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ABSTRACT 
The main purpose of this paper is to evaluate the effect of crude oil price on global fertilizer 

prices in both the mean and volatility. The endogenous structural breakpoint unit root test, 

ARDL model, and alternative volatility models, including GARCH, EGARCH, and GJR 

models, are used to investigate the relationship between crude oil price and six global 

fertilizer prices. The empirical results from ARDL show that most fertilizer prices are 

significantly affected by the crude oil price while the volatility of global fertilizer prices and 

crude oil price from March to December 2008 are higher than in other periods. 
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1. INTRODUCTION 

The world population in 2000 was more than 6 billion, and is expected to reach 8 billion in 

2025, based on projections by United Nation Population Division. The increase in global 

population, combined with economic development, will place increasing demand on 

agricultural food products, especially grains, rice, soybeans, and sugarcane. The derived 

demand for energy crops has been increased significantly due to the development of bio-fuel. 

Such development can lead to food shortages and increasing international food prices, which 

will encourage farmers to expand planted acreage. This predicament has increased the 

derived demand for global fertilizers and increased fertilizer prices.  

Fertilizers are combinations of nutrients that enable plants to grow. The essential 

elements of fertilizers are nitrogen, phosphorus, and potassium. Urea fertilizer is the major 

fertilizer that provides the element of nitrogen, and is produced through converting 

atmospheric nitrogen using natural gas. Ammonia and phosphoric acid (hereafter ACID) are 

also produced using energy. Thus, prices for urea, ammonia, and ACID will be affected by 

crude oil prices.  Monoammonium phosphate (hereafter MAP) and muriate of potash 

(hereafter MOP) are two other important fertilizers that are sources of phosphorus and 

potassium. As most of the world’s phosphate for fertilizer is mined, and hence is 

non-renewable, over the last decade the prices of phosphate and potash fertilizers have risen 

more steeply than the price of nitrogen-based urea.   

Figure 1 shows the trends in six fertilizer prices and Dubai crude oil price during the period 

2003-2008. It is clear that most of these prices changed dramatically in 2007 and 2008. 

Figure 2 shows the trends in the prices of the main fertilizers, including
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MAP, MOP and urea, and Dubai crude oil weekly prices, from 2003-2008. This figure 

shows that fertilizers and Dubai crude oil price exhibit positive trends. Moreover, 

MAP and MOP prices had upsurge in early 2008. These figures show there is a clear 

positive relationship between global fertilizer prices and crude oil price.  Therefore, 

the main purpose of this paper is to investigate the relationship between crude oil 

price and global fertilizer prices, in both the mean and volatility. As volatility invokes 

financial risk, such empirical results should provide useful information regarding the 

risks associated with variations in global fertilizer prices due to variations in oil price, 

with significant implications for optimal energy use, global agricultural production, 

and financial integration. 

The remainder of the paper is organized as follows. Section 2 introduces the data, 

the empirical models are discussed in Section 3, and the empirical results are analyzed 

in Section 4. Some concluding remarks related to the energy policy implications of 

the volatility of global fertilizer prices are given in the final section. 

2. DATA  

The source of the data is divided into two parts. The weekly global fertilizer supply 

prices are obtained from the Fertilizer Market Bulletin (hereafter FMB) weekly 

fertilizer report, while the weekly Dubai crude oil prices are obtained from the 

database in the Bureau of Energy during the period 2003-2008. Table 1 gives the 

descriptive statistics of six fertilizer prices, including MAP, urea, ammonia, ACID, 

phosphate rock (hereafter ROCK), and MOP, and Dubai crude oil prices. The MAP 

prices show a steady upward trend, but have a sharp price spike in February 2008, as 

shown in Figure 1. The prices of urea and ammonia vary considerably, with steady 

increases over time. The ACID, ROCK, and MOP supply prices do not fluctuate 

significantly, but generally have upward trends. The trend in crude oil prices is 

relatively stable.  
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3. MODEL SPECIFICATIONS 

Both the autoregressive distributed lag (ARDL) model and the generalized 

autoregressive conditional heteroskedasticity (GARCH) model will be used to 

evaluate the effects of oil and global fertilizer prices, and to model the volatility in 

global fertilizer and crude oil prices. Before estimating the ARDL and GARCH 

models, the Lee and Strazicich (2003) approach will be used to capture the structural 

breakpoint in fertilizer prices, which should enable identification of alternative time 

periods for the volatility in fertilizer prices. 

3.1. Minimum LM unit root test with two endogenous breaks 

Most traditional empirical studies use regression methods to estimate relationships 

among variables under the assumption of stationarity. However, spurious regression 

results may arise when some or all of the variables are non-stationary. The 

Dickey-Fuller (1979, 1981) test, Augmented Dickey-Fuller (ADF) test (1984), and 

Phillips-Perron test (1988) are widely-used unit root tests, but they are based on data 

generation processes with no structural breaks. Ignoring possible structural breaks can 

lead to non-rejection of the null hypothesis of non-stationarity, so that the effects of 

structural breaks may be attributed to the existence of a unit root. Nelson and Plosser 

(1982) used the Dickey-Fuller unit root test to examine U.S. macroeconomic time 

series, and found that widespread non-stationarity.  

