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Abstract

Quantitative models for climate policy modeling differ in the produc-
tion structure used and in the sizes of the elasticities of substitution.
The empirical foundation for both is generally lacking. This paper
estimates the parameters of two-level CES production functions with
capital, labour and energy as inputs, and is the first to systemati-
cally compare all nesting structures. Using industry-level data from
12 OECD countries, we find that the nesting structure where capital
and labour are combined first, fits the data best, but for most coun-
tries and industries we cannot reject that all three inputs can be put
into one single nest. These two nesting structures are used by most
climate models. However, while several climate policy models use a
Cobb-Douglas function for (part of the) production function, we reject
elasticities equal to one, in favour of considerably smaller values. Fi-
nally we find evidence for factor-specific technological change. With
lower elasticities and with factor-specific technological change, some
climate policy models may find a bigger effect of endogenous techno-
logical change on mitigating the costs of climate policy.
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1 Introduction

The recent literature on the long run effects of climate policy focusses on the

alleviating effect of endogenous technological change on the costs of climate

policy. That is, it studies the welfare gains from research and development or

from learning-by-doing effects when the economy faces some form of climate

policy, compared to a scenario without endogenous technological change.

Next to investing in new technologies, applied climate policy models allow

firms to react to price changes, caused by climate policy, through input sub-

stitution, e.g. shifting away from energy towards capital or labour. Since the

endogenous changes in technology are themselves determined by the price

changes and the substitution possibilities – the easier it is to substitute

away from energy, the smaller may be the need to invest in energy-saving

technologies –, it is important that the substitution possibilities in applied

climate policy models are not only empirically founded, but also disentan-

gled from changes in the production isoquant that come from technological

change: too high or too low elasticities may lead to under- or overestimates

of the effects of endogenous technological change. In addition, the results

of simulations without technological change are sensitive to the elasticity of

substitution. Indeed, Jacoby et al. (2004) found that, in the MIT EPPA

model, the elasticity of substitution between energy and value-added (the

capital-labour composite) is the parameter that affects the costs of ”Kyoto

forever” for the U.S. economy the most.

Unfortunately, in most applied dynamic climate policy models, neither

the production structure nor the accompanying elasticities of substitution

have an empirical basis. The current paper therefore estimates production

functions for climate policy models. We study all possible production struc-

tures, while taking into into account that both substitution possibilities and

technological change affect the production possibilities frontier.

In applied climate policy models the ease with which one can substitute
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one input for another is generally represented by elasticities of substitution.

As they generally use constant elasticity of substitution (CES) production

functions with capital, labour and energy as inputs, applied climate models

can choose between different structures for the production function. For

example, capital and energy can be combined first using a two-input CES

function with a specific elasticity of substitution, and subsequently this com-

posite can be ’nested’ into another CES function, where it is combined with

labour (with possibly a different elasticity).

Table 1 presents an overview of the production structures, elasticities

of substitution and types of technological change of some dynamic models

that simulate the effect of climate policy on the economy. The table shows

that the nesting structure differs between the various papers. Moreover, 3

out of 10 models do not nest at all and treat all inputs at the same level.

A second observation is that in all models but one, capital is in the same

nest as labour. One could nevertheless argue that capital and energy should

be combined first, as is done in the GREEN model (Burniaux et al., 1992),

since (physical) capital and energy generally operate jointly.

When we look at the elasticities of substitution in Table 1, we see that

models use different values for the elasticities of substitution, even when they

use the same nesting structure. In addition, many models use the knife-edge

case of a unit elasticity and hence neutral technological change in (part of)

the production function. When the elasticity of substitution is equal to one,

the CES function reduces to a Cobb-Douglas function, in which case relative

factor productivity is unaffected by technological change. Hence the choice

for a unit elasticity greatly affects the role of technological change in model

simulations.

The way in which technological change enters the production function

differs as well (we define technological change as a change in the position

or shape of the production isoquant, for a given elasticity of substitution).
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Table 1: Nesting structure and elasticities of substitution for several models

Author(s) Nesting structurea Elasticitiesb Techn. changec

Bosetti et al. (Forthcoming) (KL)E σK,L = 1; σKL,E = 0.5 exog. TFP;

endog. energy-specific

Burniaux et al. (1992)d (KE)L σK,E = 0 or 0.8; σKE,L = 0 or exogenous

0.12 or 1

Edenhofer et al. (2005) KLE σK,L,E = 0.4 endog. factor-specific

Gerlagh and Van der Zwaan (2003) (KL)E σK,L = 1; σKL,E = 0.4 endog. energy-specific

Goulder and Schneider (1999) KLEM σK,L,E,M = 1 endog. TFP

Kemfert (2002) (KLM)E σKLM,E = 0.5 endog. energy-specific

Manne et al. (1995) (KL)E σK,L = 1; σKL,E = 0.4 exogenous

Paltsev et al. (2005) (KL)E σK,L = 1; σKL,E = 0.4 − 0.5 exogenous

Popp (2004) KLE σK,L,E = 1 endog. energy-specific

Sue Wing (2003)e (KL)(EM) σK,L = 0.68 − 0.94; σE,M = 0.7; endog. TFP

σKL,EM = 0.7

a (KL)E means a nesting structure in which capital and labour are combined first, and then this composite is combined with energy
with a different elasticity of substitution. (KLE) means that all inputs are in a single-level CES function.

b σi,j is the elasticity of substitution between inputs i and j and σij,k is the elasticity of substitution between the composite of inputs
i and j on the one hand, and input k on the other.

c TFP = Total Factor Productivity growth.

d Lower elasticities for old capital, higher elasticities for new capital.

e Elasticities taken from Cruz and Goulder (1992).
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Focussing on endogenous technological change, we see that four of the models

in Table 1 use energy specific technological change, two models use total

factor productivity (TFP) growth (both at the industry level), and only one

model uses factor-specific technological change.

In sum, dynamic climate policy models differ along three dimensions:

nesting structure, the sizes of the elasticities, and the way in which techno-

logical change affects marginal productivities. Surprisingly, the production

functions used by the models in Table 1 generally lack empirical foundation.

While authors refer to other papers – that don’t have empirical validations

themselves – for the nesting structures and elasticities chosen, technology is

generally modeled in a way that the modeler suits best, or to best answer the

question under scrutiny. The current paper offers an empirical analysis of

all three dimensions by estimating CES production functions for all possible

nesting structures. Accordingly, we report the accompanying elasticities of

substitution for each nesting structure and conclude which nesting structure

fits the data best.

We find that the (KL)E nesting structure, that is a nesting structure

in which capital and labour are combined first, fits the data best, but we

generally cannot reject that the production function has all inputs in one

CES function (i.e. a 3-input 1-level CES function). These nesting structures

are used by most of the models in Table 1. However, for the (KL)E nesting

structure we reject that elasticities are equal to 1, in favour of considerably

lower values, while several of the climate policy models in the table use a

Cobb-Douglas function for (part of the) production function. Finally we test

for different technology trends and reject the hypothesis that only energy-

specific technological change matters, and the hypothesis of total factor

productivity (TFP) growth, in favour of factor-specific technological change.

That is, technology trends differ significantly between capital, labour and

energy.
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In all models in Table 1, firms minimize costs. Hence estimates of con-

stant substitution elasticities for dynamic climate policy models should start

from firms’ optimizing behavior. Only a few papers have estimated CES pro-

duction functions with capital, labour and energy as inputs, using equations

that are derived from optimizing behavior by firms. Prywes (1986) and

Chang (1994) both use ratios of first-order conditions to estimate the pa-

rameters of a (KE)L nesting structure, disregarding the (KL)E and (LE)K

structures.1 Both authors first use the ratio of the first-order conditions for

capital and energy to estimate the elasticity of substitution between capital

and energy, which we denote by σK,E . Using this estimate, they derive fitted

values for composite input Z and its price PZ , which are subsequently em-

ployed to estimate the elasticity of substitution between the capital-energy

composite on the one hand and labour on the other, which we denote by

σKE,L. For this they exploit the first-order conditions with respect to labour

and Z. However, when taking ratios of first-order conditions, it becomes im-

possible to identify the individual technology parameters, which we need to

study how technological change affects the production function.2

Prywes (1986) uses pooled data from 4-digit U.S. industries for the period

1971-1976 to estimate elasticities for 2-digit industries. He finds estimates

for σK,E ranging from -0.57 to 0.47. His estimates for σKE,L range from

0.21 to 1.58. Chang (1994) uses time series data for Taiwan and finds the

elasticity of substitution between capital and energy to be about 0.87, and

the one for labour and the capital-energy nest to be around 0.45.

The remainder of the paper is organized as follows. We first introduce the

1In a footnote, Chang (1994) claims he compared several nesting structures and chose
to combine capital and energy first, based on the R2. However, he does not report his
results.

2Prywes (1986) estimates total factor productivity growth separately from the first
order conditions, using dummy variables. Hence his results on technological change do
not affect his estimates of the substitution elasticities and are hence outside the scope of
this paper.
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nested CES production function and derive the equations to be estimated.

We then describe our dataset and the econometric method in section 3. In

section 4 we present our estimation results, where we first discuss which

nesting structure fits the data best and then present the estimated elastic-

ities of substitution for each nesting structure. We explicitly test whether

substitution elasticities differ significantly from one and whether the produc-

tion function should be nested. Section 4.4 presents our results regarding

technological change. In section 5 we confront our results with the produc-

tion functions used in the literature on dynamic climate policy modeling.

We summarize and conclude in section 6.

2 Model specification

The two-level three-input CES production function can be nested in three

ways: (KL)E, (KE)L and (LE)K. For the purpose of illustration we focus in

this section on the (KL)E structure, although we estimate all three nesting

structures and present the results for all nesting structures in section 4. The

(KL)E nesting structure looks as follows:3

Q =

(
α(AEE)

σKL,E−1

σKL,E + (1 − α)(Z)
σKL,E−1

σKL,E

) σKL,E

σKL,E−1

, (1)

with

Z =

(
β(AKK)

σK,L−1

σK,L + (1 − β)(ALL)
σK,L−1

σK,L

) σK,L

σK,L−1

. (2)

When (2) is substituted into (1) we have a nested CES function where inputs

capital K and labour L are combined to form a composite input Z in the

3As in the literature on general equilibrium climate policy modeling, we assume con-
stant returns to scale production functions. Note that in models with endogenous techno-
logical change the returns to scale need not be constant at the aggregate level, although
they are for each individual goods producer.
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lower nest, which in turn is combined with the energy input E to give final

output Q. In the remainder of the paper we denote a composite of two inputs

by Z. The Aj , j ∈ {E, K, L}, are parameters representing factor-specific

levels of technology.4 The elasticity of substitution between energy E and

composite input Z equals σKL,E , and σK,L is the elasticity of substitution

between inputs K and L. Parameters α and β, 0 < α, β < 1, are share

parameters.5

When an elasticity of substitution equals unity, the production function

involved reduces to a Cobb-Douglas function with the share parameters in

(1) and (2) as production elasticities. From (1) and (2) it is easy to see

that if σKL,E = σK,L, then the nested function reduces to a one-level CES

production function where all three inputs are equally easy to substitute

for each other. On the other hand, if two inputs are not in the same nest,

then the elasticity of substitution between these inputs is determined by the

two CES elasticities and the cost-share of the composite. Hence a different

nesting structure implies different values for the substitution elasticities.

One of the questions to be answered in this paper is whether a total

factor productivity representation of technology in climate policy models

is sufficient, or technology trends are input specific. With a purely total

factor productivity representation of technology we have AE = AK = AL,

in which case we can multiply a total factor productivity parameter AQ

out of the right-hand side of (1). To test for factor-augmenting technolog-

ical change versus total factor productivity growth we need to identify all

(factor-specific) technology parameters. As noted in the introduction, this

is not possible when the equations to be estimated are derived from ratios

4Note that we multiplied out any total factor productivity term AQ and Z-specific
technology parameter AZ . Hence these are included in the factor-specific technology
parameters Aj .

