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a b s t r a c t 

This work studies the optimal pricing strategy in a discrete-time Geo/Geo/1 queuing system under the 

sojourn time-dependent reward. We consider two types of pricing schemes. The first one is called the 

ex-post payment scheme where the server charges a price that is proportional to the time a customer 

spends in the system, and the second one is called ex-ante payment scheme where the server charges 

a flat price for all services. In each pricing scheme, a departing customer receives the reward that is 

inversely proportional to his/her sojourn time. The server should make the optimal pricing decisions in 

order to maximize its expected profits per time unit in each pricing scheme. This work also investigates 

customer’s equilibrium joining or balking behavior under server’s optimal pricing strategy. Numerical ex- 

periments are also conducted to validate our analysis. 

© 2017 The Author. Published by Elsevier Ltd. 
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. Introduction 

Researches about the economic analysis of queuing systems can

o back at least to the pioneering work of Naor [1] who inves-

igated customer’s equilibrium and socially optimal strategies in

he observable M/M/1 queuing system with the concise reward-

ost structure. Naor’s [1] work has been extended by many authors

2–15] . Recently, several studies have extended this topic to the

iscrete-time queuing system. Ma et al [16] analyzed customers’

quilibrium behaviors in the discrete-time Geo/Geo/1 queue with

ultiple vacations, and Wang et al [17] considered the discrete-

ime Geo/Geo/1 queue with the single working vacation. Yang et al

18] also studied customers’ balking strategies in the discrete-time

eo/Geo/1 with server breakdowns and repairs. However, to the

est of our knowledge, there are relatively few works on pricing

roblems in the discrete-time queue. Although Ma and Liu [19] in-

isted that the pricing problems in the discrete-time Geo/Geo/1

ueue are analyzed, in fact, the results of Ma and Liu [19] are about

hose in the continuous-time M/M/1 queue. 

In this work, we analyze the pricing strategies and cus-

omers’ equilibrium joining/balking behaviors in the discrete-time

eo/Geo/1 queuing system under two types of pricing structures.

n the first structure, the server charges a price that is proportional

o the sojourn time (waiting time plus service time), called the
E-mail address: enjdhlee@kangwon.ac.kr 

t

ttp://dx.doi.org/10.1016/j.orp.2017.08.001 

214-7160/© 2017 The Author. Published by Elsevier Ltd. This is an open access article un
x-post payment (EPP) scheme. In the second structure, however,

he server charges a flat price for all the services, which means

he server implements the ex-ante payment (EAP) scheme. In each

ricing structure, the server should make the optimal pricing deci-

ions in order to maximize its expected profits per time unit. For

ore information on the EPP and EAP schemes, refer to [19–22] . 

By the way, most of previous studies assume that the reward

hat a departing customer receives after being served is set to a

onstant value. In the service system, however, the service qual-

ty is adversely affected by the system congestion. Demand growth

n the queuing system can have two diametrically opposite effects

n the server’s pricing strategy: one is a price hike, as is common

n economics; the other is an increase in congestion, which dete-

iorates the service quality and thus implies a lower price. A key

erformance measure of the system congestion is customer’s so-

ourn time. It is a matter of course that rewards, which can be

xpressed by customer satisfaction, are influenced by the sojourn

ime. We frequently observe that the longer the sojourn time, the

ower the customer satisfaction and the lower system operational

rofit. For example, if the line is too long, customers can give up

nd go to another service system. Long queues have a negative im-

act on customer service satisfaction, which causes service aban-

onment. This is an opportunity cost for the system, which has a

egative impact on profitability. For this reason, we assume that

he reward is adversely proportional to customer’s sojourn time. 
der the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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The remainder of this paper is organized as follows. In

Section 2 , the mathematical model under consideration is de-

scribed. In Section 3 , we analyze customer’s equilibrium join-

ing/balking behavior and server’s profit maximization strategy un-

der the EPP and EAP schemes, respectively. Section 4 deals with

numerical experiments where we investigate trends of the optimal

prices of the EPP and EAP schemes according to various input val-

ues. 

2. Model description 

This work considers a queuing system with following features.

The arrival process of potential customers is the Bernoulli process

with a probability of p ( 0 < p < 1 ) . Whenever each potential cus-

tomer arrives at the system, they decide to join or balk depend-

ing on the specific joining probability, denoted by q ( 0 ≤ q ≤ 1 ).

