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Abstract: Analyzing social systems, particularly financial markets,using a complex network

approach has become one of the most popular fields within econophysics. A similar trend is

currently appearing within the econometrics and finance communities, as well. In this study,

we present a state-of-the-art method for analyzing the structure and risk within stock markets,

treating them as complex networks using model-free, nonlinear dependency measures based

on information theory. This study is the first network analysis of the stock market in Shanghai

using a nonlinear network methodology. Further, it is oftenassumed that markets outside the

United States and Western Europe are inherently riskier. Wefind that the Chinese stock

market is not structurally risky, contradicting this popular opinion. We use partial mutual

information to create filtered networks representing the Shanghai stock exchange, comparing

them to networks based on Pearson’s correlation. Consequently, we discuss the structure

and characteristics of both the presented methods and the Shanghai stock exchange. This

paper provides an insight into the cutting edge methodologydesigned for analyzing complex

financial networks, as well as analyzing the structure of themarket in Shanghai and, as such,

is of interest to both researchers and financial analysts.
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1. Introduction

Due to human involvement, financial markets constitute complex adaptive systems. As economics

does not have a theory fully explaining their behavior, the field is left with an assumption of the prices

moving randomly, which is also known as the efficient-markethypothesis [1,2]. Within this paradigm,

the evolution of stock prices can only be explained by randomprocesses. It is then natural to ask whether

these random processes are uncorrelated or whether they arein fact correlated and based on some

common underlying causes. Studies looking into the interdependencies between financial instruments

answer this very question.

The field of econophysics is perhaps best known for its treatment of financial markets as complex

systems. Network theory plays an important role in such treatments, and it is most often used for the

above-mentioned study of interdependencies between financial instruments. Usually, a correlation-based

network is created, which quantifies the interrelations between the studied set of financial instruments.

Such analysis uncovers the basic structure of the studied market, but can be also used for practical

applications, such as portfolio optimization [3]. There have been many studies investigating stock

markets on daily [4–9] and intraday [10–12] scales, as well as market indices [13–20] and foreign

exchange markets [21]. These studies show that markets are structured accordingto sectors of economic

activity for stock markets and geographical locations for market indices and foreign exchange markets.

This result is important, as it cannot be reproduced by simulating a virtual market [22]. A limitation

of this approach is connected with the researchers’ insistence on using Pearson’s correlation coefficient,

which describes the system fully only if the system is behaving strictly linearly and, additionally, if an

assumption of multivariate normal distribution holds true. This is the most used approach, even though

it goes against the assumption of the complexity of those systems [23,24] and the solid evidence of the

nonlinearity of financial markets with regards to stock returns [25–29], market index returns [30–34]

and currency exchange rate changes [25,35–38]. This has recently been addressed by exchanging

Pearson’s correlation coefficient with a more general (model-free [39]) measure of mutual information,

which allows the study to account for nonlinearity and not rely on the assumption of multivariate

normality [40,41].

In this paper, we address the above-mentioned issue by usingnetwork analysis of financial markets

based on mutual information, as well as partial mutual information. Partial mutual information is a

generalization of partial correlation, which is sensitiveto nonlinear dependencies (but not sensitive

to outliers), for which Pearson’s correlation and partial correlation cannot account. Partial mutual

information allows us to refine the structural analysis of the market with Pearson’s correlation by

adding nonlinearity and controlling for the mediating influence of third instruments and the stock market

(through the index). However, partial mutual information may also be used to bring the analysis closer

to market dynamics and causal relationships, similarly to the analysis performed with partial correlation

in [42,43]. The latter will not be presented in this study, however.
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We note that in order to include nonlinear dependencies, onecould exchange Pearson’s correlation

with Spearman’s rank correlation. There is a problem with such an approach, however. Spearman’s rank

correlation considers only a limited class of association patterns (monotonically increasing functions),

while mutual information does not have such constraints. For this reason, we prefer to use the

information-theoretic approach. To justify this choice, we have performed the analysis using Spearman’s

rank correlation, and it gives results very similar to Pearson’s correlation (the correlation between

dependency measures for all studied pairs of stocks from both methods is around 0.95, much higher

than between Pearson’s rho and mutual information, as presented in Figure3). However, in cases

where analysts would rather avoid the discretisation step (and consequently, the information-theoretic

approach), we would advise against using Pearson’s correlation and in favor of using Spearman’s

rank correlation or biweight mid-correlation, as these arebetter justified theoretically with regards to

sensitivity to nonlinear behavior and outliers and also appeared to give marginally better results in the

presence of noise or outliers in the comparisons that we haveperformed in our other studies.