5The levels of output, inputs, Z, and of the five technology parameters are time-
and possibly country- or industry-dependent, but we suppressed the subscripts to ease
notation.
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of first order conditions. We will show that, using a system of equations

derived from cost-minimization, we can not only identify all factor-specific

technology parameters but in addition we can explicitly test for TFP growth

against the null hypothesis of factor-specific technological change.

Following Berndt (1991, p. 457), we assume that our 2-digit industry-

level data (see section 3) are sufficiently disaggregated to assume that prices

are exogenous, and derive our system of equations from the cost function

approach. With a two-level CES production function, the cost minimization

problem of a firm can be represented as a two-stage problem: in the case

of the (KL)E nesting structure we first have to find the optimal demand

for K and L per unit of Z, given prices and technology, and then use the

resulting relative price of Z to solve for the optimal demand for E and Z in

the upper nest.6 We present the problem for the upper nest of the (KL)E

nesting structure (the problems for the nest with K and L, and for the other

nesting structures, are analogous):

min
E,Z

PEE + PZZ s.t. (1), (3)

where the price of input j is denoted by Pj . From the first order conditions

we can derive the cost function c(PE , PZ , Q). After applying Shephard’s

lemma we find the conditional factor demands. Following the literature on

climate policy modeling, we assume price-taking behaviour by firms, which

implies that the unit cost function gives the price of output. Substitut-

ing this result into the conditional factor demands, taking logarithms, and

6The weak separability of the nested CES function allows us to first solve for the relative
optimal factor demand for the lower nest. Since our functions are homogenous of degree
one, we then know the input demand and cost price per unit of Z. This information can
subsequently be used to find the optimal levels of E and Z, from which the optimal levels
of K and L can be derived.
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rearranging, gives for input E (the equation for Z is analogous):

ln

(
E

Q

)
= σKL,E lnα + (σKL,E − 1) lnAE + σKL,E ln

(
PQ

PE

)
. (4)

As is well-known in the literature on estimating constant substitution elas-

ticities, not all parameters can be estimated, as usually the equation (or

system of equations) to be estimated is under-identified. This is can be

seen in (4): if we estimate this equation using price and quantity data (by

adding an error term to the right-hand side), the first two terms on the right

hand side would end up in the constant term and hence the share parameter

α and technology parameter AE cannot be individually identified. After

taking first differences (i.e. for each variable X we take X(t) − X(t − 1)),

such that we get percentage changes in (4), the first term on the right-hand

side drops out and we can identify (the growth rate of) the factor-specific

technology parameter from the constant term, using the estimate for the

elasticity of substitution. The same procedure can be applied for input Z

and the lower nest. This gives us the following four equations for the (KL)E

structure, where lower-case letters denote percentage changes:

e − q = (σKL,E − 1)aE + σKL,E(pQ − pE) (5)

z − q = σKL,E(pQ − pZ) (6)

k − z = (σK,L − 1)aK + σK,L(pZ − pK) (7)

l − z = (σK,L − 1)aL + σK,L(pZ − pL) (8)

On the left-hand side of each equation we see the percentage change in the

ratio of two quantities. On the right-hand side of each equation we first see

a term containing an elasticity of substitution, σi,j or σij,k, and a technology

parameter aj (except for (6), see footnote 4), and a term consisting of the

product of a substitution elasticity and the percentage change of the ratio

10



of two prices. Hence the first equation explains the growth rate of the

energy-output ratio e − q from the (negative of the) growth rate of their

relative price pQ − pE , the substitution possibilities σKL,E , and the rate of

energy-augmenting technological change aE .

Unfortunately z and pZ are unobservable, and they can neither be de-

rived using the method used by Prywes (1986) and Chang (1994) (as in that

case we would not be able to estimate the technology parameters), nor using

an index method.7 To circumvent this problem, we add pK −pQ− (pZ −pQ)

to both sides of (7), which gives us the growth rate of the share of labour

costs in the costs of the intermediate input on the left-hand side. We then

add pZ − pQ to both sides of (6), divide both sides by σKL,E − 1, and

substitute the resulting expression for pZ − pQ into the right-hand side of

(7). Applying the same procedure to (8) gives us the following system of

equations:

e − q = (σKL,E − 1)aE + σKL,E(pQ − pE) (9)

θ̃KZ = (σK,L − 1)aK +
σK,L − 1

1 − σKL,E

θ̃ZQ + (1 − σK,L)(pK − pQ) (10)

θ̃LZ = (σK,L − 1)aL +
σK,L − 1

1 − σKL,E

θ̃ZQ + (1 − σK,L)(pL − pQ) (11)

where θ̃mn ≡ pm + m − (pn + n) is the percentage change of the cost share

of input M in the costs of producing N . For the case of the (KL)E nesting

7To see this, write (2) in growth rates, which gives z = θKZ(aK + k) + θLZ(aL + l),
where the θs are cost-shares. This shows that we need data on technological change to
construct data for z. However, as can be seen from (7) and (8), we need data on z and pZ

to be able to identify aL and aK . Hence constructing a series for z or pZ using an index
method, and using data on prices and quantities of capital and labour (that is, without
knowledge of the technology parameters), will lead to measurement error and hence biased
estimates of the coefficients.

11



structure, this leads to the following model to be estimated:

y1 = α1 + β1x1 + ε1 (12)

y2 = α2 + β21x21 + β22x22 + ε2 (13)

y3 = α3 + β31x31 + β32x32 + ε3 (14)

where the εs are error terms and the dependent variables are y1 = e − q,

y2 = pK +k−d ln(PkK+PLL) and y3 = pL+l−d ln(PkK+PLL), with d lnX

denoting the first difference of the natural logarithm of X. The independent

variables are x1 = pQ−pE , x21 = x31 = d ln(PkK+PLL)−pQ−q, x22 = pK−

pQ and x32 = pL−pQ. From (10) and (11) we see that we have to impose the

following cross-equation restrictions when estimating the system: β22 = β32

and β21 = β31 = −β22/(1 − β1).
8 We can then derive our parameters as

follows: σKL,E = β1, σK,L = 1 − β22, aE = α1/(β1 − 1), aL = −α2/β22 and

aK = −α3/β22.

Following the analysis above, we see that if we assume that technology

is not factor-specific but based on total factor productivity (that is if we do

not normalize AQ to 1 but instead assume that AE = AK = AL = 1) we

can derive the TFP growth parameter aQ. For the (KL)E nesting structure

this gives:

e − q = (σKL,E − 1)aQ + σKL,E(pQ − pE) (15)

θ̃KZ =
σK,L − 1

1 − σKL,E

θ̃ZQ + (1 − σK,L)(pK − pQ) (16)

θ̃LZ =
σK,L − 1

1 − σKL,E

θ̃ZQ + (1 − σK,L)(pL − pQ) (17)

Since the last model is a special case of the model with factor-specific tech-

nological change, we can test whether technological change is based on total

8Using the weak separability of the nested CES function, we first estimate (12) and
use the result for β1 to impose the restriction on β21 and β22.
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factor productivity growth (as modeled by Goulder and Schneider, 1999;

Sue Wing, 2003) or factor-specific. To be more precise, we can test for the

model of TFP growth by testing −α2/β22 = −α3/β32 = 0.9

In addition we can test for specific functional forms. We can test whether

the production function is a one-level, non-nested CES by testing the restric-

tion β21 (= β31) = 1. We can test for a Cobb-Douglas function for one of

the two levels by testing β1 = 1 and β22 = β32 = 0, respectively.

3 Econometric model and data

We estimated the system (12)-(14) for each of our 3 nesting structures.

To identify the parameters of our model, we first estimate (12) and use

the resulting estimate for the elasticity of substitution for the outer nest

in the restriction on the system (13)-(14) (see footnote 2). As described

below, we have industry-level time series data for 12 countries. We use

country-industry fixed effects (i.e. a dummy for each country-industry com-

bination) and estimate models with industry-specific elasticities and models

with country-specific elasticities.10 That is, we estimate the system (12)-

(14) for each nesting structure with panels for each industry to estimate

industry-specific elasticities, and estimate the same system for each nesting

structure with panels for each country to estimate country-specific elastic-

ities, which gives us in total 6 systems to estimate. We estimate the fixed

effects models using least squares dummy variable models.

The data are derived from the IEA Energy Balances and from the OECD

International Sectoral Database.11 They form an unbalanced panel for 12

9We also tested for the model with TFP growth by testing α2 = α3 = 0, since both tests
are statistically correct but may give different results. Our conclusions are qualitatively
unaffected when using this alternative test.

10We have too few observations per country-industry combination (12 on average, with
for some country-industry combinations as few as 6 observations) to estimate elasticities
using panels at the combined country-industry level.

11We use the same database as van Soest et al. (2006).
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OECD countries, with up to 7 industries (6 sub-industries of the manufac-

turing industry plus the construction industry), and up to 19 years of obser-

vations. The countries involved are Belgium, Canada, Denmark, Finland,

France, United Kingdom, Italy, the Netherlands, Norway, Sweden, USA and

West-Germany. The industries involved are basic metal products, construc-

tion, food & tobacco, textiles & leather, non-metallic minerals, transporta-

tion equipment, and the paper, pulp & printing industry. Data come from

the time period 1978-1996. After dropping the first and last percentile of

observations for each variable (to correct for outliers without having to judge

on individual observations) we have 994 observations.

All prices are in 1990 U.S. dollars, PPP. The price of value added is

the numeraire. Industry output is the sum of value added and the value of

energy at 1990 market prices. Energy is energy use in kiloton of oil equiva-

lents (IEA Energy Balances). Price of energy is per kiloton of oil equivalent

(IEA Energy Balances). Capital is gross capital stock (OECD International

Sectoral Database). Price (user cost) of capital is foregone interest plus de-

preciation minus capital gain. Here the interest rate is the nominal bond

rate (IMF, International Financial Statistics), depreciation is the ratio of

consumption of fixed capital and gross capital stock (both OECD Interna-

tional Sectoral Database) or 3.5%, capital gain is the percentage change in

the ratio of gross capital stock in current national prices and gross capi-

tal stock. Labour is total employment in man hours (OECD International

Sectoral Database). Price of labour is compensation of employees, per man

hour (OECD International Sectoral Database).

4 Estimation results

Before we move to our results regarding goodness of fit, the elasticities of

substitution and technological change, we first discuss the cross-equation

restrictions that were mentioned before.
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4.1 Cross-equation restrictions

As noted in section 2, we have to impose some cross-equation restrictions

on the system (13)-(14) to estimate the elasticity of substitution for the

inner nest. Before we did so, we first estimated the unrestricted system for

all nesting structures, both for country- and industry-specific elasticities.

In most cases, the cross-equation restriction β22 = β32 was rejected. More

precisely, for the model with country-specific elasticities the restriction was

rejected for 11 out of 12 countries for the (KL)E nesting structure, the

restriction was rejected for 9 out of 12 countries for the (LE)K structure,

and for the (KE)L structure it was rejected for 6 out of 12 countries. For

the model with industry-specific elasticities the restriction was rejected for

all sectors for the (KL)E nesting structure, the restriction was rejected for

6 out of 7 industries for the (LE)K nesting structure, and for the (KE)L

nesting structure it was rejected for 5 out of 7 industries.

However, the purpose of this paper is to estimate elasticities of substi-

tution that can be used in the dynamic climate policy modeling literature,

by making the exactly the same assumptions as in the climate policy mod-

eling literature. That is, we started from a nested constant returns to scale

CES production function, and assumed perfect competition at all levels.

Although a 3-input translog production function is much more flexible, it

would have given a range of (non-constant) elasticities, which would not

be suitable for climate policy models without having to make additional

assumptions. We therefore proceed with our analysis, imposing the cross-

equation restrictions even for those equations where they are rejected ex

ante, to find the parameters of the nested CES production function that fits

the data best.
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Table 2: Goodness of fit

(KL)E (LE)K (KE)L

Industry σs 0.3897 0.3041 0.1233

Country σs 0.3977 0.2983 0.1434

Note: R2 adjusted for degrees of freedom.