It is well known that the decomposition property holds in the

Bernoulli process; therefore, the effective arrival process follows

the Bernoulli process with a probability of pq . Service times are

independent and identically distributed random variables (RVs) fol-

lowing geometric distribution with a probability of μ ( 0 < μ < 1 ).

For analytical simplicity, we assume followings: i) arrival and ser-

vice processes are mutually independent; ii) services are provided

on a first-in-first-out basis; iii) the decision to join or balk is irre-

vocable; iv) the stable system should satisfy pq < μ. 

Let πn be the stationary queue length distribution. According to

Takagi [23] , πn is given by 

π0 = 1 − pq 

μ
and πn = 

μ − pq 

μ(1 − μ) 

(
pq (1 − μ) 

μ(1 − pq ) 

)n 

, n ≥ 1 . 

(1)

Let L and ω respectively denote the expected queue length

and the expected sojourn time. L is then given by L = 

∑ ∞ 

n =1 n πn =
pq (1 − pq ) / (μ − pq ) . By Little’s formula, ω = (1 − pq ) / (μ − pq ) .

Due to the fact that μ < 1 , we have ω > 1 . 

Let R denote the reward that each customer expect to receive

before being served. As mentioned in Section 1 , the sojourn time

have a negative effect on the reward. After the completion of a ser-

vice, therefore, each customer is assumed to receive a reward R/ω
( R > 0 ). There exists a waiting cost C ( C > 0 ) per time unit when

the customer stays in the system. To make the model nontrivial,

we assume the condition that Rμ > C/μ, which ensures that the

expected reward exceeds the expected cost for the customer find-

ing the empty system. 

3. Pricing analysis 

3.1. EPP scheme 

We first investigate the EPP scheme, where the server charges

a price that is proportional to customer’s sojourn time. Let K t 

( K t ≥ 0 ) and P t denote the price charged by the server and the

expected server profit per time unit, respectively. Then, the ex-

pected utility U t has the following relation: U t = R/ω − K t ω − Cω. If

 t equals zero at customer’s equilibrium, we have R = ( K t + C) ω 

2 .

At customer’s equilibrium, therefore, the price can be expressed in

terms of customer’s joining probability, denoted by q t 

K t = 

R (μ − p q t ) 
2 − C (1 − p q t ) 

2 

(1 − p q t ) 
2 

. (2)

Substituting (2) into P t = p q t K t ω, we have 

P t = 

p q t 
(
R (μ − p q t ) 

2 − C (1 − p q t ) 
2 
)

(μ − p q t )(1 − p q t ) 
. (3)
We now establish the following non-linear programming (NLP)

roblem to maximize P t with respect to q t : 

ax 
q t 

P t = 

p q t 
(
R (μ−p q t ) 

2 −C (1 −p q t ) 
2 
)

(μ−p q t )(1 −p q t ) 

t 
 ≤ q t ≤ 1 , 

p q t < μ. 

(4)

In (4) , we want to maximize the expected server profit per time

nit. The first constraint implies that customer’s joining probabil-

ty should be bounded between 0 and 1, and the second one guar-

ntees the system to be stable. We now introduce the following

emma: 

emma 1. The optimization problem in ( 4 ) is a convex maximization

roblem (CMP). 

roof. According to the definition of the convex maximization

24] , if the objective function can be proved concave in the fea-

ible region and the set of constraints can be proved convex, the

aximization problem is a CMP. 

The constraint in (4) are all real-valued linear functions; there-

ore, the set of constraints is convex. The second derivative of the

bjective function in (4) can be expressed as 

∂ 2 P t 
∂q 2 t 

= −
2 p 2 (1 − μ) 

[
R (μ − p q t ) 

3 + Cμ(1 − p q t ) 
3 
]

(1 − p q t ) 
3 
(μ − p q t ) 

3 
. (5)

From the constraints in (4) , (μ − p q t ) 
3 > 0 and (1 − p q t ) 

3 > 0 .

hus, ∂ 2 P t /∂q 2 t < 0 in the feasible region. Hence, we conclude that

he objective function P t should be strictly concave and (4) is a

MP. �
Since the optimization problem in (4) is a CMP, the Lagrange

ultiplier method can be used to find the optimal solution. Ob-

erving (4) , we can find that all constraints are inequality con-

traints. Thus, Karush-Kuhn-Tucker conditions can be used to gen-

ralize the method of Lagrange multiplier. However, the explicit

orm of the optimal q t , denoted by q ∗t , is too long and complicated.