Despite a growing interest and body of literature on this topic, there is still relatively little research

produced within the econometrics community that analyzes complex financial networks using the

above-mentioned tools. Most of the related articles are published within econophysics or general science

journals. This is particularly surprising, as financial practitioners are quite commonly using tools based

on such methodology (e.g. www.fna.fi). Despite interdependencies within financial markets being

an area of interest in finance for decades now [6], the usage of complex networks in such inquiries

is relatively new in the financial literature. Tseet al. first presented such complex networks to the

financial research community in their paper analyzing U.S. stocks in 2010 [44]. Tumminello et al.

presented a review of hierarchical networks for financial markets in the same year [45]. The econometrics

literature largely ignores networks illustrating the market complexity based on historical data, but

rather concentrates on more traditional economic issues, such as games on networks [46]. As such,

this paper is an opportunity to present the cutting-edge version of the mentioned methodology to the

econometrics community.

Further, an analysis of financial markets accounting for nonlinearity has yet to be applied to the

Shanghai stock exchange. Due to the size and rate of growth ofthis market, such an analysis is of

obvious importance to financial analysts. There have only been a handful of papers that have touched

upon the basics of this methodology, but which have not been devoted solely to this topic. It has either

been featured in a recent review of econophysics [47] or within a research devoted to the usage of random

matrix theory [48]. The former is applied, but does not deal with financial networks in detail, whereas the

latter is the only article dealing with financial networks inChinese journals on interdisciplinary physics.

This paper does not contain a detailed study of the Chinese stock market, however. Another study looks

at the Chinese market from the network perspective, but is more interested in the network topology,

rather than the market itself [49]. Yet another study published inEurophysics Letters uses random matrix

theory to derive the subsector structure of American and Chinese markets and analyzes the differences

between them, again with very little market insight [50]. Yet another study in the same journal merely

notes that the cross-correlation structure of the Chinese market is less dependent on economic sectors

in comparison with the other markets [51]. One can also find studies that use time series, which are

too short to avoid statistical noise or to gain an insightfulpicture of the market [52], studies interested



J. Risk Financial Manag. 2015, 8 269

in networks based on geographical features, rather than price movements [53] or studies interested in

the robustness of the networks rather than their economic significance [54]. The last study notes that

the Chinese market is more resilient than other markets, a claim we also investigate in this study in

detail. Our earlier studies [55] concentrated on industry indices and, additionally, using Pearson’s linear

correlation coefficient, did not account for nonlinear relationships between the studied time series. It is

of the utmost importance to note that none of these studies consider nonlinear relationships, which is

puzzling, as noted above. Thus, we believe that there is a need for a paper that presents a cutting edge

methodology for creating financial networks, together witha detailed analysis of the stock exchange in

Shanghai. Such an analysis will be of interest to both researchers and market practitioners. Within this

study, we also partially test the popular belief that markets outside the United States and Western Europe

are inherently more risky.

This paper is structured as follows: in Section 2, we presentthe proposed methodology. In Section 3,

we show the results obtained for the Shanghai Stock Exchange. In Section 4, we discuss these results.

In Section 5, we conclude our study and propose further research.

2. Methods

The topological structure of networks modeling financial markets is most often based on Pearson’s

correlation coefficients between time series describing logarithmic price changes (we use logarithmic

returns, because prices are not stationary). These need to be calculated for all pairs in the studied set of

financial instruments. The Pearson’s correlation coefficient is defined as [56]:

ρX,Y =
E(XY )− E(X)E(Y )

√

(E(X2)−E(X)2)(E(Y 2)− E(Y )2)
(1)

whereX and Y are time series describing log price changes for two financial instruments under

consideration.ρ is not a metric, and it may be easier to use one to determine a network’s topology

and the geometry of the resulting plots. Thus, the below metric is most often used for this purpose [4]:

δ(X, Y ) =
√

2(1− ρX,Y ). (2)

This form guarantees thatδ(X, Y ) is a Euclidean metric and that it conforms to the three axioms:

positivity, symmetry and triangle inequality.

