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In this paper we apply robust linear programming technique for multidimensional analysis of preference 

(LINMAP) method for a decision making problem. During the last two decades, many methods have been 

extensively used for decision making problems. However, there is no investigation among many existing 

studies where the uncertainty in data is possible. The robust LINMAP method with the assumption of 

uncertainty on parameters is implemented in the stock market in order to rank priorities of the stocks. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v  

n  

m  

t  

p  

d  

t

 

i  

t  

s  

o  

m  

w  

g  

g  

d  

p  

p  

d  

o  

v  
1. Introduction 

Multi attribute decision making (MADM) methods are practical

and useful techniques for real-world decision making situations.

Many financial decision problems which include several criteria

applied MADM methods as an effective tool. Optimum choice of

stock is an issue which investors are tackling permanently. A large

number of studies have been expanded in this field. Diakoulaki

et al. [7] presented a MADM method for assessment of the compa-

nies’ operation and applied the results of a multi criteria analysis

to a large sample of Greek pharmaceutical industries. A multi cri-

teria industrial evaluation system was provided by Mareschal and

Bransj [15] . which is useful for decision-makers when they want to

make decisions about their industrial clients. Samaras et al. [18] in-

troduced a system to utilize multi criteria analysis methodologies

in order to evaluate and rank the Athens Stock Exchange (ASE)

stocks. MADM problems can be divided into different categories.

Technique for order preference using similarity to the ideal solu-

tion (TOPSIS) is a method based on distance measures which has

been introduced by Hwang and Yoon [13] . The other method which

is similar to the TOPSIS is a linear programming technique for mul-

tidimensional analysis of preference (LINMAP) developed by Srini-
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asan et al. [20] . Nevertheless, the TOPSIS and LINMAP methods

eed various kinds of data and decision conditions. In the LINMAP

ethod decision makers compare alternatives in form of pairs and

he best solution is the alternative that has shortest distance to the

ositive ideal solution (PIS), while in the TOPSIS method shortest

istance to the PIS and the farthest from the negative ideal solu-

ion (NIS) is considered. 

Ordinal regression is one of the methods used in decision mak-

ng problems. It can represent a set of holistic preference informa-

ion provided by the Decision Maker (DM). Greco et al [11] . pre-

ented an ordinal regression method for multiple criteria ranking

f alternatives. A Regression with Intensities of Preference (GRIP)

ethod was presented for ranking a finite set of actions which

as based on indirect preference information and the ordinal re-

ression paradigm [8] . Greco et al. [12] introduced an ordinal re-

ression model for multiple criteria problems by using a set of ad-

itive value functions computed through the resolution of linear

rograms. Robust Ordinal Regression (ROR) is one of the recent ap-

roaches concerning the development of preference models. ROR

esigned for multiple criteria ranking is a non-statistical method-

logy of preference learning. The basic concepts and the main de-

elopments of ROR were introduced by Corrente et al. [6] . Corrente

t al. [5] clarified the specific interpretation of the concept of pref-

rence learning adopted in ROR. They focused on ROR, which is

loser to preference learning practiced in Machine Learning. 

Nevertheless, in many real-world decision problems results pro-

uced by deterministic approaches could lead to neglect of inaccu-

ate information. Consequently, a large number of methods were
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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eveloped to manage uncertainty on the decision problems, like

obust solution, stochastic and fuzzy programming . The concept

f fuzzy logic, initially introduced by Zadeh et al. [22] is more

pplicable when there is no access to historical information and

he information are based on decision maker’s prejudgment. Re-

ently, fuzzy logic has been widely applied in decision making

roblems. Chen and Tan [4] developed a LINMAP method to deal

ith multiple criteria decision analysis problems based on interval

ype-2 trapezoidal fuzzy numbers. Wang and Lie [21] presented a

uzzy logic approach to solve multi-attribute group decision mak-

ng problems in which all the preference information provided by

he decision makers and the preference data about the alternatives

re generally unknown. Zarghami et al. [23] introduced a fuzzy-

tochastic modelling of MCDM problems by using the stochastic

nd fuzzy approaches in order to obtain a robust decision under

ncertainly. Different fuzzy methods that are multi-criteria deci-

ion making were introduced by Li et al. [14] . 

