2%1, q1p2%2, p1q2ρ1 + q1p2ρ2 + p1p2%1%2, p1p2%1ρ2, p1p2ρ1%2, p1p2ρ1ρ2

)T
.

We use the technique of generating functions to investigate the expected discounted penalty function.
The generating function of a function f is denoted by adding a hat on the corresponding letter,
i.e., f̂(z) =

∑∞
k=0 z

kf(k). Moreover, if A(k) = (aij(k))m×n is a m × n matrix with aij(k)

(1 ≤ i ≤ m, 1 ≤ j ≤ n) being its elements, then Â(z) =
∑∞

k=0 z
kA(k) = (âij(z))m×n.

Multiplying both sides of Equation (8) by zu and summing over u from 1 to∞ yields

z

v
m̂1(z) = q1q2 (m̂1(z)−m1(0)) + z γ̂ 14(z) m̂14(z) + σ̂1(z)p, (9)

where m ij(k) =
(
mi(k), . . . ,mj(k)

)T and γij(k) =
(
γi(k), . . . , γj(k)

)
for 1 ≤ i ≤ j ≤ 4.

Similar to the derivation of Equation (9), it can be obtained from the supplementary surplus processes
Equations (4)–(6) that

z

v
m̂24(z) =

(
q1q2 m̂1(z) + z γ̂ 14(z) m̂14(z)

)f̂10(z)

f̂01(z)

f̂11(z)

+


σ̂2(z)

σ̂3(z)

σ̂4(z)

p, (10)
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where

σ2(k) =
(
w10(k), w20(z), w11(k), w21(k), w31(k), w22(k), w32(k)

)
,

σ3(k) =
(
w01(k), w11(z), w02(k), w12(k), w22(k), w13(k), w23(k)

)
,

σ4(k) =
(
w11(k), w21(z), w12(k), w22(k), w32(k), w23(k), w33(k)

)
.

On the other hand, it is known from Equation (9) that

q1q2 m̂1(z) + z γ̂ 14(z) m̂14(z) =
z

v
m̂1(z) + q1q2m1(0)− σ̂1(z)p. (11)

Substituting Equation (11) into Equation (10) yields
z

v
m̂24(z) =

(z
v
m̂1(z) + q1q2m1(0)− σ̂1(z)p

)
f̂ (z) + σ̂24(z)p, (12)

where f (k) =
(
f10(k), f01(k), f11(k)

)T and σij(k) =
(
σi(k), . . . ,σj(k)

)T for 1 ≤ i ≤ j ≤ 4.
To give the explicit expression for the generating function of the expected discounted penalty function,

we define

g(k) = (p1q2 + q1p2)f11(k + 1) + p1p2f22(k + 1),

h(k) = (p1q2%1 + q1p2%2)f11(k + 1) + p1p2(1− ρ1ρ2)f22(k + 1),

with G(k) =
∑k

i=0 g(j) and H(k) =
∑k

i=0 h(k) being the (defective) distribution functions of g and h,
respectively. Then, it is easy to see that

ĝ(z) = γ̂1(z) + γ̂ 24(z) f̂ (z) and ĥ(z) = γ̂ 24(z) f̂ (z).

For the rest of the paper, we denote by m(u) = m1(u) for u ∈ N. Then, combining Equations (9)
and (12) yields

m̂(z) =
v γ̂ 24(z) σ̂24(z)p − (1− v ĥ(z))(q1q2m(0)− σ̂1(z)p)

z
v
− q1q2 − z ĝ(z)

. (13)

In order to determine the constant m(0), we need to investigate the so-called Lundberg’s fundamental
equation defined as

z ĝ(z) =
z

v
− q1q2. (14)

Lemma 1. The Lundberg’s fundamental Equation (14) has exactly two roots, say z = r ∈ (vq1q2, v ]

and z = R ∈ (1,∞).

Proof. It is easy to verify that (z ĝ(z))′ > 0 and (z ĝ(z))′′ > 0, which implies that z ĝ(z) is an increasing
convex function. Hence, Equation (14) has at most two roots. By noting that

vq1q2 ĝ(vq1q2) > 0 =
(z
v
− q1q2

)
z=vq1q2

,

v ĝ(v) ≤ ĝ(1) = p1q2 + q1p2 + p1p2 =
(z
v
− q1q2

)
z=v

,

we conclude that there is a root z = r ∈ (vq1q2, v ] to Equation (14). Moreover, it is known from the
safety loading condition Equation (3) that

(z ĝ(z))′z=1 = (p1 + p2) (µX + µY ) < 1 ≤ 1

v
=
(z
v
− q1q2

)′
,

which yields that there exists another real number z = R ∈ (1,∞), such that z ĝ(z) = z
v
− q1q2.
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Setting z = r in Equation (13), we can derive an expression for m(0).