Pearson’s correlation coefficients only describe the system fully if the interdependencies are strictly

linear. As this is not the case in financial markets, we extendthe similarity measure to account for

nonlinear dependencies. We propose to use mutual information for this purpose. Mutual information is

a term derivative to Shannon’s entropy [57], which is a measure of the uncertainty of a random variable.

Mutual information, in Shannon’s sense, can be defined for two discrete random variables,X andY , as:

I(X, Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(3)

wherep(x, y) is the joint probability distribution function ofX andY andp(x) andp(y) are the marginal

probability distributions. For continuous variables, thedefinition is analogous using probability density

functions. Equivalently, using entropy, mutual information is defined as:

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (4)
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whereH(X) is Shannon’s entropy, which is a measure of the uncertainty of a random variableX

defined as:

H(X) = −
∑

i

p(xi) log p(xi) (5)

summed over all possible outcomes{xi} with respective probabilities ofp(xi). H(X, Y ) is the joint

entropy associated with both variables, and is defined analogously toH(X), but using joint probabilities.

Mutual information, as defined above, measures informationshared between the two variables, taking

into account both linear and nonlinear dependencies. As a result, using it to describe dependencies on

financial markets seems natural. Mutual information is non-negative andI(X,X) = H(X). It is also

worth noting that such an approach is inherently model-free[39].

Additionally, partial mutual informationI(X, Y |Z) denotes the part of mutual informationI(X, Y )

that is not inZ and is defined as [58]:

I(X, Y |Z) = H(X,Z) +H(Y, Z)−H(Z)−H(X, Y, Z) (6)

Partial mutual information is symmetric, so thatI(X, Y |Z) = I(Y,X|Z) and 0 ≤ I(X, Y |Z).

Mutual information and partial mutual information are onlyequal to0 whenX and Y are strictly

independent.

We have defined mutual information and partial mutual information in terms of Shannon’s entropy.

Therefore, for practical purposes, we need an estimator of such entropy. There is a large number of

estimators, and a discussion of these can be found in the literature [59–63]. In this paper, we use the

Schurmann–Grassberger estimator of the entropy of a Dirichlet probability distribution, which is thought

to be a good choice for most applications [64]. The Schurmann–Grassberger estimator is a Bayesian

parametric procedure that assumes samples distributed following a Dirichlet distribution:

Ĥ(X) =
1

m+ |χ|N

∑

x∈χ

(#(x) +N)(ψ(m+ |χ|N + 1)− ψ(#(x) +N + 1)) (7)

where #(x) is the number of data points having valuex, |χ| is the number of bins from the

discretisation step,m is the sample size, andψ(z) = d ln Γ(z)/dz is the digamma function. The

Schurmann–Grassberger estimator assumesN = 1/|χ| as the prior [65]. Here, we note that the choice of

this estimator (and consequently, also the Dirichlet prior) is irrelevant to our analysis, as the correlation

between results obtained with Schurmann–Grassberger estimator and empirical estimator (entropy of

the empirical probability distribution) is over 0.999999,while the same for Schurmann–Grassberger

estimator and Miller–Madow asymptotic bias corrected empirical estimator is over 0.99999. We use the

Schurmann–Grassberger estimator, as it is a popular choicein information theory. However, the results

are robust with regards to this choice.

Using the Schurmann–Grassberger estimator, we are able to find mutual information, but then it

needs to be converted to a Euclidean metric, as has been presented for correlation coefficients above. We

present metrics based on mutual information and partial mutual information, both of which are used in

this study. Metrics based on mutual information are known inthe literature [66,67]. The quantity:

d(X, Y ) = H(X, Y )− I(X, Y ) (8)
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satisfies the mentioned axioms [67]. For partial mutual information, we want to base the distance on

the smallest partial mutual information when controlling for all other stocks and the index of the studied

exchange. We may define it in the following manner:

D(X, Y ) =







H(X, Y )−minZ 6=X,Y I(X, Y |Z) if X 6= Y

0 if X = Y
(9)

which ensures that this is a Euclidean metric.

