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a b s t r a c t 

A non-linear discrete-time mathematical program model is proposed to determining the optimal extrac- 

tion policy for a single primary supplier of a durable non-renewable resource, such as gemstones or some 

metals. Karush, Kuhn and Tucker conditions allow obtaining analytic solutions and general properties of 

them in some specific settings. Moreover, provided that the objective function (i.e., the discounted value 

of the incomes throughout the planning horizon) is concave, the model can be easily solved, even using 

standard commercial solver. However, the analysis of the solutions obtained for different assumptions of 

the values of the parameters show that the optimal extraction policies and the corresponding prices do 

not exhibit a general shape. 

© 2017 The Author. Published by Elsevier Ltd. 
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1. Introduction 

This paper deals with the optimal production policy for a single

owner of the primary source of a durable non-renewable (there-

fore, exhaustible) resource, such as gold or diamonds. The problem

is approached by means of non-linear discrete-time mathematical

programming, what allows, under very general assumptions and by

means of Karush, Kuhn and Tucker conditions, obtaining analytic

solutions and general properties of them in some particular set-

tings and computing easily the optimal policies. 

Although most economic theory is not explicit about whether

inputs into production are renewable or non-renewable, this dis-

tinction has significant implications of the optimal policies of pro-

ducing and pricing the resource. 

Natural resources can be renewable (e.g. fish stocks or forests)

or non-renewable (all minerals). Among the latter, some (gem-

stones, precious metals and other metals like copper) are durable,

whereas others (e.g. all kinds of fossil fuels, phosphates and other

mineral fertilizers, and fossil water) are not. Non-durable resources

disappear as such when they are used (burnt or dispersed), while

durable resources may be reused, perhaps after recycling. 

Therefore, when a non-renewable resource is durable, at any

time there is an inventory of the resource in the ground and an
E-mail address: albert.corominas@upc.edu 
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nventory of the already used amounts of the resource that are po-

entially reusable. 

Since the seminal papers by Gray [6] and Hotelling [7] , where

he famous Hotelling’s rule concerning the price evolution of an

xhaustible resource in a competitive market is stated, a certain

umber of papers and books on the economics of non-renewable

esources have been published. The great majority of these publi-

ations (many relevant references can be found in [5] ), explicitly or

ot, deal exclusively with non-durable resources, while the litera-

ure on the economics of durable non-renewable resources is rel-

tively scarce. From the ten references included in a recent paper

n this subject that deals with the prices of durable exhaustible

esources under stochastic investment opportunities [1] only one

10] is specifically devoted to durable non-renewable resources.

ence, this topic remains largely unexplored. 

In any case, as it will be shown below, research on this is-

ue has revolved mainly around the conditions under which the

otelling rule is valid or it is not. However, the objective of the

resent paper is to show the use of a non-linear discrete-time

athematical programming model to find the optimal extraction

olicies of the single owner of a durable non-renewable resource

n a variety of scenarios. 
der the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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The implications of the durability for a monopolist 1 were anal-

sed in Coase [4] , where was stated what later has been known

s the Coase Conjecture, namely, that if a durable-goods monop-

list were unable to precommit to a future sales trajectory, mar-

et power would disappeared “in the twinkling of an eye”. Karp

8,9] specifies several settings in which the Conjecture fails. 

Some papers deal with durable renewable goods monopolies,

onsidering the problems derived from the fact that the sale of

heir products creates a secondary market beyond the control

f the monopolists, which lead to compare selling versus rent-

ng [2,11,13,16] . Although the possibility of renting, which arises

n these settings, are hardly applicable to durable exhaustive re-

ources, these questions are considered in Malueg and Solow

12,14] in spite of that those two papers deal with this kind of re-

ources. 

Other researches concerning the economics of durable non-

enewable resources focus on the validity of Hotelling’s rule for

his kind of resources, as it is shown below. 

Stewart [15] uses an optimisation discrete-time model and the

agrange multiplier technique (what implies the assumption that

he resource has to be depleted unless it is unlimitedly available)

o compare, regarding the production throughout a finite time

orizon of a durable exhaustible resource, the strategy of a com-

etitive extractive industry with that of a monopolistic one. The

uthor considers a general demand function that may vary from

eriod to period and the notion of quasi-durability, which is quan-

ified by means of a coefficient corresponding to the fraction of the

tock of the extracted resource that remains from one period to the

ext. Stewart concludes that Hotelling’s rule applies to competi-

ive and monopolistic markets, although in these latter, contrarily

o that happens in the former, the optimal strategy may lead to

alling prices. 