However, the approaches have been applied to decision-making

roblems without assuming any uncertainty in information, have

een under some severe examination where a minor perturbation

an make a significant modification on the ranking. Ben-Tal and

emirovski [1] showed a small perturbation on information might

ead to infeasible solutions and the results of the ranking might be

nreliable. Recent researches on robust optimization have devel-

ped some models which are capable of considering uncertainty

n data and generating the ranking that is more reliable and a mi-

or modification in input and output parameters might not change

he outcomes. 

When input and output data in a mathematical linear program-

ing are uncertain, could not solve by traditional methods, robust

ptimization can cope with this uncertainty on decision making

roblem. Soyster [19] introduced robust optimization method but

t was too conservative. A new robust optimization for handling

ncertainty on linear programming was presented by Ben and Ne-

irovski [1] . A robust optimization which has been widely used

or MCDM problems was introduced by Bertsimas and Sim [3] .

n some studies the robust optimization method was applied in

he industrial cases. It was utilized for measuring the efficiency of

elecommunication companies [17] . In addition, Sadjadi and Om-

ani [16] were presented Data Envelopment Analysis model (DEA)

ith uncertain data for performance assessment of electricity dis-

ribution companies. In this paper, the proposed robust optimiza-

ion technique is implemented to stock market in order to select

est stock. The task of the choosing stocks including several fun-

amental indicators to invest is a decision making process. There

re many unknown and uncertain criteria and an investor should

ake into account all available data. The main objective of this pa-

er is to apply a method considering all parameters for selecting

tocks. As, there are many criteria for choosing stock that some

f them are uncertain and some criteria are changing during the

ime, applying robust LINMAP method can cope with uncertainly

n data. We organize the paper as follows. Section 2 contains de-

cription of the LINMAP method. Robust form of LINMAP is pre-

ented in Section 3 . Finally, the method is implemented in a real

ase in Section 4 . 

. LINMAP formulation for multiple attribute 

A LINMAP issue is to catch the best compromise solution from

ll appropriate alternatives assessed on multiple attributes. Sup-

ose that there is a collection existing of V decision makers who

hoose one(s) of (or rank) m alternatives based on n attributes. Al-

ernatives composed of attributes are represented as m points in

he n -dimensional space. Assume that ratings of alternatives on

ttributes are given using LINMAP through judgments of the de-

ision makers. A decision maker considers an ideal point in his
ind based on his preference. Then the alternatives which have

he shortest distance from the ideal point are selected. Therefore,

or each alternative A i the distance from ideal point is shown by d i 
s follow [13] : 

 i = 

[ 

n ∑ 

j=1 

w j (x i j − x ∗j ) 
2 

] 1 / 2 

, i = 1 , 2 , . . . , m, 

here weights of attributes are w j (j = 1,2,... ,n). Weights are un-

nown and must be determined, x ij is the value of i th alternative

ased on j th attribute in decision matrix and x ∗
j 

is the ideal point

alue, so that the square of the distance from the ideal point is; 

 i = d 2 i = 

n ∑ 

j=1 

w j (x i j − x ∗j ) 
2 , i = 1 , 2 , . . . , m. 

Decision makers give the preference between alternatives by

= { (k, l) } that denotes a set of ordered pairs ( k, l ), where k rep-

esents the preferred alternative basis on results from a pair wise

omparison involving alternatives k and l . Generally not perforce �

as all alternatives. For each pair in �, the solution ( w, x ∗) might

e consistent with the weighted Euclidean distance while the fol-

owing condition holds, 

 l ≥ s k . 

Otherwise if s l < s k means an error happened and we generally

efine 

(s l − s k ) 
− = 

{
0 if s l ≥ s k 
s k − s l if s l < s k , 

(2.1) 

hat could measure inconsistency between the ranking order of al-

ernatives a k and a l determined by s k and s l and the preference re-

ation ( k, l ) ∈ � given by the decision maker. Obviously, the index

n (2.1) can be rewritten as follows: 

(s l − s k ) 
− = max { 0 , (s k − s l ) } , 

nd (s l − s k ) 
− represents error for the pair of ( k, l ) ∈ �. We define

 total inconsistency index of the decision maker by: 

 = 

∑ 

(k,l) ∈ �
(s l − s k ) 

− = 

∑ 

(k,l) ∈ �
max { 0 , (s k − s l ) } . 