In order to tackle the problem of structural breaks, Perron (1989) proposed a unit 

root test with a structural breakpoint, which used an exogenous structural break to 

re-examine Nelson and Plosser’s (1982) data. The empirical results showed that most 

macroeconomic time series do not have unit roots, and the data features displayed by 

variables with a structural change are similar to those displayed by variables with unit 

roots. Thus, it is important to test for structural changes, otherwise an incorrect 

outcome of the unit root test is likely. 
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Banerjee et al. (1992) and Zivot and Andrews (1992) modified the unit root test 

with a known breakpoint to a unit root test with an unknown breakpoint. Lumsdaine 

and Papell (1997) and Lee and Strazicich (2003) transformed the unit root test with an 

unknown breakpoint into a unit root test with two unknown breakpoints. However, 

Lee and Strazicich (2003) establish minimum LM unit root test with two unknown 

structural change points to compensate for the shortcomings of the test. Both the null 

and alternative hypotheses are specified for series with two endogenous structural 

breakpoints.   

3.2 Autoregressive Distributed Lag Model 

Fertilizer can be divided into organic fertilizer and chemical fertilizer, with the latter 

being a high user of energy. For instance, nitrogen fertilizer production relies mainly 

on coal and natural gas, so that a causal relationship might be deemed to exist 

between crude oil and fertilizers prices. Such a relationship may be determined by a 

Granger Causality test and the autoregressive distributed lag (hereafter ARDL) model. 

The ARDL model, in which the data determine the short-run dynamics, would seem to 

be one of the most widely used models for estimating time series energy demand 

relationships (Jones, 1993; Benten and Engsted, 2001; Jones,1993; Benten and 

Engsted,2001; Dimitropoulos et al., 2005; Hunt et al., 2005; Hunt and Ninomiya, 

2003; Chen et al.,2010).  

Hendry(2005) indicates that the ARDL model merges dynamics and 

interdependence with different illustrations grounded by linear relationships. In this 

model, the price of a specific fertilizer is interpreted by the lags of itself price and 

crude oil prices. A general ARDL model for the global fertilizer price can be shown as 

bellow:  

t

p

i

q

j
jtjitit uOilPPFertilizerPFertilizer  

 
 

1 1
0               (1) 
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where tPFertilizer  is the global fertilizer price at time t, and tOilP  is the price of 

crude oil at time t.  

 The coefficient j   means the effect of the j-period lagged crude oil price on the 

fertilizer price, which implies that the fertilizer price can be predicted by the crude oil 

price. A test of the null hypothesis that each j  = 0 is a test of Granger 

non-causality.   

All the variables included in the price should be stationary series to avoid 

spurious regression results, whereby the asymptotic standard normal results no longer 

hold. For this reason, the structural breakpoints of the crude oil price are estimated 

using the two-break minimum Lagrange Multiplier (LM) unit root test of Lee and 

Strazicich (2003). If and when the appropriate structural breakpoints are found, the 

fertilizer price equations will be estimated for different periods. 

3.3 Conditional Mean and Conditional Volatility Models 

Engle (1982) captured time-varying conditional volatility, or financial risk, through 

the autoregressive conditional heteroskedasticity (ARCH) model. Subsequent 

extensions, such as the generalized ARCH (GARCH) model of Bollerslev (1986), 

have been used to capture dynamic volatility for univariate and multivariate processes. 

The GARCH model is most widely used for symmetric shocks. In the presence of 

asymmetric shocks, whereby positive and negative shocks of equal magnitude have 

different impacts on volatility, the GJR model of Glosten et al. (1992) and the 

EGARCH model of Nelson (1991) are very useful. Further theoretical developments 

in specification, estimation and asymptotic theory have been suggested in Ling and Li 

(1997), Ling and McAleer (2002a, 2002b, 2003a, 2003b), and McAleer (2005).  

The following model and discussion are based on McAleer (2005) and McAleer 

et al. (2007). The methods have been extended detect the volatility in patent growth 
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by Chan et al. (2005a), in analyzing the volatility of USA ecological patents by Chan 

(2005b) and Marinova and McAleer (2003), in modelling the volatility of 

environment risk by Hoti et al. (2005), and the volatility of atmospheric carbon 

dioxide concentrations by McAleer and Chan (2006). However, there does not yet 

seem to have been any empirical analysis of such volatility models on global fertilizer 

prices, and hence no assessment of risk associated with such prices. 

In this paper, we consider the stationary AR(1)-GARCH(1,1), or 

ARMA(p,q)-GARCH(1,1), model for the global fertilizer price series data, namely ty : 

1 2 1 ,t t ty y         for 1,..., ,t n                              (2) 

( , )t ty ARMA p q    

where t  is the unconditional shock (or movement in global fertilizer prices), and is 

given by: 

2
1 1

, ~ (0,1),

,

t t t t

t t t

h iid

h h

  

   



  
                                        (3) 

and   0, 0  , 0   are sufficient conditions to ensure that the conditional 

variance 0th  . Ling and McAleer (2003b) indicated equation (2) in the AR(1) 

process could be modified to incorporate a non-stationary ARMA(p,q) conditional 

mean and a stationary GARCH(r,s) conditional variance. In (2), the   (or ARCH) 

effect indicates the short run persistence of shocks, while the   (or GARCH) effect 

indicates the contribution of shocks to long run persistence (namely,   ).  

