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a b s t r a c t 

In this paper we study non cooperative games with potential as introduced by Monderer and Shapley in 

1996. We extend the notions of weighted and ordinal potential games to a multicriteria setting and study 

their Pareto equilibria. The importance of these games is the existence of Pareto equilibria in pure strate- 

gies and in the finite case and the approximate equilibria for some classes of infinite potential games. 

Some applications are studied via potential games: a water resource problem, a voluntary contribution 

model, peering games for telecommunication models. 

© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Potential games were introduced by Monderer and Shapley

[6] and then extensively studied by many authors, among them

[4,8,9,11,19] . This class of games has many interesting properties

such as the existence of equilibria in pure strategies for finite or

upper bounded games. Furthermore it has been proved that exact

potential games are isomorphic to congestion ones introduced by

Rosenthal [13] , and these have important applications. 

The aim of this paper is to discuss the extension of two classes

of potential games namely weighted potential and ordinal poten-

tial, to games with vector payoffs and to investigate their exact and

approximate equilibria. 

Since the utility functions have values in R 

m also the potential

functions are vector valued. 

We will use indifferently the words multiobjective, multicriteria

or vector games. 

Frequently in real life applications many objectives have to be

“optimized” and often these are not comparable (see [1,5,12] ). The

generalization of the concept of Nash equilibrium in this setting is

neither easy nor unique. Here we consider the (weak and strong)

Pareto equilibria following the idea given by Shapley in [16] . 

We study both weighted and ordinal potential games and we

generalize to these classes some results obtained in [9] . The ex-

istence of a potential function helps us to understand how the

game will be played. In general a game with n players has n utility
∗ Corresponding author. 
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unctions ( n could be very large), but if the game has a potential,

ome of the equilibria can be obtained by studying this function

nly. 

The paper is organized as follows: in Section 2 we give the ba-

ic definitions and notations. In Section 3 we give some results

bout weighted potential games and in Section 4 about ordinal po-

ential ones. 

In Section 5 we study examples and applications to a water re-

ource problem, to voluntary contribution games, to peering games

or telecommunication models. In Section 6 we investigate approx-

mate equilibria studied in [7,9,10,17,18] and generalized in [12] . In

ection 7 we discuss other possible generalizations of ordinal po-

ential games to the multicriteria setting. The last section is about

he conclusions. Many examples complete the paper. 

. Background 

Given a vector x = (x 1 , . . . , x n ) ∈ 

∏ n 
i =1 X i we write X −i = 

∏ 

j � = i X j ,
 −i = (x 1 , . . . , x i −1 , x i +1 , . . . , x n ) ∈ X −i and for all y i ∈ X i and

 −i ∈ X −i (y i , x −i ) = (x 1 , . . . , x i −1 , y i , x i +1 , . . . , x n ) , 

(x i , x −i ) = x = (x 1 , . . . , x n ) . 

Given x, y ∈ R 

n we consider the following inequalities on R 

n : 

x � y ⇔ x i ≥ y i ∀ i = 1 , . . . , n ; 

x ≥ y ⇔ x � y and x � = y ; 

x > y ⇔ x i > y i ∀ i = 1 , . . . , n . 

Analogously we define � , ≤ , < . 

We say that U ⊂ R 

n is upper bounded (u.b. for short) if there

xists b ∈ R 

n such that x ≤ b ∀ x ∈ U . 

We write R 

n + = { x ∈ R 

n : x i ≥ 0 ∀ i } and R 

n ++ = { x ∈ R 

n : x i > 0 ∀ i } . 
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Given ε > 0, for a scalar function f : X → R , we define: 

rgsup 

ε
x ∈ X f (x ) = 

{
y ∈ X : f (y ) ≥ sup 

x ∈ X 
f (x ) − ε

}
or a function F : V ⊂ R 

n → R 

m a point ˆ x ∈ V is strongly Pareto opti-

al ( sPE ( F ) for short) if there is no other feasible point x for which

 ( x ) is larger than F ( ̂  x ) in at least one coordinate and not smaller

n all other coordinates, i.e. � x ∈ V s.t. F (x ) ≥ F ( ̂  x ) . 

A feasible point ˆ x ∈ R 

m is weakly Pareto-optimal if there is no

ther feasible point x such that F ( x ) is larger than F ( ̂  x ) in each

oordinate, i.e. � x ∈ V s.t. F (x ) > F ( ̂  x ) . 

A feasible point ˆ x ∈ R 

m is called approximate Pareto optimal for

 , ( εPE ( F ) for short) if given ε ∈ R 

m + , � x ∈ V s.t. F (x ) > F ( ̂  x ) + ε. 

efinition 2.1. A strategic multiobjective game is a tuple

 = 〈 N, (X i ) i ∈ N , (u i ) i ∈ N 〉 , where N is the set of players, X i is the

trategy space for player i ∈ N , X is the cartesian product 
∏ 

i ∈ N X i 

f the strategy spaces ( X i ) i ∈ N and each player has m ( i ) objectives,

.e. the utility function for player i is a function u i : X → R 

m (i ) . 

