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. Introduction 

The fuzzy sets theory introduced by Zadeh [1] has been very

uccessful in dealing with problems involving uncertainty. With an

ncrease in inaccurate and vague information in real life problems,

everal extensions of the fuzzy set have been developed, one of

hich is the intuitionistic fuzzy set (IFS) pioneered by Atanassov

2] , which has a membership function, a non-membership func-

ion and a hesitancy function. Zadeh [3] presented a type-2 fuzzy

et that allowed the membership of a given element to be a fuzzy

et. The type-n fuzzy set [4] generalized type-2 fuzzy set, thereby

ermitting the membership to be a type-n-1 fuzzy set. The fuzzy

ultiset introduced by Yager [5] allowed elements to be repeated

ore than once. 

In practical applications, because of a lack of knowledge, time

ressure and other reasons, people do not often agree on spe-

ific elements in complex decisions, which means that it is of-

en difficult to reach agreement. For example, two decision makers

ay discuss the membership degree of an element x to a set A ,

or which one decision maker wishes to assign 0.4 but the other

ishes to assign 0.8. Accordingly, the difficulty in establishing a

ommon membership degree is not because there is a margin of

rror or some possibility distribution values, but because there is

 set of possible values [6] . To deal with such cases, Torra [7] and

orra and Narukawa [8] proposed the concept of the hesitant fuzzy

et(HFS), which permitted membership to have a set of possible

alues. 
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Since the concept of the hesitant fuzzy set was established, it

as gained increasing attention [9–17] and has been successfully

pplied to many uncertain decision making problems. Many stud-

es have also been conducted on the application of HFS aggregation

perators [18–20] and distance and similarity measures [21–23] to

ulti-criteria decision making problems. 

Multi-criteria decision making has been widely applied in many

cientific fields [24–26] , such as medical care [27] , engineering

28] , social sciences [29] and economics [30] . In general, multi-

le attribute decision making problems have two phases; aggre-

ation and exploitation. Of these, the aggregation phase is more

mportant, so significant aggregation techniques have been devel-

ped for decision-making processes, in which the experts express

heir assessments using HFSs. Xia and Xu [31] presented a hesitant

uzzy weighted averaging operator and a hesitant fuzzy weighted

eometric operator, to which they gave different extensions and

eneralizations; a generalized hesitant fuzzy weighted averaging

perator, a generalized hesitant fuzzy weighted geometric oper-

tor, a hesitant fuzzy hybrid averaging operator, and a hesitant

uzzy hybrid geometric operator. Yu et al. [32] proposed a new

esitant fuzzy aggregation operator based on the Choquet integral

hich included the importance of the elements, their ordered po-

itions and a fuzzy measure. Motivated by the idea of prioritized

ggregation operators, Wei [33] proposed a hesitant fuzzy prior-

tized weighted average and hesitant fuzzy prioritized weighted

eometric aggregation operators, which accounted for the differ-

nt criteria priority levels in multi-criteria decision-making prob-

ems. Yu and Zhou [34] defined a generalized hesitant fuzzy Bon-

erroni mean which extended the Bonferroni mean to a hesitant

uzzy environment. Other extensions of the Bonferroni mean were
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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proposed in [35,36] . Xia et al. [37] introduced a new HFS operator

by extending the quasi-arithmetic means. Bedregal et al. [38] pre-

sented two methodologies to develop triangular hesitant aggrega-

tion functions over all THFS. Xu and Xia [39] proposed several dis-

tance and similarity measures and studied the properties and rela-

tionships between them. Zhou and Li [40] modified the axiom def-

initions for the distance and similarity measures developed by Xu

and Xia [39] , and proposed some new distance and similarity mea-

sures between HFSs based on Hamming and Euclidean distances.

Peng et al. [41] presented a novel generalized hesitant fuzzy syn-

ergetic weighted distance measure which reflected both individual

distances and their ordered positions. In addition to these, many

approaches can be used to deal with multiple attribute decision

making problems(see, [42–47] ). An exploitation phase was devel-

oped to build the preference relations between the alternatives and

a nondominant choice degree was applied to obtain a solution set

of alternatives for multiple attribute decision making problems. 