Levhari and Pindyck [10] , a fundamental contribution on the

ubject, using a continuous time infinite horizon formulation with

rowing demand and the Maximum Principle, criticise Stewart’s

onclusions and argue that, although in a competitive market the

rice minus the marginal cost will rise at the rate of interest, this

oes not imply that price is steadily rising. The authors also discuss

riefly the case of monopolistic markets and conclude that this

ule does not hold in them. Besides, they point out that the evo-

ution of the prices of durable resources “have shown long secular

eclines during at least part of their history, and in many cases

ave indeed been U-shaped over the long term (50–100 years)”

nd show that, under specific assumptions, their models can ex-

lain these behaviours. 

Chilton [3] , however, show that, if a convenient definition of

arginal revenue is used, Hotelling’s rule extends to the case of

onopolistic extraction of a durable good. 

Malueg and Solow [12] analyse in detail the two-periods case

nder the assumptions of monopoly, static linear demand function,

nd perfect durability. They adapt a model from Bulow [2] , with

he additional assumption that the resource is exhaustible. Their

nalysis focusses on the differences that exhaustibility induces in

he monopoly equilibrium of durable resources. 

The same authors [14] analyse if monopoly leads or not to

verconservation in the case of durable exhaustive resources. They

se two models with static linear demand functions and an in-

nite horizon (a discrete-time model with perfect durability and
1 Note that to speak of monopoly in relation to a durable good can be considered 

o a certain extent as an abuse of language, since the supply can come from the 

ossessor of the primary source of the good and from any of its holders. However, 

or the sake of simplicity, as many authors do, the terms monopoly and monopolis- 

ic are used in the present paper in this specific sense. 

i

i

t

a

t

 continuous-time one in which costs are an increasing function

f cumulative production) and obtain from them similar results,

ith the general conclusions that monopoly is overconservative

nd prices fall monotonically during the production period. 

In the present paper, a discrete-time non-linear mathematical

rogramming model is proposed for determining the optimal poli-

ies of the single primary supplier of a durable exhaustible re-

ource, under a variety of assumptions. This approach allows deal-

ng with any evolution of the demand function throughout the

ime, any number of periods of the planning horizon and either

ith perfect durability or any degree of partial durability. More-

ver, it makes easier the computation of the optimal policies and

ermits also analysing the properties of these policies in diverse

ettings. 

The structure of the rest of the paper is as follows. The adopted

ssumptions and the mathematical programming model are stated

n Section 2 . The properties of the optimal solutions in several par-

icular settings are discussed in Section 3 , which also contains nu-

erical examples. Section 4 closes the paper with some concluding

emarks and future research lines. 

. Assumptions and model formulation 

We consider a finite planning horizon divided into T periods.

he equilibrium price, p t , for each period, t , is a function, ϕt , of the

tock of resource in circulation, s t ; i.e. p t = ϕ t ( s t ) . 
2 At the begin-

ing of the planning horizon, the single primary supplier possesses

n amount R of the resource and the stock in circulation is s 0 . 

We assume that the costs of production and distribution are

egligible, although they could be easily incorporated if they are

onstant or depending on time and not on the amount of resource

n the hands of the monopolist. 

The stock in circulation in any period, s t , is assumed to be equal

o ρ · s t−1 + x t , where x t ( ≥ 0) is the amount of resource extracted

nd introduced into the market by the monopolist in period t and

( ∈ (0, 1]) is the proportion of the stock available in t − 1 that

s still available in t (a part of the available stock can deteriorate,

e dispersed or lost or not considered marketable by its owners).

he value zero is excluded, because in this case the resource would

e non-durable; ρ = 1 corresponds to a perfectly durable resource

nd 0 < ρ < 1 to the infinitely many degrees of partial durability. Of

ourse, the value of this parameter may depend on time; however,

e assume, for the sake of simplicity of the formulations, that it

oes not (relaxing this assumption, on the other hand, is straight-

orward). 

Let αt ( t = 1 , ..., T ) be the discount factor corresponding to pe-

iod t . 