Theorem 1. When the initial surplus is zero, the expected discounted penalty function can be
calculated by

m(0) =
1

q1q2

(
σ̂1(r) +

v

1− vĥ(r)
γ̂ 24(r) σ̂24(r)

)
p. (15)

To end this section, we conclude that an explicit expression for the generating function of m(u) is
given by Equation (13), where the constant m(0) is determined by Equation (15).

3. Recursive Equations for m(u)

In this part, we show that m(u) can be calculated by a recursive equation, from which the defective
renewal equation for m(u) can be obtained.

Theorem 2. For u ∈ N+, it holds that

q1q2m(u) =
1

v
m(u− 1)−m ∗ g(u− 1)− vq1q2m(0)h(u)− ζv(u)p, (16)

where

ζv(u) = σ1(u)− v
u∑

n=0

(
h(u− n)σ1(n)− γ24(u− n)σ24(n)

)
,

and the constant m(0) can be determined by Equation (15).

Proof. It is known from Equation (13) that(z
v
− z ĝ(z)

)
m̂(z) = q1q2 (m̂(z)−m(0)) + vq1q2m(0) ĥ(z)

+
(
1− v ĥ(z)

)
σ̂1(z)p + v γ̂ 24(z) σ̂24(z)p. (17)

After some modification, one could see that Equation (17) is equivalent to

∞∑
u=1

zu
{

1

v
m(u− 1)−m ∗ g(u− 1)

}
− q1q2

∞∑
u=1

zu
(
m(u) + v m(0)h(u)

)
=
∞∑
u=1

zu
{
σ1(u)− v

u∑
n=0

(
h(u− n)σ1(n)− γ24(u− n)σ24(n)

)}
p,

which yields Equation (16) by comparing the coefficients of zu.

Now, we are in a position to derive the defective renewal equation for m(u). It is known from
Equation (16) that

q1q2

(
m(k)− 1

r
m(k − 1)

)
=

(
1

v
− q1q2

1

r

)
m(k − 1)−

∑
i+j=k−1

m(i) g(j)

− vq1q2m(0)h(k)− ζv(k)p. (18)

Multiplying both sides of Equation (18) by rk and summing over k from one to u yields
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q1q2(r
um(u)−m(0)) =

(r
v
− q1q2

) u−1∑
k=0

rkm(k)− r
u−1∑
k=0

rkm(k)
u−1−k∑
j=0

rjg(j)

− vq1q2m(0)
u∑

k=1

rkh(k)−
u∑

k=1

rkζv(k)p,

which can be rewritten as

1

v
ru+1m(u) =

u∑
k=0

rkm(k)

{
r

v
− q1q2 − r

u−1−k∑
j=0

rjg(j)

}

+ q1q2m(0)

(
1− v

u∑
k=0

rkh(k)

)
−

u∑
k=1

rkζv(k)p. (19)

Substituting Equation (14) into Equation (19), we get

m(u) = v
u∑

k=0

m(u− k)
∞∑
j=0

rjg(j + k)

+ v r−(u+1)

{
q1q2m(0)

(
1− v

u∑
k=0

rkh(k)

)
−

u∑
k=1

rkζv(k)p

}
. (20)

To simplify the right-hand side of Equation (20), we define the following auxiliary functions:

αv(u, k) = σ1(k)− v
u∑

j=0

h(j)σ1(k − j), (21)

βv(u, k) =
∑

m+n=k

γ24(m)σ24(n)− v (δ1(u, k)− δ2(u, k)) , (22)

where

δ1(u, k) =
u∑

j=0

h(j)
∑

m+n=k−j

γ24(m)σ24(n),

δ2(u, k) =
u∑

j=0

h(k − j)
∑

m+n=j

γ24(m)σ24(n).

After some algebra, we know from Equation (15) that

q1q2m(0)

(
1− v

u∑
k=0

rkh(k)

)
−

u∑
k=1

rkζv(k)p =
∞∑

k=u+1

rk

(
αv(u, k) +

vβv(u, k)

1− vĥ(r)

)
p. (23)

Hence, substituting Equation (23) into Equation (20) yields the following result for m(u).