In general in vector games each player i can have m ( i ) different

bjectives to “optimize”; the existence of a potential requires that

ach player has the same number of objectives i.e. m (i ) = m. 

Given k scalar games G 1 , . . . , G k (with the same number of

layers and strategy spaces) with abuse of notation we will write: 

G = (G 1 , . . . , G k ) to indicate the multiobjective game with k

omponents. 

efinition 2.2. A strategy profile ˆ x = ( ̂  x i , ̂  x −i ) ∈ X is a weak

areto equilibrium for the multiobjective strategic game

 = 〈 N, (X i ) i ∈ N , (u i ) i ∈ N 〉 if for all i ∈ N 

� x i ∈ X i s.t. u i (x i , ̂  x −i ) > u i ( ̂  x i , ̂  x −i ) . 

It is a strong Pareto equilibrium for the game G if for all i ∈ N 

� x i ∈ X i s.t. u i (x i , ̂  x −i ) ≥ u i ( ̂  x i , ̂  x −i ) . 

The set of all strong (weak) Pareto equilibria of G will be de-

oted by sPE ( G ) ( wP E(G ) ). We will write PE ( G ) when we consider

ndifferently the strong or weak Pareto equilibria. 

A game G is a pure coordination game if u i = u for all i ∈ N . 

For a given function P we will denote by G 

P the pure coordina-

ion game where u i = P for all i ∈ N . 

A game G is a dummy game if for all i ∈ N and x −i ∈ X −i it holds

 i (x i , x −i ) = u i (y i , x −i ) for all x i , y i ∈ X i . 

. Weighted potential games 

The notion of weighted potential games in the scalar case has

een given in [6] and it can be extended to multiobjective games. 

efinition 3.1. The strategic form of a weighted potential game is

 tuple G = 〈 N, (X i ) i ∈ N , (u i ) i ∈ N 〉 , u i : X → R 

m and there exist a map

 : X → R 

m and vectors w i ∈ R 

m , w i > 0 for all i , such that for all

 ∈ N , x i , y i ∈ X i , x −i ∈ X −i , it holds 

 i (x i , x −i ) − u i (y i , x −i ) = w i ◦ { P (x i , x −i ) − P (y i , x −i ) } , 
here ◦ stands for the Hadamard (componentwise) product of vec-

ors. 

The function P is a w -potential of the game G . 

It is easy to prove the following: 

roposition 3.1. G = 〈 N, (X i ) i ∈ N , (u i ) i ∈ N 〉 is a weighted potential

ame iff for all k = 1 , . . . , m the scalar game 

G k = 〈 N, (X i ) i ∈ N , (πk (u i )) i ∈ N 〉 is a (scalar) weighted potential

ame. The function π k ( P ) is a weighted potential for G k , ( π k is the

rojection on the kth component). 

As for scalar games, we can prove that a weighted potential

ame can be written as the sum of a dummy and a weighted pure

oordination game. 
heorem 3.1. A game G is a weighted potential game iff for all

 ∈ N there exist w i ∈ R 

m , w i > 0 and c, d i : X → R 

m , such that

 i = w i ◦ c + d i ∀ i ∈ N and D = 〈 N, (X i ) i ∈ N , (d i ) i ∈ N 〉 is a dummy mul-

icriteria game. 

roof. Let G be a weighted potential game with w -potential P .

hen if d i = u i − w i ◦ P, the game D is a dummy game and thus

he thesis follows with c = P . 

Conversely, if u i − w i ◦ c = d i and d i (x i , x −i ) − d i (y i , x −i ) = 0 for

ny x i , y i and x −i the function c is a weighted potential for G . �

Example of weighted potential bicriteria game: 

xample 3.1. Let us consider the following game 

here sP E(G ) = wP E(G ) = { (T , L ) , (B, R ) } . It is a weighted potential

ame, with w -potential equal to 

nd weights w 1 = (2 , 3) and w 2 = (1 , 2) . Note that P E(P ) = { (B, R ) }
This game is the sum of the following weighted pure coordina-

ion game C and the dummy game D 

 : 
(0 , 3) (0 , 2) (4 , 0) (2 , 0) 
(4 , 0) (2 , 0) (6 , 3) (3 , 2) 

 : 
(4 , 0) (4 , 0) (−3 , 0) (4 , 0) 

(4 , 0) (−1 , 0) (−3 , 0)(−1 , 0) 

We can note that P E(G ) = P E(G 

P ) ; this is not a case, in general

t holds: 

roposition 3.2. If G is a weighted potential finite game the follow-

ng relations are valid: 

1) PE ( G ) � = ∅ 
2) P E(P ) ⊆ P E(G ) = P E(G 

P ) 

roof. We prove the result only for the strong Pareto equilibria,

eaving the weak Pareto equilibria to the reader. 