e instead introduce another way of obtaining the value of q ∗t .
f the objective function is strictly concave in the feasible region,

he unique local optimal solution obtained by using the Newton

ethod becomes the unique global optimal solution. For the de-

ailed Newton method, refer to Boyd and Vandenberghe [24] . Then,

he optimal price K 

∗
t is expressed as 

 

∗
t = 

R (μ − pq ∗t ) 
2 − C (1 − pq ∗t ) 

2 

(1 − pq ∗t ) 
2 

. (6)

Based on the above analysis, we could give the following theo-

em: 

heorem 1. Under the EPP scheme, if 0 ≤ q t ≤ 1 , there exists a

nique equilibrium where customers join the queue with a probability

f pq ∗t . 

roof. Let ω( q t ) = (1 − p q t ) / (μ − p q t ) . As mentioned, the ex-

ected utility has the following relation: U t = R/ω( q t ) − ( K t +
) ω( q t ) . We distinguish three cases: 

Case 1: R/ω(0) ≤ ( K t + C) ω(0) . In this case, even if no other

ustomer joins, the expected benefit of a customer who joins is

on-positive. Therefore, the strategy of joining with probabilities

 

∗
t = 0 is an equilibrium strategy and no other equilibrium is pos-

ible. Moreover, in this case, not joining is a dominant strategy. 

Case 2: R/ω(1) ≥ ( K t + C) ω(1) . In this case, even if all poten-

ial customers join, they all enjoy a non-negative benefit. There-

ore, the strategy of joining with probability q ∗t = 1 is an equilib-

ium strategy and no other equilibrium is possible. Moreover, in

his case, joining is a dominant strategy. 
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Case 3: R/ω(0) > ( K t + C) ω (0) and R/ω (1) < ( K t + C) ω(1) . In

his case, if q ∗t = 1 , then a customer who joins suffers a nega-

ive benefit. Hence, this cannot be an equilibrium strategy. Like-

ise, if q ∗t = 0 , a customer who joins get a positive benefit, more

han by balking. Hence, this cannot be an equilibrium. Therefore,

here exists unique equilibrium joining probabilities q ∗t satisfying

/ω( q t ) = ( K t + C) ω( q t ) , for which customers are indifferent be-

ween joining and balking. This completes proof. �

.2. EAP scheme 

Next, we consider the EAP scheme, where the server charges

 flat price for all services. Denote by K f the fixed price charged

y the server and by P f the server expected profit per time unit.

ince the expected utility for a customer is expressed as U f =
/ω − K f − Cω and it equals zero at customers’ equilibrium, we ob-

ain R = ω ( K f + Cω ) . Let q f denote customer’s joining probability

n the EAP scheme. Then, K f is expressed in terms of q f : 

 f = 

R (μ − p q f ) 
2 − C (1 − p q f ) 

2 

(μ − p q f )(1 − p q f ) 
. (7) 

Substituting (7) into P f = p q f K f , we have 

 f = 

p q f 
(
R (μ − p q f ) 

2 − C (1 − p q f ) 
2 
)

(μ − p q f )(1 − p q f ) 
. (8) 

Similar to the EPP scheme, we establish the following NLP prob-

em to maximize P f with respect to q f : 

ax 
q f 

P f = 

p q f 
(
R (μ−p q f ) 

2 −C (1 −p q f ) 
2 
)

(μ−p q f )(1 −p q f ) 

t 
 ≤ q f ≤ 1 , 

p q f < μ. 

(9) 

In (9) , we also want to maximize the expected server profit per

ime unit. The first constraint implies that the joining probability

hould be bounded between 0 and 1, and the second one guaran-

ees the system to be stable. Note that the optimization problem

n (9) is perfectly identical to the CMP in (4) , which leads to the

ollowing lemma: 

emma 2. The EPP and EAP pricing schemes do not affect the cus-

omer’s equilibrium joining probability and server’s maximum profits.
Fig. 1. K ∗t and K ∗
f 

versus μ for R
n other words, customer’s equilibrium joining/balking strategies and

erver’s profits are identical in the two different pricing schemes. 

Based on the above analysis, we could give the following theo-

em: 

heorem 2. Under the EAP scheme, if 0 ≤ q f ≤ 1 , there exists a

nique equilibrium where customers join the queue with a probability

f pq ∗
f 

= pq ∗t , where q ∗
f 

is the optimal value of q f . The optimal price

hich maximizes the expected server profit per time unit is given by

 

∗
f 

= K f | q f = q ∗f . 
roof. From Lemma 2 , we have that q ∗

f 
= q ∗t . As mentioned, the

xpected utility has the following relation: U f = R/ω( q f ) − K f −
ω( q f ) . We distinguish three cases: 

Case 1: R/ω(0) ≤ K f + Cω(0) . In this case, even if no other cus-

omer joins, the expected benefit of a customer who joins is non-

ositive. Therefore, the strategy of joining with probabilities q ∗
f 

= 0

s an equilibrium strategy and no other equilibrium is possible.

oreover, in this case, not joining is a dominant strategy. 