Theorem 3. For u ∈ N, it holds that

m(u) = v

u∑
k=0

m(u− k)
∞∑
j=0

rjg(j + k) + v

∞∑
k=u+1

rk−u−1

(
αv(u, k) +

vβv(u, k)

1− vĥ(r)

)
p. (24)
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Now, we demonstrate that the renewal Equation (24) is defective. When v < 1, we obtain by reversing
the order of summation:

∞∑
k=0

(
v

∞∑
j=0

rjg(j + k)

)
= v

∞∑
k=0

∞∑
j=k

rj−kg(j) =
v

1− r

(
∞∑
k=0

g(k)− r ĝ(r)

)

=
v

1− r

(
1− q1q2 −

(
r

v
− q1q2

))
=
v − r
1− r

< 1. (25)

When v → 1−, it is easy to see that
lim
v→1−

r = 1. (26)

Consequently, we know from the safety loading condition that

∞∑
k=0

(
lim
v→1−

v
∞∑
j=0

rjg(j + k)

)
=
∞∑
k=0

∞∑
j=k

g(j) = (p1 + p2) (µX + µY ) < 1. (27)

Therefore, we conclude from Equations (25) and (27) that Equation (24) is a defective
renewal equation.

It is obvious that the values of m(u) can be recursively evaluated by Equation (16) or Equation (24).
Moreover, applying Equation (16) in a recursive procedure seems to be much easier than applying
Equation (24). However, the defective renewal Equation (24) can be used to deduce both a compound
geometric tail expression and an asymptotic estimate for m(u) (see, for instance, [20], in which the
analogue results are obtained for probabilities of ruin in the classical risk model).

4. Ruin-Related Quantities

In this section, we investigate some ruin-related quantities. For u ∈ N, denote by

ψ(u) = Pr {T <∞|U1(0) = u} ,

the probabilities of ruin. For u ∈ N and (x, y) ∈ N× N+, let

ϕ(u, x, y) = Pr {U1(T − 1) = x, |U1(T )| = y, T <∞|U1(0) = u} ,

be the joint distribution of the surplus one period prior to ruin and the deficit at ruin. Then, it is obvious
that ψ(u) =

∑
(x,y)∈N×N+ ϕ(u, x, y), u ∈ N.

4.1. The Evaluation of ϕ(u, x, y)

Throughout this part, it is assumed that v → 1− and w(m,n) = 1{m=x, n=y}, (m,n) ∈ N × N+. In
this special case, we have m(u) = ϕ(u, x, y) for u ∈ N. By noting

wij(u) =

0, u = 0,

fij(x+ y + 1)1{u=x+1}, u = 1, 2, . . . ,
(28)

we define the following auxiliary functions
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D1(x, y) =
(
p1q2%1f10 + q1p2%2f01 + (p1q2ρ1 + q1p2ρ2 + p1p2%1%2)f11

+ p1p2%1ρ2f21 + p1p2ρ1%2f12 + p1p2ρ1ρ2f22
)
⊗ (x+ y + 1),

D2(x, y) =
(
q1q2f10 + p1q2%1f20 + q1p2%2f11 + (p1q2ρ1 + q1p2ρ2 + p1p2%1%2)f21

+ p1p2%1ρ2f31 + p1p2ρ1%2f22 + p1p2ρ1ρ2f32
)
⊗ (x+ y + 1),

D3(x, y) =
(
q1q2f01 + p1q2%1f11 + q1p2%2f02 + (p1q2ρ1 + q1p2ρ2 + p1p2%1%2)f12

+ p1p2%1ρ2f22 + p1p2ρ1%2f13 + p1p2ρ1ρ2f23
)
⊗ (x+ y + 1),

D4(x, y) =
(
q1q2f11 + p1q2%1f21 + q1p2%2f12 + (p1q2ρ1 + q1p2ρ2 + p1p2%1%2)f22

+ p1p2%1ρ2f32 + p1p2ρ1%2f23 + p1p2ρ1ρ2f33
)
⊗ (x+ y + 1),

where
(∑n

j=1 cjfj
)
⊗ (k) =

∑n
j=1 cjfj(k), n ∈ N+ for any coefficients cj (j = 1, . . . , n) and functions

fj (j = 1, . . . , n). Then, it is known from Equation (28) that

σ̂i(1)p = Di(x, y), (29)

σi(k)p = 1{k=x+1}Di(x, y), k ∈ N+, (30)

and
k∑

j=0

γi(k − j)σi(j)p = 1{k≥x+1}γi(k − 1− x)Di(x, y), k ∈ N+. (31)

for 1 ≤ i ≤ 4. Hence, substituting Equation (29) into Equation (15) yields

ϕ(0, x, y) =
1

q1q2

(
D1(x, y) +

1

π
qD24(x, y)

)
, (32)

where

π = 1− ĥ(1) = (1− p1%1)(1− p2%2),

q = γ̂ 24(1) =
(
p2%2(p1ρ1 + q1), p1%1(p2ρ2 + q2), p1p2%1%2

)
,

D ij(x, y) =
(
Di(x, y), . . . , Dj(x, y)

)T
, 1 ≤ i ≤ j ≤ 4.