By definition, (s l − s k ) 
− and B are nonnegative. Finding ( w, x ∗)

ased on which B is minimal is our problem. Similar to B , we de-

ne a total consistency index of the decision maker by: 

 = 

∑ 

(k,l) 

(s l − s k ) 
+ , 

here: 

(s l − s k ) 
+ = 

{
s l − s k if s l ≥ s k 
0 if s l < s k . 

f G > B we define G − B = h, where h is a positive number. It sud-

enly shows that (s l − s k ) 
+ − (s l − s k ) 

− = (s l − s k ) . Furthermore, h

an be extended as 
∑ 

(k,l) ∈ � (s l − s k ) . 

We construct the auxiliary mathematical programming model

o determine w ; thus ( w, x ∗) could be acquired by solving the fol-

owing model, 

min B = 

∑ 

(k,l) ∈ �
max { 0 , (s k − s l ) } , 

ubject to 

∑ 

(k,l) ∈ �
(s l − s k ) = h, 
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or equivalently: 

min 

∑ 

(k,l) ∈ �
Z kl , 

subject to (s l − s k ) + Z kl ≥ 0 , for (k, l) ∈ �, ∑ 

(k,l) ∈ �
(s l − s k ) = h, Z kl ≥ 0 , for (k, l) ∈ �. 

Finally we can make the linear programming (LP) formulation

of ready to solve by substituting s l and s k to obtain: 

(s l − s k ) = 

n ∑ 

j=1 

w j (x l j − x ∗j ) 
2 −

n ∑ 

j=1 

w j (x k j − x ∗j ) 
2 

= 

n ∑ 

j=1 

w j (x 2 l j − x 2 k j ) − 2 

n ∑ 

j=1 

w j x 
∗
j (x l j − x k j ) . 

Since x ∗
j 

is an indeterminate constant, we define v j : = w j x 
∗
j 
.

Hence, the LP model is as follows: 

min 

∑ 

(k,l) ∈ �
Z kl , 

subject to 

n ∑ 

j=1 

w j (x 2 l j − x 2 k j ) − 2 

n ∑ 

j=1 

v j (x l j − x k j ) + Z kl ≥ 0 , 

for (k, l) ∈ �. 

n ∑ 

j=1 

w j 

∑ 

(k,l) ∈ �
(x 2 l j − x 2 k j ) − 2 

n ∑ 

j=1 

v j 
∑ 

(k,l) ∈ �
(x l j − x k j ) = h, 

w j ≥ 0 , Z kl ≥ 0 , for (k, l) ∈ � v j = w j x 
∗
j ;

j = 1 , 2 , . . . , n. 

(2.2)

I) If w 

∗
j 
> 0 , then x ∗

j 
= v ∗

j 
/w 

∗
j 
, 

II) If w 

∗
j 
= 0 and v ∗

j 
= 0 define x ∗

j 
= 0 , 

II) If w 

∗
j 
= 0 and v ∗

j 
> 0 , then x ∗

j 
= + ∞ , 

V) If w 

∗
j 
= 0 and v ∗

j 
< 0 , then x ∗

j 
= −∞ , 

where w 

∗
j 

and v ∗
j 

are the ideal points value for j th attribute. The

following formula is the square distance from the x ∗. 

S i = 

∑ 

α

w 

∗
α(x iα − x ∗α) 2 − 2 

∑ 

β

v ∗βx iβ, i = 1 , 2 , . . . , m, (2.3)

where α = { j| w 

∗
j 
≥ 0 } , β = { j| w 

∗
j 
= 0 and v ∗

j 
� = 0 } . 

3. Robust LINMAP optimization model 

There are various attitudes of modelling uncertainty in infor-

mation. Typical modelling approaches in operations research un-

der uncertainty suppose a full probabilistic characterization. Ac-

tually, in most of the models the uncertainty is disregarded alto-

gether and a representative nominal use of the data is considered.