We have a method for estimating the topological structure ofhierarchical networks modeling financial

markets based on Pearson’s correlation, Shannon’s mutual information and partial mutual information.

We need to briefly discuss methods for producing such networks in order to complete the presentation.

Based on a matrix filled with the described pairwise metrics,we can now define methods for constructing

hierarchical networks used for studying financial markets.Such methods filter the less important

information out of the characteristic vector describing the system and allow for easier analysis of the

most important information within the system. These methods are well known, and we only briefly

define them here. In particular, we define methods used for creating minimally-spanning trees (MST)

and planar maximally-filtered graphs (PMFG). The distance matrix D containingδ(X, Y ), d(X, Y ) or

D(X, Y ) for all studied pairs is defined above. FromD, we create an ordered listS, in which the

distances are listed in ascending order.

The minimally-spanning tree (MST) is created by using the ordered listS, and starting from the pair

with the lowest distanceD, an edge is added to the graph between elementsX andY if and only if the

graph obtained this way is still a forest or a tree [68]. After all appropriate links are added, such a graph

is always reduced to a tree [45,68]. This method is known as Kruskal’s algorithm.

Less constrained graphs can also be constructed, where the genus is fixed:g = k. Such graphs are

created similarly: from the ordered listS, starting from the pair with the largest similarity measure, we

add an edge between that pair if and only if the resulting graph can still be embedded on a surface of

genusg ≤ k. Such a graph is less topologically restrictive than MST andalways contains the relevant

MST, as well as additional loops and cliques [68]. Then, ifg = 0, the resulting graph is planar [69]. Such

a graph is the simplest extension of the MST and is called the planar maximally-filtered graph (PMFG).

Each element in such a graph has to participate in at least oneclique of three elements; thus, such a

graph can be considered a topological triangulation of the sphere [68]. Larger cliques are not allowed,

however [69,70].

The minimally-spanning tree presents only the most relevant dependencies in the studied system,

thus making the analysis of large systems relatively easy, which is important in the analysis of financial

markets. When a less restrictive structure is needed, the natural candidate is the planar maximally-filtered

graph. Thus, we use both those structures, but it is worth noting that other structures have also been

proposed [45].

Minimally-spanning trees and planar maximally-filtered graphs can be used to effectively reduce

the complexity of financial dependencies and to understand the dynamics of financial markets. Tools

for analyzing correlation-based networks are used by many investment funds, particularly to easily

understand the changing structure (commonly based on economic sectors and subsectors) of the financial

markets and to enhance the risk management of investment portfolios (baskets of stocks within the same
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cluster in the networks are inherently more risky). Such networks based on changes in stock prices

commonly display a scale-free degree distribution. As such, this suggests that the variations in stock

prices are strongly influenced by a relatively small number of stocks. Such networks provide an easy

way to obtain information about these stocks and are particularly useful in managing risk associated with

investment portfolios. Such networks can also help inquireinto the existence and nature of common

economic factors that drive the time evolution of stock prices [4]. Below, we create such networks for

the market in China and analyze its structural properties.

3. Experimental Results

To apply networks based on correlation, mutual informationand partial mutual information in the

reality of the Shanghai Stock Exchange, so as to find their properties and the characteristics of the market

itself, we have obtained daily log returns for 158 stocks belonging to the Shanghai Stock Exchange, as

well as the index of this market (SSE Composite Index). The data on prices cover 1288 days between

the 5 January 2009 and the 30 April 2014 and have been obtainedfrom the Yahoo! Finance database.

The choice of this particular period is motivated by two ways. First, we want to comment on the current

state of the market in Shanghai, and thus, we take the data after the turmoil of the worldwide crisis

of 2008. Second, we want the data to be sufficiently long, as mutual information does not work well

for very short time series, but we also want the data not to be very long, so as not to lose economic

homogeneity. The time series describing daily closing prices are transformed in the standard way for

analyzing price movements, which is so that the data points are the log ratios between consecutive daily

closing prices:rt = ln(pt/pt−1), and those data points are, for the purpose of the mutual information

estimator, discretized into four distinct states through the common procedure of binning into quantiles.

The choice of the number of bins, as well as the discussion of the whole procedure can be found in [71];

here, we only note that the results are robust with regards tothe choice of the number of quantiles.

