

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Hermann, Daniel; Mußhoff, Oliver

Working Paper

I might be a liar, but not a thief: An experimental distinction between the moral costs of lying and stealing

cege Discussion Papers, No. 346

Provided in Cooperation with:

Georg August University of Göttingen, Department of Economics

Suggested Citation: Hermann, Daniel; Mußhoff, Oliver (2018): I might be a liar, but not a thief: An experimental distinction between the moral costs of lying and stealing, cege Discussion Papers, No. 346, University of Göttingen, Center for European, Governance and Economic Development Research (cege), Göttingen

This Version is available at: https://hdl.handle.net/10419/178496

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Discussion Papers

I MIGHT BE A LIAR, BUT NOT A THIEF: AN EXPERIMENTAL DISTINCTION BETWEEN THE MORAL COSTS OF LYING AND STEALING

Daniel Hermann Oliver Mußhoff

Georg-August-Universität Göttingen

ISSN: 1439-2305

I might be a liar, but not a thief:

An experimental distinction between the moral costs of lying and

stealing

Daniel Hermann¹

Oliver Mußhoff²

Abstract

In this paper, we shed light on the different moral costs of dishonesty and stealing. To accom-

plish this, we set up a die-rolling task which allowed participants to increase their own payout

through dishonesty or theft. The results show that participants have fewer reservations about

dishonesty compared to stealing, which implies higher intrinsic costs for stealing. We found

that gender contributes to this effect, as women distinguish significantly between lying and

stealing, while men do not.

Keywords: Lying, Deception, Stealing, Laboratory Experiment, Behavioral Economics

1

3

JEL Codes: C91, D63, D82

1. Introduction

2 Immoral actions are commonplace and their consequences affect everyone in the private,

business and public sector. Very topical demonstrations of large-scale dishonesty are the

4 Volkswagen emission control defeat device (Wang, Jerrett, Sinsheimer, & Zhu, 2016) and the

5 Libor manipulation (Abrantes-Metz, Kraten, Metz, & Seow, 2012). Volkswagen was dishon-

6 est regarding their emission values and thereby have harmed their customers and the public

¹ University of Göttingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany, +49 551 39 9321, dherman@uni-goettingen.de.

² University of Göttingen, Platz der Göttinger Sieben 5, 37073 Göttingen, Germany, +49 551 39 4842, omussho@uni-goettingen.de.

7 due to decreasing residual values of purchased cars and decreased air quality (Wang et al., 8 2016). The Libor manipulation, on the other hand, was a dishonest report of interest rates by 9 large banks. These reports led to manipulated reference interest rates and damage to the global 10 economy running into the millions of euros (Abrantes-Metz et al., 2012). Besides these exam-11 ples of lying, stealing also harms the economy. The 2017 National Retail Security Survey 12 indicated that a loss of \$14.67 billion arises annually from inventory-related employee theft 13 in the retail industry of the U.S. alone (National Retail Federation, 2017). Worldwide, there is 14 about \$48 billion of retail loss annually due to employee theft and about \$48 billion from 15 shoplifting (The Smart Cube). Such theft is mainly committed by men (Centre of Retail Re-16 search). 17 Due to the importance of immoral behavior in all of its manifestations in the economic con-18 text, several studies have focused on lying and stealing in different situations (see Rosen-19 baum, Billinger, & Stieglitz, 2014). There is evidence that non-pecuniary moral costs arise 20 from lying and stealing. This enhances the classical theory on immoral behavior as a product 21 of income effects and the probability of getting caught and punished (Fischbacher & Föllmi-22 Heusi, 2013; Gneezy, 2005). Further research found that the intrinsic costs of lying depend on 23 the context: Kocher, Schudy, and Spantig (2018) reported that teams lie more often than indi-24 viduals. This effect is driven by communication which seems to reduce moral costs regarding 25 dishonesty. Moreover, pay schemes affect the intrinsic costs of lying. Belot and Schröder 26 (2013) showed that competition fosters lying compared to fixed wage and piece-rate incen-27 tives. Furthermore, participants in experiments have also been found to lie more often when 28 they feel they are treated unfairly (Houser, Vetter, & Winter, 2012). The same context depend-29 ency holds true for the intrinsic costs of stealing. Greenberg (1993) revealed that unfairly 30 treated participants who are underpaid show a higher tendency to steal. Moreover, it is more 31 likely that people steal from their companies compared to individual coworkers, indicating 32 varying intrinsic costs of stealing which are conditional on the victim (Greenberg, 2002).