The typical approach to deal with uncertainty is the stochastic pro-

gramming (SP) [17] . Robust optimization can be examined as a cor-

responding replacement to sensitivity analysis and stochastic pro-

gramming. To show the robust structure introduced by Bertsimas

and Sim [1] , let c is a n-vectors, A is a m 

∗n matrix and b is a m-

vector. Assume a given linear programming problem of the follow-

ing form: 

min c T x , 

subject to Ax ≤ b, ∀ a 1 ∈ U 1 , ..., a m 

∈ U m 

x ∈ X, 

where a i represents the i th row of the uncertain matrix A , and

takes values in the uncertainty set U i ⊆ R n . Then, a T 
i 

x ≤ b i , ∀
 i ∈ U i if max a i ∈ u i a T 
i 

x ≤ b i ∀ i [2] . Given an uncertain matrix

 = [ a i j ] , suppose that in row i , the entries a ij for j ∈ J i ⊆ { 1 , . . . , n }
ary in some intervals based on their nominal value, namely, sim-

ly gets its value in the interval [ a i j − δi j , a i j + δi j ] ; in which δij is

he maximum variation of a ij . X is a polyhedron as well. Only the

lements of the matrix A are effected by uncertainly, and assume

 i representing the set of coefficients subordinate to uncertainly in

 specific row i [3] . 

Every parameter can deviate and �i coefficients to deviate. Pa-

ameter �i for i = 1 , 2 , . . . , m not necessarily integer, determines

he uncertainty related to each input parameter. �i is the budget

f uncertainty for constraint i . When �i = 0 there is no uncertainty.

s �i increases, the uncertainty also increases. The robust formu-

ation becomes: 

min c T x , ∑ 

j 

a i j x j + max 
{ S i ⊆J i : | S i | =�i } 

∑ 

j∈ S i 
δi j y j ≤ b i 1 ≤ i ≤ m, 

− y j ≤ x j ≤ y j ∀ j = 1 , . . . , n, 

 j ≤ x j ≤ u j ∀ j = 1 , . . . , n, 

 j ≥ 0 , ∀ i, j ∈ J i . 

Taking the dual of the inner maximization problem and regard-

ng to the assumption of Bertsimas and Sim [3] the robust model

an be rewritten as follows: 

max c T x , ∑ 

j 

a i j x j + z i �i + 

∑ 

j∈ J i 
p i j ≤ b i ∀ i, 

 i + p i j ≥ δi j y j ∀ i, j ∈ J i , 

− y j ≤ x j ≤ y j ∀ j = 1 , . . . , n, 

 j ≤ x j ≤ u j ∀ j = 1 , . . . , n, 

p i j ≥ 0 , y j ≥ 0 , z i ≥ 0 ∀ i, j ∈ J i , 

Since model (2.2) is a linear programming problem we apply

he idea of robust optimization as follow [9] . 

max −
∑ 

(k,l) ∈ �
Z 

ubject to 

−
∑ 

j 

w j (x 2 l j − x 2 k j ) + 2 

∑ 

j 

v j (x l j − x k j ) − Z kl + �kl �

+ 

∑ 

j 

(P kl j + q kl j ) ≤ 0 for (k, l) ∈ �, 

kl + p k jl ≥ 
 1 (x 2 l j − x 2 k j ) y j (k, l, j) ∈ �́, 

kl + q k jl ≥ 
 2 (x l j − x k j )� j (k, l, j) ∈ �́, 

− y j ≤ w j ≤ y j , ∀ j = 1 , 2 , . . . , n, 

− � j ≤ v j ≤ � j , ∀ j = 1 , 2 , . . . , n, ∑ 

j 

w j 

∑ 

kl∈ �
(x 2 l j − x 2 k j ) − 2 

∑ 

j 

v j 
∑ 

kl∈ �
(x l j − x k j ) = h, 

 j , �kl , Z kl ≥ 0 , for (k, l) ∈ �, v j = w j x 
∗
j ; j = 1 , 2 , . . . , n, 

(3.1)

here p, q and � are the dual variables and are new dummy

on-negative variables related to the uncertain parameters in (2.2) .
´ = { (k, l, j) | (k, l) ∈ �, j ∈ J i } , 	1 and 	2 are perturbation in

arameters. A simple didactic example is considered for introduc-

ng the model. Assume a decision making problem in which the

ecision maker takes into consideration the three attributes in

valuating three candidates. First, the decision maker provides his

references between the candidates regarding to his experience
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c  
nd his knowledge. Assume that the decision maker provides his

references between the candidates as follows: � = { (1 , 2) , (2 , 3) } .
ince there are uncertainties associated with possible decision

aker preferences, robust LINMAP could be adopted to solve the

esulted problem. 