    The parameters in equations (1) and (2) are typically estimated by the maximum 

likelihood method. Ling and McAleer (2003b) investigate the properties of adaptive 

estimators for univariate non-stationary ARMA models with GARCH(r,s) errors. The 

conditional log-likelihood function is given as follows: 

2

1 1

1
(log )
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n n
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t t
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As the GARCH process in equation (2) is a function of the unconditional shocks, the 

moments of t  need to be investigated. Ling and Li (2002a) showed that the 

ARCH(p,q) model is strictly stationary and ergodic if the second moment is finite, 

that is, 2 2( ) 2 1     . Ling and McAleer (2002b) showed that the Quasi MLE 

(QMLE) for GARCH(p,q) is consistent if the second moment is finite. Ling and Li 

(1997) demonstrated that the local QMLE is asymptotically normal if the fourth 

moment is finite, that is, 4( )tE    , while Ling and McAleer (2002b) proved that 

the global QMLE is asymptotically normal if the sixth moment is finite, that is, 

6( )tE    . Using results from Ling and Li (1997), Bollerslev (1986), Nelson (1990), 

and Ling and McAleer (2002a, 2002b), the necessary and sufficient condition for the 

existence of the second moment of t  for GARCH(1,1) is 1    and, under 

normality, the necessary and sufficient condition for the existence of the fourth 

moment is 2 2( ) 2 1     . 

    For the univariate GARCH(p,q) model, several regularity conditions exist that 

enable the statistical validity of the model to be checked against the empirical data. 

Bougerol and Picard (1992) derived the necessary and sufficient condition, namely 

the log-moment condition or the negativity of a Lyapunov exponent, for strict 

stationarity and ergodicity (see Nelson (1990)). Using the log-moment condition, Elie 

and Jeantheau (1995) and Jeantheau (1998) established it was sufficient for 

consistency of the QMLE of GARCH(p,q) (see Lee and Hansen (1994) for the proof 

in the case of GARCH(1,1)), and Boussama (2000) showed that it was sufficient for 

asymptotic normality. Based on these theoretical developments, a sufficient condition 

for the QMLE of GARCH(1,1) to be consistent and asymptotically normal is given by 

the log-moment condition, namely 

2(log( )) 0.tE                                                 (4) 
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However, this condition is not straightforward to check in practice, even for the 

GARCH(1,1) model, as it involves the expectation of a function of a random variable 

and unknown parameters. The extension of the log-moment condition to multivariate 

GARCH(p,q) models has not yet been shown to exist, although Jeantheau (1998) 

showed that the ultivariate log-moment condition could be verified under the 

additional assumption that the determinant of the unconditional variance of t  in (1) 

is finite. Jeantheau (1998) assumed a multivariate log-moment condition to prove 

consistency of the QMLE of the multivariate GARCH(p,q) model. An extension of 

Boussama’s (2005b) log-moment condition to prove the asymptotic normality of the 

QMLE of the multivariate GARCH(p,q) process is not yet available. 

    The effects of positive shocks on the conditional variance, th , are assumed to be 

the same as the negative shocks in the symmetric GARCH model. In order to 

accommodate asymmetric behavior, Glosten et al. (1992) proposed the GJR model, 

for which GJR(1,1) is defined as follows: 

2
1 1 1( ( )) ,t t t th I h                                              (5) 

where 0  , 0  , 0   , 0   are sufficient conditions for 0th   and 

( )tI  is an indicator variable defined by 

1
( )

0tI 


 


     
0.

0,
t

t








 

as t  has the same sign as t . The indicator variable differentiates between positive 

and negative shocks, so that asymmetric effects in the data are captured by the 

coefficient  , with  0. The asymmetric effect,  , measures the contribution of 

shocks to both short run persistence, / 2  , and to long run persistence, 

/ 2    . 

Ling and McAleer (2002b) derived the unique strictly stationary and ergodic 
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solution of a family of GARCH processes, which includes GJR(1,1) as a special case, 

a simple sufficient condition for the existence of the solution, and the necessary and 

sufficient condition for the existence of the moments. For the special case of GJR(1,1), 

Ling and McAleer (2002b) showed that the regularity condition for the existence of 

the second moment under symmetry of t  is 

1
1,

2
                                                       (6) 

and the condition for the existence of the fourth moment under normality of t  is 

2 23
2 3 3 1,

2
                                           (7) 

while McAleer et al. (2007) showed that the weaker log-moment condition for 

GJR(1,1) was given by 

0])))((ln[( 2   ttIE ,                                      (8) 

which involves the expectation of a function of a random variable and unknown 

parameters. 

An alternative model to capture asymmetric behavior in the conditional variance 

is the Exponential GARCH (EGARCH(1,1)) model of Nelson (1991), namely: 

1 1 1log log ,t t t th h            1                           (9) 

where the parameters  ,   and have different interpretations from those in the 

GARCH(1,1) and GJR(1,1) models. 