Additionally, the 158 stocks are divided into 10 sectors and34 subsectors according to Bloomberg.

Bloomberg has also provided the latest earnings per share ratios for all studied stocks.

On this basis, we have created six networks. For each of the above-introduced distances,δ(X, Y ),

d(X, Y ) andD(X, Y ), we have created a minimally-spanning tree and a planar maximally-filtered graph.

All of those networks are undirected, weighed graphs, wherenodes denote stocks and links denote

closeness between them (in terms of correlation or (partial) mutual information). The nodes (the stocks)

are assigned an economic sector and subsector according to Bloomberg’s classification, which does not

affect the topology, and is only used later to compare how well the presented methods recreate sector

structure from price changes alone, which is one of the main results of the general methodology [22].

Thus, we are able to comment on the different characteristics of these and, in particular, show that

using partial mutual information is beneficial to the analysis, especially against the most commonly-used

methodology based on Pearson’s correlation coefficient. A minimally-spanning tree based on partial

mutual information is presented in Figure1, and a planar maximally-filtered graph based on the same

distance is presented in Figure2. The most important stocks (in terms of node degree) are labeled with

their tickers. These are as follows: 601588, Beijing North Star Co Ltd; 601168, Western Mining Co Ltd;

and 601898, China Coal Energy Co Ltd.
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601168
601588

Figure 1. Minimally-spanning tree for the Shanghai Stock Exchange based on partial mutual

information between studied stocks. Stocks with the highest node degrees have been named

with their ticker symbols. The size of the nodes is proportional to their node degree.

601168

601898

601588

Figure 2. Planar maximally-filtered graph for the Shanghai Stock Exchange based on partial

mutual information between studied stocks. Stocks with thehighest node degrees have been

named with their ticker symbols. The size of the nodes is proportional to their node degree.
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Before commenting on the structure of the market in Shanghai, we discuss the advantages of using

partial mutual information in creating financial networks,as compared to using Pearson’s correlation

coefficient. First, we show that the two approaches do in factgive different results, before looking into

whether we can say that one of them gives better results. To illustrate that there are differences between

the three methods, we have calculated Pearson’s correlation coefficients between distances associated

with the three used dependency measures (δ based on Pearson’s correlation (Corr),d based on mutual

information (MI) andD based on partial mutual information (PMI)) for all pairs of stocks within the

studied set (
(

158

2

)

= 12, 403), which we have presented in Figure3.

Corr

0.80 0.90 1.00

0.82

0.
2

0.
60.80

0.
80

0.
95

MI 0.98

0.2 0.4 0.6 0.8 2.0 2.2 2.4 2.6

2.
0

2.
4

PMI

Figure 3. Pearson’s correlation coefficients between distances associated with the three

used dependency measures (δ based on Pearson’s correlation (Corr),d based on mutual

information (MI) andD based on partial mutual information (PMI)) for all pairs of stocks

within the studied set. It is clear that using partial mutualinformation changes the analysis

very slightly with regards to mutual information, but both give significantly different results

from the analysis using Pearson’s correlation coefficients.

As mentioned above, both MST and PMFG show the strongest relations between assets, which

create clusters based mostly on the economic sectors. This information is important, as it cannot be

reproduced by simulating a virtual market [22]. Note that all nodes in the networks we have created

are attributed as belonging to a specific economic sector (according to Bloomberg). As such, we may

analyze how strongly the filtered graphs (MST, PMFG) are based on economic sectors. For this purpose,

we calculate the ratio between the number of links between the stocks belonging to the same economic

sector (according to Bloomberg) and the number of all links in the created networks. If a network were

only to consist of links between stocks (nodes) belonging tothe same economic sector, this ratio would

be equal to 100% (in practice, this would require only one sector, as there must be (at least an indirect)

link between all nodes within MST and PMFG).