Then, the decision matrix is marked based on alternatives and

riteria. Since a small perturbation could make a big change on the

anking we consider the perturbation in data, we assume perturba-

ion in parameters by using 	 in the model. We suppose 10%% dis-

urbance in elements, i.e. 	 = 0 . 1 . We also assume � = 1.5 which

epresents 0.95%% guarantee in holding the constraints. The param-

ter h = 1 is considered. Finally, by using the robust LINMAP model

e have formulated (3.1) , the values of the decision matrix, and �

e can construct the following L.P.P: 

max −(Z 12 + Z 23 ) 

subject to 

−
3 ∑ 

j=1 

w j (x 2 2 j − x 2 1 j ) + 2 

3 ∑ 

j=1 

v j (x 2 j − x 1 j ) − Z 12 + 1 . 5�12 

+ 

∑ 

j 

(P 12 j + q 12 j ) ≤ 0 , 

−
3 ∑ 

j=1 

w j (x 2 3 j − x 2 2 j ) + 2 

3 ∑ 

j=1 

v j (x 3 j − x 2 j ) − Z 23 + 1 . 5�23 

+ 

∑ 

j 

(P 23 j + q 23 j ) ≤ 0 , 

�12 + p 12 j ≥ 0 . 1(x 2 2 j − x 2 1 j ) y j , ∀ j = 1 , 2 , 3 , 

�23 + p 23 j ≥ 0 . 1(x 2 3 j − x 2 2 j ) y j , ∀ j = 1 , 2 , 3 , 

�12 + q 12 j ≥ 0 . 1(x 2 j − x 1 j )� j ∀ j = 1 , 2 , 3 , 

�23 + q 23 j ≥ 0 . 1(x 3 j − x 2 j )� j ∀ j = 1 , 2 , 3 , 

− y j ≤ w j ≤ y j , ∀ j = 1 , 2 , 3 , 

− � j ≤ v j ≤ � j , ∀ j = 1 , 2 , 3 , 

3 ∑ 

j=1 

w j (x 2 2 j − x 2 1 j ) + (x 2 3 j − x 2 2 j ) − 2 

3 ∑ 

j=1 

v j (x 2 j − x 1 j ) + (x 3 j − x 2 j )

= 1 , 

w j ≥ 0 , �12 ≥ 0 , Z 12 ≥ 0 , �23 ≥ 0 , Z 23 ≥ 0 . 

Substituting the values from the decision matrix, we can ob-

ain the optimal solution by using MATLAB. The unknown weight

ectors w and v are determined by solving model. x ∗ can be cal-

ulated. Consequently, ranking order of three candidates is gener-

ted by the square of the distance of each alternative from the PIS

hich can be obtained by using equation (2.3) . 

Robust and stochastic optimization are two methods to deal

ith data uncertainty in optimization. Stochastic optimization has

n important assumption, i.e., the true probability distribution of

ncertain data has to be known or estimated. If this condition is

et and the reformulation of the uncertain optimization problem

s computationally tractable, then SO is the methodology to solve

he uncertain optimization problem at hand. Robust optimization,

n the other hand, does not assume that probability distributions

re known, but instead it assumes that the uncertain data resides

n a so-called uncertainty set. RO is popular because of its compu-

ational tractability for many classes of uncertainty sets and prob-

em types [10] . Robust Optimization is an approach to optimization

nder uncertainty, in which the uncertainty model is not stochas-

ic, but rather deterministic and set-based. Instead of seeking to

mmunize the solution in some probabilistic sense to stochastic

ncertainty, here the decision-maker constructs a solution that is

ptimal for any realization of the uncertainty in a given set. Ro-
ust Optimization constructs solutions that are deterministically

mmune to realizations of the uncertain parameters in certain sets.

his approach may be the only reasonable alternative when the pa-

ameter uncertainty is not stochastic, or if no distributional infor-

ation is available. But even if there is an underlying distribution,

he tractability benefits of the Robust Optimization paradigm may

ake it more attractive than alternative approaches from Stochas-

ic Optimization [2] . 

