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a b s t r a c t 

This paper proposes several mixed integer programming models which incorporate optimal sequence 

properties into the models, to solve single machine family scheduling problems. The objectives are to- 

tal weighted completion time and maximum lateness, respectively. Experiment results indicate that there 

are remarkable improvements in computational efficiency when optimal sequence properties are included 

in the models. For the total weighted completion time problems, the best model solves all of the prob- 

lems up to 30-jobs within 5 s, all 50-job problems within 4 min and about 1/3 of the 75-job to 100-job 

problems within 1 h. For maximum lateness problems, the best model solves almost all the problems up 

to 30-jobs within 11 min and around half of the 50-job to 100-job problems within 1 h. 

© 2017 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Batching jobs that share the same setup on a machine to

ncrease productivity is a common practice in manufacturing. Such

atching of jobs is often classified as a family in scheduling. When

rocessing two jobs belonging to different families consecutively,

 setup is required between them. The batching operation often

eads to job lateness and results in poor delivery performance.

ow to trade-off productivity and delivery performance is a tricky

cheduling problem. This problem is called batch/family/group

cheduling with setups in the literature. For past research on

amily scheduling see Refs. [12,16,23] . 

The solution approaches to solve family scheduling problems

nclude mathematical programming [1,3,8,13] , branch and bound

7,18,19] , dynamic programming [6,9,11,17] and heuristic/meta

euristics [4,5,14,21,24,25] . The last approach, heuristic/meta

euristics, is often designed to find good solutions for large scale

roblems. Except for mathematical programming, time consum-

ng and complicated coding is required to find optimal/good

equences. On the other hand, commercial solvers such as LINGO

nd CPLEX are available to solve mathematical models. Thus, the

tart-up task for mathematical programming is much less than

hose of the other three solution approaches. Often the mathemat-

cal programming approach is applied to find an optimal schedule

ith limited CPU time, say 1 h, and is often used to solve small
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ize problems. Thus, the mathematical programming approach is

pplicable for small-size enterprise scheduling problems or as a

asis for rolling-horizon based scheduling techniques. 

Webster and Baker [23] give an overview of optimal properties

n family scheduling on a single machine. Very often these op-

imal properties are included in the branch and bound, dynamic

rogramming and heuristic solution approaches to achieve better

omputational efficiency. In this study, we include some optimal

roperties of the family scheduling problem into mathematical

rogramming models and investigate the effects of this inclusion

n computational efficiency. In solving scheduling problems with

athematical programming, there are several well-known mixed

nteger programming (MIP) formulations proposed in the litera-

ure, which include: (1) the disjunctive formulation developed by

anne [10] which contains precedence variables that define the

recedence order of any two jobs and disjunctive constraints that

elate the completion times between any two jobs (2) the time

ndexed formulation proposed by Sousa and Wolsey [20] which

efines time variables that relate jobs to the corresponding pro-

essing starting times in a finite discrete time horizon, (3) the

inear ordering formulation developed by Potts [15] which adds

riangle inequalities among the precedence variables of any three

obs and (4) the sequence position formulation developed by

agner [22] which contains sequence position variables that

elate jobs to corresponding positions in a sequence. For the single

achine scheduling problem with release dates and sequence de-

endent setup and the objectives of total weighted tardiness and

otal weighted completion time, respectively, Nogueira and Car-

alho (2014) compares the performance of six MIP formulations,
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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which include the four formulations above and two improved

formulations and finds that the disjunctive formulation solves a

greater number of problems. 

In this study, we adopt the mathematical programming ap-

proach to find the optimal sequence of a single machine family

scheduling problem with family sequence independent setup time

and the objectives of total weighted completion time (TWC) and

maximum lateness ( L max ), respectively. Three MIP formulations

which include the optimal sequence properties are proposed. The

performance of the proposed three MIP formulations is compared

with two MIP models that do without the optimal sequence prop-

erties by computational experiments under different operating

scenarios. The rest of this paper is organized as follows. Section

2 gives problem statements and presents MIP formulations.

Section 3 gives the computational results and the paper concludes

in Section 4 . 

2. Problem statements and MIP formulations 

Consider the problem of scheduling N jobs belonging to F

families on a single machine. A family sequence independent

setup is required when a machine switches from idle to busy and

from processing jobs in one family to jobs in another family. The

objectives are to minimize total weighted completion time (TWC)

and maximum lateness, respectively. Before proposing the MIP

models, we give two optimal sequence properties of the family

scheduling problems first. 