4.2 Goodness of fit

As noted in the introduction, the literature on climate policy modeling lacks

a systematic comparison of the empirical relevance of the nesting structures

(KL)E, (KE)L and (LE)K. We present the goodness of fit of the three nesting

structures in table 2.12

Table 2 shows that there are substantial differences in how well each

nesting structure fits the data. For both the model with industry-specific

elasticities and the model with country-specific elasticities the R
2

is highest

for the (KL)E nesting structure. The (LE)K nesting structure fits the data

much better than the (KE)L structure. This is quite surprising, as one might

expect the decision on capital investment to be determined jointly with the

decision on labour demand or energy demand, instead of the demand for

labour to be determined jointly with the demand for energy. Compared to

the other nesting structures, the (KE)L structure fits the data poorly.

12We first estimated the model for each nesting structure with country-industry fixed
effects for all equations. We then re-estimated each model for each nesting structure,
with a common intercept (i.e. a pooled regression) for those equations where we could
not reject a common fixed effect at the 10% significance level. For both the model with
industry-specific elasticities and the model with country-specific elasticities we rejected
the null-hypothesis that the fixed effects were all equal for the second equation of the
inner nest for the (KL)E structure, and for the equation for the inner nest for the (LE)K
structure. Tables 2 and 3 present the results of the latter regressions.
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4.3 Elasticities of substitution

Table 3 presents our results for the elasticities of substitution. We will

discuss them by nesting structure.13

4.3.1 The (KL)E nesting structure

Several dynamic climate policy models use the (KL)E or ((KL),(EM)) nest-

ing structure. That is, they first combine capital and labour, and this com-

posite is subsequently combined with energy (or an energy-materials com-

posite) using a different elasticity of substitution. The first column of Table

3 shows our estimates for the elasticity of substitution between energy and

the capital-labour composite. We see a considerable amount of variation

over industries and countries. The industry estimates range from 0.17 to

0.69, while the country estimates range from 0.12 to 0.77. Note that we

cannot reject perfect complementarity (i.e. an elasticity equal to zero) be-

tween energy and the capital-labour composite for the Netherlands. The

elasticities for capital and labour are reported in the second column and

show quite some variation as well, with estimates ranging from 0.27 to 0.65

for the industry elasticities and from 0.35 to 0.63 for the country estimates.

Table 4 presents the probability values for the two sided tests whether

each elasticity is equal to one, in which case we would have a Cobb-Douglas

production function.14 For the (KL)E nesting structure, we cannot reject a

Cobb-Douglas production function for the outer nest (i.e. σKL,E = 1) for

Canada. For all other countries and industries the null-hypothesis of a unit

elasticity is rejected.

13We tested whether the elasticities were the same for all countries or all industries. We
rejected this hypothesis for all nests and for all nesting structures.

14A p-value smaller than 0.05 implies that we can reject the null-hypothesis at the 5%
significance level.
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Table 3: Estimated elasticities of substitution

(KL)E (LE)K (KE)L
σKL,E σK,L σLE,K σL,E σKE,L σK,E

Industry σs
Basis metals 0.6921∗∗ 0.6451∗∗ 0.5242∗∗ 0.9076∗∗ 0.8532∗∗ 0.9718∗∗

(0.0683) (0.0241) (0.0255) (0.0197) (0.0417) (0.0171)
Construction 0.3709∗∗ 0.2699∗∗ 0.2103∗∗ 0.6069∗∗ 0.9705∗∗ 0.9973∗∗

(0.0575) (0.0332) (0.0345) (0.0431) (0.1034) (0.0015)
Food & Tob. 0.3884∗∗ 0.4653∗∗ 0.4246∗∗ 0.8570∗∗ 0.9030∗∗ 0.9931∗∗

(0.0562) (0.0216) (0.0223) (0.0235) (0.0635) (0.0057)
Transport Eq. 0.1742∗ 0.5293∗∗ 0.4453∗∗ 0.8472∗∗ 1.0486∗∗ 1.0052∗∗

(0.0804) (0.0327) (0.0349) (0.0345) (0.0740) (0.0030)
Non-metal. Min. 0.4353∗∗ 0.4840∗∗ 0.4152∗∗ 0.8921∗∗ 0.9845∗∗ 1.0015∗∗

(0.0669) (0.0216) (0.0224) (0.0227) (0.0575) (0.0009)
Paper etc. 0.4428∗∗ 0.3837∗∗ 0.3284∗∗ 0.8106∗∗ 0.8750∗∗ 0.9977∗∗

(0.0745) (0.0244) (0.0247) (0.0317) (0.0717) (0.0083)
Textiles etc. 0.3262∗∗ 0.3655∗∗ 0.3097∗∗ 0.8362∗∗ 1.0512∗∗ 0.9993∗∗

(0.0645) (0.0213) (0.0218) (0.0287) (0.0654) (0.0020)
Country σs
Belgium 0.6735∗∗ 0.6282∗∗ 0.5444∗∗ 0.8832∗∗ 1.0265∗∗ 0.9993∗∗

(0.0742) (0.0343) (0.0362) (0.0297) (0.0678) (0.0024)
Canada 0.7705∗∗ 0.5664∗∗ 0.3912∗∗ 0.8889∗∗ 0.8973∗∗ 0.9905∗∗

(0.1384) (0.0427) (0.0459) (0.0394) (0.0617) (0.0118)
Denmark 0.5695∗∗ 0.4154∗∗ 0.3804∗∗ 0.8797∗∗ 0.8923∗∗ 0.9868∗∗

(0.0901) (0.0350) (0.0349) (0.0335) (0.0875) (0.0091)
Finland 0.5397∗∗ 0.5742∗∗ 0.4570∗∗ 0.8769∗∗ 0.9635∗∗ 0.9952∗∗

(0.0669) (0.0283) (0.0302) (0.0264) (0.0615) (0.0027)
France 0.3748∗∗ 0.3983∗∗ 0.3629∗∗ 0.7940∗∗ 0.9482∗∗ 0.9984∗∗

(0.0695) (0.0262) (0.0273) (0.0347) (0.0990) (0.0030)
UK 0.2572∗∗ 0.3487∗∗ 0.2737∗∗ 0.7452∗∗ 0.8270∗∗ 0.9682∗∗

(0.0764) (0.0317) (0.0338) (0.0409) (0.0709) (0.0122)
Italy 0.2695∗∗ 0.5301∗∗ 0.4674∗∗ 0.8435∗∗ 0.9530∗∗ 0.9923∗∗

(0.0748) (0.0327) (0.0347) (0.0311) (0.0796) (0.0040)
Netherlands 0.1218 0.3763∗∗ 0.3362∗∗ 0.8006∗∗ 0.8484∗∗ 0.9974∗∗

(0.0999) (0.0316) (0.0319) (0.0439) (0.0988) (0.0141)
Norway 0.2366∗ 0.4027∗∗ 0.3433∗∗ 0.7648∗∗ 0.8153∗∗ 0.9692∗∗

(0.0966) (0.0382) (0.0401) (0.0485) (0.0942) (0.0182)
Sweden 0.2548∗∗ 0.5189∗∗ 0.4535∗∗ 0.8514∗∗ 0.9673∗∗ 1.0011∗∗

(0.0903) (0.0313) (0.0322) (0.0336) (0.0807) (0.0028)
USA 0.6066∗∗ 0.3523∗∗ 0.3007∗∗ 0.8989∗∗ 1.0710∗∗ 0.9956∗∗

(0.1153) (0.0276) (0.0282) (0.0427) (0.1097) (0.0039)
West-Germany 0.3367∗∗ 0.4109∗∗ 0.3529∗∗ 0.7560∗∗ 1.1429∗∗ 0.9895∗∗

(0.0906) (0.0405) (0.0403) (0.0510) (0.1421) (0.0110)

Note: Standard errors in parentheses. */** indicates that coefficient differs from zero at
5/1% level of significance. Regressions with fixed effects for the second equation for the
inner nest of the (KL)E structure and for the equation for the outer nest for the (LE)K
structure, for both the model with industry-specific elasticities and the model with country-
specific elasticities. Pooled regressions for all other equations.
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Table 4: Tests for Cobb-Douglas function.a

(KL)E (LE)K (KE)L

σKL,E σK,L σLE,K σL,E σKE,L σK,E

Industry σs

Basis metals 0.0000 0.0000 0.0000 0.0000 0.0005 0.0982

Construction 0.0000 0.0000 0.0000 0.0000 0.7753 0.0702

Food & Tob. 0.0000 0.0000 0.0000 0.0000 0.1267 0.2231

Transport Eq. 0.0000 0.0000 0.0000 0.0000 0.5114 0.0821

Non-metal. Min. 0.0000 0.0000 0.0000 0.0000 0.7879 0.0886

Paper etc. 0.0000 0.0000 0.0000 0.0000 0.0819 0.7794

Textiles etc. 0.0000 0.0000 0.0000 0.0000 0.4337 0.7219

Country σs

Belgium 0.0000 0.0000 0.0000 0.0001 0.6967 0.7860

Canada 0.0978 0.0000 0.0000 0.0048 0.0965 0.4232

Denmark 0.0000 0.0000 0.0000 0.0003 0.2187 0.1478

Finland 0.0000 0.0000 0.0000 0.0000 0.5529 0.0700

France 0.0000 0.0000 0.0000 0.0000 0.6012 0.5985

UK 0.0000 0.0000 0.0000 0.0000 0.0149 0.0088

Italy 0.0000 0.0000 0.0000 0.0000 0.5548 0.0510

Netherlands 0.0000 0.0000 0.0000 0.0000 0.1250 0.1093

Norway 0.0000 0.0000 0.0000 0.0000 0.0502 0.0905

Sweden 0.0000 0.0000 0.0000 0.0000 0.6852 0.7023

USA 0.0007 0.0000 0.0000 0.0179 0.5176 0.2550

West-Germany 0.0000 0.0000 0.0000 0.0000 0.3151 0.3395
a Two-sided p-values for H0: elasticity equal to 1.

In addition we tested for common elasticities over the two nests (i.e.

σKL,E = σK,L. That is, we tested whether the production function could

have a single elasticity of substitution and hence could be non-nested. As

is shown in Table 5, we cannot reject a non-nested production function for

6 industries and 10 countries (of which for 2 countries we can reject at the

5% significance level but not at 1%).
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4.3.2 The (LE)K nesting structure

The substitution elasticities for both nests of the (LE)K nesting structure

differ significantly from zero for all countries and all industries. Values for

σLE,K range from 0.21 to 0.52 for the industry estimates and from 0.27

to 0.54 for the country estimates. Industry and country elasticities for the

inner nest range from 0.61 to 0.91 and from 0.75 to 0.89, respectively. For

all elasticities we can reject the null of a unit elasticity at the 5% level. We

cannot reject a Cobb-Douglas function for the inner nest for the USA at the

1% level. Contrary to the (KL)E structure we can reject the null-hypothesis

of a common elasticity for both nests for all countries and all industries for

the (LE)K nesting structure.

4.3.3 The (KE)L nesting structure

The (KE)L nesting structure, which has the lowest R
2
, shows remarkably

high elasticities when compared to the (KL)E and (LE)K nesting structures.

For the outer nest, σKE,L, the values range from 0.85 to 1.05 for the industry

estimates, and from 0.82 to 1.14 for the country estimates (see Table 3). The

values for the elasticity of substitution between capital and energy range

from 0.97 to 1.00, for both countries and industries.

When we test for Cobb-Douglas production functions for the outer nest,

we can only reject it for the basis metals industry (at the 1% significance

level) and for the UK (at the 5% level, but not at the 1% level), while for the

inner nest we only reject a Cobb-Douglas production function for the UK.

We cannot reject a common elasticity for both nests for 6 out of 7 industries

and 11 out of 12 countries.