. Case study 

In this section, we show the implementation of LINMAP and

roposed robust LINMAP. Since selecting the best stock is a MCDM

roblem, there are many criteria which influence choosing the best

tock. Moreover, some criteria are uncertain and time can effect

ome of them. With applying robust LINMAP and considering a tol-

rance for criteria, we can reduce the effects of any uncertainty.

herefore, results in this method are more reliable. We have alter-

atives with some criteria and our goal is selecting the best al-

ernative based on uncertainty value of criteria and group deci-

ion making. In this process, first step is determination of ingre-

ients and influential variables for investing in the stock market.

hese criteria are obtained through evaluation, initial observation

nd interviews with financial experts in stock exchange. Some cri-

eria that affect investor’s decisions for selecting stocks are, vol-

me, market capitalization, earnings price ratio (P/E), earnings per

hare (EPS), liability ratio to equity (L/E), return on equity (ROE)

hich are defined as follows: volume is a measure of how much

f a given financial asset has been traded in a given period of time.

arket capitalization shows the size of a company and companies

an be ranked according to their market capitalizations. Earnings

rice ratio (P/E) is the ratio for valuing a company that measures

ts current share price relative to its per-share earnings. In general,

 high P/E suggests that investors are expecting higher earnings

rowth in the future compared to companies with a lower P/E.

arnings per share (EPS) is the portion of a company’s profit al-

ocated to each outstanding share of common stock. Earnings per

hare serves as an indicator of a company’s profitability. Liability

atio to equity (L/E) is calculated by dividing the company’s total

iabilities by its shareholder’s equity the real use of debt-equity

s in comparing the ratio for firms in the same industry. Return

n equity (ROE) measures a corporation’s profitability by revealing

ow much profit of a company generates with the money invested

y shareholders. The ROE is useful for comparing the profitability

f a company to that of other firms in the same industry. These

riteria are denoted by X 1 , ... , X 6 . In the next step, the elements of

ecision matrix D which are values associated with each alterna-

ive, are defined. Also decision- makers are questioned and asked

o compare each alternative with others. Moreover, with defining

riteria and alternatives, the model is designed. Finally, LINMAP

nd robust LINMAP are applied for finding the high priority and

hoosing the best stock. 

In this paper, the companies acting on global financial markets,

ave been chosen from a financial portal (Investing.com) which

ontains the valuable information of international companies. Se-

ected companies which are the elements of the decision ma-

rix are engaged in a variety of health services. All scripts Health

are Solutions Inc. (MDRX) are operating through three segments:

linical and Financial Solutions, Population Health, and software

nd technology. CVS Health Corp that is an integrated pharmacy

ealth care company. Health care Realty Trust Incorporated (HR),

he Company owns, leases, manages, acquires, finances, develops

nd redevelops real estate properties associated primarily with the

elivery of outpatient health care services across the United States.

ardinal Health, Inc. (CAR) is a health care services and products

ompany. The Company operates through two segments: Pharma-
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Table 1 

Different weights for three decision makers using 

LINMAP. 

DM1 DM2 DM3 

w 1 0 0 0 

w 2 0 0 0 

w 3 0 0 0 

w 4 0 0 0 

w 5 0 0 0 

w 6 0 0 0 

v 1 0 0 −0.0 0 0 0 01 

v 2 0.001471 0 −0.021850 

v 3 0 0 0.0 0 0260 

v 4 0 0 −0.300286 

v 5 0 −0.0024 4 4 −0.129535 

v 6 0 −0.085299 6.299720 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

The relative and geometric average absolute distances us- 

ing LINMAP. 

DM1 DM2 DM3 Average 

S A 1 −0.0503 10.1122 −648.269 6.908594 

S A 2 −0.0271 7.4752 −490.474 4.631653 

S A 3 −0.0488 9.0766 −599.528 6.42763 

S A 4 −0.0893 6.8277 −312.727 5.755683 

S A 5 −0.0354 8.6677 −573.281 5.603056 

S A 6 −0.095 8.1103 −419.28 6.861537 

S A 7 −0.0793 9.2377 −577.307 7.506103 

S A 8 −0.0498 8.1353 −520.935 5.953818 

Table 3 

Different weights of three decision makers us- 

ing robust LINMAP. 