Bruno and Sethi’s optimal property: For the TWC problems,

t here is an optimal sequence in which jobs in the same family are

ordered by SWPT (shortest weighted processing time first) [2] . 

Monma and Potts’s optimal property: For the L max problems,

there is an optimal sequence in which jobs in the same family are

ordered by EDD (earliest due date first) [11] . 

We include these two optimal properties in the constraints of

MIP formulations and investigate the effects of these inclusions.

Five MIP formulations are proposed to solve this problem, they are

(1) family linear ordering formulation, FLO, (2) FLO with jobs in

the same family sequenced in SWPT for TWC problems, FLO swpt ,

and in EDD for L max problems, FLO edd , (3) ordered linear ordering

formulation, OLO, where jobs in the same family are sequenced

in SWPT for TWC problems and in EDD for L max problems, (4)

disjunctive formulation, DJ and (5) DJ with jobs in same family

sequenced in SWPT for TWC problems, DJ swpt , and in EDD for L max 

problems, DJ edd . The FLO and DJ formulations are proposed for the

purpose of comparison. The notation and parameters used in the

MIP formulations are as follows. 

Notation and parameters 

a ( i, j ) : job j of family i . 

F : set of all families. 

N : set of all jobs. 

s i : setup time of family i . 

s ( i, k ) : setup time from family i to family k , s ( i,k ) = s k , s ( i,k ) = 0 if

i = k . 

p ( i, j ) : processing time of a ( i, j ) . 

w ( i, j ) : weight of a ( i, j ) . 

d ( i, j ) : due date of a ( i, j ) . 

f : total number of families. 

n i : total number of jobs in family i . 

n : total number of jobs. 

M : a big number. 
Decision variables 

δ( i, j ) ( k,l ) = 

{
1 if a ( i, j ) is scheduled before a ( k,l ) . 

0 otherwise . 

x i j ′ j = 

{
1 if a (i, j ′ ) is sched uled immed iately be f ore a (i, j) . 

0 otherwise . 

y (i, j) = 

{
1 if a setup occurs immediately before a (i, j) 

0 otherwise . 

z (i, j)(k,l) = 

⎧ ⎨ 

⎩ 

1 if a (i, j) is scheduled be f ore a (k,l) and a setup 

s i occurs immediately before a (i, j) . 

0 otherwise . 

C (i, j) : completion time of a (i, j) . 

.1. FLO formulation 

The linear ordering formulation is to solve a single machine

cheduling problem without setups. The problem studied here is

 family scheduling problem with setups, and thus a family linear

rdering formulation, FLO, is proposed. In the FLO formulation,

obs in each family are arbitrarily numbered. The constraints of

LO are: 

(i, j)(k,l) + δ(k,l) (i, j) 
= 1 ∀ ( i, j) , (k, l) ∈ N, ( i, j) � = (k, l) (A1)

δ( i, j ) ( k,l ) + δ( k,l ) ( o,p ) 
+ δ( o,p ) ( i, j ) 

≤ 2 

∀ ( i, j ) , ( k, l ) , ( o, p ) ∈ N and ( i, j ) � = ( k, l ) � = ( o, p ) (A2)

1 − x i j ′ j 
)

≤
( 

f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j ′ ) − 1 

) 

+ M 1 

(
1 − δ(i, j ′ )(i, j) 

) ∀ ( i, j) , 
(
i, j ′ 

)
∈ N, j < j ′ (A3)

 

f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j ′ ) − 1 

) 

≤ M 2 

(
1 − x i j ′ j 

) ∀ ( i, j) , 
(
i, j ′ 

)
∈ N, j < j ′ (A4)

 

i 
j ′ j ≤ δ(i, j ′ )(i, j) ∀ ( i, j ) , 

(
i, j ′ 

)
∈ N, j < j ′ (A5)

 (i, j) = 1 −
n i ∑ 

j ′ =1 

x i j ′ j ∀ (i, j) ∈ N (A6)

 (i, j)(k,l) ≥ δ(i, j)(k,l) + y (i, j) − 1 ∀ ( i, j) , (k, l) ∈ N (A7)