As noted in McAleer et al. (2007), there are some important differences between 

EGARCH and the previous two models, as follows: (i) EGARCH is a model of the 

logarithm of the conditional variance, which implies that no restrictions on the 

parameters are required to ensure 0th  ; (ii) Nelson (1991) showed that 1   

ensures stationarity and ergodicity for EGARCH(1,1); (iii) Shephard (1996) observed 

that 1   is likely to be a sufficient condition for consistency of QMLE for 
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EGARCH(1,1); (iv) as the conditional (or standardized) shocks appear in equation (4), 

1   would seem to be a sufficient condition for the existence of moments; and (v) 

in addition to being a sufficient condition for consistency, 1   is also likely to be 

sufficient for asymptotic normality of the QMLE of EGARCH(1,1). 

Furthermore, EGARCH captures asymmetries differently from GJR. The 

parameters  and   in EGARCH(1,1) represent the magnitude (or size) and sign 

effects of the conditional (or standardized) shocks, respectively, on the conditional 

variance, whereas   and    represent the effects of positive and negative 

shocks, respectively, on the conditional variance in GJR(1,1). 

 

4. EMPIRICAL RESULTS 

4.1. Minimum LM unit root test with one and two breaks 

The empirical results for the unit root tests, which are given in Table 2, generally 

indicate that the ADF test does not reject the null hypothesis of a unit root. However, 

MAP, Urea, and ROCK reject the null hypothesis at the 1% significance level, which 

is consistent with no unit root for these prices, as shown in Table 3, for the minimum 

LM unit root test with two breaks (see Lee and Strazicich (2003)). The price series for 

ammonia are tested using the minimum LM test unit root with one breakpoint as two 

breakpoints were not detected.   

4.2. Granger Causality Test 

As the results for testing the stationarity of the seven series indicate that all are 

stationary, we examine the relationships between the six fertilizer prices and the price 

of crude oil using the Granger Causality test (1969).  From Table 4, the crude oil 

price (given as Poil) is found to Granger-cause five fertilizer prices, namely MAP, 

urea, ammonia, ACID, and MOP, in each period, which indicates that oil prices can be 
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used to predict these five fertilizer prices. However, the crude oil price does not 

Granger-cause the ROCK price at the 5% level of significance, which may not be so 

surprising as ROCK is a raw material used to produce phostate fertilizer, and hence 

does not use considerable energy. Thus, the oil price is not able to predict the ROCK 

price. 

4.3. ARDL and Volatility Models for Crude Oil and Global Fertilizer 

Prices 

The estimates of equation (1) for the MAP, urea, ammonia, ROCK, ACID and MOP 

prices are given in Tables 6-11. Table 6 reports the estimates of crude oil price on 

MAP price for different periods. The coefficients of prices represent the change in the 

MAP price due to the change in the crude oil price. Similarly, the estimates of the 

price change for urea, ammonia, ACID, and MOP prices are reported in Tables 7-11, 

respectively. Owing to an insignificant causal relationship between ROCK price and 

crude oil price, we only estimate the volatility models for the ROCK price. 

Several findings are given, as follows. The first main result is that the change in 

the lag one or two periods in the crude oil price has significant impacts on the prices 

of MAP, urea, ammonia, ACID, and MOP for the three time periods. For each 

fertilizer price, the effect of the crude oil price in the second and third periods is 

maintained at a higher level than in the first period. These empirical outcomes 

indicate that crude oil price and MAP, urea, ammonia, ACID, and MOP prices are 

more strongly related when the crude oil price is at a higher level, which is consistent 

with the observations in Figures 1 and 2.  

Another important issue to investigate is the effect on the five fertilizer prices 

due to a 1% change in the crude oil price, as implied in Tables 6-11. The percentage 

changes in fertilizer prices due to a 1% change in the crude oil price provide vital 

information concerning the sensitivity of each fertilizer price to changes in the oil 
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price. For example, as shown in Table 12, the impact of the oil price on the MAP price 

is 1.252% in the first period, 4.912% in the second period, and 6.416% in the third 

period. Similar qualitative results are obtained for the effects of crude oil prices on the 

remaining four fertilizer prices.   

The percentage changes in the five fertilizer prices due to a 1% change in the 

lagged values of crude oil price are positive in the second and third periods, but not in 

the first period, as the crude oil price has reached extremely high levels in the second 

and third periods. The oil price change is found to affect the price of fertilizer 

commodities through sharp increases in the prices of various energy-intensive inputs, 

including raw materials and fuel. This marked increase in the oil price is likely to 

have increased production costs. Consequently, the sensitivity of the five fertilizer 

prices to increases in the crude oil price become statistically significant when the 

crude oil price remains at a high level. 

4.4. Alternative Volatility Models for Crude Oil and Six Global 

Fertilizer Prices  

In order to investigate global fertilizer price volatility, an appropriate time series 

model needs to be determined that satisfies the appropriate regularity conditions. The 

first task is to determine the processes for the mean equation. We choose the ARMA 

processes with the smallest Schwarz Bayesian Information Criterion (BIC) value for 

the seven series in each period. The p-values of the Ljung-Box Q statistics of the 

residuals from the fitted models indicate that there is no autocorrelation at the 5% 

significance level. The specifications of the conditional mean and variance equations 

for the seven series are given in Table 5-11, respectively. 