� Let ˆ x ∈ sP E(P ) , then for all i ∈ N � x i ∈ X i s.t. 

 (x i , ̂  x −i ) ≥ P ( ̂  x i , ̂  x −i ) ; being w i > 0 it is valid also: 

w i ◦ P (x i , ̂  x −i ) ≥ w i ◦ P ( ̂  x i , ̂  x −i ) and this inequality is equiva-

ent to � x i ∈ X i s.t. u i (x i , ̂  x −i ) ≥ u i ( ̂  x i , ̂  x −i ) so we have proved the

rst inclusion in 2). � let ˆ x ∈ sP E(G ) so by definition � x i ∈
 i s.t. u i (x i , ̂  x −i ) ≥ u i ( ̂  x i , ̂  x −i ) if and only if w i ◦ P (x i , ̂  x −i ) ≥ w i ◦
 ( ̂  x i , ̂  x −i ) if and only if � x i ∈ X i s.t. P (x i , ̂  x −i ) ≥ P ( ̂  x i , ̂  x −i ) and so we

ave proven the equality in 2). �

The first inclusion in the previous proposition could be strict as

he Example 3.1 proves. 

heorem 3.2. Let G be a game with n players and let the strategy

ets be intervals in R . Let us suppose that the utility functions are

wice continuously differentiable. It is a weighted potential game if

nd only if the following relation is valid: 

∂ 2 u 

k 
i 

∂ x j ∂ x i 
= 

(
w 

k 
i 

w 

k 
j 

)
∂ 2 u 

k 
j 

∂ x i ∂ x j 

 k = 1 , . . . , m and ∀ i, j = 1 , . . . , n . 

roof. Starting from the definition of a weighted potential game

nd fixing the objective k , we obtain 



144 L. Levaggi, L. Pusillo / Operations Research Perspectives 4 (2017) 142–148 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

D  

X  

c  

c  

a  

p  

c

T  

h

P  

d

 

s

 

t  

h

 

a

 

e

E

 

o

R  

o  

g  

t

 

w

D  

p

P

 

p

 

t  

t

 

G

 

t  

m  

t  

t  

s  
∂u k 
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∂x i 
= w 

k 
i 

∂P k 

∂x i 
, using the smoothness of the involved functions,

the above condition is equivalent to the existence of a weighted

potential, this in turn is equivalent to the requirement that: (
∂ u 

k 
1 /w 

k 
1 

∂x k 
1 

, . . . . . . . , 
∂ u 

k 
n /w 

k 
n 

∂x k n 

)
is a conservative vector field, which under the hypotheses is equiv-

alent to the thesis. �

Remark 3.1. If 

(
w 

k 
i 

w 

k 
j 

)
= 1 ∀ k = 1 , . . . , m and ∀ i, j = 1 , . . . , n, then

the weighted potential games are exact potential ones: 

4. Ordinal potential games 

Definition 4.1. G = 〈 N, (X i ) i ∈ N , (u i ) i ∈ N 〉 with u i : X → R 

m is called

an ordinal potential game if there exists a map P : X → R 

m such

that for all i ∈ N , x i , y i ∈ X i , x −i ∈ X −i it holds 

u 

j 
i ( x i , x −i ) > u 

j 
i ( y i , x −i ) ⇔ P j ( x i , x −i ) > P j ( y i , x −i ) 

for all j = 1 , . . . , m . 

Intuitively a potential game with m objectives is ordinal iff each

component game is an ordinal potential one. 

Example 4.1. Let us consider a generalization to the bicriteria set-

ting of the oligopoly game studied in [6] : 

G 3 = ([0 , a ] n , πi ) , i = 1 , . . . , n . We add the hypotheses that the

utility functions are vectors and the inverse demand function F is

in each component twice continuous differentiable on an interval.

The strategy space is X i = [0 , a ] , a ∈ R . The utility functions are: 

πi (q 1 , q 2 , . . . , q n ) = F (Q ) q i − cq i , i = 1 , . . . n, Q = q 1 + . . . q n ,

πi : 
∏ 

i X i → R 

m . 

This is an ordinal multicriteria potential game

with ordinal potential function P : 
∏ 

i X i → R 

m ,

P (q 1 , . . . , q n ) = q 1 q 2 . . . q n (F (Q ) − c) 

This is not a weighted potential game if we choose F such

that: 

∂ 2 u 

k 
i 

∂ x i ∂ x j 
� = 

(
w 

k 
i 

w 

k 
j 

)
∂ 2 u 

k 
j 

∂ x i ∂ x j 

∀ k = 1 , . . . , m and ∀ i, j = 1 , . . . , n, w 

k 
i 

∈ R + . 
So the set of weighted potential games is a proper subset of the

ordinal potential ones also for muticriteria games. 