 (i, j) = 

f ∑ 

k =1 

n k ∑ 

l=1 

(
p (k,l) δ(k,l)(i, j) + s k z (k,l)(i, j) 

)
+ p (i, j) + s i y (i, j) ∀ ( i, j ) ∈ N (A8)

 (i, j) ≥ 0 ∀ ( i, j) ∈ N (A9)

(i, j)(i, j) = 0 ∀ (i, j) ∈ N (A10)
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Table 1 

Value of x i 
j ′ j with respect to relation of a (i, j ′ ) and a ( i, j ) . 

x i 
j ′ j = 1 x i 

j ′ j = 0 

δ(i, j ′ )(i, j) = 1 Consecutive a (i, j ′ ) , a ( i, j ) Inconsecutive a (i, j ′ ) , a ( i, j ) 
δ(i, j ′ )(i, j) = 0 Impossible No constraint is imposed 
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(i, j)(k,l) ∈ { 0 , 1 } ∀ ( i, j ) , ( k, l ) ∈ N (A11)

 

i 
j ′ j ∈ { 0 , 1 } ∀ ( i, j ) , 

(
i, j ′ 

)
∈ N (A12)

 (i, j) ∈ { 0 , 1 } ∀ ( i, j ) ∈ N (A13) 

 (i, j)(k,l) ∈ { 0 , 1 } ∀ ( i, j ) , ( k, l ) ∈ N (A14)

( A1 ) and ( A2 ) are the original constraints proposed by Potts

15] . ( A1 ) ensures that a ( i, j ) is scheduled before a ( k, l ) or a ( k, l ) is

cheduled before a ( i, j ) . ( A2 ) is the transitivity relation among

ny three jobs. ( A3, A4 ) and ( A5 ) determine the value of

 

i 
j ′ j for any two jobs, a (i, j ′ ) and a ( i, j ) in family i : If a (i, j ′ ) is

cheduled immediately before a ( i, j ) x i 
j ′ j = 1 , otherwise x i 

j ′ j = 0 .

( 
∑ f 

k =1 

∑ n k 
l=1 

δ(k,l)(i, j) −
∑ f 

o=1 

∑ n o 
p=1 

δ(o,p)(i, j ′ ) − 1 ) calculates the 

umber of jobs scheduled between a (i, j ′ ) and a ( i, j ) . When a (i, j ′ ) 
s scheduled before a ( i, j ) ( δ(i, j ′ )(i, j) = 1 ), there are two possible

onditions: 

I a (i, j ′ ) and a ( i, j ) are processed consecutively. 

II a (i, j ′ ) and a ( i, j ) are processed inconsecutively. 

If condition I is satisfied, ( 
∑ f 

k =1 

∑ n k 
l=1 

δ(k,l)(i, j) −
∑ f 

o=1 

∑ n o 
p=1 

(o,p)(i, j ′ ) − 1) = 0 , and ( A3, A4 ) and ( A5 ) are simplified to: 

1 − x i j ′ j 
)

≤ 0 ∀ ( i, j ) , 
(
i, j ′ 

)
∈ N, j < j ′ (A3a)

 ≤ M 2 

(
1 − x i j ′ j 

) ∀ ( i, j ) , 
(
i, j ′ 

)
∈ N, j < j ′ (A4a)

 

i 
j ′ j ≤ 1 ∀ ( i, j ) , 

(
i, j ′ 

)
∈ N, j < j ′ (A5a)

Thus ( A3 ) leads to x i 
j ′ j = 1 . If condition II is satisfied,

 < ( 
∑ f 

k =1 

∑ n k 
l=1 

δ(k,l)(i, j) −
∑ f 

o=1 

∑ n o 
p=1 

δ(o,p)(i, j ′ ) − 1 ) ≤ n − 2 , and

 A3, A4 ) and ( A5 ) are simplified to: 

1 − x i j ′ j 
)

≤
( 

f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j ′ ) − 1 

) 

∀ ( i, j ) , 
(
i, j ′ 

)
∈ N, j < j ′ (A3b) 

 

f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j ′ ) − 1 

) 

≤ M 2 

(
1 − x i j ′ j 

) ∀ ( i, j ) , 
(
i, j ′ 

)
∈ N, j < j ′ (A4b) 

 

i 
j ′ j ≤ 1 ∀ ( i, j ) , 

(
i, j ′ 

)
∈ N, j < j ′ (A5b)