The appropriate volatility models for each of the six fertilizer prices and crude 

oil price are chosen on the basis of BIC and the regularity conditions, namely for the 

higher-order moments to exist, and hence for the asymptotic properties of consistency 
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and asymptotic normality of the QMLE. The QMLE will be consistent and 

asymptotically normal when the weak log-moment condition is satisfied.  

The empirical estimates for the alternative volatility models for the seven price 

series are given in Tables 5-11 for the three different time periods (that is, with. one or 

two structural breakpoints). Suitable models for Poil are GJR(1,1) for the first two 

periods, and GARCH(1,1) for the third period, as shown in Table 5. Periods 1 and 2 

have asymmetric effects (with γ > 0 in the GJR(1,1) model). The short run persistence 

of shocks in periods 1, 2, and 3 are 0.079, 0.311 and 0.282, respectively, while the 

long run persistence of shocks in period 3 is 0.768, which is higher than in periods 1 

and 2 of 0.314, and 0.519, respectively. These empirical outcomes indicate that a 

higher peak in the crude oil price is associated with greater volatility, which can be 

difficult to control. Thus, it is important for energy policy to understand the 

relationship between the prices and volatility of crude oil and global fertilizer prices. 

For the MAP price series, a suitable model in three periods is GARCH(1,1), as 

shown in Table 6. The estimated coefficients satisfy the sufficient conditions for the 

conditional variance to be positive ( 0th  ). The short run persistence of shocks for 

MAP in periods 1, 2 and 3 is 0.108, 0.288 and 0.387, respectively, while long run 

persistence is 0.385, 0.554 and 0.856, respectively. Thus, MAP has the greatest long 

run persistence of shocks in the third period. As compared with both the short and 

long run persistence of the MAP and crude oil price, both price series have similar 

volatility effects in the three periods. In other words, both the level and volatility of 

MAP prices seem to be highly correlated with the crude oil price.  

Table 7 shows that the GARCH(1,1) model is the appropriate model for the three 

periods for the Urea series. The estimates show that the weak log-moment condition is 

satisfied, so that the QMLE in the three periods for Urea are consistent and 

asymptotically normal. The short run persistence of shocks for Urea in periods 1, 2 
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and 3 is 0.059, 0.364 and 0.312, respectively, and the long run persistence of shocks 

in periods 1, 2 and 3 is 0.331, 0.643 and 0.907, respectively. The long run persistence 

of shocks in period 3 is greater than in the other two periods, which is similar to the 

case of the crude oil and MAP prices.  

The appropriate model for the Ammonia series in the first and second periods is 

GARCH(1,1), as shown in Table 8. The short run persistence of shocks in periods 1 

and 2 is 0.066 and 0.387, respectively, while the long run persistence of shocks in 

periods 1 and 2 is 0.356 and 0.899, respectively. The long run persistence of shocks in 

the second period is greater than its counterpart in period 1.   

Appropriate volatility models for Rock, Acid, and MOP prices for the three 

different time periods are shown in Tables 9-11. For the Rock price series, the suitable 

model in the three time periods is GARCH(1,1), as shown in Table 9. For the Acid 

price series, as shown in Table 10, the best model in the three periods is GARCH(1,1). 

For the MOP price series, as shown in Table 11, the best model for all three time 

periods is GARCH(1,1).  

The empirical results show that the long run persistence of shocks in periods 1, 2 

and 3 is 0.436, 0.621 and 0.811, respectively, for the Rock price, so that the Rock 

price in period 3 has the greatest long run persistence of shocks. For Acid prices, the 

long run persistence of shocks in periods 1, 2 and 3 is 0.316, 0.430 and 0.694, 

respectively, so that the long run persistence in period 3 is the greatest. With regard to 

MOP prices, the long run persistence of shocks in the three periods is 0.230, 0.672 

and 0.885, respectively, so that the third period again has the greatest long run 

persistence of shocks. Moreover, these price series behave in a similar manner to that 

of the crude oil price.  
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5. CONCLUDING REMARKS  

The main purpose of the paper was to evaluate empirically the effect of crude oil price 

on global fertilizer prices, both in the mean and volatility. Weekly data for 2003-2008 

were used in the empirical analysis. First, three time periods with two structural 

breakpoints were determined endogenously for six global fertilizer prices and crude 

oil price, using the Lee and Strazicich (2003) approach. Second, with regard to the 

relationships between the crude oil price and six global fertilizer prices, the Granger 

causality test showed that most global fertilizer prices are influenced by the crude oil 

price. The empirical results from the ARDL model showed that the percentage 

changes in five fertilizer prices (namely MAP, Urea, Ammonia, ACID, MOP) due to a 

1% change in the crude oil price are relatively larger, and also statistically significant, 

in the second and third periods, which suggests that the oil price is an important factor 

in production costs for fertilizer commodities. Consequently, the sensitivity of the five 

fertilizer prices to the oil price increased, and became statistically significant. This 

also explains why global fertilizer prices reached a peak in 2008, as the crude oil price 

reached a high level in 2008. 