4.4 Technological change

The models in Table 1 not only differ in nesting structure and sizes of sub-

stitution elasticities, but also in the way productivity improvements enter
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Table 5: Tests for common elasticities (no nesting).a

(KL)E (LE)K (KE)L

Industry σs

Basis metals 0.5167 0.0000 0.0086

Construction 0.1287 0.0000 0.7953

Food & Tob. 0.2025 0.0000 0.1575

Transport Eq. 0.0000 0.0000 0.5576

Non-metal. Min. 0.4889 0.0000 0.7683

Paper etc. 0.4507 0.0000 0.0898

Textiles etc. 0.5631 0.0000 0.4276

Country σs

Belgium 0.5792 0.0000 0.6897

Canada 0.1591 0.0000 0.1384

Denmark 0.1113 0.0000 0.2832

Finland 0.6353 0.0000 0.0000

France 0.7518 0.0000 0.6126

UK 0.2694 0.0000 0.0500

Italy 0.0015 0.0000 0.6219

Netherlands 0.0153 0.0000 0.1960

Norway 0.1102 0.0000 0.1090

Sweden 0.0058 0.0000 0.6757

USA 0.0322 0.0000 0.4921

West-Germany 0.4549 0.0000 0.2822
a Two-sided p-values for H0: σi,j = σij,k.
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the production function. We saw in Table 1 that, of those models with

endogenous technological change, 4 models use energy-specific technological

change, 2 models use industry-specific total factor productivity changes and

1 model uses factor-specific technological change. Since all these models ei-

ther use a (KL)E or (KLE) nesting structure, and since this is the structure

that fits the data best, we focus on the results for technological change for

the (KL)E nesting structure (recall that for the (KL)E nesting structure we

could not reject a (KLE) structure for most countries and most industries).

Table 6 shows the factor-specific technology trends for the (KL)E nesting

structure.15 We find rates of energy-augmenting technological change of

around 1.7% per year. Interestingly we find the highest rate of energy-

specific technological change in the energy-intensive basis metals industry.

The rates of labour-augmenting technological change are generally higher

than the rate of energy-augmenting technological change, with values around

2.9%, while the rates of capital-augmenting technological change are found

to be negative and around -3%.

For our purpose it is interesting to see whether the technology trends for

the three inputs differ from each other. Table 7 presents, for each country

and each industry, tests whether the technology trends are equal. We can

reject that the rate of energy-augmenting technological change and the rate

of labour-augmenting technological change are equal, for 4 out of 7 industries

and 8 out of 12 countries. When testing the equality of either of these two

technology trends and the rate of capital-augmenting technological change,

we can reject the null-hypothesis for even more industries and countries. We

15The table reports rates of factor-specific technological change for the (KL)E nesting
structure, for the model with industry-specific elasticities and the model with country-
specific elasticities. For those equations for which we rejected all fixed effects to be equal
(see section 4.3) we tested for the fixed effects to be equal over industries (for the models
with industry elasticities) or countries (for the models with country elasticities). If the null-
hypothesis was not rejected at the 10% level for some industry/country, we imposed the
fixed effects to be equal over all countries/industries for that particular industry/country.
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Table 6: Rates of factor-specific technological change, (KL)E nesting structure

Energy Labour Capital

Industry σs
Basis metals 0.0283∗ 0.0438∗∗ −0.0204∗

(0.0112) (0.0051) (0.0094)
Construction 0.0139∗∗ 0.0212∗∗ −0.0199a

(0.0049) (0.0023) (0.0162)
Food & Tob. 0.0143∗∗ 0.0288∗∗ −0.0230∗∗

(0.0050) (0.0030) (0.0055)
Transport Eq. 0.0106∗∗ 0.0331∗∗ −0.0567∗∗

(0.0037) (0.0039) (0.0106)
Non-metal. Min. 0.0154∗∗ 0.0299∗∗ −0.0198a

(0.0055) (0.0031) (0.0206)
Paper etc. 0.0156∗∗ 0.0250∗∗ −0.0295∗∗

(0.0057) (0.0026) (0.0052)
Textiles etc. 0.0129∗∗ 0.0243∗∗ −0.0170a

(0.0045) (0.0025) (0.0166)

Country σs
Belgium 0.0281∗ 0.0416∗∗ −0.0449∗∗

(0.0110) (0.0055) (0.0116)
Canada 0.0400 0.0367∗∗ −0.0210

(0.0266) (0.0051) (0.0117)
Denmark 0.0213∗∗ 0.0267∗∗ −0.0266∗∗

(0.0080) (0.0031) (0.0079)
Finland 0.0199∗∗ 0.0360∗∗ −0.0415∗∗

(0.0070) (0.0042) (0.0094)
France 0.0147∗∗ 0.0256∗∗ −0.0302∗∗

(0.0050) (0.0027) (0.0061)
UK 0.0124∗∗ 0.0237∗∗ −0.0105a

(0.0041) (0.0025) (0.0185)
Italy 0.0126∗∗ 0.0327∗∗ −0.0274∗∗

(0.0042) (0.0038) (0.0091)
Netherlands 0.0104∗∗ 0.0243∗∗ −0.0203∗∗

(0.0035) (0.0026) (0.0072)
Norway 0.0120∗∗ 0.0257∗∗ −0.0343∗∗

(0.0041) (0.0030) (0.0093)
Sweden 0.0123∗∗ 0.0321∗∗ −0.0439∗∗

(0.0041) (0.0037) (0.0106)
USA 0.0233∗ 0.0238∗∗ −0.0066a

(0.0100) (0.0025) (0.0178)
West-Germany 0.0138∗∗ 0.0261∗∗ −0.0098

(0.0048) (0.0031) (0.0078)
Note: Standard errors in parentheses. */** indicates that coefficient
differs from zero at 5/1% level of significance.
a Industry/country for which H0: ’common intercept for all coun-
tries/industries’ was rejected. Reported result is unweighted average
over countries/industries.
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Table 7: Tests for ai = aj , for (KL)E structure

aE = aL aE = aK aL = aK

Industry σs

Basis metals 0.2095 0.0009 0.0000

Construction 0.1758 0.1205a 0.0885b

Food & Tob. 0.0126 0.0000 0.0000

Transport Eq. 0.0000 0.0048 0.0000

Non-metal. Min. 0.0212 0.1023c 0.0510b

Paper etc. 0.1369 0.0000 0.0000

Textiles etc. 0.0254 0.2068c 0.1502a

Country σs

Belgium 0.2735 0.0000 0.0000

Canada 0.9039 0.0359 0.0000

Denmark 0.5249 0.0000 0.0000

Finland 0.0496 0.0000 0.0000

France 0.0537 0.0000 0.0000

UK 0.0193 0.2004e 0.1272g

Italy 0.0004 0.0000 0.0000

Netherlands 0.0017 0.0001 0.0000

Norway 0.0066 0.0000 0.0000

Sweden 0.0004 0.0000 0.0000

USA 0.9635 0.1956f 0.1402f

West-Germany 0.0308 0.0103 0.0001

Note: Two-sided p-values for H0: ai = aj .
a Unweighted average over all countries; p < 0.10 for 9
out of 12 countries. b Unweighted average over all coun-
tries; p < 0.10 for 10 out of 12 countries. c Unweighted
average over all countries; p < 0.10 for 8 out of 12 coun-
tries. d Unweighted average over all countries; p < 0.10
for 7 out of 12 countries. e Unweighted average over all
industries; p < 0.10 for 2 out of 7 industries. f Un-
weighted average over all industries; p < 0.10 for 5 out
of 7 industries. g Unweighted average over all industries;
p < 0.10 for 3 out of 6 industries.
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therefore conclude that rates of factor-specific technological change tend to

differ over factors.

As noted in Section 2, we can test for the model of total factor productiv-

ity growth by testing aL = aK = 0. As can be inferred from Tables 6 and 7

and as is confirmed by formal tests (not shown), we can reject aL = aK = 0

for all countries and industries for the (KL)E nesting structure.

5 Discussion

Comparing the results of the previous section with the climate policy models

in Table 1, we can draw four conclusions.

The first conclusion refers to the nesting structure chosen by the climate

policy models. Nearly all models have capital and labour in the same nest.

This nesting structure is supported by our results as the (KL)E nesting

structure seems to fit the data best. The (KE)L nesting structure, as used

in Burniaux et al. (1992), on the other hand, performs rather poorly in terms

of goodness of fit. The argument that the demand for capital and energy is

determined jointly, as machines use energy, is only partly valid. Capital is

not just the stock of available machines, but money invested in general, or

foregone consumption. Our results suggest that, given the (KL)E nesting

structure, substitution elasticities may be the same for both nests for several

countries and industries. Indeed, several of the models in Table 1 do not

have a separate nest for the capital-labour composite, but model both inputs

together with energy in a non-nested function. Hence our results support

the nesting choice for most of the models in Table 1.

It should be noted, however, that our results suggest that there is consid-

erable variation over countries and industries in substitution possibilities.16

16For all models and all nests, we rejected that the elasticity of substitution was the
same for all countries or all industries.
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Our second conclusion therefore is that both the sizes of the elasticities, and

whether the nesting structure is (KL)E or non-nested KLE, vary consider-

ably over both countries and industries.

Our third conclusion refers to the sizes of the elasticities of substitution.

Several climate models that use a (KL)E or KLE (or KLEM) nesting struc-

ture use a unit elasticity of substitution for (part of the) production function.

However, our results for the (KL)E nesting structure, which is the nesting

structure that fits the data best, show that we can reject the Cobb-Douglas

function for all industries and for all countries but one. We find that σKL,E

ranges from 0.1 to 0.8, while σK,L ranges from 0.3 to 0.6. The latter result

is confirmed by the literature on capital-labour production functions (see

e.g. Antràs (2004) and references therein). We therefore conclude that the

elasticities of substitution in (parts of) the production functions in some of

the papers in Table 1 are too high.

Our results for factor-specific technological change suggest that technol-

ogy trends differ significantly over inputs. Energy, labour and capital all

have a significant rate of technological change, and they differ significantly

from each other. This is ignored in climate policy models that use Cobb-

Douglas production functions, since they do not allow technological change

to affect relative marginal productivities of inputs. In addition, our results

go against models with total factor productivity growth. Our fourth con-

clusion is therefore that most papers in Table 1 put too many restrictions

on their models regarding the possibilities for technological change.

What are the possible effects of elasticities that are too high, and of a

rigid way of modeling changes in the production isoquant, on the results

that are found by climate policy models? First of all, changes in the elas-

ticity of substitution affect the model results when there is no endogenous

technological change. As noted in the introduction, Jacoby et al. (2004)

found that the MIT EPPA model is most sensitive to changes in the elastic-
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ity of substitution between the capital-labour composite and energy. Both

the model of Goulder and Schneider (1999) and the model of Popp (2004)

use a unit elasticity, which is rejected by the data.

Secondly the higher an elasticity of substitution, the easier it is to substi-

tute away from an input that faces an increase in its relative price, and the

lower will be the need to invest in input-saving technological change. As a

consequence, climate policy models that use elasticities of substitution that

are too high may underestimate the role of endogenous technological change

in reducing the costs of climate policy. In addition, models with a Cobb-

Douglas production function neglect the role of factor-specific technological

change, since with a Cobb-Douglas production function technological change

does not affect the relative marginal productivity of inputs. It is there-

fore impossible to aim innovations at energy-saving technologies: changes in

the production isoquant are always total factor productivity improvements.

Hence the costs of achieving a certain improvement in the productivity of

energy may be lower when moving away from a unit elasticity of substitu-

tion.

Finally, energy-specific technological change and total factor productiv-

ity growth (even at the industry or country level) all take away degrees of

freedom from an economy. Adding additional flexibility to a model could

lead to a lower burden of climate policy on an economy.

6 Summary and conclusions

This paper contributes to the literature on climate policy modeling by esti-

mating nested CES production functions using capital, labour and energy as

inputs. We find that the nesting structure in which first capital and labour

are combined using a CES function, and then this composite of capital and

labour is combined with energy in a second CES function, fits the data best.

For this (KL)E nesting structure we were, for most countries and most in-
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dustries, not able to reject the hypothesis that the elasticities are equal for

both nests. The (KL)E nesting structure, or its non-nested form with equal

elasticities for both nests, is used by most models in the applied climate

policy modeling literature. However, our estimates for the elasticities of

substitution vary substantially over countries and over industries, and are

lower than those used in some of the models. In addition we explicitly reject

unit elasticities of substitution (i.e. Cobb-Douglas production functions).

Regarding technological change, we find factor-specific growth rates that

are significant and that significantly differ from each other. We reject total

factor productivity growth (in favour of factor-specific technological change)

and ’only energy-augmenting technological change’, both of which are used

by several papers in the climate policy literature.