34 pend on factors allowing the self-justification of the decisions (Gravert, 2013). 35 While the framework conditions are crucial for lying as well as stealing, there has not been any attempt to compare the level of lying and stealing under identical incentives so far. How-36 37 ever, there are two studies illustrating that such a comparison seems worthwhile. Gravert 38 (2013) investigated stealing with two experimental tasks: the effort-based theft task according 39 to Mazar, Amir, and Ariely (2008) and a chance-based modified die-rolling task (Fischbacher 40 & Föllmi-Heusi, 2013). The author found that the rate of theft was lower in the die-rolling 41 setting, as moral costs are reduced by the effort put forth in the theft task. In this case, effort 42 provides a self-justification for stealing. Therefore, this contribution provides evidence that 43 different experimental settings complicate a comparison of lying and stealing between studies. 44 In a further study conducted by Belot and Schröder (2013), the authors introduced a design 45 which allowed participants to simultaneously lie and steal from the experimenters. Further-46 more, they compared different pay schemes using this design. Their results indicate that there 47 was no evidence for theft, while lying in various forms arose and amounted to 10% of partici-48 pants' productivity in a previously carried out real effort task. Due to the different types of 49 immoral behaviors which are possible in such a setting, stealing might be the less favorable 50 because of higher moral costs. 51 To the best of our knowledge, there is no study comparing the amount of lying and stealing in 52 an experiment with constant incentives and risk of being caught as a consequence of immoral 53 behavior. The differentiation of the costs associated with these two immoral behaviors has 54 relevant implications for social interactions and economic questions. If one of these immoral 55 behaviors is associated with higher intrinsic costs for economic agents, it might be possible to 56 reduce economic losses by reframing decisions in the various contexts. For instance, the 57 transfer of responsibility to agents under conditions of asymmetric information and conse-58 quently the changed perception of the immoral action might increase behavior which is in

Summarizing these findings, there is evidence that costs of immoral behavior reasonably de-

accordance with moral convictions. To address this point, our study contributes to the literature in two ways: 1) We investigated whether intrinsic costs of lying and stealing differ. To achieve this, we implemented an experimental design in which participants in a lying treatment rolled a die on their computer screen and reported the outcome. In contrast, participants in a stealing treatment did not report the outcome, but rather allocated the money in private, i.e., it was possible to steal. Participants received an envelope containing the maximum possible payoff and were asked to take the money according to the die-rolling outcome. Based on the identical framework conditions and incentives, we were able to distinguish between moral costs of lying and stealing. 2) We investigated gender differences regarding intrinsic costs of lying versus stealing. Gender differences regarding the intrinsic costs of immoral behavior are a matter of discussion in the literature (Childs, 2012; Grosch & Rau, 2017). Results regarding a potential effect of gender on lying (Childs, 2012; Grosch & Rau, 2017; Gylfason, Arnardottir, & Kristinsson, 2013; Houser et al., 2012; Kajackaite & Gneezy, 2017) as well as stealing (Friesen & Gangadharan, 2013; Gravert, 2013) are ambiguous. Thus, we shed light on gender-specific costs of immoral behavior in three fields: lying, stealing and distinctions between lying and stealing.

2. Theoretical framework and behavioral predictions

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

We will first define a theoretical framework explaining dishonesty as well as stealing as immoral behavior from an economic point of view. This framework is based on the model introduced by Kajackaite and Gneezy (2017). We start by considering a situation in which an individual i observes a state of nature t. This individual has the possibility to report t and earn the associated financial payoff m_t . It is also possible to report t', which results in payoff $m_{t'}$. The benefit of the immoral behavior then is $m_{t'} - m_t$.

However, immoral behavior is not solely associated with benefits. Disutility arises from violating a moral concept (Gneezy, 2005). These intrinsic costs are defined as C_i and are hetero-

- geneous across individuals but constant for each individual i (Kajackaite & Gneezy, 2017).
- 85 The range of C_i is restricted to $0 \le C_i \le \infty$, where $C_i = 0$ and $C_i = \infty$ characterize an indi-
- vidual without any intrinsic value for moral behavior and an individual with pure aversion to
- 87 immoral behavior, respectively (López-Pérez & Spiegelman, 2013).
- 88 A second disutility arises from immoral behavior if the individual i is exposed when acting
- 89 immorally. This disutility can be described by a function $f(m_{t'}, m_t, p_i)$ which is increasing
- 90 with the probability p_i of being exposed and the size of the immoral action $m_{t'} m_t$
- 91 (Kajackaite & Gneezy, 2017). Individuals are heterogeneous regarding their disutility of get-
- 92 ting caught. Therefore, we denoted this by including parameter γ_i with $\gamma_i \ge 0$.
- 93 Consequently, an individual will take immoral action whenever:

$$m_{t'} - C_i - \gamma_i f(m_{t'}, m_t, p_i) > m_t$$
.