Furthermore this example shows that the equilibria set of the

Cournot game coincides with the pure strategy equilibrium set of

the game in which every firm’s profit is the potential function. 

The existence of an ordinal potential allows to study the Pareto

equilibria of the game through the potential P in the following

way: 

Proposition 4.1. Let G be a finite multicriteria ordinal potential

game, the following relations are valid: 

(1) PE ( G ) � = ∅ 
(2) P E(P ) ⊆ P E(G ) = P E(G 

P ) 

Proof. The proof is similar to that of Proposition 3.2 . �

Corollary 4.1. Any finite multicriteria ordinal potential game has at

least a weak Pareto equilibrium. 
Let us define a weak improvement cycle to illustrate some in-

eresting properties of ordinal potential games. 

efinition 4.2. A finite path � = (x 1 , . . . , x m 

) in the strategy space

 is a finite sequence of elements x k ∈ X such that ∀ k , the strategy

ombination x k and x k +1 differs in the i ( k )th coordinate. It is called

losed or cycle if x 1 = x m 

. It is a simple cycle if it is closed and

ll strategy combinations are different except the initial and final

oint. The number of different strategy combinations in a simple

losed path is called the length of the path. 

A finite path (x 1 . . . x m 

) is called a weak improvement cycle if 

x 1 = x m 

u i (k ) (x k ) ≤ u i (k ) (x k +1 ) for some k = 1 , 2 , ..n . 

heorem 4.1. If G is a multicriteria ordinal potential game, then it

as no weak improvement cycles. 

roof. Let P be an ordinal potential for the game G and by absur-

um let (x 1 , x 2 , . . . , x m 

) be a weak improvement cycle, then 

u i (k ) (x k ) � u i (k ) (x k +1 ) for k = 1 , 2 , ..n − 1 and there is at least k

.t. 

u 
i ( k ) 

(x 
k 
) < u 

i ( k ) 
(x 

k +1 
) . 

Being an ordinal potential game P (x k ) � P (x k +1 ) and for k it

urns out in at least one component j , P j (x 
k 
) < P j (x 

k +1 
) ; by the

ypothesis on the cycle, on at least a component j it turns out: 

P j (x 1 ) ≤ P j (x 2 ) ≤ . . . P j (x 
k 
) < P j (x 

k +1 
) ≤ . . . P j (x 1 ) and this is

bsurd. �

The converse is not true, even for finite games, as the following

xample shows: 

xample 4.2. 

(0 , 0) (0 , 0) (0 , 1) (0 , 0) 
(0 , 0) (0 , 0) (1 , 0)(0 , 0) 

The game has no weak improvement cycle, but it has not an

rdinal potential. 

emark 4.1. The absence of weak improvement cycles involving

nly 4 deviations is not sufficient for G to be an ordinal potential

ame, (differently from what happens for exact potential ones) as

he following example shows: G : 

The path γ = ((C, D ) , (C, E) , (B, E) , (B, F ) , (A, F ) , (A, D )) is a

eak improvement cycle but it does not involve four deviations. 

efinition 4.3. A multiobjective game has the finite improvement

roperty, (FIP for short), if every improvement path is finite. 

roposition 4.2. Every finite ordinal potential game has the FIP. 

The following drawing well illustrates the inclusions among the

otential multicriteria games studied ( Fig. 1 ). 

The set F denotes the set of exact potential games, the set W

hat of weighted potential games and the set O that of ordinal po-

ential ones. 

In fact considering the previous examples: G 1 ∈ W �F , G 2 ∈ F ,

 3 ∈ O �W. 

Among the properties of potential games that contribute to

heir importance in applications, the following are perhaps the

ost relevant: (1) the existence of pure Pareto equilibria and (2)

he FIP (Finite Improvement Path) property. The first depends on

he observation that the set of equilibria of a potential game is

trictly related to that of a game where players have the common
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Fig. 1. Relations among potential games classes. 
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bjective of optimising the potential. The second allows to create

lgorithms for the search of equilibria as the terminal points of fi-

ite improvement paths. 

In the next two sections we present some applications of mul-

icriteria potential games. 

. Examples and applications 

xample 5.1 Application to a water resource problem. Players

 and II are two firms that can collect water both from

 common international water body and a private local

ource (different for each player) to be used for domestic

nd agricultural needs. Let us call (x 1 , x 2 ) ∈ X = X 1 × X 2 the

uantities collected from the international water body, and

(y 1 , y 2 ) ∈ Y = Y 1 × Y 2 those drilled out of the local source.

e call z i = 

(
x i 
y i 

)
i = 1 , 2 the quantity of water used by

layer i. 

Players have two objectives: the first is to maximize the ben-

fits obtained by transforming water from the local sources, in

erms of better hygienical conditions, improved local agricultural

roductions and increased health. The second is to maximize the

rofits obtained by selling the water taken from the international

ater body. 