Similarly, we know from Equations (16), (26) and (30) that

q1q2 ϕ(u, x, y) = ϕ(u− 1, x, y)−
u−1∑
k=0

ϕ(k, x, y) g(u− 1− k)− q1q2 ϕ(0, x, y)h(u)

+ (h(u− 1− x)D1(x, y)− γ24(u− 1− x)D24(x, y))1{u≥x+1}

−D1(x, y)1{u=x+1}. (33)

We remark that Equations (14) and (21) in [7] are recovered by Equations (32) and (33) in the present
paper with p2 = 0, respectively.
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It is notable that the defective renewal equation for ϕ(u, x, y) can also be obtained. In the case of
w(m,n) = 1{m=x, n=y}, we know from Equation (30) that

∞∑
k=u+1

α1(u, k)p =

(
1{u≤x} −

u∑
k=max{0, u−x}

h(k)

)
D1(x, y)

=

(
1{u≤x} +H(u− 1− x)−H(u)

)
D1(x, y). (34)

Similarly, it is not difficult to verify that

∞∑
k=u+1

∑
m+n=k

γ24(m)σ24(n)p =

(
q −

u−x−1∑
k=0

γ24(k)

)
D24(x, y),

∞∑
k=u+1

δ1(u, k)p =

(
H(u) q −

u−x−1∑
k=0

H(u− 1− x− k)γ24(k)

)
D24(x, y),

∞∑
k=u+1

δ2(u, k)p =
u−1−x∑
k=0

H̄(u− 1− x− k)γ24(k)D24(x, y),

and consequently,

∞∑
k=u+1

β1(u, k)p =

{
(1−H(u)) q − π

u−1−x∑
k=0

γ24(k)

}
D24(x, y). (35)

Substituting Equations (26), (34) and (35) into Equation (24) yields the defective renewal equation
for ϕ(u, x, y) as follows:

ϕ(u, x, y) =
u∑

k=0

ϕ(u− k, x, y) Ḡ(k − 1) +
{
1{u≤x} +H(u− 1− x)−H(u)

}
D1(x, y)

+

{
1−H(u)

π
q −

u−1−x∑
k=0

γ24(k)

}
D24(x, y), (36)

where Ḡ and H̄ are tails ofG andH , i.e., Ḡ(k) = 1−q1q2−G(k), H̄(k) = p1%1+p2%2−p1p2%1%2−H(k)

for k ∈ N.

Example 1. Suppose that claim amount r.v.s in both of the two classes are zero-truncated geometrically
distributed with

Pr{X = k} = (1− a) ak−1, Pr{Y = k} = (1− b) bk−1,

for k ∈ N+ and 0 < a, b < 1. If we set p1 = 0.1, p2 = 0.2, a = 1/3 and b = 1/4, then it easy to see that

(p1 + p2) (µX + µY ) = 0.85 < 1,

which ensures that the safety loading condition Equation (3) holds. The numerical results of ϕ(u, x, y)

are given in Table 1.
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Table 1. The values of ϕ(u, x, y) with p1 = 0.1, p2 = 0.2, a = 1/3 and b = 1/4.

(x, y) (ρ1, ρ2) u = 0 u = 1 u = 2 u = 4 u = 7 u = 11

(0, 1)

(0, 0) 0.2411265 0.1440916 0.1242079 0.0978323 0.0697250 0.0443761
(0.2, 0.3) 0.2016123 0.1048111 0.0925975 0.0735956 0.0524333 0.0333685
(0.7, 0.6) 0.1760715 0.0747127 0.0679853 0.0545247 0.0388603 0.0247297

(1, 1) 0.1805556 0.0702160 0.0649220 0.0524670 0.0375076 0.0238703

(2, 2)

(0, 0) 0.0172947 0.0217721 0.0258049 0.0181552 0.0127906 0.0081399
(0.2, 0.3) 0.0220675 0.0285528 0.0344494 0.0216139 0.0153322 0.0097567
(0.7, 0.6) 0.0255570 0.0342691 0.0422659 0.0244623 0.0174832 0.0111258