Ordering relations play an important role in decision making

and some HFS ordering relations have been proposed. Rodriguez

et al. [48] gave a definition for order relations between HFSs,

and then used aggregation operators to determine the order re-

lations between them. Xia and Xu [14] introduced a comparison

law by defining a score function to determine the order relations

between HFSs. Farhadinia [49] also developed two ordering meth-

ods for HFSs. Zhou [50] introduces the intuitionistic fuzzy ordered

weighted cosine similarity (IFOWCS) measure by using the cosine

similarity measure of intuitionistic fuzzy sets and the generalized

ordered weighted averaging (GOWA) operator. Zhou [51] develops

the continuous intuitionistic fuzzy ordered weighted distance (C-

IFOWD) measure by using the continuous intuitionistic fuzzy or-

dered weighted averaging (C-IFOWA) operator in the interval dis-

tance. Wei et al. [52] define the Shapley value-based L p -metric and

extend VIKOR method with the L p -metric to deal with the correla-

tive multiple criteria decision making (MCDM) problem under hes-

itant fuzzy environment. Wei et al. [53] developed hesitant fuzzy

choquet ordered averaging (HFCOA) operator and hesitant fuzzy

choquet ordered geometric (HFCOG) operator, and apply the HF-

COA and HFCOG operators to hesitant fuzzy multiple attribute de-

cision making. Zhao et al. [54] utilize Einstein operations to de-

velop hesitant fuzzy Einstein correlated averaging (HFECA) opera-

tor and hesitant fuzzy Einstein correlated geometric (HFECG) op-

erator. They can not only consider the importance of the elements

or their ordered positions, but also reflect the correlation among

the elements or their ordered positions. In addition to these, many

aggregation operators and methods can be used to rank HFSs (see,

[18,55–58] ). However, the existing order relations for HFSs are de-

fective(see examples2–4). For example, Jack and Tom play a game

that has three turns. Jack has three cards; a 9 of spades, a 6 of

spades and a 3 of spades; and Tom has three cards; an 8 of spades,

a 5 of spades and a 2 of spades. The rules of the game are: (1)Each

person can only select one of their own cards to play in each

turn; (2)The card with the higher points wins in each turn; (3)The

person who wins two turns is the final winner. Although Jack’s

cards have a points’ advantage, it is not certain that Jack can win

the game, as his winning probability is 0.6 6 67. From the exam-

ple above, we can construct two HFEs; H 1 (x ) = { 0 . 9 , 0 . 6 , 0 . 3 } and

H 2 (x ) = { 0 . 8 , 0 . 5 , 0 . 2 } . From the existing HFS order relations, we

have H 1 ( x ) � H 2 ( x ), which does not conform to the actual situation.

This paper seeks to overcome the flaws outlined above. The re-

mainder of this paper is organized as follows: Section 2 reviews

some basic concepts and order relations. Section 3 analyzes the

order relations between HFSs, and in Section 4 , a priority degree

formula for comparing two hesitant fuzzy sets is presented and

the desirable priority degree properties studied. In Section 5 , based

on the proposed formula for the priority degree, a new approach

to hesitant fuzzy multiple attribute decision making is developed.
ection 6 gives an example to illustrate the rationality and appli-

ability of the new method and in Section 7 conclusions are given.

. Preliminaries 

In this section, the HFS concept and order relations are briefly

eviewed. 

.1. Hesitant fuzzy sets 

As people are usually hesitant when making decisions, it is of-

en difficult to reach a final agreement. With these difficulties in

ind, Torra [59] developed the following hesitant fuzzy set defini-

ion: 

efinition 1. [59] Given a fixed set X , then a hesitant fuzzy set

HFS) on X is a function that when applied to X returns a subset

f values in [0,1]. 

For convenience, Wei [33] completed the original HFS definition

y including the HFS mathematical representation as follows: 

 = (〈 x, h E (x ) 〉| x ∈ X ) . 

here h E ( x ) is a set of some values in [0,1], and denotes the

ossible membership degree of the element x ∈ X to the set E ;

 (x ) = h E (x ) is called a hesitant fuzzy element (HFE). 

xample 1. Suppose that X = { x 1 , x 2 , x 3 } is the discourse

et, and h M 

(x 1 ) = { 0 . 8 , 0 . 5 , 0 . 3 } , h M 

(x 2 ) = { 0 . 6 , 0 . 4 } and

 M 

(x 3 ) = { 0 . 6 , 0 . 3 , 0 . 2 } are the HFEs for x i (i = 1 , 2 , 3) to a set

 . Then E can be considered a HFS; i.e. 