We call B i the benefit of player i from transforming the quan-

ity of local water from his source, B 1 (z 1 ) = b 1 y 1 with b 1 ∈ R + ,
 2 (z 2 ) = b 2 y 2 with b 2 ∈ R + . The costs incurred in this transform-

ng work are 

C 1 = c. (x 1 + x 2 + y 1 + y 2 ) for the first player and for the second 

C 2 = c. (x 1 + x 2 + + y 1 + y 2 ) with c ∈ R + . 
So the first component of the utility function of player I is 

b 1 y 1 − c. (x 1 + x 2 + y 1 + y 2 ) . 

The second component of the utility function of player I is the

arket profit, which is proportional to the quantity of water and

o the inverse demand function E, E > 0. Taking into account the

ost functions too, the payoffs for the players are: 

 1 (x 1 , y 1 , x 2 , y 2 ) = 

(
b 1 y 1 − c. (x 1 + x 2 + y 1 + y 2 ) 
(x 1 + y 1 )(E(x 1 + x 2 + y 1 + y 2 ) − k 

)

nd analogously for player II: 

 2 (x 1 , y 1 , x 2 , y 2 ) = 

(
b 2 y 2 − c. (x 1 + x 2 + y 1 + y 2 ) 
(x 2 + y 2 )(E(x 1 + x 2 + y 1 + y 2 ) − k ) 

)
his is an ordinal potential game with potential 

 (x 1 , y 1 , x 2 , y 2 ) = 

(
b 1 y 1 + b 2 y 2 − c. (x 1 + y 1 + x 2 + y 2 ) 
(x 1 + y 1 )(x 2 + y 2 )(E(x 1 + x 2 + y 1 + y 2 ) − k 

)
. 

ith b 1 , b 2 , c, k ∈ R + 

To prove in our model that P is an ordinal potential, the follow-

ng result is useful: 

roposition 5.1. Let G be an ordinal potential game as in Definition

.1 and let u i , P differentiable functions. Then the following is valid: 

∀ i = 1 , . . . , n ; ∀ j = 1 , . . . , m ; 

∂u 

j 
i 

∂x i 
> 0 ⇔ 

∂P j 

∂x i 
> 0 . 

roof. is similar to Theorem 3.2 �

To know more about a water resource problem in the model of

artial cooperation and scalar case see [4] and references therein. 

xample 5.2 Application to voluntary contribution. Now we

tudy a class of games where players give private contributions to

nance facilities or projects that are considered public goods, once

hey are established, all players can use them. 

We consider a finite number of players and we suppose that

ach of them is interested in a finite number of facilities. Each

layer receives a benefit from the project s/he is interested in,

f this is realized. In our context we are interested in the non-

ooperative case. 

Players present a contribution independently from the others,

hen the realization scheme determines which projects to finance

nd the players utility functions. This interactive problem is called

 “contribution game”. 

The strategy space of each player is the set of possible contri-

utions: [0, αi ] where the αi ∈ R + is the reward for player i , so

hat each player’s contribution is strictly less than the compensa-

ion. The utility function depends on whether the projects s/he is

nterested in are realized or not and on the net benefit s/he gets

rom them. The social welfare function is defined as the sum of

he utility functions of all players. 

The realization scheme takes into account that each contributor

s paying only for the project of interest and the funding for one

roject is never greater than its cost; excess contributions will be

ost. Only projects completely financed are carried out. The play-

rs must decide how much they want to offer and after individ-

al contributions are made an external person, independently from

ontribution makers, will decide which facilities will be funded. A

ontribution profile can be associated to many admissible facility

ets and the decision maker use a realization scheme to select the

est option. 

A realization scheme specifies for each profile of contributions,

hich set of projects will be realized. 

A realization problem is a tuple: 

 = 

〈 
N, M, m ∈ 

(
2 

M 

)N 
, α ∈ R 

N 
++ , c ∈ R 

M 

++ 

〉 
here 

N is a finite, non empty set of n players, 

M is a finite, non empty set of facilities or public goods, 

m = (m i ) i ∈ N ∈ (2 M ) N is the vector of the facility set requested

y each player. The vector α = (αi ) i ∈ N ∈ R 

N ++ specifies the prize

ach player i ∈ N gets if all projects in m i are realized; 

 = (c j ) j∈ M 

∈ R 

M ++ specifies the cost c j to realize the project j ∈ M . 
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A contribution problem is denoted by: 

C = 

〈 
N, M, m ∈ 

(
2 

M 

)N 
, α ∈ R 

N 
++ , c ∈ R 

M 

++ , R 

〉 
Before the players decide their contribution, the arbiter’s realiza-

tion scheme is publicly announced. 

A realization scheme follows two important rules: 

(1) a player’s contribution will be used for the projects of his

interest 

(2) players who get higher prizes are encouraged to contribute

more. 

The contribution problem can be seen as a non cooperative

game where the strategy space of player i is X i = [0 , αi ) . 