Thus ( A4 ) leads to x i 
j ′ j = 0 . In order not to violate ( A4 ),

 2 ≥ n − 2 . When a (i, j ′ ) is scheduled after a ( i, j ) , δ(i, j ′ )(i, j) = 0 and

 A3, A4 ) and ( A5 ) are simplified to: 

1 − x i j ′ j 
)

≤
( 

f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j ′ ) − 1 

) 

+ M 1 ∀ ( i, j ) , 
(
i, j ′ 

)
∈ N, j < j ′ (A3c) 

 

f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j ′ ) − 1 

) 

≤ M 2 

(
1 − x i j ′ j 

) ∀ ( i, j ) , 
(
i, j ′ 

)
∈ N, j < j ′ (A4c) 
 

i 
j ′ j ≤ 0 ∀ ( i, j) , ( i, j ′ ) ∈ N, j < j ′ (A5c)

Thus, ( A5 ) leads to x i 
j ′ j = 0 . Because −n ≤

( 
∑ f 

k =1 

∑ n k 
l=1 

δ(k,l)(i, j) −
∑ f 

o=1 

∑ n o 
p=1 

δ(o,p)(i, j ′ ) − 1 ) < 0 , in order not

o violate ( A3 ) and ( A5 ), M 1 ≥ n + 1 needs to be added to the

ight-hand side of ( A3 ). Table 1 summarizes possible values of x i 
j ′ j 

nder different a (i, j ′ ) and a ( i, j ) relations. 

( A6 ) examines whether the job scheduled immediately before

 ( i, j ) belongs to family i or not. If this job is from family i then

 (i, j) = 1 , otherwise y (i, j) = 0 . ( A7 ) finds the value of z ( i, j )( k, l ) . If

(i, j)(k,l) = 1 and y (i, j) = 1 , then z (i, j)(k,l) = 1 , otherwise the mini-

ization of C ( i, j ) related objective function will make z (i, j)(k,l) = 0 .

 A8 ) finds the completion time of a ( i, j ) which is the sum of the

rocessing times of all the jobs scheduled before a ( i, j ) plus its

rocessing time and all needed setup times. ( A9 ) ensures that the

ompletion times are positive. ( A10 ) is trivial. ( A11, A12, A13 ) and

 A14 ) are integrality constraints. 

For the TWC problems, the objective is minimizing �w ( i, j ) C ( i, j ) ,

nd constraints ( A1 )-(A14) are required. For the maximum lateness

roblems, besides ( A1 )-(A14), the following constraints ( A15 ) and

 A16 ) are required, the objective is minimizing L max . 

 max ≥ C (i, j) − d (i, j) ∀ ( i, j ) ∈ N (A15) 

 max ≥ 0 (A16) 

.2. FLO swpt /FLO edd formulation 

To include Bruno and Sethi’s optimal property and Monma

nd Potts’ optimal property into the FLO formulation of TWC

roblems and L max problems, respectively, jobs within each family

re numbered in SWPT for the TWC problems, and in EDD for the

 max problems first and then the following constraints are added

o the FLO formulation to derive the FLO swpt /FLO edd formulation. 

δ( i, j ) ( i, j+1 ) = 1 ∀ ( i, j ) ∈ N, 

i = 1 , 2 , 3 , ... f and j = 1 , 2 , 3 , .. ( n i − 1 ) 

.3. OLO formulation 

If jobs in each family are numbered in SWPT order for the

WC problems and in EDD order for the L max problems, variables

 

i 
j ′ j can be deleted. We can determine whether a family i setup

s required or not based on whether there are jobs scheduled be-

ween a (i, j−1) and a ( i, j ) or not. If there are jobs scheduled between

 (i, j−1) and a ( i, j ) , a family i setup is needed. Replace ( A3 )-(A6) of

he FLO formulation with ( B3 )-(B6) below and we have the OLO

ormulation. 

δ( i, j ) ( i, j+1 ) = 1 ∀ ( i, j ) ∈ N, i = 1 , 2 , 3 , ... f 

and j = 1 , 2 , 3 , .. ( n i − 1 ) (B3) 

 ( i, 1 ) = 1 ∀ i ∈ F , i = 1 , 2 , 3 , ... f (B4) 

 (i, j) ≤
( 

f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j−1) − 1 

) 

∀ ( i, j ) ∈ N 

(B5) 
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Table 2 

Parameters generations. 