An empirically adequate model of volatility of the six global fertilizer prices was 

determined by checking the regularity conditions of the estimated models. The 

symmetric and asymmetric univariate conditional volatility models, including the 

widely used GARCH, GJR and EGARCH models, were estimated and selected on the 

basis of the BIC criterion and the regularity conditions for the QMLE to be consistent 

and asymptotically normal. This is important for the empirical analysis, otherwise the 

empirical results would have no statistical foundation.  

   The contribution of shocks to the long run persistence of crude oil prices during 

the third period was found to be greater than during the first and second periods. This 

would suggest that the volatility in crude oil prices has recently increased in both 
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strength and frequency. Therefore, the strength and frequency of global fertilizer 

prices has increased gradually over time. As the volatility in global fertilizer prices 

has increased, vital energy prices and global agricultural production are likely to be 

affected significantly. This may lead to future instability in agricultural food prices. 

These empirical findings are crucial for determining sensible energy policy in order to 

understand the directional relationship between the prices and volatility of crude oil 

and global fertilizer prices. 
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Figure 1.  Price Trends for Global Fertilizers and Crude Oil, 2003-2008 

0

400

800

1,200

1,600

2,000

2,400

2003 2004 2005 2006 2007 2008

POIL
MAP
UREA
AMMONIA
ROCK
ACID
MOP

do
lla

rs
/p

e
r 

p
on

d 
o

r 
pe

r 
ba

rr
el

time



Chen et al. / Journal of Risk and Financial Management 5(2012) 78-114 

99 
 

 

Figure 2.  Higher Energy Use Fertilizer Prices and Crude Oil Price, 2003-2008 

0

200

400

600

800

1,000

1,200

1,400

2003 2004 2005 2006 2007 2008

MOP
MAP
UREA
POIL

do
lla

rs
/p

e
r 

po
un

d
 o

r 
pe

r 
ba

rr
el

time



Chen et al. / Journal of Risk and Financial Management 5(2012) 78-114 

100 
 

Table 1. Descriptive Statistics of Seven Price Series 

 

 

 

Statistics 

MAP 

(US$ 

/metric 

ton) 

Urea 

(US$ 

/metric 

ton) 

Ammonia

(US$ 

/metric 

ton) 

Acid 

(US$ 

/metric 

ton) 

Rock 

(US$ 

/metric 

ton) 

MOP 

(US$ 

/metric 

ton) 

Poil  

(Price of 

Oil. 

US$/Bale)

Sample 254 254 254 254 254 254 254 

Mean 258.07 225.80 280.72 428.30 78.46 206.18 48.29 

Medium 237 234.50 278.25 445.00 79.50 210.00 51.56 

Maximum 582.5 357.5 357.5 566.25 121.5 392.5 88.32 

Minimum 142.5 50.5 176 338.5 58 126 22.97 

Std. Dev. 89.39 55.51 53.89 70.01 18.97 57.95 17.23 
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Table 2. Augmented Dickey-Fuller (ADF) Unit Root Tests 

 

 

 

Series 

ADF tests 

With 

constant 

With constant and 

trend 

Critical values 

With trend 
With constant and 

trend 

Poil -1.326(1) -0.493(1) 

-3.457 (1％)

-2.873 (5％)

-2.573 (10％)

-3.995 (1％) 

-3.428 (5％) 

-3.137 (10％) 

MAP -2.154(9) -2.248(9) 

Urea -2.439(3) -3.125(3) 

Ammonia -1.089(9) -2.301(9) 

Rock -2.372(0) -2.681(0) 

Acid -2.179(0) -1.926(0) 

MOP 3.280(0) 1.327(0) 

Note: BIC is used to select the optimal lag length. The values in parentheses denote 

the number of lags. 
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Table 3. LM Unit Root Tests with Two Breaks 

 

Series LMτ k TB1 TB2 

Poil -6.017*** 8 20071129 20080327 

MAP -8.239*** 8 20071108 20080327 

Urea -8.264*** 8 20071220 20080424 

Ammonia -5.775** 7  20080320 

Rock -7.926*** 8 20070412 20080313 

Acid -15.920*** 0 20071220 20080410 

MOP -9.549*** 8 20071213 20080424 

Notes: The 1％, 5％ and 10％  critical values are -5.823, -5.286, and -4.989, 

respectively (see Lee and Strazicich, 2003). *, ** and *** denote significance 

at the 10％, 5％ and 1％ levels, respectively. 
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Table 4. The Granger Causality test for six fertilizer prices with crude oil price 

 

Dependent 

Variable 

Period 

Period 1 Period 2 Period 3 

MAP 4.030* 4.381* 4.958** 

Urea 4.099* 4.743** 5.195** 

Ammonia 3.429* 3.576*  

Rock 0.336 1.086 0.477 

Acid 4.040* 3.378* 3.622* 

MOP 3.492* 3.183* 3.654* 

Note: The value in table 4 belongs to F-Statistics.  