Then, the policy that maximises the present value of the sin-

le supplier can be determined by means of solving the following

athematical program: 

Model MODER 

(Monopolistic Optimisation for a Durable Exhaustible Resource) 

maximise z = 

T ∑ 

t=1 

αt · ϕ t ( s t ) · x t 

= 

T ∑ 

t=1 

αt · ϕ t 

( 

ρt · s 0 + 

t ∑ 

τ=1 

ρt−τ ·x τ
) 

· x t 
2 Although some authors (e.g. [15] ) refer the equivalents of ϕt function as the 

nverse demand functions, others [10] avoid the use of this denomination, as we do 

n the present paper (except when describing the work of authors that use it). Note 

hat, strictly speaking, ϕt is the relation between the stock of resource in circulation 

nd the price and that the stock in circulation does not necessarily coincides with 

he supply of the resource, in the sense of the amount put to sale. 
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T ∑ 

t=1 

x t ≤ R (1)

−x t ≤ 0 t = 1 , ..., T (2)

Given that the constraints are linear and define a feasible so-

lution set with interior points, if the objective function is concave

the Karush, Kuhn and Tucker (KKT) conditions are necessary and

sufficient for optimality. 

As it is known, a necessary and sufficient condition for the con-

cavity of the function is that the Hessian matrix be negative semi-

definite. That this condition holds or does not depends on the spe-

cific properties of the ϕt functions. 

Then, in some specific settings the use of KKT conditions allows

deducting analytic expressions for the optimum values of the vari-

ables and, hence, general properties of the optimal solutions for

the corresponding setting. 

Moreover, if concavity holds, the model, having only the non-

negativity constraints and the linear constraint concerning the

availability amount of the resource in the hands of the monopolist,

is easy to solve using any commercial mathematical programming

(even Excel can be used, provided that the value of T is not too

high). 

Calling u ( ≥ 0) the multiplier associated with constraint ( 1 ) and

v t ( ≥ 0 ; t = 1 , ..., T ) those associated with constraints (2) , the KKT

conditions for MODER can be written as follows: 

− ∂z 

∂ x t 
+ u − v t = 0 ( t = 1 , ..., T ) 

−αt · ϕ 

′ 
t ( s t ) ·

∂ s t 
∂ x t 

· x t − αt · ϕ t ( s t ) 

−
T ∑ 

τ= t+1 

ατ · ϕ 

′ 
τ ( s τ ) · ∂ s τ

∂ x t 
· x τ + u − v t 

= −αt · ϕ 

′ 
t ( s t ) · x t − αt · ϕ t ( s t ) 

−
T ∑ 

τ= t+1 

ατ · ϕ 

′ 
τ ( s τ ) · ρτ−t · x τ + u − v t = 0 ( t = 1 , ..., T ) 

3. Optimal policies for specific settings, with linear ϕt 

functions 

In this section, we will use linear ϕt functions: 

p t = ϕ t ( s t ) = 

P t 

Q t 
· ( Q t − s t ) 

where P t is the choke price (i.e., the limit price when s t goes to 0)

and Q t is the maximum amount of the resource in circulation. 

Then, the objective function of MODER becomes: 

z = 

T ∑ 

t=1 

αt · P t 

Q t 

(
Q t − ρt · s 0 −

t ∑ 

τ=1 

ρt−τ · x τ

)
· x t = 

= 

T ∑ 

t=1 

βt · �t · x t −
T ∑ 

t=1 

βt · x 2 t −
T −1 ∑ 

t=1 

t ∑ 

τ=1 

βt · ρt−τ · x τ · x t 

where βt = 

αt ·P t 
Q t 

and �t = Q t − ρt · s 0 . 

Using this notation, the elements of the Hessian are: 

h tt = −2 · βt ( t = 1 , ..., T ) ; h tτ = −ρ | t−τ | · βτ ( t = 1 , ..., T ; τ � = t ) 

v  
And the KKT conditions: 

−βt · �t + 2 · βt · x t + βt ·
t−1 ∑ 

τ=1 

ρt−τ · x τ

+ 

T ∑ 

τ= t+1 

βτ · ρτ−t · x τ + u − v t = 0 ( t = 1 , ..., T ) 

In every particular case it is easy to check whether the Hessian

s positive-semidefinite and, if it is, solve the mathematical pro-

ram using an appropriate solver. 

Additionally, in some specific settings, analytical expressions

an be found for the optimal values of the variables. In the

est of this section, three of these settings are analysed: (i) T =
 ; (ii) T = 3 , s 0 = 0 ; Q t = Q, P t = P, αt = 1 ( t = 1 , 2 , 3 ) ; (iii) s 0 =
 ; Q t = Q, P t = P, αt = 1 ∀ t, ρ = 1 . Finally, numerical results for

wo examples of more general settings are presented. 

.1. Linear ϕt functions with T = 2 

This case is similar to that dealt with in Malueg and Solow [12] .

owever, here the model is more general, because the ϕt functions

orresponding to the two periods may be different and the degree

f durability may have any value in (0, 1]. 