Input data Value 

Processing time Uniform (1, α1 50) 

Setup time Uniform (1, α2 10) 

Weight Uniform (1, n ) 

Due date Uniform ( min ( i, j) ( p (i, j) ) , 
2 h ′ 
α3 

) 

Number of families Uniform (2, min ( n, α4 4)) 
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4  
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( 

f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j−1) − 1 

) 

≤ M 3 y (i, j) ∀ ( i, j ) ∈ N 

(B6)

( B3 ) ensures that jobs within each family are processed

in SWPT for the TWC problems and in EDD for the L max 

problems. ( B4 ) ensures that a setup is implemented be-

fore processing the first job within each family. In ( B5 ),

0 ≤ ( 
f ∑ 

k =1 

n k ∑ 

l=1 

δ(k,l)(i, j) −
f ∑ 

o=1 

n o ∑ 

p=1 

δ(o,p)(i, j−1) − 1 ) ≤ n − n i finds the

number of jobs scheduled between a (i, j−1) and a ( i, j ) . ( B5 ) and ( B6 )

determine the value of y ( i, j ) . If there are jobs scheduled between

a (i, j−1) and a ( i, j ) , y (i, j) = 1 , otherwise y (i, j) = 0 . M 3 ≥ n − n i is

required in order not to violate ( B6 ). 

2.4. DJ formulation constraints 

For the DJ formulation, jobs within each family are arbitrarily

numbered. The following formulation is adapted from Manne

(1989) which solves a scheduling problem with family sequence

dependent setups, thus, we change family k ’s setup time s k to

s ( i,k ) = s k for all i : 

 (k,l) ≥ C (i, j) + s (i,k ) + p (k,l) − M 4 

(
1 − δ(i, j)(k,l) 

)
∀ ( i, j ) , ( k, l ) ∈ N and ( i, j ) � = ( k, l ) (C1)

δ( i, j ) ( k,l ) + δ( k,l ) ( i, j ) 
= 1 ∀ ( i, j ) , ( k, l ) ∈ N and ( i, j ) � = ( k, l ) (C2)

 (k,l) ≥ p (k,l) + s (0 ,k ) ∀ (k, l) ∈ N (C3)

 (k,l) ≥ 0 ∀ (k, l) ∈ N (C4)

δ(i, j)(k,l) ∈ { 0 , 1 } ∀ ( i, j) , (k, l) ∈ N and ( i, j) � = (k, l) (C5)

( C1 ) ensures that the completion time of a ( k, l ) is greater

or equal to the sum of the completion time of a ( i, j ) , the re-

quired setup time s ( i,k ) = s k (from family i to family k ) and

the processing time of a ( k, l ) if a ( i, j ) is scheduled before a ( k, l ) .

M 4 = 

∑ 

(i, j) p (i, j) + n ( max i ( s i )) [13] . ( C2 ) ensures that a ( i, j ) is

scheduled before a ( k, l ) or a ( k, l ) is scheduled before a ( i, j ) . ( C3 )

ensures that the completion time of a ( k, l ) is greater or equal to

its processing time plus its initial setup time s (0, k ) . ( C4 ) ensures

that the completion times are positive. ( C5 ) is the integrality

constraints. For the TWC problem, ( C1 )-(C5) are necessary and for

the L max problem, two additional ( C6 ) and ( C7 ) are needed: 

L max ≥ C (i, j) − d (i, j) ∀ ( i, j) ∈ N (C6)

L max ≥ 0 (C7)

2.5. DJ swpt /DJ edd formulation 

The DJ swpt /DJ edd formulation incorporates the optimal sequence

properties into the DJ formulation. To apply the DJ swpt /DJ edd for-

mulation, jobs within each family are numbered in SWPT for the

TWC problems and in EDD for the L max problems. The following

constraints are added to the DJ formulation. 