The realization scheme R : 
∏ 

i ∈ N X i → 2 M selects the projects to

be funded. 

The payoff function of player i for each profile x = (x i ) i ∈ N ∈ X

is: 

u i (x ) = 

{ − x i , if m i �⊆ R (x ) , 

αi − x i if m i ⊆ R (x ) . 
(1)

Intuitively, player i has a profit only if the facilities he is inter-

ested in are financed, otherwise he has a loss equal to his con-

tribution. We have supposed that each player does not contribute

with a quantity greater then the prize. 

It is known that if G = 〈 N, (X i ) i ∈ N , (u i ) i ∈ N 〉 is a scalar contribu-

tion game, the social welfare function is 

U : X → R 

m defined as U = 

∑ 

i ∈ N u i and it is an ordinal potential

function of the game. 

Now let us consider the bicriteria game H = 〈 N, (X i ) i ∈ N , (F i ) i ∈ N 〉
where F i = (u i , U) so the players have two objectives: to maximize

the private payoff and the social welfare. H is an ordinal potential

bicriteria game. 

More about voluntary contribution games can be found in [20] .

6. Application to peering games for telecommunication 

models. 

Potential games are used to model and solve several problems

in telecommunications, where resources have to be allocated in an

efficient way among numerous players (see e.g. [3] for some spe-

cific examples of applications to wireless networks). We present

here an example inspired by the peering games in [14,15] ; we re-

fer to these papers for the definitions and the previous results. 

Let us define N = { 1 , . . . , n } the set of neighbouring autonomous

systems acting as players in the game, E the (finite) set of links

that each player can use for inter-community communications and

X i the set of strategies of each player. If F is the number of pos-

sible outbound flows from the community of provider i , X i is de-

fined as the set of all vectors of length F whose components are

in E . If for example four flows have to be routed to two links l 1 ,

l 2 , then the strategy σi = (l 1 , l 2 , l 2 , l 1 ) describes the decision of the

i th autonomous system about the use of the peering links for the

routing on the four inter-community flows. The routing choice of

each player affects their egress and ingress costs at each router and

the congestion of inter-peer links - the second aspect acquiring im-

portance when many inter-community flows are considered. In the

following multi-objective game we therefore define the payoff of

player i as: 

πi (σi , σ−i ) = 

(
φi,s (σi ) + φi,d (σ−i ) , φi,c (σi , σ−i ) 

)
, 

where φi , s represents the egress costs of player i , φi , d its ingress

costs and φi , c the congestion cost. The first only depends on

the own strategy (selfish game), the second only on opponents’

strategies (dummy game) and the last on the collective behaviour.

For any choice of the functions φi , s and φi , d the scalar game

〈 N, (X i ) i ∈ N , (φi,s + φi,d ) i ∈ N 〉 is an exact potential game. For the game
 N , ( X i ) i ∈ N , ( φi , c ) i ∈ N 〉 we refer to Harks et al. [2] , where the

onditions for the existence of a weighted potential for these

ames are established. Assuming that the functions φi , c satisfy

he requirements in Section 3.2 of [2] , the multi-objective game

 = 〈 N, (X i ) i ∈ N , (πi ) i ∈ N 〉 is then a weighted potential game in the

ense of Definition 3.1 . By Proposition 3.2 the Pareto optimal points

f its w -potential P provide Pareto equilibria for G and can be used

s an equilibrium refinement tool. As in [14,15] the dummy game

 N , ( X i ) i ∈ N , ( φi , d ) i ∈ N 〉 , which has no influence on the potential P ,

an be used for the subsequent selection of an efficient equilib-

ium. 

xample 6.1. For this numerical example we choose n = 2 (and

ame the players I and II ), E = { � 1 , � 2 , � 3 } and assume that there

s only one outbound flow from each system, so that strategies are

ouples of the form ( � m 

, � n ) with m , n = 1,2,3. We define the egress

ost of player i on link m as c i m 

and the ingress cost of player i on

ink n as γ i 
n ; the chosen numerical values are: 

 

I 
1 = 10 , c I 2 = 7 , c I 3 = 9 

c II 1 = 6 , c II 2 = 8 , c II 3 = 15 

γ I 
1 = 5 , γ I 

2 = 8 , γ I 
3 = 10 

γ II 
1 = 3 , γ II 

2 = 9 , γ II 
3 = 7 

n this case 

φI,s (� m 

, � n ) = c I m 

, φI I ,s (� m 

, � n ) = c II n 

I,d (� m 

, � n ) = γ I 
n , φI I ,d (� m 

, � n ) = γ II 
m 

nd the first element of the payoff of player i is given by the sum

f the egress and ingress costs for player i when the strategy ( � m 

,

 n ) is played. 