The objective function is this case is: 

 = β1 · �1 · x 1 + β2 · �2 · x 2 − β1 · x 2 1 − β2 · x 2 2 − ρ · β2 · x 1 · x 2 

Dividing this expression by β1 and replacing β2 / β1 with θ , the

ollowing objective function results: 

ˆ 
 = �1 · x 1 + θ · �2 · x 2 − x 2 1 − θ · x 2 2 − ρ · θ · x 1 · x 2 

s . t . x 1 + x 2 ≤ R, −x 1 ≤ 0 , −x 2 ≤ 0 

Then H( ̂ z ) = ( 
−2 −ρ · θ

−ρ · θ −2 · θ ) and the condition for ˆ z be con-

ave is: 

et H 

(
ˆ z 
)

= 

∣∣∣∣ −2 −ρ · θ
−ρ · θ −2 · θ

∣∣∣∣ = 4 · θ − ρ2 · θ2 ≥ 0 

(
ρ2 · θ ≤ 4 

)
Therefore, assuming that this condition holds, KKT conditions

re necessary and sufficient for optimality: 

−�1 + 2 · x 1 + ρ · θ · x 2 + u − v 1 = 0 

θ · �2 + ρ · θ · x 1 + 2 · θ · x 2 + u − v 2 = 0 

In this case, the mathematical program has only three con-

traints, each one of them can be active or not in an optimal so-

ution. Taken into account that the case in which the two non-

egative constraints are active is trivial (this can happen if and

nly if R = 0 ), there are six subcases: 

Subcase 1.1: ( 0 < x 1 < R, x 2 = 0 ) ⇒ u = 0 , v 1 = 0 , v 2 ≥ 0 

Then, x 1 = �1 / 2 , v 2 = θ · ( ρ · �1 / 2 − �2 ) , and the conditions

or this solution be valid are: �1 /2 < R , �2 ≤ρ ·�1 /2. 

Subcase 1.2: ( x 1 = R, x 2 = 0 ) ⇒ u ≥ 0 , v 1 = 0 , v 2 ≥ 0 

The solution corresponding to this subcase is optimal iff

 = �1 − 2 · R ≥ 0 , v 2 = u + ρ · θ · R − θ · �2 = �1 − 2 · R + ρ · θ ·
 − θ · �2 ≥ 0 , i.e., �1 ≥ 2 · R , �2 ≤ ρ · R + ( �1 − 2 · R ) /θ . 

Subcase 1.3: ( x 1 = 0 , 0 < x 2 < R ) ⇒ u ≥ 0 , v 1 ≥ 0 , v 2 = 0 

 2 = �2 / 2 , v 1 = ρ · θ · �2 / 2 − �1 ;
valid i f f �2 / 2 < R, �1 ≤ ρ · θ · �2 / 2 

Subcase 1.4: ( x 1 = 0 , x 2 = R ) ⇒ u ≥ 0 , v 1 ≥ 0 , v 2 = 0 

The solution corresponding to this subcase is optimal iff

 = θ · ( �2 − 2 · R ) ≥ 0 , v 1 = u + ρ · θ · R − �1 = θ · ( �2 − 2 · R ) + 

· θ · R − �1 ≥ 0 , i.e., �2 ≥ 2 · R , �1 ≤ θ · ( �2 − 2 · R + ρ · R ) . 

Subcase 1.5: ( x 1 , x 2 > 0 , x 1 + x 2 < R ) ⇒ u = 0 , v 1 = 0 , v 2 = 0 

x 1 = ( 2 · �1 − ρ · θ · �2 ) / ( 4 − ρ2 · θ ) θ, x 2 = 

( 2 · �2 − ρ · �1 ) / ( 4 − ρ2 · θ ) . This solution is optimal pro-

ided that the expressions defining x , x are > 0 and
1 2 
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Fig. 1. Optimal productions in the 10 periods of the planning horizon for the ex- 

ample 4.4.1. 
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 1 + x 2 = ( ( 2 − ρ) · �1 + ( 2 − ρ · θ ) · �2 ) / ( 4 − ρ2 · θ ) < R (note

hat the denominators of these expressions cannot be negative

hen the objective function is concave). In this subcase, the

ondition p 1 > p 2 holds without exception. 