E = {〈 x 1 , { 0 . 8 , 0 . 5 , 0 . 3 }〉 , 〈 x 2 , { 0 . 6 , 0 . 4 }〉 , 〈 x 3 , { 0 . 6 , 0 . 3 , 0 . 2 }〉} . 
Further operations on HFEs can be seen in [7,14] . 

.2. Order relations between HFSs 

Order relations play an important role in decision making. We

rst review some order relations. 

efinition 2. [60] Given two HFSs, H 1 and H 2 on X of the same

ardinality, it is defined that H 1 ≥ H 2 if H 1 ( x ) ≥ H 2 ( x ) for all x .

ote that H 1 ( x ) and H 2 ( x ) are HFEs. Here, h 1 ≥ h 2 for HFEs h 1 and

 2 if h 
σ ( j) 
1 

≥ h 
σ ( j) 
2 

for all j = { 1 , · · · , | H 1 |} , where h σ ( j ) is the j th

lement in h when they are ordered in a decreasing order. 

efinition 3. [60] Let ϕ be a function on the HFSs such that

he cardinality of ϕ is the same for all HFSs. We then say that

is monotonic when ϕ( E ) ≥ ϕ( E ′ ) for all E = { H 1 , · · · , H n } and

 

′ = { H 

′ 
1 , · · · , H 

′ 
n } such that H 

′ 
i 
≥ H i for all i = { 1 , · · · , n } . 

efinition 4. [60] Let E = { H 1 , · · · , H n } be a set of n HFSs and � a

unction, �: [0, 1] n → [0, 1], we then export the � on the fuzzy

ets to HFSs, which is defined as: 

E = ∪ γ ∈ H 1 (x ) ×···×H n (x ) { �(γ ) } (1) 

Proposition 1 . [60] Let E = { H 1 , · · · , H n } and E ′ = { H 

′ 
1 
, · · · , H 

′ 
n }

uch that H 

′ 
i 
≥ H i for all i = { 1 , · · · , n } . Then, if � is a monotonic

unction, �E is monotonic. 

In practical applications, situations arise in which the num-

er of the elements in the different hesitant fuzzy elements may

ary. For correct operations, Xu and Xia [6] proposed the following

egulation: the shorter element is extended by adding the min-

mum value, the maximum value, or any value until it has the

ame length as the longer element. The selection of this value de-

ends mainly on the decision makers’ risk preferences. Optimists

xpecting desirable outcomes may add the maximum value, while

essimists expecting unfavorable outcomes may add the minimum

alue. 
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above problem. 
When the cardinality between two hesitant fuzzy elements is

ifferent, the method in Definition 2 leads to failure. To solve this

roblem, Xia and Xu [14] established a new order between HFEs

y defining the following score function: 

efinition 5. [14] Let h be an HFE, with a score function of h de-

ned by 

 (h ) = 

1 

l(h ) 

∑ 

γ ∈ h 
γ (2) 

here l ( h ) is the number of elements in h . 

Let h 1 and h 2 be two HFEs, then 

if s ( h 1 ) > s ( h 2 ), then h 1 > h 2 ; 

if s (h 1 ) = s (h 2 ) , then h 1 = h 2 . 

Except for the score function, the order for the HFSs was de-

ned by Farhadinia [49] as follows: 

efinition 6. [49] Let E 1 and E 2 be two HFSs on X =
 x 1 , x 2 , · · · , x n } . E 1 � E 2 if and only if Score ( E 1 ) ≥ Score ( E 2 ). 

where Score (E 1 ) = 

1 
n 

∑ n 
i =1 s (h E 1 (x i )) and Score (E 2 ) =

1 
n 

∑ n 
i =1 s (h E 2 (x i )) . 

In addition to the score function, many other aggregation oper-

tors(see, [54] ) can be used for the same purpose. 