δ( i, j ) ( i, j+1 ) = 1 ∀ ( i, j ) ∈ N, i = 1 , 2 , 3 , ... f 
and j = 1 , 2 , 3 , .. ( n i − 1 ) o  
. Computational experiments and results 

To compare the performance of the five MIP formulations pro-

osed, we designed the parameter selection similar to those of

ogueira et al. [13] to generate six operating scenarios (classes).

he values of the parameters are all integral and generated accord-

ng to Table 2 

here h ′ = 

∑ 

( i, j) p (i, j) + n ( max i ( s i )) and α1 , α2 , α3 and α4 are

cale parameters. α1 , α2 , α3 and α4 determine the six operation

lasses/scenarios. The minimum values of α1 , α2 , α3 and α4 are

ll 1 and the maximum values are all 4 except α2 which has a

aximum value 10. These six classes are 

Class 1: all scale parameters have minimum values; (a basic

class) 

Class 2: α1 has maximum value (4) and the others have

minimum values; (a large processing time class) 

Class 3: α2 has maximum value (10) and the others have

minimum values; (a large setup time class) 

Class 4: α3 has maximum value (4) and the others have

minimum values; (a tight due date class) 

Class 5: α4 has maximum value (4) and the others have

minimum values; (a large number of families class) 

Class 6: all scale parameters have maximum values (a complex

class). 

Class 4 investigating the due date effects is not applicable to

WC problems. 20 independent instances are randomly generated

or each class and each job size n ∈ {10, 20, 30, 50, 75, 100}. Thus,

here are 720 instances for L max problems and 600 instances for

WC problems. 

All MIP formulations are coded with Ilog Cplex 12.6 with the

efault setting and run on a computer with a 2.9 Ghz processor

nd 16 GB memory. Each instance is run for 1 h and its optimality

ap is recorded. 

.1. Computational results for TWC problems 

For the TWC problems, based on the mean optimality gap ( Fig.

 ), the performance of OLO is the best among five MIP models for

ach class. The next one is FLO swpt followed by FLO and DJ is the

orst. 

Table 3 gives the mean CPU time per solved problem, and Table

 gives the number of solved problems for the TWC problems.

ased on Tables 3 and 4 , OLO has the best performance, which

olves all problems up to 30-jobs within 5 s, and solves all 50-job

roblems within 200 s. The second best model is FLO swpt , which

olves all problems up to 30-jobs within 15 s. The worst model

s DJ. Considering problems of all classes and all job-sizes, FLO

nd DJ solve 34.17% and 16.67% of problems, respectively and

hose of FLO swpt , DJ swpt and OLO are 64.83, 34.33% and 77.83%,

espectively. Furthermore, the mean CPU times per solved problem

or FLO swpt , DJ swpt and OLO are much better than those of FLO and

J, respectively. It is clear that the performances of FLO swpt , DJ swpt 

nd OLO are much better than those of FLO and DJ, respectively. 

In conclusion, for TWC problems when Bruno and Sethi’s

ptimal property is included into MIP models, there is remarkable
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Fig. 1. Mean optimality gap% for TWC problems. 

Table 3 

Mean CPU time per solved problem for TWC. 

mean CPU Class 1: basic class Class 2: large processing time Class 3: large setup time 

number of jobs FLO FLO 

SWPT 

OLO DJ DJ SWPT FLO FLO 

SWPT 

OLO DJ DJ 

SWPT 

FLO FLO SWPT OLO DJ DJ SWPT 

10 0.39 0.07 0.13 5.14 0.32 0.15 0.04 0.09 5.27 0.21 1.85 0.11 0.07 1.03 0.07 

20 609.84 0.69 0.33 – 213.55 26.92 0.44 0.32 – 704.24 1725.8 0.68 0.21 – 24.83 

30 – 9.77 2.4 – 223.36 1417.1 4.03 1.28 – 1012.96 – 8.88 1.84 – 809.94 

50 – 730.05 102.94 – – – 712.1 36.88 – – – 675.23 130.09 – 538.17 

75 – – 1110.46 – – – 1202.46 687.65 – – – 1681.6 1348.53 – 1725.1 

100 – – 2696.27 – – – – 1482.75 – – – – 2417.4 – –

mean CPU Class 5: large number of families Class 6: most complex 

number of jobs FLO FLO 

SWPT 

OLO DJ DJ SWPT FLO FLO 

SWPT 

OLO DJ DJ 

SWPT 

10 0.19 0.02 0.07 7.01 0.81 0.25 0.08 0.05 3.88 1.12 

20 108.2 0.48 0.41 – 289.19 208.64 0.48 0.35 – 1167.9 

30 259.62 6.53 2.48 – 126.91 895.86 11.41 4.06 – 834.41 

50 – 714.1 117.02 – – – 474.76 196.27 – –

75 – 3109.3 1367.41 – – – – 2223.62 – –

100 – – 2716.68 – – – – – – –

Table 4 

Number of solved problems for TWC. 