Subcase 1.6: ( x 1 , x 2 > 0 , x 1 + x 2 = R ) ⇒ u ≥ 0 , v 1 = 0 , v 2 = 0 

 1 = ( �1 − θ · �2 + ( 2 − ρ) · θ · R ) / ( 2 · ( 1 − ρ · θ + θ ) ) , 

 2 = ( −�1 + θ · �2 + ( 2 − ρ · θ ) · R ) / ( 2 · ( 1 − ρ · θ + θ ) ) 

This solution is optimal provided that the expressions defining

 1 , x 2 are > 0 (note that the denominator is ≥ 2) and 

 = θ ·
(
( 2 − ρ) · �1 + ( 2 − ρ · θ ) · �2 + 

(
ρ2 · θ − 4 

)
· R 

)
/ 

( 2 · ( 1 − ρ · θ + θ ) ) ≥ 0 , 

r, equivalently, ( 2 − ρ) · �1 + ( 2 − ρ · θ ) · �2 ≥ ( 4 − ρ2 · θ ) · R . In

his subcase, prices may be decreasing, stable or decreasing, de-

ending on the values of the parameters for each specific instance.

Therefore, even for the simple case T = 2 there is no single

hape for the optimal policies, which depend on the specific val-

es of the data. Some optimal policies imply the depletion of the

esource, while others do not. For instance, for a perfectly durable

esource ( ρ = 1 ) , stable demand and discount factors equal to 1

therefore, with θ = 1 ) and initial stock in the market equal to

 (what implies, taking into account the preceding assumptions,

1 = �2 = �), the applicable subcases would be subcase 1.5 or

ubcase 1.6, according if the value of the ratio �/ R is < 3/2 (in this

ubcase, x 1 = x 2 = �/ 3 ; therefore, at the end of the planning hori-

on an amount of the resource equal to R − 2 · �/ 3 would remain

n the ground) or ≥ 3/2 (in this subcase 6, x 1 = x 2 = R/ 2 and the

esource would be depleted). 

.2. Linear ϕt function with 

 = 3 , s 0 = 0 ; Q t = Q, P t = P, αt = 1 ( t = 1 , 2 , 3 ) 

The assumptions that define this setting imply βt =
( t = 1 , 2 , 3 ) (therefore, we can leave them aside) �t =
( t = 1 , 2 , 3 ) . Therefore, the Hessian is: 

 ( z ) = 

( 

2 ρ ρ2 

ρ 2 ρ
ρ2 ρ 2 

) 

, 

hich is positive definite for all possible values of ρ (0 < ρ ≤ 1). 

Moreover, the KKT conditions: 

 · x 1 + ρ · x 2 + ρ2 · x 3 + u = �

· x 1 + 2 · x 2 + ρ · x 3 + u = �
2 · x 1 + ρ · x 2 + 2 · x 3 + u = �

Subcase 2.1: x 1 + x 2 + x 3 < R 

The condition that defines this subcase implies u = 0 . Therefore,

KT conditions read as follows: 

 · x 1 + ρ · x 2 + ρ2 · x 3 = �

· x 1 + 2 · x 2 + ρ · x 3 = �
2 · x 1 + ρ · x 2 + 2 · x 3 = �

hose solution is x 1 = x 3 = 

2 −ρ
4 · �, x 2 = 

2 −2 ·ρ+ ρ2 

4 · �. These val-

es have to fulfil x 1 + x 2 + x 3 < R , i.e., �
R < 

4 
6 −4 ·ρ+ ρ2 . 

Note that x 2 ≤ x 1 = x 3 , since 2 − 2 · ρ + ρ2 ≤ 2 − ρ ( 0 < ρ ≤ 1 ) .

herefore, in this case the optimal policy shows a “bowl effect”

i.e., it is U-shaped), which is maximally apparent when ρ = 2 −
 

2 (then, x 2 / x 1 = 2 · ( 
√ 

2 − 1 ) = 0 , 828 ). 

Subcase 2.2: x + x + x = R 
1 2 3 
Solving the four equations linear system yields: 

 1 = x 3 = 

2 − ρ

6 − 4 · ρ + ρ2 
· R, x 2 = 

2 − 2 · ρ + ρ2 

6 − 4 · ρ + ρ2 
· R, 

u = � − 4 

6 − 4 · ρ + ρ2 
· R 

That is optimal provided that u ≥ 0 , i . e ., �R ≥ 4 
6 −4 ·ρ+ ρ2 . 

The optimal policy for this subcase shows the same bowl effect

hat the policy for subcase 2.1. 

In both subcases, prices are strictly decreasing. 