DM1 DM2 DM3 

w 1 0 0 0 

w 2 0 0.0 0 0 0 05 0 

w 3 0 0.0 0 0 024 0 

w 4 0 0 0 

w 5 0 0 0.0 0 0359 

w 6 0 0 0.0 0 0322 

v 1 0 0 0.0 0 0 07 

v 2 0.001468 0 −0.0 0 0 0 02 

v 3 0 0.003651 0 

v 4 0 0 −0.0 0 0 062 

v 5 0 0 0.0 0 0 0 04 

v 6 0 0 0 

Table 4 

The relative and geometric average absolute distances 

using robust LINMAP. 

DM1 DM2 DM3 Average 

S A 1 −0.052 0.0963 2.3372 −0.224393 

S A 2 −0.0271 0.125 1.2397 −0.161336 

S A 3 −0.0487 0.0561 1.6884 −0.166465 

S A 4 −0.0891 0.1108 1.5339 −0.225007 

S A 5 −0.0353 0.0769 1.9164 −0.173272 

S A 6 −0.0948 0.0329 1.4399 −0.164985 

S A 7 −0.0792 0.0527 1.9306 −0.200482 

S A 8 −0.0497 0.059 1.3963 −0.159979 

w  

a

 

c  

L  

L  

a

 

t  

	  

p  

b

 

b  

l  

a  

t  

o

 

m  

S

 

p  

a  

W

ceutical and Medical. Omega Health care Investors Inc. (OHI), the

company maintains a portfolio of long-term health care facilities

and mortgages. Community Health Systems Inc. (CYH) is an op-

erator of general acute care hospitals and outpatient facilities in

communities across the country. The Company operates through

hospital operations segment, which includes its general acute care

hospitals and related health care entities that provide inpatient

and outpatient health care services. Magellan Health Services Inc.

(MGLN) is engaged in the health care management business. The

company’s segments include health care, pharmacy management

and corporate. It is focused on managing special populations, com-

plete pharmacy benefits and other specialty areas of health care.

Well Care Health Plans Inc. (WCG) is a company that focuses on

Medicare Advantage (MA) and Medicare Prescription Drug Plans

(PDPs), to families, children, seniors and individuals with medi-

cal needs. The company operates through three segments: Medi-

caid Health Plans, Medicare Health Plans and Medicare PDPs. The

companies will be shown with A 1 , ... , A 8 as alternatives respec-

tively. The criteria values associated with the different alternatives

formed the decision matrix D. For the implementation of the ro-

bust LINMAP method first, we suppose 10%% disturbance in ele-

ments i.e. 	 = 0 . 1 . Moreover 	 is considered 0.05, 0.2 and 0.5, re-

spectively. We also assume � = 1.5 which represent 0.95%% guar-

antee in holding the constraints. Finally, the parameter h = 1 is an

arbitrary positive number and is advised by the model. 

D = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1547724 2 . 47 256 . 06 0 . 05 0 . 931 0 . 0075 

3816 6 60 112 . 61 22 . 75 4 . 61 1 . 485 0 . 141 

764801 3 . 25 49 . 46 0 . 63 1 . 231 4 . 99 

2641088 2 . 47 10 . 33 2 . 53 30 . 503 60 . 76 

1667218 6 . 18 27 . 2 1 . 21 1 . 323 0 . 0868 

6080354 1 . 43 12 . 86 0 . 98 5 . 41 2 . 85 

252484 1 . 65 43 . 2 1 . 54 0 . 994 0 . 0332 

462682 4 . 11 29 . 87 3 . 11 1 . 891 0 . 0817 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

,

Three decision makers compare alternatives and give the pair-

wise comparisons of alternatives as follows: 