(1, 1) 0.0263873 0.0366490 0.0461370 0.0257016 0.0184810 0.0117674

(0, 5)

(0, 0) 0.0067270 0.0052610 0.0045711 0.0035766 0.0025444 0.0016194
(0.2, 0.3) 0.0098012 0.0060842 0.0053607 0.0042411 0.0030194 0.0019216
(0.7, 0.6) 0.0121226 0.0058755 0.0053210 0.0042648 0.0030384 0.0019335

(1, 1) 0.0127322 0.0049514 0.0045781 0.0036998 0.0026449 0.0016832

(4, 2)

(0, 0) 0.0025660 0.0032303 0.0038286 0.0048460 0.0032192 0.0020417
(0.2, 0.3) 0.0042676 0.0055218 0.0066621 0.0085932 0.0052395 0.0033295
(0.7, 0.6) 0.0055996 0.0075085 0.0092606 0.0122356 0.0070499 0.0044883

(1, 1) 0.0059314 0.0082381 0.0103709 0.0140154 0.0077988 0.0049779

(3, 5)

(0, 0) 0.0003576 0.0004502 0.0005336 0.0005255 0.0003656 0.0002324
(0.2, 0.3) 0.0007714 0.0009981 0.0012042 0.0010776 0.0007582 0.0004823
(0.7, 0.6) 0.0011091 0.0014871 0.0018341 0.0015225 0.0010926 0.0006952

(1, 1) 0.0011517 0.0015995 0.0020136 0.0015696 0.0011413 0.0007273

(5, 3)

(0, 0) 0.0003576 0.0004502 0.0005336 0.0006754 0.0005648 0.0003558
(0.2, 0.3) 0.0007714 0.0009981 0.0012042 0.0015533 0.0012039 0.0007628
(0.7, 0.6) 0.0011091 0.0014871 0.0018341 0.0024234 0.0017872 0.0011391

(1, 1) 0.0011517 0.0015995 0.0020136 0.0027213 0.0019283 0.0012343

(5, 5)

(0, 0) 0.0000479 0.0000602 0.0000714 0.0000904 0.0000766 0.0000482
(0.2, 0.3) 0.0001319 0.0001707 0.0002060 0.0002657 0.0002090 0.0001323
(0.7, 0.6) 0.0002010 0.0002696 0.0003325 0.0004393 0.0003288 0.0002095

(1, 1) 0.0001973 0.0002740 0.0003449 0.0004661 0.0003303 0.0002114

4.2. The Evaluation of ψ(u)

In this part, we aim to derive recursive equations for the probabilities of ultimate ruin. If v → 1− and
w(m,n) ≡ 1, then m(u) = ψ(u) for u ∈ N.

Corollary 1. The probabilities of ultimate ruin can be calculated by

(i) For u ∈ N+, it holds that

q1q2 ψ(u) = ψ(u− 1)−
u−1∑
k=0

ψ(k) g(u− 1− k)− q1q2 ψ(0)h(u)− Ḡ(u− 1) + q1q2 h(u), (37)
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with
ψ(0) = 1− λ

q1q2π
. (38)

(ii) For u ∈ N, we have

ψ(u) =
u∑

k=0

ψ(u− k) Ḡ(k − 1) +
∞∑
k=u

Ḡ(k)− λ

π
H̄(u). (39)

Proof. We can obtain Equations (37)–(39) by summing Equations (32), (33) and (36) over
(x, y) ∈ N× N+, respectively.

We remark that Equation (15) in [7] is recovered by Equation (38) in the present paper with p2 = 0.

Example 2. We now revisit the example in Section 4.1. SupposeX and Y are both geometric distributed
with µX = 1

1−a and µY = 1
1−b , respectively. The corresponding numerical results for ψ(u) are shown in

Figure 1 with p1 = 0.1, p2 = 0.2, a = 1/3 and b = 1/4.
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Figure 1. The values of ψ(u) with p1 = 0.1, p2 = 0.2, a = 1/3 and b = 1/4.

5. Concluding Remarks

We study a discrete-time interaction risk model with delayed claims, which can be regarded as an
extension to the prior work on time-correlated claims studied by [1,7]. Some analytic techniques are
applied to study the expected discounted penalty function. We show that the expected discounted
penalty function satisfies not only a recursive equation, but also a defective renewal equation. The
results obtained in the present paper include the corresponding results in [7].

The model in this paper can be further extended. For instance, suppose that the dividend payments
are ruled by a constant barrier in the framework of this paper; then, the calculation of the expected
discounted dividend payments is necessarily possible.
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