Given that lower elasticities imply that it becomes harder to substitute

away from energy, and given that most models in the climate policy modeling

literature put too many restrictions on their models, we suggest that the

role of endogenous technological change in reducing the costs of climate

policy may be bigger than has been found by some climate policy models.

Whether this claim holds, should of course be tested by adapting the models

in Table 1 to our empirical findings, and comparing the additional effect of

endogenous technological change in the original model with that from the

adapted model.
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1 Introduction


The recent literature on the long run effects of climate policy focusses on the


alleviating effect of endogenous technological change on the costs of climate


policy. That is, it studies the welfare gains from research and development or


from learning-by-doing effects when the economy faces some form of climate


policy, compared to a scenario without endogenous technological change.


Next to investing in new technologies, applied climate policy models allow


firms to react to price changes, caused by climate policy, through input sub-


stitution, e.g. shifting away from energy towards capital or labour. Since the


endogenous changes in technology are themselves determined by the price


changes and the substitution possibilities – the easier it is to substitute


away from energy, the smaller may be the need to invest in energy-saving


technologies –, it is important that the substitution possibilities in applied


climate policy models are not only empirically founded, but also disentan-


gled from changes in the production isoquant that come from technological


change: too high or too low elasticities may lead to under- or overestimates


of the effects of endogenous technological change. In addition, the results


of simulations without technological change are sensitive to the elasticity of


substitution. Indeed, Jacoby et al. (2004) found that, in the MIT EPPA


model, the elasticity of substitution between energy and value-added (the


capital-labour composite) is the parameter that affects the costs of ”Kyoto


forever” for the U.S. economy the most.


Unfortunately, in most applied dynamic climate policy models, neither


the production structure nor the accompanying elasticities of substitution


have an empirical basis. The current paper therefore estimates production


functions for climate policy models. We study all possible production struc-


tures, while taking into into account that both substitution possibilities and


technological change affect the production possibilities frontier.


In applied climate policy models the ease with which one can substitute
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one input for another is generally represented by elasticities of substitution.


As they generally use constant elasticity of substitution (CES) production


functions with capital, labour and energy as inputs, applied climate models


can choose between different structures for the production function. For


example, capital and energy can be combined first using a two-input CES


function with a specific elasticity of substitution, and subsequently this com-


posite can be ’nested’ into another CES function, where it is combined with


labour (with possibly a different elasticity).


Table 1 presents an overview of the production structures, elasticities


of substitution and types of technological change of some dynamic models


that simulate the effect of climate policy on the economy. The table shows


that the nesting structure differs between the various papers. Moreover, 3


out of 10 models do not nest at all and treat all inputs at the same level.


A second observation is that in all models but one, capital is in the same


nest as labour. One could nevertheless argue that capital and energy should


be combined first, as is done in the GREEN model (Burniaux et al., 1992),


since (physical) capital and energy generally operate jointly.


When we look at the elasticities of substitution in Table 1, we see that


models use different values for the elasticities of substitution, even when they


use the same nesting structure. In addition, many models use the knife-edge


case of a unit elasticity and hence neutral technological change in (part of)


the production function. When the elasticity of substitution is equal to one,


the CES function reduces to a Cobb-Douglas function, in which case relative


factor productivity is unaffected by technological change. Hence the choice


for a unit elasticity greatly affects the role of technological change in model


simulations.


The way in which technological change enters the production function


differs as well (we define technological change as a change in the position


or shape of the production isoquant, for a given elasticity of substitution).
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Table 1: Nesting structure and elasticities of substitution for several models


Author(s) Nesting structurea Elasticitiesb Techn. changec


Bosetti et al. (Forthcoming) (KL)E σK,L = 1; σKL,E = 0.5 exog. TFP;


endog. energy-specific


Burniaux et al. (1992)d (KE)L σK,E = 0 or 0.8; σKE,L = 0 or exogenous


0.12 or 1


Edenhofer et al. (2005) KLE σK,L,E = 0.4 endog. factor-specific


Gerlagh and Van der Zwaan (2003) (KL)E σK,L = 1; σKL,E = 0.4 endog. energy-specific


Goulder and Schneider (1999) KLEM σK,L,E,M = 1 endog. TFP


Kemfert (2002) (KLM)E σKLM,E = 0.5 endog. energy-specific


Manne et al. (1995) (KL)E σK,L = 1; σKL,E = 0.4 exogenous


Paltsev et al. (2005) (KL)E σK,L = 1; σKL,E = 0.4 − 0.5 exogenous


Popp (2004) KLE σK,L,E = 1 endog. energy-specific


Sue Wing (2003)e (KL)(EM) σK,L = 0.68 − 0.94; σE,M = 0.7; endog. TFP


σKL,EM = 0.7


a (KL)E means a nesting structure in which capital and labour are combined first, and then this composite is combined with energy
with a different elasticity of substitution. (KLE) means that all inputs are in a single-level CES function.


b σi,j is the elasticity of substitution between inputs i and j and σij,k is the elasticity of substitution between the composite of inputs
i and j on the one hand, and input k on the other.


c TFP = Total Factor Productivity growth.


d Lower elasticities for old capital, higher elasticities for new capital.


e Elasticities taken from Cruz and Goulder (1992).
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Focussing on endogenous technological change, we see that four of the models


in Table 1 use energy specific technological change, two models use total


factor productivity (TFP) growth (both at the industry level), and only one


model uses factor-specific technological change.


In sum, dynamic climate policy models differ along three dimensions:


nesting structure, the sizes of the elasticities, and the way in which techno-


logical change affects marginal productivities. Surprisingly, the production


functions used by the models in Table 1 generally lack empirical foundation.


While authors refer to other papers – that don’t have empirical validations


themselves – for the nesting structures and elasticities chosen, technology is


generally modeled in a way that the modeler suits best, or to best answer the


question under scrutiny. The current paper offers an empirical analysis of


all three dimensions by estimating CES production functions for all possible


nesting structures. Accordingly, we report the accompanying elasticities of


substitution for each nesting structure and conclude which nesting structure


fits the data best.


We find that the (KL)E nesting structure, that is a nesting structure


in which capital and labour are combined first, fits the data best, but we


generally cannot reject that the production function has all inputs in one


CES function (i.e. a 3-input 1-level CES function). These nesting structures


are used by most of the models in Table 1. However, for the (KL)E nesting


structure we reject that elasticities are equal to 1, in favour of considerably


lower values, while several of the climate policy models in the table use a


Cobb-Douglas function for (part of the) production function. Finally we test


for different technology trends and reject the hypothesis that only energy-


specific technological change matters, and the hypothesis of total factor


productivity (TFP) growth, in favour of factor-specific technological change.


That is, technology trends differ significantly between capital, labour and


energy.
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In all models in Table 1, firms minimize costs. Hence estimates of con-


stant substitution elasticities for dynamic climate policy models should start


from firms’ optimizing behavior. Only a few papers have estimated CES pro-


duction functions with capital, labour and energy as inputs, using equations


that are derived from optimizing behavior by firms. Prywes (1986) and


Chang (1994) both use ratios of first-order conditions to estimate the pa-


rameters of a (KE)L nesting structure, disregarding the (KL)E and (LE)K


structures.1 Both authors first use the ratio of the first-order conditions for


capital and energy to estimate the elasticity of substitution between capital


and energy, which we denote by σK,E . Using this estimate, they derive fitted


values for composite input Z and its price PZ , which are subsequently em-


ployed to estimate the elasticity of substitution between the capital-energy


composite on the one hand and labour on the other, which we denote by


σKE,L. For this they exploit the first-order conditions with respect to labour


and Z. However, when taking ratios of first-order conditions, it becomes im-


possible to identify the individual technology parameters, which we need to


study how technological change affects the production function.2


Prywes (1986) uses pooled data from 4-digit U.S. industries for the period


1971-1976 to estimate elasticities for 2-digit industries. He finds estimates


for σK,E ranging from -0.57 to 0.47. His estimates for σKE,L range from


0.21 to 1.58. Chang (1994) uses time series data for Taiwan and finds the


elasticity of substitution between capital and energy to be about 0.87, and


the one for labour and the capital-energy nest to be around 0.45.


The remainder of the paper is organized as follows. We first introduce the


1In a footnote, Chang (1994) claims he compared several nesting structures and chose
to combine capital and energy first, based on the R2. However, he does not report his
results.


2Prywes (1986) estimates total factor productivity growth separately from the first
order conditions, using dummy variables. Hence his results on technological change do
not affect his estimates of the substitution elasticities and are hence outside the scope of
this paper.
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nested CES production function and derive the equations to be estimated.


We then describe our dataset and the econometric method in section 3. In


section 4 we present our estimation results, where we first discuss which


nesting structure fits the data best and then present the estimated elastic-


ities of substitution for each nesting structure. We explicitly test whether


substitution elasticities differ significantly from one and whether the produc-


tion function should be nested. Section 4.4 presents our results regarding


technological change. In section 5 we confront our results with the produc-


tion functions used in the literature on dynamic climate policy modeling.


We summarize and conclude in section 6.


2 Model specification


The two-level three-input CES production function can be nested in three


ways: (KL)E, (KE)L and (LE)K. For the purpose of illustration we focus in


this section on the (KL)E structure, although we estimate all three nesting


structures and present the results for all nesting structures in section 4. The


(KL)E nesting structure looks as follows:3


Q =


(
α(AEE)


σKL,E−1


σKL,E + (1 − α)(Z)
σKL,E−1


σKL,E


) σKL,E


σKL,E−1


, (1)


with


Z =


(
β(AKK)


σK,L−1


σK,L + (1 − β)(ALL)
σK,L−1


σK,L


) σK,L


σK,L−1


. (2)


When (2) is substituted into (1) we have a nested CES function where inputs


capital K and labour L are combined to form a composite input Z in the


3As in the literature on general equilibrium climate policy modeling, we assume con-
stant returns to scale production functions. Note that in models with endogenous techno-
logical change the returns to scale need not be constant at the aggregate level, although
they are for each individual goods producer.
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lower nest, which in turn is combined with the energy input E to give final


output Q. In the remainder of the paper we denote a composite of two inputs


by Z. The Aj , j ∈ {E, K, L}, are parameters representing factor-specific


levels of technology.4 The elasticity of substitution between energy E and


composite input Z equals σKL,E , and σK,L is the elasticity of substitution


between inputs K and L. Parameters α and β, 0 < α, β < 1, are share


parameters.5


When an elasticity of substitution equals unity, the production function


involved reduces to a Cobb-Douglas function with the share parameters in


(1) and (2) as production elasticities. From (1) and (2) it is easy to see


that if σKL,E = σK,L, then the nested function reduces to a one-level CES


production function where all three inputs are equally easy to substitute


for each other. On the other hand, if two inputs are not in the same nest,


then the elasticity of substitution between these inputs is determined by the


two CES elasticities and the cost-share of the composite. Hence a different


nesting structure implies different values for the substitution elasticities.


One of the questions to be answered in this paper is whether a total


factor productivity representation of technology in climate policy models


is sufficient, or technology trends are input specific. With a purely total


factor productivity representation of technology we have AE = AK = AL,


in which case we can multiply a total factor productivity parameter AQ


out of the right-hand side of (1). To test for factor-augmenting technolog-


ical change versus total factor productivity growth we need to identify all


(factor-specific) technology parameters. As noted in the introduction, this


is not possible when the equations to be estimated are derived from ratios


4Note that we multiplied out any total factor productivity term AQ and Z-specific
technology parameter AZ . Hence these are included in the factor-specific technology
parameters Aj .


5The levels of output, inputs, Z, and of the five technology parameters are time-
and possibly country- or industry-dependent, but we suppressed the subscripts to ease
notation.
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of first order conditions. We will show that, using a system of equations


derived from cost-minimization, we can not only identify all factor-specific


technology parameters but in addition we can explicitly test for TFP growth


against the null hypothesis of factor-specific technological change.