�1 = { (A 2 , A 1 ) , (A 2 , A 3 ) , (A 2 , A 8 ) , (A 6 , A 1 ) , (A 6 , A 7 ) , 

(A 6 , A 8 ) , (A 8 , A 7 ) , (A 1 , A 7 ) } , 

�2 = { (A 7 , A 4 ) , (A 7 , A 6 ) , (A 1 , A 7 ) , (A 2 , A 6 ) , (A 1 , A 4 ) , 

(A 2 , A 4 ) , (A 3 , A 4 ) } , 

�3 = { (A 3 , A 2 ) , (A 3 , A 7 ) , (A 3 , A 8 ) , (A 3 , A 4 ) , (A 2 , A 1 ) , (A 1 , A 4 ) , 

(A 5 , A 4 ) , (A 5 , A 7 ) } . 
We apply LINMAP method for the case study and Table 1 shows

the optimal weights for all alternatives which have been acquired
ith Lingo 8 for decision maker 1 ( DM 1 ), decision maker 2 ( DM 2 )

nd decision maker 3 ( DM 3 ). 

From the results of Table 2 the highest priorities belong to CVS

ompany and MGLN company has the last priority for selecting in

INMAP method. The results have been obtained by applying MAT-

AB software. The following order represents the priorities of all

lternatives supplied by LINMAP method. 

S A 2 < S A 5 < S A 4 < S A 8 < S A 3 < S A 6 < S A 1 < S A 7 . Then we apply

he proposed robust LINMAP method to the case study first for

= 0 . 1 then we obtain results for 	 = 0 . 05 , 0 . 2 and 0.5 and com-

are them. Table 3 shows the weights which are acquired with ro-

ust LINMAP method by running Lingo 8. 

The ultimate results applied by MATLAB software for electing

est alternative with minimum distance are presented in the fol-

owing table. The distances related to decision maker 1, 2 and 3

re summarized in columns two, three and four of Table 4 respec-

ively. Column five of Table 4 shows the absolute geometric average

f the evaluations of three decision makers. 

The orders of priorities for all alternatives in robust LINMAP

ethod are as follows: S A 4 < S A 1 < S A 7 < S A 5 < S A 3 < S A 6 < S A 2 <

 A 8 
. 

Based on Table 4 , A 4 which is the implementation of CAR com-

any has the highest priority that can be selected as the best stock

nd next priorities went to MDRX, MGLN, OHI, HR, CYH, CVS and

CG respectively. 
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Table 5 

Average absolute distance using robust LINMAP for 

different perturbation. 

	 = 0 . 05 	 = 0 . 2 	 = 0 . 5 

S A 1 −0.292283 −0.183424 −0.183083 

S A 2 −0.208204 −0.130512 −0.130371 

S A 3 −0.217629 −0.131111 −0.130857 

S A 4 −0.397356 −0.18500 −0.184671 

S A 5 −0.216546 −0.145957 −0.145697 

S A 6 −0.270619 −0.131312 −0.131093 

S A 7 −0.266817 −0.162927 −0.162599 

S A 8 −0.212431 −0.127202 −0.126964 
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Table 5 shows the absolute geometric average of three decision

akers for 	 = 0 . 05 , 0 . 2 and 0.5. 

The orders of priorities for all alternatives in robust LINMAP

ethod for 	 = 0 . 05 , 0 . 2 and 0.5 are as follows respectively: 

S A 4 < S A 1 < S A 6 < S A 7 < S A 3 < S A 5 < S A 8 < S A 2 , 

S A 4 < S A 1 < S A 7 < S A 5 < S A 6 < S A 3 < S A 2 < S A 8 , 

S A 4 < S A 1 < S A 7 < S A 5 < S A 6 < S A 3 < S A 2 < S A 8 . 

The results of the robust LINMAP show that different pertur-

ation cannot change the results significantly, for 	 = 0 . 1 , 0 . 2 and

.5 results are identical which means this method is reliable. 

. Conclusion 

We have introduced a robust LINMAP method where there is an

ncertainly in the parameters. LINMAP and robust LINMAP meth-

ds have been implemented for a case study of decision making

roblem. The proposed models have been applied to stock mar-

et in order to select the best stock under uncertain conditions.

here were eight alternatives with some criteria which influenced

nvestors’ decisions for choosing stocks and three decision mak-

rs have been asked for the relative significance of these alterna-

ives. The alternatives have been prioritized by using the two ap-

roaches. The achievements indicated that the robust LINMAP ap-

roach can be a more flexible and reliable method. 
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