For the congestion game, if d i denotes the demand of player i

nd the load L k of link � k in strategy ( � m 

, � n ) is: 

 k (� m 

, � n ) = δkm 

d I + δkn d II 

t is: 

I,c (� m 

, � n ) = d I g(L m 

) , φI I ,c (� m 

, � n ) = d II g(L n ) 

here g is a given cost function. If g is affine the congestion game

s an exact potential game; choosing g(x ) = exp (x ) a weighted po-

ential game is obtained with potential 

 c (� m 

, � n ) = g(L m 

) + g(L n ) . 

f d I = 5 and d II = 7 for the game: 

 : 

I \ I I � 1 � 2 � 3 

� 1 (15 , 5 e 12 )(9 , 7 e 12 ) (18 , 5 e 5 )(11 , 7 e 7 ) (20 , 5 e 5 )(18 , 7 e 7 ) 

� 2 (12 , 5 e 5 )(15 , 7 e 7 ) (15 , 5 e 12 )(17 , 7 e 12 ) (17 , 5 e 5 )(24 , 7 e 7 ) 

� 3 (14 , 5 e 5 )(13 , 7 e 7 ) (17 , 5 e 5 )(15 , 7 e 7 ) (19 , 5 e 12 )(22 , 7 e 12 ) 

he potential P 

� 1 � 2 � 3 

� 1 (3 , e 12 + 1) (5 , e 7 + e 5 ) (12 , e 7 + e 5 ) 

� 2 (0 , e 7 + e 5 ) (2 , e 12 + 1) (9 , e 7 + e 5 ) 

� 3 (2 , e 7 + e 5 ) (4 , e 7 + e 5 ) (11 , e 12 + 1) 

s a w -potential with weights w I = 

(
1 , 7 e 7 

e 7 −1 

)
and w II 

(
1 , 5 e 5 

e 5 −1 

)
. The strategy

rofile ( � 2 , � 1 ) is a Pareto equilibrium of the game. 

. Approximate Pareto equilibria 

In this section we recall the definitions of approximate Pareto

quilibria ( εPE for short) for multiobjective games as introduced

n [9] . 
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efinition 7.1. Let G = 〈 N, (X i ) i ∈ N , (u i ) i ∈ N 〉 be a multicriteria strate-

ic game and ε ∈ R 

m with positive components. The strategy pro-

le ˆ x ∈ 

∏ 

i ∈ N X i is called an ε-Pareto equilibrium of the game G if

or each i ∈ N it holds ˆ x i ∈ εP B ( ̂  x −i ) , where εP B ( ̂  x −i ) is the set of

-Pareto best answers to ˆ x −i , that is 

εP B ( ̂  x −i ) = { x i ∈ X i s.t. u i (y i , ̂  x −i ) / ∈ u i (x i , ̂  x −i ) + R 

m + ,ε ∀ y i ∈ X i }
ith 

R 

m + ,ε= R 

m + \ ([0 , ε] m ) . 

In the following we denote by εPE ( G ) the set of ε-Pareto equi-

ibria of the game G . For weighted potential games with vector

ayoff, the following result is valid: 

heorem 7.1. Let G be a multicriteria weighted potential game. Let

s suppose the weighted potential function P is upper bounded, then

PE ( G ) � = ∅ 

roof. Let P be a weighted potential for G and ε > 0. Take 

ˆ 
 ∈ argsup 

ε
x ∈ X 

( 

n ∑ 

i =1 

m ∑ 

j=1 

w 

j 
i 
◦ P j (x ) 

) 

hen ∀ x ∈ X 

m 

 

j=1 

w 

j 
i 
◦ P j ( ̂  x ) ≥

m ∑ 

j=1 

w 

j 
i 
◦ P j (x ) − ε

e want prove that ˆ x is an approximate equilibrium. 

Suppose by absurd that ˆ x / ∈ εP E(G ) then ∃ i ∈ N and x i ∈ X i s.t. 

 i 

(
x i , ̂  x −i 

)
∈ u i ( ̂  x ) + R 

m 

+ ,ε . 

ince 

 i ◦
(
P 
(
x i , ̂  x −i 

)
− P ( ̂  x ) 

)
= u i 

(
x i , ̂  x −i 

)
− u i ( ̂  x ) ∈ R 

m 

+ ,ε

hen 

n 
 

i =1 

m ∑ 

j=1 

w 

j 
i 
. 
(
P j (x i , ̂  x −i ) − P j ( ̂  x ) 

)
> ε

nd this is a contradiction. So, for each i ∈ N , ˆ x i ∈ εP B ( ̂  x −i ) i.e.

ˆ  ∈ εP E(G ) . �

roposition 7.1. Let G be a multicriteria weighted potential game. Let

s suppose the weighted potential function P is upper bounded, then 

εP E(G ) = εP E(G 

P ) 

Some games have no equilibria but approximate equilibria. 

xample 7.1. Let us consider the following example with two play-

rs which have an infinite number of strategies and two objectives

o reach: 

In this game there are no strong Pareto equilibria but an infinite

umber of approximate Pareto equilibria. 