Calculating the percentage of intra-sector links within the created networks allows us to see which of

these networks reproduces the sector structure of the Shanghai Stock exchange from the price changes

in the most accurate manner. The results are presented in Table 1. We note that it is very hard to probe

the statistical significance of these results (a sample of one, as we only create one network based on each
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dependency measure and topology; there is not enough data tocreate multiple networks and test it this

way), and as such, we base our conclusions mostly on the agreement between these results and results

obtained in other studies, which cover different markets and analyze different years; see the discussion

below. Nonetheless, we have performed a bootstrap analysisby shuffling the rows of the matrix

containing log returns repeatedly without replacement in order to create a large number of surrogated

time series of returns. After each shuffling, we calculate the correlation and mutual information between

the original and shuffled log returns, create minimally-spanning trees on this basis and calculate the

percentage of intra-sector links within these to observe how likely the results are due to pure chance. We

applied this procedure a thousand times and have obtained a distribution of the percentage of intra-sector

links within the networks based on surrogate data (close to being Gaussian) with a mean of 12.85%

and a standard deviation of around 4% for correlation-basednetworks and an average of 4.18% with a

standard deviation of around 1% for mutual information-based networks. These findings further increase

our confidence in the results presented in Table1. First, the obtained intra-sector link ratios are already

stunningly significant at over 11 standard deviations abovethe mean for correlation-based networks and

even more for mutual information-based networks. Second, as mentioned above, the ratio of intra-sector

links is lower for networks based on mutual information thancorrelation (for surrogate data); thus,

being the opposite for the original data makes us believe that this is due to the economic structure being

unveiled by mutual information, rather than statistical noise.

Table 1. Percentage of links between instruments belonging to the same economic sector in

all links within the studied networks. As a reference, the same is shown for an unrestricted

network or a full graph. Both mutual information (d) and partial mutual information (D)

reproduce the sector structure from price changes slightlymore accurately than Pearson’s

correlation coefficient (δ), which is in agreement with similar studies of other markets. MST,

minimally-spanning tree; PMFG, maximally-filtered graph.

Distance MST PMFG

δ 64.97% 53.85%

d 66.24% 56.84%

D 66.88% 58.12%

None 13.96% 13.96%

One of the most important characteristics describing a network is the distribution of node degrees.

Thus, we have plotted degree distributions for all created networks on a log-log scale, as presented

in Figure 4. This allows us to see whether these are in fact scale-free networks or whether they

follow a different distribution. We expect the distribution of node degrees to have fat tails, due to

preferential attachment. The results (p-values) of the Kolmogorov–Smirnov test for the power law are as

follows: 0.04120614 for Pearson’s correlation-based MST,0.02516791 for Pearson’s correlation-based

PMFG, 0.09684842 for mutual information-based MST,0.07434126 for mutual information-based

PMFG, 0.08852421 for partial mutual information-based MST and0.06827215 for partial mutual

information-based PMFG. As can be seen, while the networks based on the information-theoretic

approach are not strictly following power law distributions (at 5% level of significance we would reject
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the null hypothesis of the two distributions being equal in the mutual information-based networks), they

are nonetheless strongly fat-tailed, which shows that the presented information-theoretic methodology

does not fail to produce networks with preferential attachment. Further, the results (p-values) of

the Kolmogorov–Smirnov test for log-normal distribution are as follows: 0.01961782 for Pearson’s

correlation-based MST,0.01572181 for Pearson’s correlation-based PMFG,0.02234679 for mutual

information-based MST,0.02875467 for mutual information-based PMFG,0.01768697 for partial

mutual information-based MST and0.02850081 for partial mutual information-based PMFG. In all these

cases we would not be able to reject the null hypothesis stating that the distributions are identical. The

tests have been performed using the poweRlaw package in R.
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Figure 4. Degree distributions (with fitted power law and log-normal distribution) for:

(a) a minimally-spanning tree based on correlation; (b) a planar maximally-filtered graph

based on correlation; (c) MST based on mutual information; (d) PMFG based on MI; (e)

MST based on partial mutual information; and (f) PMFG based on PMI.
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Finally, we look into how stocks with various levels of importance in the studied networks (in terms

of node degree) behave economically in terms of earnings pershare ratio. There is a negative correlation

between node degree within the network presented in Figure1 and the earnings per share (EPS) ratio for

all studied companies, with a magnitude of around−0.1. Further, the two hubs in the networks (nodes

with the largest degrees: 13 and 12) have modest EPS ratios, while all the outliers (both negative and

positive) in terms of EPS are characterized by low degrees (five or less) within the studied networks.