- 94 Starting from this theoretical framework, it becomes obvious that, on the one hand, incentives
- 95 influence immoral behavior, and, on the other hand, intrinsic as well as extrinsic costs of im-
- morality can influence a participant's decision to state t' instead of t. With this in mind, our
- 97 experimental design becomes relevant. We held γ_i and $m_{t'}$ constant across treatments, but
- 98 shifted the responsibility for the assignment of money, i.e., enabling lying in one experimental
- 99 setting and stealing in another.
- 100 A review of the relevant literature does not yield information regarding the assumption of
- varying intrinsic costs associated with lying and stealing. In Table 1, we provide a brief over-
- view about honesty levels in studies using self-reported outcomes (e.g. Fischbacher & Föllmi-
- Heusi, 2013) and theft tasks (e.g. Mazar et al., 2008). Here, self-reported outcomes measure
- 104 lying, while theft tasks disclose the proportion of theft. It becomes obvious that honesty levels
- in both tasks are rather comparable. This is underlined by the literature review of Rosenbaum
- et al. (2014), which derived average full honesty levels from reviewed studies. They indicate
- overall full honesty of 52.9% for self-reported outcomes (6 observations) and 64.7% for theft

tasks (8 observations), both with a relatively large spread: 33.5% - 74.0% for self-reported outcomes and 37.3% - 85.0% for theft tasks.

However, the studies of Belot and Schröder (2013) as well as Gravert (2013) indicate that a direct comparison of lying and stealing might be recommendable. Gravert (2013) found that self-reported outcome tasks reduce stealing compared to an effort-based theft task. Furthermore, providing the possibility to lie and steal simultaneously (Belot & Schröder, 2013) leads to the avoidance of stealing by participants. Thus, we assume that the intrinsic moral costs are higher for stealing, while theoretical predictions and previous research would imply constant intrinsic costs for both types of immoral behavior.

Table 1: Proportion of fully honest decisions in self-reported outcome and theft tasks of past studies (cf. Rosenbaum et al., 2014)

Study	Type	Sample	Overall full honesty in %
Gino and Wiltermuth (2014)	SRO	178 US citizens	76%
Fischbacher and Föllmi-Heusi (2013)	SRO	478 students	39%
Kocher et al. (2018)	SRO	273 students	59% - 69%
Gneezy, Kajackaite, and Sobel (2018)	SRO	916 students	67% - 74%
Friesen and Gangadharan (2013)	TT	115 students	67%
Gino and Pierce (2009)	TT	53 students	37%
Shu and Gino (2012)	TT	56 students	68%
Gino and Wiltermuth (2014)	TT	153 US citizens	41%

Note: SRO = self-reported outcome; TT = theft task

3. Experimental design

In this section, we describe our experiment. First, the design allowing participants to lie is introduced. Second, we explain the changes made in the experiment in order to test for theft. Third, we provide insights into the experimental procedure.

3.1. Die-rolling task

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

The general design was based on the die-rolling task introduced by Kocher et al. (2018) which is an extension of the Fischbacher and Föllmi-Heusi (2013) task. Before the task was carried out, participants had to correctly answer control questions regarding the task to ensure their understanding (see appendix A.1). Afterwards, participants saw a video of a die roll on their respective computer screens. A classic six-sided die was rolled in the video leading to six possible outcomes: □, □, □, □, □ or □. By drawing a random number, the software determined which outcome was shown. Participants were informed that the outcome of the die roll was determined by a random draw from six outcomes with an equal probability of occurrence. After the video played, the outcome of the die roll was visible on the participants' screens for about 12 seconds. Subsequently, the participants' task was to report the outcome of the die roll ('Die number seen: '). Any possible outcome (1, 2, 3, 4, 5 or 6) could be entered by the participants. Thus, participants had the possibility to report dishonestly. The reported number determined the payoff of the participant, while the outcome of the die roll did not affect the payoff. We used a specific payoff structure for the die roll outcome (see Table 2). As in previous research, the highest payoff was associated with rolling a '5' and the lowest payoff with rolling a '6' (Fischbacher & Föllmi-Heusi, 2013). Therefore, a payoff maximizer would always report the number associated with the highest payoff, i.e., '5'.

Table 2: Payoff structure of die-rolling task

Entered number	Your payoff	Residual
'1'	€2	€8
' 2'	€4	€6
'3'	€6	€4
' 4'	€8	€2
' 5'	€10	€0
'6'	€0	€10

As the participants were aware that the random number determining the outcome in the video was derived by the software, they could conclude that their lies were observed by the experimenter (Kocher et al., 2018).