Following Berndt (1991, p. 457), we assume that our 2-digit industry-


level data (see section 3) are sufficiently disaggregated to assume that prices


are exogenous, and derive our system of equations from the cost function


approach. With a two-level CES production function, the cost minimization


problem of a firm can be represented as a two-stage problem: in the case


of the (KL)E nesting structure we first have to find the optimal demand


for K and L per unit of Z, given prices and technology, and then use the


resulting relative price of Z to solve for the optimal demand for E and Z in


the upper nest.6 We present the problem for the upper nest of the (KL)E


nesting structure (the problems for the nest with K and L, and for the other


nesting structures, are analogous):


min
E,Z


PEE + PZZ s.t. (1), (3)


where the price of input j is denoted by Pj . From the first order conditions


we can derive the cost function c(PE , PZ , Q). After applying Shephard’s


lemma we find the conditional factor demands. Following the literature on


climate policy modeling, we assume price-taking behaviour by firms, which


implies that the unit cost function gives the price of output. Substitut-


ing this result into the conditional factor demands, taking logarithms, and


6The weak separability of the nested CES function allows us to first solve for the relative
optimal factor demand for the lower nest. Since our functions are homogenous of degree
one, we then know the input demand and cost price per unit of Z. This information can
subsequently be used to find the optimal levels of E and Z, from which the optimal levels
of K and L can be derived.
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rearranging, gives for input E (the equation for Z is analogous):


ln


(
E


Q


)
= σKL,E lnα + (σKL,E − 1) lnAE + σKL,E ln


(
PQ


PE


)
. (4)


As is well-known in the literature on estimating constant substitution elas-


ticities, not all parameters can be estimated, as usually the equation (or


system of equations) to be estimated is under-identified. This is can be


seen in (4): if we estimate this equation using price and quantity data (by


adding an error term to the right-hand side), the first two terms on the right


hand side would end up in the constant term and hence the share parameter


α and technology parameter AE cannot be individually identified. After


taking first differences (i.e. for each variable X we take X(t) − X(t − 1)),


such that we get percentage changes in (4), the first term on the right-hand


side drops out and we can identify (the growth rate of) the factor-specific


technology parameter from the constant term, using the estimate for the


elasticity of substitution. The same procedure can be applied for input Z


and the lower nest. This gives us the following four equations for the (KL)E


structure, where lower-case letters denote percentage changes:


e − q = (σKL,E − 1)aE + σKL,E(pQ − pE) (5)


z − q = σKL,E(pQ − pZ) (6)


k − z = (σK,L − 1)aK + σK,L(pZ − pK) (7)


l − z = (σK,L − 1)aL + σK,L(pZ − pL) (8)


On the left-hand side of each equation we see the percentage change in the


ratio of two quantities. On the right-hand side of each equation we first see


a term containing an elasticity of substitution, σi,j or σij,k, and a technology


parameter aj (except for (6), see footnote 4), and a term consisting of the


product of a substitution elasticity and the percentage change of the ratio
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of two prices. Hence the first equation explains the growth rate of the


energy-output ratio e − q from the (negative of the) growth rate of their


relative price pQ − pE , the substitution possibilities σKL,E , and the rate of


energy-augmenting technological change aE .


Unfortunately z and pZ are unobservable, and they can neither be de-


rived using the method used by Prywes (1986) and Chang (1994) (as in that


case we would not be able to estimate the technology parameters), nor using


an index method.7 To circumvent this problem, we add pK −pQ− (pZ −pQ)


to both sides of (7), which gives us the growth rate of the share of labour


costs in the costs of the intermediate input on the left-hand side. We then


add pZ − pQ to both sides of (6), divide both sides by σKL,E − 1, and


substitute the resulting expression for pZ − pQ into the right-hand side of


(7). Applying the same procedure to (8) gives us the following system of


equations:


e − q = (σKL,E − 1)aE + σKL,E(pQ − pE) (9)


θ̃KZ = (σK,L − 1)aK +
σK,L − 1


1 − σKL,E


θ̃ZQ + (1 − σK,L)(pK − pQ) (10)


θ̃LZ = (σK,L − 1)aL +
σK,L − 1


1 − σKL,E


θ̃ZQ + (1 − σK,L)(pL − pQ) (11)


where θ̃mn ≡ pm + m − (pn + n) is the percentage change of the cost share


of input M in the costs of producing N . For the case of the (KL)E nesting


7To see this, write (2) in growth rates, which gives z = θKZ(aK + k) + θLZ(aL + l),
where the θs are cost-shares. This shows that we need data on technological change to
construct data for z. However, as can be seen from (7) and (8), we need data on z and pZ


to be able to identify aL and aK . Hence constructing a series for z or pZ using an index
method, and using data on prices and quantities of capital and labour (that is, without
knowledge of the technology parameters), will lead to measurement error and hence biased
estimates of the coefficients.
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structure, this leads to the following model to be estimated:


y1 = α1 + β1x1 + ε1 (12)


y2 = α2 + β21x21 + β22x22 + ε2 (13)


y3 = α3 + β31x31 + β32x32 + ε3 (14)


where the εs are error terms and the dependent variables are y1 = e − q,


y2 = pK +k−d ln(PkK+PLL) and y3 = pL+l−d ln(PkK+PLL), with d lnX


denoting the first difference of the natural logarithm of X. The independent


variables are x1 = pQ−pE , x21 = x31 = d ln(PkK+PLL)−pQ−q, x22 = pK−


pQ and x32 = pL−pQ. From (10) and (11) we see that we have to impose the


following cross-equation restrictions when estimating the system: β22 = β32


and β21 = β31 = −β22/(1 − β1).
8 We can then derive our parameters as


follows: σKL,E = β1, σK,L = 1 − β22, aE = α1/(β1 − 1), aL = −α2/β22 and


aK = −α3/β22.


Following the analysis above, we see that if we assume that technology


is not factor-specific but based on total factor productivity (that is if we do


not normalize AQ to 1 but instead assume that AE = AK = AL = 1) we


can derive the TFP growth parameter aQ. For the (KL)E nesting structure


this gives:


e − q = (σKL,E − 1)aQ + σKL,E(pQ − pE) (15)


θ̃KZ =
σK,L − 1


1 − σKL,E


θ̃ZQ + (1 − σK,L)(pK − pQ) (16)


θ̃LZ =
σK,L − 1


1 − σKL,E


θ̃ZQ + (1 − σK,L)(pL − pQ) (17)


Since the last model is a special case of the model with factor-specific tech-


nological change, we can test whether technological change is based on total


8Using the weak separability of the nested CES function, we first estimate (12) and
use the result for β1 to impose the restriction on β21 and β22.
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factor productivity growth (as modeled by Goulder and Schneider, 1999;


Sue Wing, 2003) or factor-specific. To be more precise, we can test for the


model of TFP growth by testing −α2/β22 = −α3/β32 = 0.9


In addition we can test for specific functional forms. We can test whether


the production function is a one-level, non-nested CES by testing the restric-


tion β21 (= β31) = 1. We can test for a Cobb-Douglas function for one of


the two levels by testing β1 = 1 and β22 = β32 = 0, respectively.


3 Econometric model and data


We estimated the system (12)-(14) for each of our 3 nesting structures.


To identify the parameters of our model, we first estimate (12) and use


the resulting estimate for the elasticity of substitution for the outer nest


in the restriction on the system (13)-(14) (see footnote 2). As described


below, we have industry-level time series data for 12 countries. We use


country-industry fixed effects (i.e. a dummy for each country-industry com-


bination) and estimate models with industry-specific elasticities and models


with country-specific elasticities.10 That is, we estimate the system (12)-


(14) for each nesting structure with panels for each industry to estimate


industry-specific elasticities, and estimate the same system for each nesting


structure with panels for each country to estimate country-specific elastic-


ities, which gives us in total 6 systems to estimate. We estimate the fixed


effects models using least squares dummy variable models.


The data are derived from the IEA Energy Balances and from the OECD


International Sectoral Database.11 They form an unbalanced panel for 12


9We also tested for the model with TFP growth by testing α2 = α3 = 0, since both tests
are statistically correct but may give different results. Our conclusions are qualitatively
unaffected when using this alternative test.


10We have too few observations per country-industry combination (12 on average, with
for some country-industry combinations as few as 6 observations) to estimate elasticities
using panels at the combined country-industry level.


11We use the same database as van Soest et al. (2006).
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OECD countries, with up to 7 industries (6 sub-industries of the manufac-


turing industry plus the construction industry), and up to 19 years of obser-


vations. The countries involved are Belgium, Canada, Denmark, Finland,


France, United Kingdom, Italy, the Netherlands, Norway, Sweden, USA and


West-Germany. The industries involved are basic metal products, construc-


tion, food & tobacco, textiles & leather, non-metallic minerals, transporta-


tion equipment, and the paper, pulp & printing industry. Data come from


the time period 1978-1996. After dropping the first and last percentile of


observations for each variable (to correct for outliers without having to judge


on individual observations) we have 994 observations.


All prices are in 1990 U.S. dollars, PPP. The price of value added is


the numeraire. Industry output is the sum of value added and the value of


energy at 1990 market prices. Energy is energy use in kiloton of oil equiva-


lents (IEA Energy Balances). Price of energy is per kiloton of oil equivalent


(IEA Energy Balances). Capital is gross capital stock (OECD International


Sectoral Database). Price (user cost) of capital is foregone interest plus de-


preciation minus capital gain. Here the interest rate is the nominal bond


rate (IMF, International Financial Statistics), depreciation is the ratio of


consumption of fixed capital and gross capital stock (both OECD Interna-


tional Sectoral Database) or 3.5%, capital gain is the percentage change in


the ratio of gross capital stock in current national prices and gross capi-


tal stock. Labour is total employment in man hours (OECD International


Sectoral Database). Price of labour is compensation of employees, per man


hour (OECD International Sectoral Database).


4 Estimation results


Before we move to our results regarding goodness of fit, the elasticities of


substitution and technological change, we first discuss the cross-equation


restrictions that were mentioned before.
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4.1 Cross-equation restrictions


As noted in section 2, we have to impose some cross-equation restrictions


on the system (13)-(14) to estimate the elasticity of substitution for the


inner nest. Before we did so, we first estimated the unrestricted system for


all nesting structures, both for country- and industry-specific elasticities.


In most cases, the cross-equation restriction β22 = β32 was rejected. More


precisely, for the model with country-specific elasticities the restriction was


rejected for 11 out of 12 countries for the (KL)E nesting structure, the


restriction was rejected for 9 out of 12 countries for the (LE)K structure,


and for the (KE)L structure it was rejected for 6 out of 12 countries. For


the model with industry-specific elasticities the restriction was rejected for


all sectors for the (KL)E nesting structure, the restriction was rejected for


6 out of 7 industries for the (LE)K nesting structure, and for the (KE)L


nesting structure it was rejected for 5 out of 7 industries.


However, the purpose of this paper is to estimate elasticities of substi-


tution that can be used in the dynamic climate policy modeling literature,


by making the exactly the same assumptions as in the climate policy mod-


eling literature. That is, we started from a nested constant returns to scale


CES production function, and assumed perfect competition at all levels.


Although a 3-input translog production function is much more flexible, it


would have given a range of (non-constant) elasticities, which would not


be suitable for climate policy models without having to make additional


assumptions. We therefore proceed with our analysis, imposing the cross-


equation restrictions even for those equations where they are rejected ex


ante, to find the parameters of the nested CES production function that fits


the data best.
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Table 2: Goodness of fit


(KL)E (LE)K (KE)L


Industry σs 0.3897 0.3041 0.1233


Country σs 0.3977 0.2983 0.1434


Note: R2 adjusted for degrees of freedom.


4.2 Goodness of fit


As noted in the introduction, the literature on climate policy modeling lacks


a systematic comparison of the empirical relevance of the nesting structures


(KL)E, (KE)L and (LE)K. We present the goodness of fit of the three nesting


structures in table 2.12


Table 2 shows that there are substantial differences in how well each


nesting structure fits the data. For both the model with industry-specific


elasticities and the model with country-specific elasticities the R
2


is highest


for the (KL)E nesting structure. The (LE)K nesting structure fits the data


much better than the (KE)L structure. This is quite surprising, as one might


expect the decision on capital investment to be determined jointly with the


decision on labour demand or energy demand, instead of the demand for


labour to be determined jointly with the demand for energy. Compared to


the other nesting structures, the (KE)L structure fits the data poorly.