* and ** denote significance at the 5％ and 1％ levels, respectively.
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Table 5. Volatility in Crude Oil Prices 

 

Period 2003/01/09-2007/11/22 2007/11/29-2008/03/20 2008/03/27-2008/12/04

Series 

(Poil) 

ARMA(3,2) ARMA(2,1) ARMA(3,3) 

GJR(1,1) GJR(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.519 

(0.062) 

0.393 

(0.016) 

0.617 

(0.030) 

AR(2) 
0.154 

(0.007) 

0.280 

(0.002) 

0.199 

(0.010) 

AR(3) 
-0.181 

(0.061) 
 

0.032 

(0.087) 

MA(1) 
0.473 

(0.064) 

-0.268 

(0.065) 

0.323 

(0.011) 

MA(2) 
-0.753 

(0.050) 
 

-0.293 

(0.013) 

MA(3)   
0.012 

(0.077) 

Variance Equation 

ω 
0.527 

(0.178) 

0.372 

(0.164) 

0.007 

(0.014) 

α 
0.133 

(0.034) 

0.238 

(0.085) 

0.282 

(0.031) 

β 
0.235 

(0.108) 

0.207 

(0.199) 

0.485 

(0.079) 
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γ 
-0.108 

(0.075) 

0.147 

(0.096) 
 

Log 

moment 
-0.819 -0.598 -0.156 

Second 

moment 

0.421 

 
0.519 0.768 

Short run 

persistence 
0.079 0.311 0.282 

Long run 

persistence 
0.314 0.519 0.768 

BIC 2.491 3.814 4.601 

Note: Values in parentheses denote standard errors. 

 

Table 6. Mean and Volatility in MAP Prices 

 

Period 2003/01/09-2007/11/01 2007/11/08-2008/03/20 2008/03/27-2008/12/04

Series 

(MAP) 

ARMA(2,1) ARMA(1,1) ARMA(1,0) 

GARCH(1,1) GARCH(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.633 

(0.212) 

0.848 

(0.115) 

0.819 

(0.056) 

AR(2) 
-0.284 

(0.122) 
  

MA(1) 
0.137 

(0.064) 

-0.228 

(0.092) 
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Oil Price(-1) 
0.236 

(0.107) 

0.636 

(0.217) 

0.613 

(0.225) 

Oil Price(-2)   
0.280 

(0.303) 

Variance Equation 

ω 
0.768 

(0.363) 

0.015 

(0.712) 

0.032 

(0.700) 

α 
0.108 

(0.042) 

0.288 

(0.104) 

0.387 

(0.113) 

β 
0.275 

(0.057) 

0.266 

(0.086) 

0.469 

(0.150) 

γ 
 

 
  

Log moment -0.478 -0.373 -0.105 

Second 

moment 
0.385 0.554 0.856 

Short run 

persistence 
0.108 0.288 0.387 

Long run 

persistence 
0.385 0.554 0.856 

BIC 5.465 8.169 7.610 

Note: Values in parentheses denote standard errors. 
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Table 7. Mean and Volatility in Urea Prices 

 

Period 2003/01/09-2007/12/13 2007/12/20-2008/04/17 2008/04/24-2008/12/04

Series 

(Urea) 

ARMA(1,1) ARMA(1,1) ARMA(1,1) 

GARCH(1,1) GARCH(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.675 

(0.018) 

0.756 

(0.052) 

0.779 

(0.047) 

MA(1) 
-0.238 

(0.088) 

-0.183 

(0.086) 

0.050 

(0.012) 

Oil Price(-1) 
0.806 

(0.294) 

3.114 

(0.719) 

2.897 

(0.225) 

Oil Price(-2) 
0.531 

(0.248) 

1.958 

(0.735) 

1.493 

(0.188) 

Oil Price(-3) 
 

 
 

0.574 

(0.163) 

Variance Equation 

ω 
0.452 

(0.313) 

0.647 

(0.609) 

0.094 

(0.826) 

α 
0.059 

(0.023) 

0.364 

(0.109) 

0.312 

(0.107) 

β 
0.272 

(0.088) 

0.279 

(0.133) 

0.595 

(0.168) 

γ 
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Log moment -0.506 -0.259 -0.067 

Second 

moment 
0.331 0.643 0.907 

Short run 

persistence 
0.059 0.364 0.312 

Long run 

persistence 
0.331 0.643 0.907 

BIC 6.485 6.853 6.305 

Note: Values in parentheses denote standard errors. 

 

Table 8. Mean and Volatility in Ammonia Prices 

 

Period 2003/01/09-2008/03/13 2008/03/20-2008/12/04 

Series  

(Ammonia) 

ARMA(2,1) ARMA(1,0) 

GARCH(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.883 

(0.022) 

0.788 

(0.180) 

AR(2) 
-0.299 

(0.022) 
 

MA(1) 
0.216 

(0.040) 
 

Oil Price(-1) 
1.085 

(0.318) 

2.364 

(0.489) 

Oil Price(-2) 0.447 1.402 
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(0.212) (0.315) 

Variance Equation 

ω 
0.113 

(2.494) 

0.214 

(1.130) 

α 
0.066 

(0.025) 

0.387 

(0.112) 

β 
0.290 

(0.038) 

0.512 

(0.245) 

γ   

Log moment -0.472 -0.174 

Second moment 0.356 0.899 

Short run persistence 0.066 0.387 

Long run persistence 0.356 0.899 

BIC 7.238 7.568 

Note: Values in parentheses denote standard errors.  