3.2. Treatments

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

To answer our research questions, we implemented two treatments: Lying and Stealing. The general design of the die-rolling task described in the last section was used to observe Lying and was thus a replication of the Kocher et al. (2018) design. For the Stealing treatment, the die-rolling task was also carried out in order to determine the participants' payoffs and provide comparable framework conditions for both treatments. However, we then introduced specific modifications in the design to observe stealing: in the Stealing treatment, the participants were responsible for the allocation of money. Therefore, the outcome of the die-rolling task was not entered in the computer. Instead, each participant received an envelope containing five €2 coins, i.e., €10. In accordance with their respective outcomes, participants were asked to allocate the money in the envelope by removing their payoff and leaving the residual. Afterwards, they were asked to close the envelope. It was obvious from the instructions of the Stealing treatment (appendix A.1) that the envelopes were not collected during the experiment. The closed envelopes were simply left behind at the respective cabins.³ In order to avoid any potential misleading with regard to the attribution of envelopes to cabins after the experiment, we prepared our envelopes with specific signs on the corners which were only visible under UV-light (see appendix A.2). We prepared each envelope with a specific sign combination associated with a particular cabin number. With this modification in the Stealing treatment, we let participants allocate the money in the envelope by themselves and therefore allowed theft. Table 3 illustrates the characteristics of both treatments.

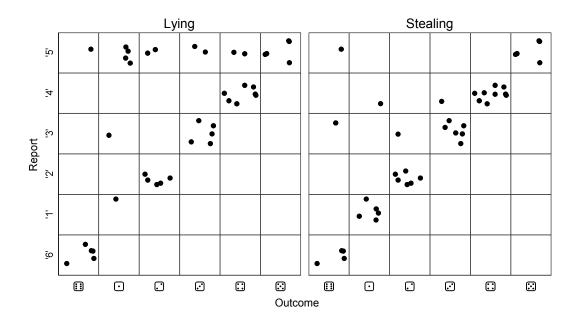
³ At the end of the experiment, one experimenter paid participants the remaining payment and a second experimenter made sure no one took the envelopes from other cabins.

Table 3: Comparison of treatments

	Treatment	
	Lying	Stealing
Control questions	x	X
Die roll video	X	X
Outcome of die roll suggests payoff	x	X
Enter die-rolling outcome in computer	X	-
Receive an envelope containing €10	-	X

3.3. Experimental procedure

The experiment was conducted in autumn 2017 at the University of Göttingen. A total of 80 participants (46.25% female) took part in the experiment, with 40 individuals randomly assigned to each treatment. The participants were recruited using ORSEE (Greiner, 2015) and the experiment was programmed in z-tree (Fischbacher, 2007).


We favored a between-subject design for our treatment comparison for the following reasons:
i) In a within-subject design, we would not be able to randomize the payoff-relevant treatment for the individuals as in Kocher et al. (2018). In our case, we would have to hand over the envelope containing real money, which would disclose the payoff-relevant task within the experiment directly. ii) It would be possible to pay individuals for all treatments in a within-subject design; however, this would lead to order effects induced by wealth changes as well as compensation effects, which are difficult to control for, making the within-subject design pointless. iii) In a within-subject comparison, it would be favorable that framework conditions were equal, i.e., the two outcomes of the die-rolling tasks matched, but this contradicts the premise of a random draw.

At the beginning of the experiment, participants received written instructions (see appendix A.1) and were requested to raise their hands if questions arose. Questions were asked and answered in private. Afterwards, participants carried out the die-rolling task followed by additional experimental tasks. In addition to the die-rolling task, we measured protected values regarding honesty according to Gibson, Tanner, and Wagner (2013). This detailed questionnaire is available in appendix A.3. Afterwards, participants answered two short incentivized fairness tasks which are not related to this paper. Subsequently, participants were asked to answer another short questionnaire. Finally, participants received their payoffs from the experimenter privately, which were composed of: i) a fee for showing up and ii) payoffs for the die-rolling task (*Lying* treatment only) and the additional tasks.

4. Results

In order to provide an overview of the participants' decisions, we illustrate the reports and the associated outcomes for both treatments in Figure 1. The outcome is the number which was shown by the dice. The report is the number the participant entered in the computer in the *Lying* treatment. As participants in the *Stealing* treatment did not report directly, we counted the amount of money remaining in the envelope to determine the report. On the one hand, Figure 1 demonstrates that in the *Lying* treatment, a considerable share of participants reported a higher pay-off than their outcomes indicated. Furthermore, most participants who lied reported a roll of '5' instead of their true outcome. On the other hand, there were only a few participants in the *Stealing* treatment who took advantage of the opportunity to withdraw more money from the envelope than their outcome suggested.

⁴ For simplicity, we also use the term 'report' for the *Stealing* treatment in the following.

Figure 1: Scatterplot with jitter for outcomes and reports in the two treatments (n per treatment = 40).

Note: Reports in the stealing treatments were recorded based on the money removed from the envelope; honest reports fall along the main diagonal.

In total, 30% of the participants lied while only 12.5% of participants stole. This difference is statistically significant according to a Chi^2 test⁵ (p = 0.056). Based on the different relative amounts of lying and stealing, we also calculated a measure for the relative additional payoff.⁶ Unsurprisingly, comparing the relative additional payoffs, we also found a statistically significant difference according to a Mann-Whitney test (p = 0.030). For *Lying*, the relative additional payoff was 0.288, while for Stealing it was only 0.080.