12We first estimated the model for each nesting structure with country-industry fixed
effects for all equations. We then re-estimated each model for each nesting structure,
with a common intercept (i.e. a pooled regression) for those equations where we could
not reject a common fixed effect at the 10% significance level. For both the model with
industry-specific elasticities and the model with country-specific elasticities we rejected
the null-hypothesis that the fixed effects were all equal for the second equation of the
inner nest for the (KL)E structure, and for the equation for the inner nest for the (LE)K
structure. Tables 2 and 3 present the results of the latter regressions.
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4.3 Elasticities of substitution


Table 3 presents our results for the elasticities of substitution. We will


discuss them by nesting structure.13


4.3.1 The (KL)E nesting structure


Several dynamic climate policy models use the (KL)E or ((KL),(EM)) nest-


ing structure. That is, they first combine capital and labour, and this com-


posite is subsequently combined with energy (or an energy-materials com-


posite) using a different elasticity of substitution. The first column of Table


3 shows our estimates for the elasticity of substitution between energy and


the capital-labour composite. We see a considerable amount of variation


over industries and countries. The industry estimates range from 0.17 to


0.69, while the country estimates range from 0.12 to 0.77. Note that we


cannot reject perfect complementarity (i.e. an elasticity equal to zero) be-


tween energy and the capital-labour composite for the Netherlands. The


elasticities for capital and labour are reported in the second column and


show quite some variation as well, with estimates ranging from 0.27 to 0.65


for the industry elasticities and from 0.35 to 0.63 for the country estimates.


Table 4 presents the probability values for the two sided tests whether


each elasticity is equal to one, in which case we would have a Cobb-Douglas


production function.14 For the (KL)E nesting structure, we cannot reject a


Cobb-Douglas production function for the outer nest (i.e. σKL,E = 1) for


Canada. For all other countries and industries the null-hypothesis of a unit


elasticity is rejected.


13We tested whether the elasticities were the same for all countries or all industries. We
rejected this hypothesis for all nests and for all nesting structures.


14A p-value smaller than 0.05 implies that we can reject the null-hypothesis at the 5%
significance level.
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Table 3: Estimated elasticities of substitution


(KL)E (LE)K (KE)L
σKL,E σK,L σLE,K σL,E σKE,L σK,E


Industry σs
Basis metals 0.6921∗∗ 0.6451∗∗ 0.5242∗∗ 0.9076∗∗ 0.8532∗∗ 0.9718∗∗


(0.0683) (0.0241) (0.0255) (0.0197) (0.0417) (0.0171)
Construction 0.3709∗∗ 0.2699∗∗ 0.2103∗∗ 0.6069∗∗ 0.9705∗∗ 0.9973∗∗


(0.0575) (0.0332) (0.0345) (0.0431) (0.1034) (0.0015)
Food & Tob. 0.3884∗∗ 0.4653∗∗ 0.4246∗∗ 0.8570∗∗ 0.9030∗∗ 0.9931∗∗


(0.0562) (0.0216) (0.0223) (0.0235) (0.0635) (0.0057)
Transport Eq. 0.1742∗ 0.5293∗∗ 0.4453∗∗ 0.8472∗∗ 1.0486∗∗ 1.0052∗∗


(0.0804) (0.0327) (0.0349) (0.0345) (0.0740) (0.0030)
Non-metal. Min. 0.4353∗∗ 0.4840∗∗ 0.4152∗∗ 0.8921∗∗ 0.9845∗∗ 1.0015∗∗


(0.0669) (0.0216) (0.0224) (0.0227) (0.0575) (0.0009)
Paper etc. 0.4428∗∗ 0.3837∗∗ 0.3284∗∗ 0.8106∗∗ 0.8750∗∗ 0.9977∗∗


(0.0745) (0.0244) (0.0247) (0.0317) (0.0717) (0.0083)
Textiles etc. 0.3262∗∗ 0.3655∗∗ 0.3097∗∗ 0.8362∗∗ 1.0512∗∗ 0.9993∗∗


(0.0645) (0.0213) (0.0218) (0.0287) (0.0654) (0.0020)
Country σs
Belgium 0.6735∗∗ 0.6282∗∗ 0.5444∗∗ 0.8832∗∗ 1.0265∗∗ 0.9993∗∗


(0.0742) (0.0343) (0.0362) (0.0297) (0.0678) (0.0024)
Canada 0.7705∗∗ 0.5664∗∗ 0.3912∗∗ 0.8889∗∗ 0.8973∗∗ 0.9905∗∗


(0.1384) (0.0427) (0.0459) (0.0394) (0.0617) (0.0118)
Denmark 0.5695∗∗ 0.4154∗∗ 0.3804∗∗ 0.8797∗∗ 0.8923∗∗ 0.9868∗∗


(0.0901) (0.0350) (0.0349) (0.0335) (0.0875) (0.0091)
Finland 0.5397∗∗ 0.5742∗∗ 0.4570∗∗ 0.8769∗∗ 0.9635∗∗ 0.9952∗∗


(0.0669) (0.0283) (0.0302) (0.0264) (0.0615) (0.0027)
France 0.3748∗∗ 0.3983∗∗ 0.3629∗∗ 0.7940∗∗ 0.9482∗∗ 0.9984∗∗


(0.0695) (0.0262) (0.0273) (0.0347) (0.0990) (0.0030)
UK 0.2572∗∗ 0.3487∗∗ 0.2737∗∗ 0.7452∗∗ 0.8270∗∗ 0.9682∗∗


(0.0764) (0.0317) (0.0338) (0.0409) (0.0709) (0.0122)
Italy 0.2695∗∗ 0.5301∗∗ 0.4674∗∗ 0.8435∗∗ 0.9530∗∗ 0.9923∗∗


(0.0748) (0.0327) (0.0347) (0.0311) (0.0796) (0.0040)
Netherlands 0.1218 0.3763∗∗ 0.3362∗∗ 0.8006∗∗ 0.8484∗∗ 0.9974∗∗


(0.0999) (0.0316) (0.0319) (0.0439) (0.0988) (0.0141)
Norway 0.2366∗ 0.4027∗∗ 0.3433∗∗ 0.7648∗∗ 0.8153∗∗ 0.9692∗∗


(0.0966) (0.0382) (0.0401) (0.0485) (0.0942) (0.0182)
Sweden 0.2548∗∗ 0.5189∗∗ 0.4535∗∗ 0.8514∗∗ 0.9673∗∗ 1.0011∗∗


(0.0903) (0.0313) (0.0322) (0.0336) (0.0807) (0.0028)
USA 0.6066∗∗ 0.3523∗∗ 0.3007∗∗ 0.8989∗∗ 1.0710∗∗ 0.9956∗∗


(0.1153) (0.0276) (0.0282) (0.0427) (0.1097) (0.0039)
West-Germany 0.3367∗∗ 0.4109∗∗ 0.3529∗∗ 0.7560∗∗ 1.1429∗∗ 0.9895∗∗


(0.0906) (0.0405) (0.0403) (0.0510) (0.1421) (0.0110)


Note: Standard errors in parentheses. */** indicates that coefficient differs from zero at
5/1% level of significance. Regressions with fixed effects for the second equation for the
inner nest of the (KL)E structure and for the equation for the outer nest for the (LE)K
structure, for both the model with industry-specific elasticities and the model with country-
specific elasticities. Pooled regressions for all other equations.
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Table 4: Tests for Cobb-Douglas function.a


(KL)E (LE)K (KE)L


σKL,E σK,L σLE,K σL,E σKE,L σK,E


Industry σs


Basis metals 0.0000 0.0000 0.0000 0.0000 0.0005 0.0982


Construction 0.0000 0.0000 0.0000 0.0000 0.7753 0.0702


Food & Tob. 0.0000 0.0000 0.0000 0.0000 0.1267 0.2231


Transport Eq. 0.0000 0.0000 0.0000 0.0000 0.5114 0.0821


Non-metal. Min. 0.0000 0.0000 0.0000 0.0000 0.7879 0.0886


Paper etc. 0.0000 0.0000 0.0000 0.0000 0.0819 0.7794


Textiles etc. 0.0000 0.0000 0.0000 0.0000 0.4337 0.7219


Country σs


Belgium 0.0000 0.0000 0.0000 0.0001 0.6967 0.7860


Canada 0.0978 0.0000 0.0000 0.0048 0.0965 0.4232


Denmark 0.0000 0.0000 0.0000 0.0003 0.2187 0.1478


Finland 0.0000 0.0000 0.0000 0.0000 0.5529 0.0700


France 0.0000 0.0000 0.0000 0.0000 0.6012 0.5985


UK 0.0000 0.0000 0.0000 0.0000 0.0149 0.0088


Italy 0.0000 0.0000 0.0000 0.0000 0.5548 0.0510


Netherlands 0.0000 0.0000 0.0000 0.0000 0.1250 0.1093


Norway 0.0000 0.0000 0.0000 0.0000 0.0502 0.0905


Sweden 0.0000 0.0000 0.0000 0.0000 0.6852 0.7023


USA 0.0007 0.0000 0.0000 0.0179 0.5176 0.2550


West-Germany 0.0000 0.0000 0.0000 0.0000 0.3151 0.3395
a Two-sided p-values for H0: elasticity equal to 1.


In addition we tested for common elasticities over the two nests (i.e.


σKL,E = σK,L. That is, we tested whether the production function could


have a single elasticity of substitution and hence could be non-nested. As


is shown in Table 5, we cannot reject a non-nested production function for


6 industries and 10 countries (of which for 2 countries we can reject at the


5% significance level but not at 1%).
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4.3.2 The (LE)K nesting structure


The substitution elasticities for both nests of the (LE)K nesting structure


differ significantly from zero for all countries and all industries. Values for


σLE,K range from 0.21 to 0.52 for the industry estimates and from 0.27


to 0.54 for the country estimates. Industry and country elasticities for the


inner nest range from 0.61 to 0.91 and from 0.75 to 0.89, respectively. For


all elasticities we can reject the null of a unit elasticity at the 5% level. We


cannot reject a Cobb-Douglas function for the inner nest for the USA at the


1% level. Contrary to the (KL)E structure we can reject the null-hypothesis


of a common elasticity for both nests for all countries and all industries for


the (LE)K nesting structure.


4.3.3 The (KE)L nesting structure


The (KE)L nesting structure, which has the lowest R
2
, shows remarkably


high elasticities when compared to the (KL)E and (LE)K nesting structures.


For the outer nest, σKE,L, the values range from 0.85 to 1.05 for the industry


estimates, and from 0.82 to 1.14 for the country estimates (see Table 3). The


values for the elasticity of substitution between capital and energy range


from 0.97 to 1.00, for both countries and industries.


When we test for Cobb-Douglas production functions for the outer nest,


we can only reject it for the basis metals industry (at the 1% significance


level) and for the UK (at the 5% level, but not at the 1% level), while for the


inner nest we only reject a Cobb-Douglas production function for the UK.


We cannot reject a common elasticity for both nests for 6 out of 7 industries


and 11 out of 12 countries.


4.4 Technological change


The models in Table 1 not only differ in nesting structure and sizes of sub-


stitution elasticities, but also in the way productivity improvements enter
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Table 5: Tests for common elasticities (no nesting).a


(KL)E (LE)K (KE)L


Industry σs


Basis metals 0.5167 0.0000 0.0086


Construction 0.1287 0.0000 0.7953


Food & Tob. 0.2025 0.0000 0.1575


Transport Eq. 0.0000 0.0000 0.5576


Non-metal. Min. 0.4889 0.0000 0.7683


Paper etc. 0.4507 0.0000 0.0898


Textiles etc. 0.5631 0.0000 0.4276


Country σs


Belgium 0.5792 0.0000 0.6897


Canada 0.1591 0.0000 0.1384


Denmark 0.1113 0.0000 0.2832


Finland 0.6353 0.0000 0.0000


France 0.7518 0.0000 0.6126


UK 0.2694 0.0000 0.0500


Italy 0.0015 0.0000 0.6219


Netherlands 0.0153 0.0000 0.1960


Norway 0.1102 0.0000 0.1090


Sweden 0.0058 0.0000 0.6757


USA 0.0322 0.0000 0.4921


West-Germany 0.4549 0.0000 0.2822
a Two-sided p-values for H0: σi,j = σij,k.
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the production function. We saw in Table 1 that, of those models with


endogenous technological change, 4 models use energy-specific technological


change, 2 models use industry-specific total factor productivity changes and


1 model uses factor-specific technological change. Since all these models ei-


ther use a (KL)E or (KLE) nesting structure, and since this is the structure


that fits the data best, we focus on the results for technological change for


the (KL)E nesting structure (recall that for the (KL)E nesting structure we


could not reject a (KLE) structure for most countries and most industries).