.3. Linear ϕt function with ρ = 1 , s 0 = 0 ; Q t = Q, P t = P, αt = 1 

( t = 1 , ..., T ) 

In this case, the KKT conditions read as follows: 

−� + 2 · x t + 

∑ 

τ � = t 
x τ + u − v t = −� + x t + 

T ∑ 

τ=1 

x τ + u − v t = 0 

( t = 1 , ..., T ) 

Adding up these T equations gives: 

T · � + ( T + 1 ) ·
T ∑ 

t=1 

x t + T · u −
T ∑ 

t=1 

v t = 0 

Where either 
∑ T 

t=1 x t < R or 
∑ T 

t=1 x t = R . 

Subcase 3.1: 
∑ T 

t=1 x t < R 

The condition defining this subcase implies u = 0 . The solution

 t = 

1 
T +1 · � ( t = 1 , ..., T ) fulfils the KKT conditions (since x t > 0 ⇒

 t = 0 ) provided that 
∑ T 

t=1 x t = 

T 
T +1 · � < R , i.e., � < 

T +1 
T · R . 

Subcase 3.2: 
∑ T 

t=1 x t = R 

In this case, u = � − T +1 
T · R ( ≥ 0 i f f � ≥ T +1 

T · R ) and x t = � −
 − R = 

R 
T ( t = 1 , ..., T ) . 

In both subcases, prices decline regularly: 

p t+1 = p t − P 

�
· x t ( t = 1 , ..., T − 1 ) , with p 1 = P − P 

�
· x 1 

In subcase 3 . 1 , p T = P/ ( T + 1 ) ; therefore, the final price tends to

ero as the number of periods tends to infinity). In 3 . 2 , p T = 0 . 

.4. Numerical examples 

.4.1. Linear ϕt function with s 0 = 0 ; Q t = Q, P t = P, αt = 1 ( t = 1 , .., T ) 

This example is an extension to any number of periods of the

etting presented in 4.2. 

With T = 10, Q = 220, P = 110, R = 100, ρ = 0 , 9 , the optimal pro-

uctions, which deplete the resource, show an accentuated bowl

ffect ( Fig. 1 ), while the prices decline, in the whole planning hori-

on, more than a 50% ( Table 1 ). 

.4.2. Linear ϕt functions with T = 10 , s 0 = 100 , R = 100 , Q t = 100 

 10 · ( t −1 ) , P t = 200 , αt = 0 . 9 t−1 

This example illustrates the significant effect of the parameter ρ
n the shape of the optimal extraction policy and on the evolution

f price ( Fig. 2 ). Note that when ρ = 1 the price in the period 1 is

, given that Q = s . 
1 0 
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Table 1 

Optimal productions and prices for the example 4.4.1. 

t 1 2 3 4 5 6 7 8 9 10 

x t 15,41 11,34 8,88 7,50 6,87 6,87 7,50 8,88 11,34 15,41 

p t 189,18 169,59 156,86 148,18 141,62 135,71 129,15 120,47 107,74 88,15 

Fig. 2. Production (black bars) and prices (grey bars) for the optimal policies corresponding to the following data: 

T = 10 , s 0 = 100 , R = 100 , P t = 200 , Q t = 100 + 10 · ( t − 1 ) , αt = 0 . 9 t−1 

In the case ρ = 1 . 00 the total amount extracted is 66,968; in the other cases, the resource is depleted. 
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4. Conclusions and prospects 

The problem of determining the optimal extraction policy of a

durable non-renewable resource with a single primary supplier re-

mains largely unexplored so far. 

In this paper, a discrete-time mathematical programming model

for the problem is proposed. The model allows dealing with ϕt 

functions (that give the equilibrium price as a function of the stock

of resource in circulation) depending on time and with any de-

gree of durability of the considered resource. Under some specific

conditions on the shape of the ϕt functions and the values of the

parameters, this formulation, using the Karush, Kuhn and Tucker

conditions, allows studying the properties of the optimal solutions

and computing easily the optimal extraction policy and the corre-

sponding prices. 

The applications of the model reveal that it is an efficient

tool for determining the optimal extraction policies and the cor-

responding prices in a variety of settings. 

Although in some particular settings the use of the KKT condi-

tions yields analytic solutions and general properties of them, the

analysis of the solutions obtained for different setting show that

the optimal extraction policies and the corresponding prices do not

exhibit a general shape. 

Next future research on the problem will focus on incorporat-

ing the extraction costs in the model and extending the analysis to

other types of ϕt functions, considering the possibility of diverse

behaviours of the single primary suppliers and the other holders

of the resource. 
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