Case 2: R/ω(1) ≥ K f + Cω(1) . In this case, even if all poten-

ial customers join, they all enjoy a non-negative benefit. There-

ore, the strategy of joining with probability q ∗
f 

= 1 is an equilib-

ium strategy and no other equilibrium is possible. Moreover, in

his case, joining is a dominant strategy. 

Case 3: R/ω(0) > K f + Cω(0) and R/ω(1) < K f + Cω(1) . In this

ase, if q ∗
f 

= 1 , then a customer who joins suffers a negative bene-

t. Hence, this cannot be an equilibrium strategy. Likewise, if q ∗
f 

=
 , a customer who joins get a positive benefit, more than by balk-

ng. Hence, this cannot be an equilibrium. Therefore, there exists

nique equilibrium joining probabilities q ∗
f 

satisfying R/ω( q f ) =
 f + Cω( q f ) , for which customers are indifferent between joining

nd balking. 

Finally, the optimal price can be calculated by inserting q ∗
f 

into

7) . This completes proof. �

. Numerical analysis 

Based on our results, we present some numerical analyses in

ection 4 . Figs. 1 , 2 and 3 record the optimal price of the EPP

cheme and that of the EAP scheme according to the service rate

see Fig. 1 ), the reward (see Fig. 2 ) and the arrival rate (see Fig. 3 ),

espectively. 
 = 20 , C = 1 and p = 0 . 6 . 
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Fig. 2. K ∗t and K ∗
f 

versus R for μ = 0 . 5 , C = 1 and p = 0 . 5 . 

Fig. 3. K ∗t and K ∗
f 

versus p for μ = 0 . 5 , C = 1 and R = 20 . 
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From Fig. 1 , we observe that the EAP scheme generally sets a

higher price than the EPP scheme. Since P t = P f from Lemma 2 and

the EAP scheme charges a flat price for a service, K 

∗
f 

should be

relatively higher than K 

∗
t . We also observe that both K 

∗
t and K 

∗
f 

are

increasing functions of the service rate μ. This indicates that the

server imposes the high price on the high quality of the service. 

Fig. 2 shows that both K 

∗
f 

and K 

∗
t are increasing functions of

the reward R . As R increases, customer’s utilities U t and U f also in-

crease in both the EPP and EAP schemes. Hence, in order to main-

tain customer’s equilibrium, both K 

∗
f 

and K 

∗
t should increase when

R increases. We also see that K 

∗
f 

is generally higher than K 

∗
t . At

customer’s equilibrium, both U t and U f are equal to zero; there-

fore, K 

∗
f 

= K 

∗
t ω. In other words, the EAP scheme should set a higher

price than the EPP scheme at the same values of R . 

Fig. 3 shows the relation between the customer’s (external) ar-

rival rate p and the optimal price in each pricing scheme. As seen

in Fig. 3 , the arrival rate does not have an impact on the optimal

price. In our parameter setting, K 

∗
f 

= 4 . 62 and K 

∗
t = 1 . 69 regardless

of p. This implies that the server always maintains the same op-

timal price by adjusting customer’s equilibrium joining probabil-
ty even if the customer arrival rate varies. Thus, customer’s arrival

ate is not a considering factor when we set an optimal price. 

. Conclusions 

We studied customer’s equilibrium joining/balking behaviors

nd server’s optimal pricing strategies in the Geo/Geo/1 queue

ith the sojourn time-dependent reward. We introduced the two

ifferent pricing schemes, namely EPP and EAP. In the EPP scheme,

he server charges a price that is proportional to customer’s so-

ourn time, while, in the EAP scheme, the server charges a flat

rice for services. We established the convex maximization prob-

em and decided the optimal price that maximizes the server’s ex-

ected profits for each pricing scheme. We also found that cus-

omer’s equilibrium joining strategies and server’s maximum prof-

ts under two different pricing schemes are the same. 

This work could provide queue managers with useful informa-

ion for making the pricing decisions and instruct customers to

ake optimal strategies. Future studies include the extension of this

ork to other queuing systems considering multiple-server system,

acation policy and server failure phenomena. 
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