Additionally, in Table2, we have presented the sum of the degrees for stocks in all studied sectors, the

average degree for a stock in all studied sectors and the average EPS ratio in all studied sectors in MST

and PMFG based on partial mutual information.

Table 2. The sum of node degrees for stocks belonging to the studied economic sectors in

MST (1) and PMFG (3) based on partial mutual information, theaverage node degree for

stocks belonging to the studied sectors in MST (2) and PMFG (4) based on partial mutual

information and the average earnings per share (EPS) ratio for stocks belonging to the studied

sectors (5). There is a negative correlation between the EPSratio in a sector and the sector’s

average importance in the network.

Sector (1) (2) (3) (4) (5)

Communications 7 2.33 22 7.33 0.29

Consumer Discretionary 46 1.92 136 5.67 0.58

Consumer Staples 14 1.56 37 4.11 2.17

Energy 37 2.06 117 6.50 0.49

Financials 80 2.11 228 6.00 0.92

Healthcare 17 2.13 47 5.88 0.54

Industrials 38 2.00 113 5.95 0.15

Materials 55 2.12 171 6.58 0.33

Technology 10 1.43 39 5.57 0.53

Utilities 10 1.67 26 4.33 0.46

4. Discussion

First, we comment on the differences between networks created using the three mentioned distances

(δ(X, Y ), d(X, Y ), D(X, Y )) in the context of finding the accuracy of the created networks. The more

general nature of mutual information over Pearson’s correlation together with the obvious nonlinearity of

the behavior of financial markets hints that mutual information should be better suited for analyzing stock

markets. This is confirmed for other markets in the studies mentioned above [40,41]. Nonetheless, since

there is no theory of financial markets, we are not able to directly state that our method is representing

the market in a more accurate manner than the standard methodbased on Pearson’s correlations. In other

words, there is no benchmark, as we do not know what the network structure of the market really looks

like (if we knew, the presented methodology would be pointless). We may observe some characteristics

of these networks and comment on their differences, however, providing an indirect answer to this

question. As we can see in Figure3, there is quite a large (around 20%) difference between the distances
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based on correlation and (partial) mutual information. We would not expect a higher difference, as the

most important dependencies on the market are captured by the correlations. We only want to enhance

this methodology by involving nonlinear dependencies. We also see that the difference between distances

based on mutual information and partial mutual informationare small, thus controlling for a mediating

influence is of secondary importance.

We also expect our method to recreate the sector structure ofthe Shanghai Stock Exchange from

prices. This is an important feature of asset networks, as has been explained above. In Table1, we

see that all three methods give substantially higher percentages of intra-sector links than the full graph.

Nonetheless, similarly to studies on other markets [40], mutual information also performs better in this

study. Partial mutual information also slightly improves the analysis in this respect as compared to

mutual information. Nonetheless, it is very hard to find the statistical significance of these results, but

the consistency of the results pointing in favor of the information-theoretic approach in this and similar

studies gives certain weight to our argument.

We also note that this result contradicts the results of one of the studies in the literature review [51],

where the authors have found that “since the Chinese stock market is an emerging market, the companies

are not operated strictly with the registered business.” Our results suggest that the sector structure, as

reconstructed from price changes, is not different from thestructure of mature markets, such as the

United States and Europe. We also note that while we believe amethod that recreates this structure in the

best way can be seen as superior, there can be situations where we do not necessarily want this to be the

case. For instance, in certain cases, we may prefer a method that uncovers a more surprising relationship

for stocks belonging to different sectors, but having otherthings in common, such as shared ownership.

It is difficult to judge a method based on such criteria, however, since the amount of relationships we

could be looking for is virtually limitless, and it could therefore be used to justify any choice, while in

our measurement, the standard is clear.

Finally, we take a look at the degree distributions presented in Figure4, which may further shed light

on the question of the accuracy of the networks. It appears that the distribution depends quite strongly

on the structure of the graph. While MST seems to have the degrees distributed in a manner closer

to log-normal distribution than PMFG, the latter is characterized by degree distributions closer to the

power law. While many researchers strive to obtain the powerlaw in such analyses, we believe the fat

tails of a log-normal distribution are sufficient (and can infact be better justified as the multiplication

of various market complexities). We observe that the above-presented Kolmogorov–Smirnov test

results for a log-normal distribution are sufficiently goodto conclude that networks created using

information-theoretic approach are characterized by fat-tailed degree distributions. We are therefore

inclined to say that by using partial mutual information, weobtain financial networks that describe the

financial markets more precisely, accounting for nonlineardependencies, enhancing the reconstruction

of the sector structure and not losing the (nearly) scale-free property. Therefore, we propose not to

use the most popular correlation-based methodology, as there is no significant gain (in computational

complexity or results) from the simplified procedure over the methodology presented in this paper.