Result 1: Stealing is less frequent than lying.

Subsequent to the investigation of differences in the incidence of lying and stealing, we further analyzed whether this effect was justified by varying intrinsic costs between lying and stealing. To accomplish this, we measured the extent to which honesty is a protected value for participants according to Gibson et al. (2013). The lower the score of this protected value measure, the more easily participants will trade honesty for other goods. Thus, we expected a

⁵ We used the Chi² test if possible and the Fisher's exact test otherwise.

 $^{^6}$ The relative additional payoff is defined as: (report-outcome) / (10 euros-outcome). Thus, it is restricted between 0 (a participant reporting the true outcome) and 1 (a participant with an outcome < 5 reporting a 5).

correlation between the protected value score and lying in the respective treatment. Indeed, the correlation of protected values with the relative additional payoff was highly significant for the *Lying* treatment (Spearman rank correlation = -0.462; p = 0.003). Surprisingly, this correlation was not significant for the *Stealing* treatment (Spearman rank correlation = -0.182; p = 0.261). Therefore, the score in the protected value measure can be used to predict lying but not stealing (for illustration, see Figure 2). The reason for the lack of a significant correlation for *Stealing* was revealed by participants with a low protected value measure (median split). We compared the relative additional payoff of these participants between treatments. Indeed, we found a significant decrease in immoral behavior of participants with a low protected values score in the *Stealing* treatment (p = 0.044; Mann-Whitney test). Thus, participants who are willing to trade honesty as a moral value for other goods reveal less immoral behavior as they are faced with higher costs of immorality in the *Stealing* task. In contrast, those who regard honesty as a highly protected value were already acting according to their morale values in the *Lying* treatment, as their intrinsic costs for immoral behavior are generally high.

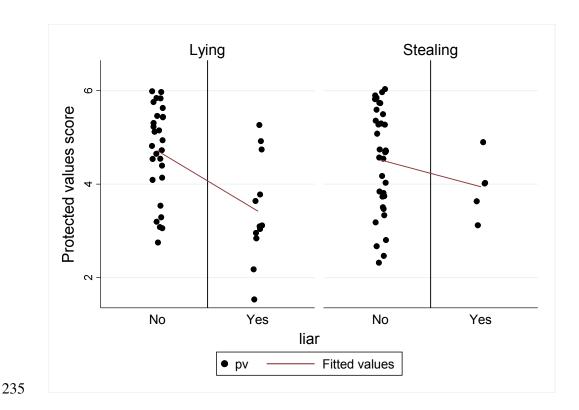


Figure 2: Scatterplot with x-axis jitter for the protected value scores of honest and dishonest participants in the two treatments (n per treatment = 40).

Note: Protected value score for honesty according to Gibson et al. (2013); possible values ranging from 0 to 6.

Result 2: Moral values on honesty predict lying but not stealing.

Result 3: Stealing is associated with higher intrinsic costs compared to lying.

Additionally, we investigated individual characteristics which explain the significant difference in immoral behavior we observed. An important characteristic of agents regarding their moral behavior is gender (Gylfason et al., 2013). The proportion of women and men showing immoral behavior in both treatments is shown in Table 4. Surprisingly, we did not find evidence for a gender effect in either treatment, i.e., gender does not predict lying or stealing. In both the *Lying* treatment (p = 1.000; Fisher's exact test) and the *Stealing* treatment (p = 0.345; Fisher's exact test), women showed a rate of moral behavior that was not significantly different from that of men. These results also hold true for the amount of the additional payoff (p = 0.695, p = 0.229; Mann-Whitney tests). However, comparing the treatment effect for genders separately, we found that women's behavior differed significantly (p = 0.090; Fish-

er's exact test) between the two treatments, but men's behavior did not (p = 0.488; Fisher's exact test). This result is also supported considering the relative additional payoff (women: p = 0.071, men: p = 0.167; Mann-Whitney tests). Thus, our treatment effect was driven by women who lie but avoid stealing.

Table 4: Moral and immoral behavior in both treatments divided by gender

	Lying		Stealing	
	Men $(n = 22)$	Women (n = 18)	Men (n = 21)	Women (n = 19)
Honest	68.2%	72.2%	80.9%	94.7%
Lie/Steal	31.8%	27.8%	19.1%	5.3%

Result 4: There is no gender effect for the moral costs of lying or stealing.

Result 5: Women steal less frequently than they lie.