Table 6 shows the factor-specific technology trends for the (KL)E nesting


structure.15 We find rates of energy-augmenting technological change of


around 1.7% per year. Interestingly we find the highest rate of energy-


specific technological change in the energy-intensive basis metals industry.


The rates of labour-augmenting technological change are generally higher


than the rate of energy-augmenting technological change, with values around


2.9%, while the rates of capital-augmenting technological change are found


to be negative and around -3%.


For our purpose it is interesting to see whether the technology trends for


the three inputs differ from each other. Table 7 presents, for each country


and each industry, tests whether the technology trends are equal. We can


reject that the rate of energy-augmenting technological change and the rate


of labour-augmenting technological change are equal, for 4 out of 7 industries


and 8 out of 12 countries. When testing the equality of either of these two


technology trends and the rate of capital-augmenting technological change,


we can reject the null-hypothesis for even more industries and countries. We


15The table reports rates of factor-specific technological change for the (KL)E nesting
structure, for the model with industry-specific elasticities and the model with country-
specific elasticities. For those equations for which we rejected all fixed effects to be equal
(see section 4.3) we tested for the fixed effects to be equal over industries (for the models
with industry elasticities) or countries (for the models with country elasticities). If the null-
hypothesis was not rejected at the 10% level for some industry/country, we imposed the
fixed effects to be equal over all countries/industries for that particular industry/country.
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Table 6: Rates of factor-specific technological change, (KL)E nesting structure


Energy Labour Capital


Industry σs
Basis metals 0.0283∗ 0.0438∗∗ −0.0204∗


(0.0112) (0.0051) (0.0094)
Construction 0.0139∗∗ 0.0212∗∗ −0.0199a


(0.0049) (0.0023) (0.0162)
Food & Tob. 0.0143∗∗ 0.0288∗∗ −0.0230∗∗


(0.0050) (0.0030) (0.0055)
Transport Eq. 0.0106∗∗ 0.0331∗∗ −0.0567∗∗


(0.0037) (0.0039) (0.0106)
Non-metal. Min. 0.0154∗∗ 0.0299∗∗ −0.0198a


(0.0055) (0.0031) (0.0206)
Paper etc. 0.0156∗∗ 0.0250∗∗ −0.0295∗∗


(0.0057) (0.0026) (0.0052)
Textiles etc. 0.0129∗∗ 0.0243∗∗ −0.0170a


(0.0045) (0.0025) (0.0166)


Country σs
Belgium 0.0281∗ 0.0416∗∗ −0.0449∗∗


(0.0110) (0.0055) (0.0116)
Canada 0.0400 0.0367∗∗ −0.0210


(0.0266) (0.0051) (0.0117)
Denmark 0.0213∗∗ 0.0267∗∗ −0.0266∗∗


(0.0080) (0.0031) (0.0079)
Finland 0.0199∗∗ 0.0360∗∗ −0.0415∗∗


(0.0070) (0.0042) (0.0094)
France 0.0147∗∗ 0.0256∗∗ −0.0302∗∗


(0.0050) (0.0027) (0.0061)
UK 0.0124∗∗ 0.0237∗∗ −0.0105a


(0.0041) (0.0025) (0.0185)
Italy 0.0126∗∗ 0.0327∗∗ −0.0274∗∗


(0.0042) (0.0038) (0.0091)
Netherlands 0.0104∗∗ 0.0243∗∗ −0.0203∗∗


(0.0035) (0.0026) (0.0072)
Norway 0.0120∗∗ 0.0257∗∗ −0.0343∗∗


(0.0041) (0.0030) (0.0093)
Sweden 0.0123∗∗ 0.0321∗∗ −0.0439∗∗


(0.0041) (0.0037) (0.0106)
USA 0.0233∗ 0.0238∗∗ −0.0066a


(0.0100) (0.0025) (0.0178)
West-Germany 0.0138∗∗ 0.0261∗∗ −0.0098


(0.0048) (0.0031) (0.0078)
Note: Standard errors in parentheses. */** indicates that coefficient
differs from zero at 5/1% level of significance.
a Industry/country for which H0: ’common intercept for all coun-
tries/industries’ was rejected. Reported result is unweighted average
over countries/industries.
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Table 7: Tests for ai = aj , for (KL)E structure


aE = aL aE = aK aL = aK


Industry σs


Basis metals 0.2095 0.0009 0.0000


Construction 0.1758 0.1205a 0.0885b


Food & Tob. 0.0126 0.0000 0.0000


Transport Eq. 0.0000 0.0048 0.0000


Non-metal. Min. 0.0212 0.1023c 0.0510b


Paper etc. 0.1369 0.0000 0.0000


Textiles etc. 0.0254 0.2068c 0.1502a


Country σs


Belgium 0.2735 0.0000 0.0000


Canada 0.9039 0.0359 0.0000


Denmark 0.5249 0.0000 0.0000


Finland 0.0496 0.0000 0.0000


France 0.0537 0.0000 0.0000


UK 0.0193 0.2004e 0.1272g


Italy 0.0004 0.0000 0.0000


Netherlands 0.0017 0.0001 0.0000


Norway 0.0066 0.0000 0.0000


Sweden 0.0004 0.0000 0.0000


USA 0.9635 0.1956f 0.1402f


West-Germany 0.0308 0.0103 0.0001


Note: Two-sided p-values for H0: ai = aj .
a Unweighted average over all countries; p < 0.10 for 9
out of 12 countries. b Unweighted average over all coun-
tries; p < 0.10 for 10 out of 12 countries. c Unweighted
average over all countries; p < 0.10 for 8 out of 12 coun-
tries. d Unweighted average over all countries; p < 0.10
for 7 out of 12 countries. e Unweighted average over all
industries; p < 0.10 for 2 out of 7 industries. f Un-
weighted average over all industries; p < 0.10 for 5 out
of 7 industries. g Unweighted average over all industries;
p < 0.10 for 3 out of 6 industries.
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therefore conclude that rates of factor-specific technological change tend to


differ over factors.


As noted in Section 2, we can test for the model of total factor productiv-


ity growth by testing aL = aK = 0. As can be inferred from Tables 6 and 7


and as is confirmed by formal tests (not shown), we can reject aL = aK = 0


for all countries and industries for the (KL)E nesting structure.


5 Discussion


Comparing the results of the previous section with the climate policy models


in Table 1, we can draw four conclusions.


The first conclusion refers to the nesting structure chosen by the climate


policy models. Nearly all models have capital and labour in the same nest.


This nesting structure is supported by our results as the (KL)E nesting


structure seems to fit the data best. The (KE)L nesting structure, as used


in Burniaux et al. (1992), on the other hand, performs rather poorly in terms


of goodness of fit. The argument that the demand for capital and energy is


determined jointly, as machines use energy, is only partly valid. Capital is


not just the stock of available machines, but money invested in general, or


foregone consumption. Our results suggest that, given the (KL)E nesting


structure, substitution elasticities may be the same for both nests for several


countries and industries. Indeed, several of the models in Table 1 do not


have a separate nest for the capital-labour composite, but model both inputs


together with energy in a non-nested function. Hence our results support


the nesting choice for most of the models in Table 1.


It should be noted, however, that our results suggest that there is consid-


erable variation over countries and industries in substitution possibilities.16


16For all models and all nests, we rejected that the elasticity of substitution was the
same for all countries or all industries.
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Our second conclusion therefore is that both the sizes of the elasticities, and


whether the nesting structure is (KL)E or non-nested KLE, vary consider-


ably over both countries and industries.


Our third conclusion refers to the sizes of the elasticities of substitution.


Several climate models that use a (KL)E or KLE (or KLEM) nesting struc-


ture use a unit elasticity of substitution for (part of the) production function.


However, our results for the (KL)E nesting structure, which is the nesting


structure that fits the data best, show that we can reject the Cobb-Douglas


function for all industries and for all countries but one. We find that σKL,E


ranges from 0.1 to 0.8, while σK,L ranges from 0.3 to 0.6. The latter result


is confirmed by the literature on capital-labour production functions (see


e.g. Antràs (2004) and references therein). We therefore conclude that the


elasticities of substitution in (parts of) the production functions in some of


the papers in Table 1 are too high.


Our results for factor-specific technological change suggest that technol-


ogy trends differ significantly over inputs. Energy, labour and capital all


have a significant rate of technological change, and they differ significantly


from each other. This is ignored in climate policy models that use Cobb-


Douglas production functions, since they do not allow technological change


to affect relative marginal productivities of inputs. In addition, our results


go against models with total factor productivity growth. Our fourth con-


clusion is therefore that most papers in Table 1 put too many restrictions


on their models regarding the possibilities for technological change.


What are the possible effects of elasticities that are too high, and of a


rigid way of modeling changes in the production isoquant, on the results


that are found by climate policy models? First of all, changes in the elas-


ticity of substitution affect the model results when there is no endogenous


technological change. As noted in the introduction, Jacoby et al. (2004)


found that the MIT EPPA model is most sensitive to changes in the elastic-
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ity of substitution between the capital-labour composite and energy. Both


the model of Goulder and Schneider (1999) and the model of Popp (2004)


use a unit elasticity, which is rejected by the data.


Secondly the higher an elasticity of substitution, the easier it is to substi-


tute away from an input that faces an increase in its relative price, and the


lower will be the need to invest in input-saving technological change. As a


consequence, climate policy models that use elasticities of substitution that


are too high may underestimate the role of endogenous technological change


in reducing the costs of climate policy. In addition, models with a Cobb-


Douglas production function neglect the role of factor-specific technological


change, since with a Cobb-Douglas production function technological change


does not affect the relative marginal productivity of inputs. It is there-


fore impossible to aim innovations at energy-saving technologies: changes in


the production isoquant are always total factor productivity improvements.


Hence the costs of achieving a certain improvement in the productivity of


energy may be lower when moving away from a unit elasticity of substitu-


tion.


Finally, energy-specific technological change and total factor productiv-


ity growth (even at the industry or country level) all take away degrees of


freedom from an economy. Adding additional flexibility to a model could


lead to a lower burden of climate policy on an economy.


6 Summary and conclusions


This paper contributes to the literature on climate policy modeling by esti-


mating nested CES production functions using capital, labour and energy as


inputs. We find that the nesting structure in which first capital and labour


are combined using a CES function, and then this composite of capital and


labour is combined with energy in a second CES function, fits the data best.


For this (KL)E nesting structure we were, for most countries and most in-
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dustries, not able to reject the hypothesis that the elasticities are equal for


both nests. The (KL)E nesting structure, or its non-nested form with equal


elasticities for both nests, is used by most models in the applied climate


policy modeling literature. However, our estimates for the elasticities of


substitution vary substantially over countries and over industries, and are


lower than those used in some of the models. In addition we explicitly reject


unit elasticities of substitution (i.e. Cobb-Douglas production functions).


Regarding technological change, we find factor-specific growth rates that


are significant and that significantly differ from each other. We reject total


factor productivity growth (in favour of factor-specific technological change)


and ’only energy-augmenting technological change’, both of which are used


by several papers in the climate policy literature.


Given that lower elasticities imply that it becomes harder to substitute


away from energy, and given that most models in the climate policy modeling


literature put too many restrictions on their models, we suggest that the


role of endogenous technological change in reducing the costs of climate


policy may be bigger than has been found by some climate policy models.


Whether this claim holds, should of course be tested by adapting the models


in Table 1 to our empirical findings, and comparing the additional effect of


endogenous technological change in the original model with that from the


adapted model.
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