# solved Class 1: basic class Class 2: large processing time Class 3: large setup time Class 5: large number of families Class 6: most complex 

number of 

jobs 

FLO FLO 

SWPT 

OLO DJ DJ 

SWPT 

FLO FLO 

SWPT 

OLO DJ DJ 

SWPT 

FLO FLO 

SWPT 

OLO DJ DJ 

SWPT 

FLO FLO 

SWPT 

OLO DJ DJ 

SWPT 

FLO FLO 

SWPT 

OLO DJ DJ 

SWPT 

10 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

20 18 20 20 0 16 20 20 20 0 17 3 20 20 0 20 20 20 20 0 5 19 20 20 0 5 

30 0 20 20 0 6 8 20 20 0 9 0 20 20 0 19 10 20 20 0 2 7 20 20 0 3 

50 0 9 20 0 0 0 17 20 0 0 0 6 20 0 3 0 16 20 0 0 0 15 20 0 0 

75 0 0 10 0 0 0 4 17 0 0 0 3 10 0 1 0 1 4 0 0 0 0 7 0 0 

100 0 0 4 0 0 0 0 9 0 0 0 0 5 0 0 0 0 1 0 0 0 0 0 0 0 

sum 38 69 94 20 42 48 81 106 20 46 23 69 95 20 63 50 77 85 20 27 46 75 87 20 28 
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mprovement in computational efficiency. OLO has the best perfor-

ance and DJ has the worst performance among the five MIP mod-

ls with respect to both the number of solved problems, mean CPU

ime per solved problem and mean optimality gap for all classes

nd all job-sizes. OLO solves all problems up to 50-jobs and around

0% of 75-job problems and near 20% of 100-job problems under

arious operating scenarios. On the easiness of problem solving

n different classes/scenarios, class 2, the large processing times

cenario, problems are the easiest to solve for all formulations. 

.2. Computational results for L max problems 

For the L max problem, with the inclusion of Monma and Potts’

ptimal property into MIP models, based on the mean optimality

ap ( Fig. 2 ), for all classes the performance of FLO and OLO are
edd 
etter than that of FLO; and the performance of DJ edd is better

han that of DJ. 

Table 5 gives the mean CPU time per solved problem, and Table

 gives the number of solved problems for the L max problems.

he best model is OLO again, but the performance of OLO for

he L max problems is worse than that of the TWC problems. For

lasses 1 to 4 problems, OLO solves all problems up to 30-jobs

ithin 20 s. For class 5 problems OLO solves 93% of the problems

p to 30-jobs within 3 min. On the number of solved problems

 Table 6 ), considering problems of all classes and all job-sizes,

LO and DJ solve 39.83% and 50.33% of the problems, respectively

nd those of FLO edd , DJ edd and OLO are 84.83, 70.83% and 87.83%,

espectively. The performance of FLO edd , DJ edd and OLO are better

han those of FLO and DJ, respectively and these improvements

re more profound than those of the TWC problems. 
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Fig. 2. Mean optimality gap % for L max problems. 

Table 5 

Mean CPU time per solved problem for L max problems. 

mean CPU Class 1: basic class Class 2: large processing time Class 3: large setup time 

job size FLO FLO EDD OLO DJ DJ EDD FLO FLO EDD OLO DJ DJ EDD FLO FLO EDD OLO DJ DJ EDD 

10 0.51 0.09 0.14 0.3 0.17 0.68 0.1 0.21 0.49 0.27 0.11 0.03 0.02 0.02 0.06 

20 67.16 1.21 0.95 76.65 0.85 307.57 2.07 2.34 349.99 238.28 51.27 0.23 0.24 0.31 0.12 

30 757.07 8.62 6.67 38.87 1.85 1108.59 29.73 16.95 342.26 111.94 179.77 2.66 1.45 1.13 0.28 

50 – 167.08 157.07 344.83 121.19 – 655.33 730.79 – 73.06 1.05 22.21 24.03 19.62 0.89 