5. Conclusion and Discussion

Lying and stealing are immoral actions disturbing social interactions and harming economic agents in various ways. We found a variation in the rate of immoral action between lying and stealing when all incentives and the risk of consequences from immoral actions were kept constant. Results suggest higher intrinsic costs associated with stealing compared to lying. Recent studies focus on self-justification as a main determinant of intrinsic costs of immoral behavior. We conclude, in line with these studies, that the authority receiving the immoral act provides participants with a potential self-justification. If someone is dishonest to someone else, the victim has the opportunity to convict the liar. This (possibly unrealistic) opportunity might be operationalized by liars to justify their immoral behavior. However, removing this authority leaves agents with less self-justification and increases their intrinsic costs of immoral behavior.

Focusing on the extent of lying in our experiment, the results are comparable to other studies using a die-rolling task with observable outcomes. Kocher et al. (2018) reported between 31% and 41% of participants lying under the same experimental conditions. Comparable results were also obtained by Gneezy et al. (2018), who did not use die-rolling, but rather a related task with observable outcomes. They found dishonesty levels between 26% and 33%. In contrast, for a theft task, different levels of stealing were reported. The proportion of thefts in our sample was more comparable to those elicited by Gravert (2013) with a similar design, i.e. randomly determined outcomes. However, the rate of theft in the studies applying the task of Mazar et al. (2008) was higher, ranging between 30% and 60% (Friesen & Gangadharan, 2013; Gino & Pierce, 2009; Shu & Gino, 2012). Gravert (2013) provided evidence for this difference, namely that the effort made in the classical theft task seems to be responsible for the higher levels of theft. A further comparison of our results can be made regarding the gender difference in lying and stealing. As we did not find evidence for a statistically significant gender difference for the amount of lying, we contradict findings of other researchers (Fosgaard, Hansen, & Piovesan, 2013; Grosch & Rau, 2017; Houser et al., 2012; Kajackaite & Gneezy, 2017). Nevertheless, the gender difference in honesty is a matter of discussion, as there are also studies that rejected the hypothesis of gender differences (Childs, 2012; Gylfason et al., 2013; Kajackaite & Gneezy, 2017). Our results support the latter studies; however, the tendency of the gender difference we observed was in line with predictions. In contrast, previous studies on stealing indicate a weak gender difference in stealing (Friesen & Gangadharan, 2013; Gravert, 2013). Indeed, our results tend in the direction that women steal less than men; however, they support the weak correlation found in the literature. Consequently, we contribute to the insights about gender differences regarding intrinsic costs of immoral behavior by finding evidence that women have more difficulty self-justifying stealing compared to lying.

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

The results obtained in this study could be used as a starting point for future investigations regarding moral costs of lying and stealing. It might be a worthwhile approach to apply our comparison of lying and stealing to the theft task of Mazar et al. (2008). Since Gravert (2013) reported that stealing varies from a die-rolling task to an effort task where stealing is possible, it might be feasible to investigate whether the different moral costs of lying and stealing are maintained in an effort-based framework. Furthermore, framework conditions for decision problems could be stylized to reflect applied decision situations which allow for immoral behavior. For instance, an interesting context could be a tax avoidance framing where participants have to report income and costs (lying) or have to pay the respective tax on their own (stealing). It could also be helpful to investigate the association of effort and intrinsic costs as well as moral compensation for lying and stealing in more detail.

References

- Abrantes-Metz, R. M., Kraten, M., Metz, A. D., & Seow, G. S. (2012). Libor manipulation? *Journal of Banking & Finance*, 36(1), 136–150. https://doi.org/10.1016/j.jbankfin.2011. 06.014
- Belot, M., & Schröder, M. (2013). Sloppy work, lies and theft: A novel experimental design to study counterproductive behaviour. *Journal of Economic Behavior & Organization*, 93, 233–238. https://doi.org/10.1016/j.jebo.2013.03.019
- Centre of Retail Research. *The Gender Offenders*. Retrieved from http://www.retail research.org/downloads/PDF/female_offenders.pdf
- Childs, J. (2012). Gender differences in lying. *Economics Letters*, 114(2), 147–149. https://doi.org/10.1016/j.econlet.2011.10.006
- Fischbacher, U. (2007). z-Tree: Zurich toolbox for ready-made economic experiments. *Experimental Economics*, 10(2), 171–178. https://doi.org/10.1007/s10683-006-9159-4
- Fischbacher, U., & Föllmi-Heusi, F. (2013). Lies in disguise: An experimental study in cheating. *Journal of the European Economic Association*, 11(3), 525–547.
- Fosgaard, T. R., Hansen, L. G., & Piovesan, M. (2013). Separating Will from Grace: An experiment on conformity and awareness in cheating. *Journal of Economic Behavior & Organization*, 93, 279–284. https://doi.org/10.1016/j.jebo.2013.03.027
- Friesen, L., & Gangadharan, L. (2013). Designing self-reporting regimes to encourage truth telling: An experimental study. *Journal of Economic Behavior & Organization*, 94, 90–102. https://doi.org/10.1016/j.jebo.2013.08.007
- Gibson, R., Tanner, C., & Wagner, A. F. (2013). Preferences for Truthfulness: Heterogeneity among and within Individuals. *American Economic Review*, 103(1), 532–548. https://doi.org/10.1257/aer.103.1.532
- Gino, F., & Pierce, L. (2009). The abundance effect: Unethical behavior in the presence of wealth. *Organizational Behavior and Human Decision Processes*, 109(2), 142–155. https://doi.org/10.1016/j.obhdp.2009.03.003
- Gino, F., & Wiltermuth, S. S. (2014). Evil genius? How dishonesty can lead to greater creativity. *Psychological Science*, 25(4), 973–981. https://doi.org/10.1177/095679761452 0714
- Gneezy, U. (2005). Deception: The Role of Consequences. *American Economic Review*, 95(1), 384–394. https://doi.org/10.1257/0002828053828662
- Gneezy, U., Kajackaite, A., & Sobel, J. (2018). Lying Aversion and the Size of the Lie. *American Economic Review*, 108(2), 419–453. https://doi.org/10.1257/aer.20161553
- Gravert, C. (2013). How luck and performance affect stealing. *Journal of Economic Behavior & Organization*, 93, 301–304. https://doi.org/10.1016/j.jebo.2013.03.026
- Greenberg, J. (1993). Stealing in the Name of Justice: Informational and Interpersonal Moderators of Theft Reactions to Underpayment Inequity. *Organizational Behavior and Human Decision Processes*, 54(1), 81–103. https://doi.org/10.1006/obhd.1993.1004