 

Table 9. Mean and Volatility in Rock Prices 

 

Period 2003/01/09-2007/04/05 2007/04/12-2008/03/06 2008/03/13-2008/12/04

Series 

(Rock) 

ARMA(2,1) ARMA(1,1) ARMA(3,2) 

GARCH(1,1) GARCH(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.334 

(0.061) 

0.963 

(0.054) 

0.703 

(0.263) 

AR(2) 0.248  -0.149 
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(0.009) (0.107) 

MA(1) 
0.371 

(0.061) 

-0.223 

(0.027) 

0.279 

(0.080) 

MA(2)   
0.106 

(0.051) 

Variance Equation 

ω 
0.005 

(0.004) 

0.121 

(0.164) 

0.160 

(0.191) 

α 
0.109 

(0.022) 

0.262 

(0.084) 

0.369 

(0.095) 

β 
0.327 

(0.196) 

0.359 

(0.105) 

0.442 

(0.034) 

γ    

Log moment -0.579 -0.436 -0.127 

Second 

moment 
0.436 0.621 0.811 

Short run 

persistence 
0.109 0.262 0.369 

Long run 

persistence 
0.436 0.621 0.811 

BIC 1.751 2.611 2.558 

Note: Values in parentheses denote standard errors.  
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Table 10. Mean and Volatility in Acid Prices 

 

Period 2003/01/09-2007/12/10 2007/12/17-2008/03/31 2008/04/07-2008/12/04

Series 

(Acid) 

ARMA(1.0) ARMA(2,1) ARMA(3,2) 

GARCH(1,1) GARCH(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.648 

(0.043) 

0.695 

(0.340) 

0.793 

(0.190) 

MA(1)  
0.113 

(0.052) 

0.101 

(0.023) 

Oil Price(-1) 
0.214 

(0.103) 

1.053 

(0.304) 

0.628 

(0.274) 

Oil Price(-2) 
0.131 

(0.062) 
 

0.325 

(0.112) 

Variance Equation 

ω 
0.401 

(0.326) 

0.038 

(0.550) 

0.329 

(1.063) 

α 
0.059 

(0.016) 

0.203 

(0.098) 

0.298 

(0.107) 

β 
0.257 

(0.113) 

0.227 

(0.126) 

0.463 

(0.176) 

γ    

Log moment -0.574 -0.323 -0.176 

Second 0.316 0.430 0.694 
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moment 

Short run 

persistence 
0.059 0.203 0.298 

Long run 

persistence 
0.316 0.430 0.694 

BIC 7.222 7.475 7.202 

Note: Values in parentheses denote standard errors.  

 

Table 11. Mean and Volatility in MOP Prices 

 

Period 2003/01/09-2007/12/06 2007/12/13-2008/04/17 2008/04/24-2008/12/04

Series 

(MOP) 

ARMA(2,1) ARMA(1,1) ARMA(1,0) 

GARCH(1,1) GARCH(1,1) GARCH(1,1) 

Mean Equation 

AR(1) 
0.830 

(0.133) 

0.899 

(0.256) 

0.896 

(0.101) 

AR(2) 
-0.245 

(0.107) 
  

MA(1) 
-0.122 

(0.053) 

-0.271 

(0.129) 
 

Oil Price(-1) 
0.108 

(0.036) 

0.958 

(0.273) 

0.707 

(0.234) 

Oil Price(-2) 
0.062 

(0.020) 
 

0.294 

(0.151) 

Variance Equation 
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ω 
0.027 

(0.028) 

0.602 

(0.476) 

0.330 

(0.571) 

α 
0.096 

(0.032) 

0.438 

(0.163) 

0.285 

(0.116) 

β 
0.142 

(0.014) 

0.234 

(0.114) 

0.600 

(0.266) 

γ    

Log moment -0.738 -0.365 -0.101 

Second 

moment 
0.238 0.672 0.885 

Short run 

persistence 
0.096 0.438 0.285 

Long run 

persistence 
0.238 0.672 0.885 

BIC 4.755 8.722 7.563 

Note: Values in parentheses denote standard errors.  

Table 12. The Elasticity of Fertilizer Price with Respect to Crude Oil Price 

 

The percentage 

change in each 

fertilizer price 

a 1％ changes in the crude oil price 

Period 1 Period 2 Period 3 

MAP Oil(-1) 1.252％ Oil(-1) 4.912％
Oil(-1) 6.416％

Oil(-2) 2.931％

Urea 
Oil(-1) 3.789％ Oil(-1) 15.445％ Oil(-1) 23.324％

Oil(-2) 2.496％ Oil(-2) 9.711％ Oil(-2) 11.497％
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Oil(-3) 3.435％

Ammonia 
Oil(-1) 6.265％ Oil(-1) 13.834％

 
Oil(-2) 2.581％ Oil(-2) 8.205％

Acid 
Oil(-1) 1.902％

Oil(-1) 7.929％
Oil(-1) 11.412％

Oil(-2) 1.075％ Oil(-2) 6.530％

MOP 
Oil(-1) 0.461％ Oil(-1) 4.914％ Oil(-1) 6.431％

Oil(-2) 0.264％   Oil(-2) 2.674％

 

 