Finally, we discuss the picture of the Shanghai Stock Exchange resulting from the partial mutual

information network analysis presented above. The stocks dominating the market in Shanghai are not

concentrated in one or two sectors, which is usually a sign ofthe good health of the market [72].
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Here, by health, we mean the vulnerability to shocks originating within economic sectors. In this sense, a

more diverse market (network) is better, spreading the riskmore evenly. In fact, in the presented PMFG,

within the ten stocks with the highest node degrees, we find two representatives of the energy, financial

and industrial sectors, with four other sectors represented, as well. By far the highest node degree equal

to 42 belongs to Western Mining Co Ltd, representing the materials sector. Second place belongs to

Beijing North Star Co Ltd, representing the financial sectorwith 28, while third place belongs to China

Coal Energy Co Ltd, representing the energy sector with 21 connections. This corroborates our earlier

study, which showed that there is no single sector controlling the Chinese financial network, but that

there is a number of sectors that are influential [55].

Despite this diversity within the most influential stocks onthe Shanghai Stock Exchange, they have

one thing in common: they are all very stable companies, withreasonable earnings per share ratios

between0.1657 and0.284. As can be seen in Figure2, these three stocks lead large clusters of stocks

from their respective sectors. As mentioned above, the companies with large node degrees (top two

stocks with degrees of 13 and 12; the other stocks have degrees equal or less than five) in MST are

characterized by reasonable EPS ratio, while companies with low degrees vary greatly in their EPS ratios,

hinting that the market is healthy, as in following only well-established companies (and not unstable

companies, which may have very good results in the short term, but which could destabilize the market

in the long term). This is by no means a fully precise statement, as the market is highly complex, and

we can observe a lot of variation; however, the trend is visible. In fact, there is a negative correlation

between the average node degree in a sector and the average EPS in a sector of−0.46 for MST and

−0.63 for PMFG. This once again hints that companies with temporarily bloated financial results do

not tend to be highly influential on the stock exchange in Shanghai. Finally, we comment on the sector

structure presented in Table2. The financial sector is the strongest in terms of the total number of

connections related to their stocks within the studied networks. This is largely due to the number of

stocks representing this sector, however. In terms of average degree for a stock belonging to a given

sector, the picture is a lot more equal. On average, the communication sector is the most influential

one. It is closely followed by the healthcare and material sectors. Within the PMFG, consumer staples

make up the least influential sector on average, while withinMST, this title is given, surprisingly, to

the technology sector. It is interesting that the financial market is not dominating the Shanghai Stock

Exchange, as is the case in most other financial markets. The picture painted by this analysis of the

sectors of the Shanghai Stock Exchange leaves an impressionof a healthy and diversified market. This

gives partial evidence against the popular belief that the markets outside New York, London and Western

Europe are inherently riskier. The Shanghai Stock Exchangeappears better suited to withstand shocks

than what follows from the countless studies of the NYSE based on network methodology, particularly

due to lesser concentration on one economic sector.

5. Conclusions

In this paper, we have presented a methodology of creating financial networks based on partial mutual

information. This is different from the most common methodology based on correlation, both in allowing

nonlinear interdependencies in the analysis and in accounting for the mediating influence of third parties
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in pairwise dependencies within financial markets. We have applied this methodology to the Shanghai

Stock Exchange and found that this methodology does indeed present a better picture of the market,

particularly reconstructing the sector structure of the market more precisely, while retaining the (almost)

scale-free property of the networks. Finally, we have commented on the resulting picture of the Shanghai

Stock Exchange. We have found that the market is quite diversified and mature, even compared with

more established markets. Further research should look into other stock exchanges in China and the

region. Studies should also try to enhance the methodology to present the structure of markets in an even

more clear and precise manner.
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