- Greenberg, J. (2002). Who stole the money, and when? Individual and situational determinants of employee theft. *Organizational Behavior and Human Decision Processes*, 89(1), 985–1003. https://doi.org/10.1016/S0749-5978(02)00039-0
- Greiner, B. (2015). Subject pool recruitment procedures: Organizing experiments with ORSEE. *Journal of the Economic Science Association*, *1*(1), 114–125. https://doi.org/10.1007/s40881-015-0004-4
- Grosch, K., & Rau, H. A. (2017). Gender differences in honesty: The role of social value orientation. *Journal of Economic Psychology*, 62, 258–267. https://doi.org/10.1016/j.joep.2017.07.008
- Gylfason, H. F., Arnardottir, A. A., & Kristinsson, K. (2013). More on gender differences in lying. *Economics Letters*, 119(1), 94–96. https://doi.org/10.1016/j.econlet.2013.01.027
- Houser, D., Vetter, S., & Winter, J. (2012). Fairness and cheating. *European Economic Review*, 56(8), 1645–1655. https://doi.org/10.1016/j.euroecorev.2012.08.001
- Kajackaite, A., & Gneezy, U. (2017). Incentives and cheating. *Games and Economic Behavior*, 102, 433–444. https://doi.org/10.1016/j.geb.2017.01.015
- Kocher, M. G., Schudy, S., & Spantig, L. (2018). I Lie? We Lie! Why? Experimental Evidence on a Dishonesty Shift in Groups. *Management Science*. Advance online publication. https://doi.org/10.1287/mnsc.2017.2800
- López-Pérez, R., & Spiegelman, E. (2013). Why do people tell the truth? Experimental evidence for pure lie aversion. *Experimental Economics*, 16(3), 233–247. https://doi.org/10.1007/s10683-012-9324-x
- Mazar, N., Amir, O., & Ariely, D. (2008). The Dishonesty of Honest People: A Theory of Self-Concept Maintenance. *Journal of Marketing Research*, 45(6), 633–644. https://doi.org/10.1509/jmkr.45.6.633
- National Retail Federation. (2017). 2017 National Retail Security Survey. Retrieved from https://nrf.com/system/tdf/Documents/NRSS-Industry-Research-Survey-2017.pdf?file=1&title=National%20Retail%20Security%20Survey%202017
- Rosenbaum, S. M., Billinger, S., & Stieglitz, N. (2014). Let's be honest: A review of experimental evidence of honesty and truth-telling. *Journal of Economic Psychology*, 45, 181–196. https://doi.org/10.1016/j.joep.2014.10.002
- Shu, L. L., & Gino, F. (2012). Sweeping dishonesty under the rug: How unethical actions lead to forgetting of moral rules. *Journal of Personality and Social Psychology*, 102(6), 1164–1177. https://doi.org/10.1037/a0028381
- The Smart Cube. *The Global Retail Theft Barometer 2014-2015*. Retrieved from http://www.fmc-warensicherung.ch/wp/wp-content/uploads/Global-Retail-Theft-Barometer-2015-ENG.pdf
- Wang, T., Jerrett, M., Sinsheimer, P., & Zhu, Y. (2016). Estimating PM 2.5 -associated mortality increase in California due to the Volkswagen emission control defeat device. *Atmospheric Environment*, 144, 168–174. https://doi.org/10.1016/j.atmosenv.2016.08.074

Appendix

A.1 Instructions for the experiment (*Lying* condition)

[The instructions were distributed in print. The task was completed on the computer.]