75 – 130.42 389.1 – 24.37 – 72.48 285.34 – 21.64 3.3 393.9 210.51 567.27 3.14 

100 – 856.79 251.21 – 124.84 – 331.58 897.75 – 241.89 – 449.43 542.56 550.54 1.97 

mean CPU Class 4: small due dates Class 5: large number of families Class 6: most complex 

job size FLO FLO EDD OLO DJ DJ EDD FLO FLO EDD OLO DJ DJ EDD FLO FLO EDD OLO DJ DJ EDD 

10 1.58 0.1 0.12 3.22 0.18 0.27 0.06 0.16 0.13 0.2 1.6 0.38 0.35 3.25 1.62 

20 – 1.92 1.59 – 269.93 184.5 8.26 5.64 171.82 228.41 1553.13 175.44 301.03 – 856.53 

30 – 26.19 18.82 – 644.27 1200.37 232.53 166.34 472.17 55.27 – 555.57 631.08 – 70.7 

50 – 6 86.4 9 751 – – – 692.15 1163.08 589.59 132.94 – 10.22 25.26 – –

75 – 773.18 482.36 – – – 20.56 289.76 – 63.27 – 2307.5 963.55 – –

100 – 1867.66 1632.17 – – – 45.01 17.22 – 53.63 – – – – –

Table 6 

Number of solved problems for L max problems. 

# solved Class 1: basic class Class 2: large processing time Class 3: large setup time 

Number of Jobs FLO FLO EDD OLO DJ DJ EDD FLO FLO EDD OLO DJ DJ EDD FLO FLO EDD OLO DJ DJ EDD 

10 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

20 20 20 20 20 20 16 20 20 10 20 19 20 20 20 20 

30 12 20 20 19 19 7 20 20 8 15 15 20 20 20 20 

50 0 18 18 7 16 0 13 14 0 5 1 20 20 20 20 

75 0 11 14 0 14 0 6 6 0 4 2 20 20 15 20 

100 0 9 9 0 14 0 8 9 0 5 0 16 20 16 20 

sum 52 98 101 66 103 43 87 89 38 69 57 116 120 111 120 

# solved Class 4: small due dates Class 5: large number of families Class 6: most complex 

Number of Jobs FLO FLO EDD OLO DJ DJ EDD FLO FLO EDD OLO DJ DJ EDD FLO FLO EDD OLO DJ DJ EDD 

10 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

20 0 20 20 0 20 20 20 20 16 17 1 20 20 0 8 

30 0 20 20 0 6 6 16 16 8 9 0 11 12 0 3 

50 0 17 19 0 0 0 5 8 3 5 0 1 1 0 0 

75 0 7 8 0 0 0 2 3 0 3 0 3 4 0 0 

100 0 5 5 0 0 0 1 1 0 2 0 0 0 0 0 

sum 20 89 92 20 46 46 64 68 47 56 21 55 57 20 31 
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t  
Comparatively, for the L max problems, the performance of OLO

is the best among all formulations. OLO solves all problems up to

20-jobs, 90% of 30-job problems, around 50% of the 50-job, 75-job,

and 100-job problems. Finally, on the easiness of problem solving

in different operating classes ( Table 6 ) for all the MIP models the

large setup time problems (class 3) are easier to solve than other

classes, the next one is the class 1 problems. 
. Conclusion 

In this paper, we study the computational efficiency of in-

luding optimal sequence properties into MIP models for family

cheduling problems. Two sets of MIP models are constructed:

he first set contains FLO and DJ formulations that do without

he optimal sequence properties and the second set contains
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he FLO swpt/edd , DJ swpt/edd and OLO models that include optimal

equence properties. Based on the experiment results we find that

he computational efficiencies of the set of MIP models embed-

ed with the optimal sequence properties are much better than

hose MIP models that do without optimal sequence properties in

arious operating scenarios. Among the five MIP models studied,

he best model for the TWC problems is OLO, which solves all of

he problems up to 50-jobs within 4 min and around 50% of the

5-job problems and near 20% of the 100-job problems within 1 h.

or L max the best model is OLO again, which solves all problems up

o 20-jobs, 90% of the 30-job problems within 11 min around 50%

f the problems containing more than 50 jobs within 1 h. Thus for

lmost all small size problems and some medium size problems

pplying easy-to-construct improved MIP models such as OLO,

ractitioners can find the optimal job sequence within an hour. 
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