This is an infinite bicriteria game with ordinal potential as fol-

ows: 
o

. Remarks about multicriteria ordinal potential games 

Definition 4.1 of ordinal potential games is one of the possible

ays of extending the classical notion to a multicriteria setting. We

resent here another viable alternative, which enlarges the class of

dmissible potentials, but subject to some criticisms which will be

ater discussed. 

In this section we introduce the relation � , where we mean,

iven a, b, c, d ∈ R 

m : a � b ⇔ c � d

means 

⎧ ⎪ ⎨ 

⎪ ⎩ 

a > b ⇔ c > d 

a = b ⇔ c = d 

if a, b are not comparable also 

c, d are not comparable 

efinition 8.1. We call 

G = 〈 N, (X i ) i ∈ N , (u i ) i ∈ N 〉 an extended ordinal potential game if 

here exists P : X → R 

m such that 

∀ i ∈ N, ∀ x i , y i ∈ X i , ∀ x −i ∈ X −i 

u i (x i , x −i ) � u i (y i , x −i ) ⇔ P (x i , x −i ) � P (y i , x −i ) 

If we call G the set of all strategic non cooperative games, G 0 
he set of ordinal potential games and G E the set of ordinal ex-

ended ones, we illustrate by examples that: 

G E \ G 0 � = ∅ ; G � = G E ; G 0 ⊂ G E . 

xample 8.1. The following game G is not ordinal but extended

rdinal: 

 : 
(0 , 0) (0 , 2) (1 , 1) (1 , 0) 
(0 , 0) (1 , 1) (2 , 0) (0 , 1) 

n this game there are no weak improvement cycles, but it is not

n ordinal game, it is an extended ordinal game, in fact the follow-

ng is an extended potential: 

 : 
(0 , 2) (−3 , 3) 
(0 , 2) (−1 , 2) 

So we have shown that G E \ G 0 � = ∅ . 
Furthermore through this example we can see that the

roposition 4.1 can be not valid for extended ordinal games. 

xample 8.2. The following example proves that G � = G E 

 : 
(1 , 3) (2 , 1) (0 , 1) (0 , 2) 
(0 , 1) (2 , 3) (1 , 2) (3 , 2) 

xample 8.3. This example shows that if G is an ordinal potential

ame, it is also extended potential one that is G 0 ⊂ G E The follow-

ng games G 4 and G 5 are ordinal potential games: 

ith potentials 

or the bicriteria game G = (G 4 , G 5 ) 

bviously P = (P 4 , P 5 ) is an ordinal potential, but Q is an extended

rdinal potential which is not ordinal. 
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[  
Remark 8.1. It is well known that in Game Theory the preferences

of players are very important and the numbers associated to utility

functions are irrelevant. So in our opinion the generalization of an

ordinal game to a multicriteria setting, given component by com-

ponent, is more suitable to study applications because this pre-

serves players preferences. 

9. Conclusions and open problems 

In this paper we have studied two classes of potential games:

weighted potential and ordinal potential with multiobjective pay-

offs. Starting from the fact that often decision makers have not

one but more objective “to maximize”, we have generalized these

classes of game to a multiobjective setting and we have studied

how far is the theory of strategic games with potentials [6] can be

extended to strategic games with vector payoffs. 

We have investigated also the problem of the existence of

Pareto equilibria for these classes of games (in the finite case)

through the existence of Pareto optimal points of their poten-

tial functions. Other interesting properties as the decomposition of

multicriteria weighted potential games into a coordination multi-

criteria and a dummy multicriteria one have been proven. We have

studied the approximate equilibria too for some infinite games. 

Then we have considered a new class of ordinal potential

games: extended ordinal potential. We have made several exam-

ples comparing the properties. We conclude thinking that the

given definition of ordinal potential game (componentwise) is the

most suitable for applications in Game Theory, since it preserves

players preferences. 

Many examples have been presented to better illustrate the in-

troduced concepts and to show the importance of potential games

in applications: a water resource problem, a voluntary contribution

model, peering games for telecommunication models. 

Some open problems arise from our analysis: 

1) It is well known that potential game and congestion ones

are closely related [9,13] , so a natural question is to investigate the

connections between weighted congestion games and weighted

potential games in the vector case. 

2) We have generalized the FIP (finite improvement property)

which is a very important property to design algorithms to find

solutions. An open problem is to study for which potential games

there is a relation between the FIP and the existence of Pareto

equilibria and between the approximate FIP ( εFIP for short) and

εPE(G). 
3) Interdomain peering links are the main bottleneck of Internet

ecause of lack of coordination in the routing policies. As proposed

n [14,15] modelling this problem as a non cooperative game can

e effective in devising new solutions. A deeper investigation of

he application of multiobjective games in this field could be a new

nd interesting research topic. A deeper investigation about inter-

et peering settlement and telecommunication problem via multi-

bjective games could be a new and interesting research. 

Some of these issues are work in progress. 
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