General instructions

Welcome to today's experiment.

Please keep quiet throughout the experiment and follow the experimenter's instructions. Please don't talk unless asked to talk.

If you have any questions, raise your hand. The experimenter will come to you and answer your questions confidentially. Please turn off your mobile devices and stow them.

Participants who fail to comply with these instructions will have to leave the room and will only be paid $\in 2$.

Task

Every participant in this room will see a video which shows a six-sided die being rolled. Each outcome $(\boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \exists, and \boxdot)$ is equally likely to occur.

The die is rolled for each participant independently of the others. That is, the die is <u>not</u> rolled once for all participants, but for each participant individually.

You must remember the outcome of your throw and enter it subsequently into a field on your computer screen.

The number that you enter determines your share of ≤ 10 . This share is your compensation from this experiment.

Number entered	Your share	Remainder
'1'	2€	8€
'2'	4 €	6 €
'3'	6€	4 €
'4'	8 €	2 €
'5'	10 €	0 €
' 6'	0€	10 €

Payment

After the experiment, you will answer a number of questions. Your answers can earn you additional money.

You will receive your compensation at the end of the experiment in return for your numbered badge. In addition to your compensation from the task, you'll receive a fixed €4 payment.

You will be paid confidentially. Participants will be called out individually to go into the reception room.

Instructions for the experiment (*Stealing* **condition)**

[The instructions for the *Stealing* condition are identical to those for the *Lying* condition except for the section 'Task' and 'Payment' which reads as follows:]

Task

Every participant in this room will see a video which shows a six-sided die being rolled. Each outcome $(\boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \exists)$, and $\boxdot)$ is equally likely to occur.

The die is rolled for each participant independently of the others. That is, the die is <u>not</u> rolled once for all participants, but for each participant individually.

You must remember the outcome of your throw and open the envelope in your cabin afterwards.

The number that you remember determines your share of ≤ 10 . This share is your compensation from this experiment. You will find ≤ 10 in ≤ 2 coins in the envelope.

Number entered	Your share	Remainder
'1'	2 €	8€
' 2'	4 €	6€
'3'	6€	4 €
'4'	8€	2 €
' 5'	10 €	0 €
' 6'	0€	10 €

Please remove your determined share from the envelope and subsequently close the envelope. This part of the experiment is then finished.

The envelope will not be collected immediately and you do not have to submit it at the end of the experiment. Please leave the envelope in your cabin. We will collect the envelopes once all participants have left the laboratory.

Payment

After the experiment, you will answer a number of questions. Your answers can earn you additional money.

You will receive your compensation for the additional tasks at the end of the experiment in return for your numbered badge. In addition to your compensation from the tasks, you'll receive a fixed €4 payment. This payment is independent from the already completed payment from the die-rolling task.

You will be paid confidentially. Participants will be called out individually to go into the reception room.

Comprehension questions

[Comprehension questions are identical for both conditions. In *Stealing* participants are asked to answer the questions for a hypothetical scenario in which they have to enter die-rolling outcome in the computer.]

Participants cannot proceed until they have answered 1 - a, 2 - 6, 3 - 4, and 4 - 8.

1. What is your task?

- a. To enter the displayed number that you have memorized
- b. To enter a different number than the displayed number that you have memorized
- c. To enter an arbitrary number
- 2. Suppose you see a ② and you enter a '3.' How many euros do you earn?
 3. Suppose you see a ② and you enter a '2.' How many euros do you earn?
 4. Suppose you see a ② and you enter a '4.' How many euros do you earn?

A.2 Picture of a marked envelope with and without UV light

A.3 Protected Value questions

What is your opinion on lying for one's own benefit?

I find this ...

Not at all praiseworthy 1–2–3–4–5–6–7 very praiseworthy

Not at all shameful 1-2-3-4-5-6-7 very shameful

Not at all acceptable 1-2-3-4-5-6-7 very acceptable

Not at all outrageous 1-2-3-4-5-6-7 very outrageous

Not at all blameworthy 1–2–3–4–5–6–7 very blameworthy

Very immoral 1-2-3-4-5-6-7 very moral

Honesty is something ...

... that one should not sacrifice, no matter what the (material or other) benefits.

Strongly disagree 1–2–3–4–5–6–7 strongly agree

... that cannot be measured in monetary terms.

Strongly disagree 1–2–3–4–5–6–7 strongly agree

... for which I think it is right to make a cost–benefit analysis.

Strongly disagree 1–2–3–4–5–6–7 strongly agree

... about which I can be flexible if the situation demands it.

Strongly disagree 1–2–3–4–5–6–7 strongly agree

... which is about things or values that are sacrosanct.

Strongly disagree 1–2–3–4–5–6–7 strongly agree