. Analysis of the HFS ordering relations 

In this section, we analyze the HFS ordering relations using ex-

mples. 

xample 2. Suppose that X = { x } , H 1 (x ) = { 0 . 9 , 0 . 6 , 0 . 3 } and

 2 (x ) = { 0 . 8 , 0 . 5 , 0 . 2 } are two HFSs on X . 

From Definition 2 , we have H 1 ( x ) � H 2 ( x ). In general, aggrega-

ion operators are monotonic increasing functions. Using aggrega-

ion operators to deal with the ordering of H 1 ( x ) and H 2 ( x ), we also

ave H 1 ( x ) � H 2 ( x ). 

TOPSIS can be used to deal with the order relations between

 1 ( x ) and H 2 ( x ). Let H 

−(x ) = { 0 , 0 , 0 } and H 

+ (x ) = { 1 , 1 , 1 } . Using

he distance formula proposed by Xu and Xia [39] , we have 

 h (H 1 (x ) , H 

−(x )) = 0 . 6 , d h (H 2 (x ) , H 

−(x )) = 0 . 5 . 

 h (H 1 (x ) , H 

+ (x )) = 0 . 4 , d h (H 2 (x ) , H 

+ (x )) = 0 . 5 . 

d h (H 1 (x ) , H 

−(x )) 

d h (H 1 (x ) , H 

−(x )) + d h (H 1 (x ) , H 

+ (x )) 
= 0 . 6 . 

d h (H 2 (x ) , H 

−(x )) 

d h (H 2 (x ) , H 

−(x )) + d h (H 2 (x ) , H 

+ (x )) 
= 0 . 5 . 

d h (H 1 (x ) , H 

−(x )) 

d h (H 1 (x ) , H 

−(x )) + d h (H 1 (x ) , H 

+ (x )) 

> 

d h (H 2 (x ) , H 

−(x )) 

d h (H 2 (x ) , H 

−(x )) + d h (H 2 (x ) , H 

+ (x )) 
. 

rom which H 1 ( x ) � H 2 ( x ). The same result can be derived using

ther formulas. 

However, ( u, v ) ∈ H 1 ( x ) × H 2 ( x ) are real elements that satisfy u

 v ; for example (0.6, 0.8). As in the example in the first section

f this paper, it is uncertain whether H 1 ( x ) � H 2 ( x ). This indicates

hat using Definition 2 is inflexible when ranking HFSs as signifi-

ant information may be lost. 

xample 3. Suppose that X = { x } . H 1 (x ) = { 0 . 9 , 0 . 4 } and H 2 (x ) =
 0 . 8 , 0 . 5 , 0 . 2 } are two HFSs on X . 

Employing the score function, we have 

 (H 1 (x )) = 0 . 65 , s (H 2 (x )) = 0 . 3 . 
From Definition 5 , we have H 1 ( x ) � H 2 ( x ). 

In this example, the number of elements in the two hesitant

uzzy sets is different. For correct operations, based on the regu-

ation proposed by Xu and Xia [6] , the shorter set is extended by

dding the minimum value; that is, H 1 (x ) = { 0 . 9 , 0 . 4 , 0 . 4 } . TOPSIS

s then used to deal with the order relations between H 1 ( x ) and

 2 ( x ). Let H 

−(x ) = { 0 , 0 , 0 } and H 

+ (x ) = { 1 , 1 , 1 } . Using the dis-

ance formula proposed by Xu and Xia [39] , we have 

 h (H 1 (x ) , H 

−(x )) = 0 . 57 , d h (H 2 (x ) , H 

−(x )) = 0 . 5 . 

 h (H 1 (x ) , H 

+ (x )) = 0 . 43 , d h (H 2 (x ) , H 

+ (x )) = 0 . 5 . 

d h (H 1 (x ) , H 

−(x )) 

d h (H 1 (x ) , H 

−(x )) + d h (H 1 (x ) , H 

+ (x )) 
= 0 . 57 . 

d h (H 2 (x ) , H 

−(x )) 

d h (H 2 (x ) , H 

−(x )) + d h (H 2 (x ) , H 

+ (x )) 
= 0 . 5 . 

d h (H 1 (x ) , H 

−(x )) 

d h (H 1 (x ) , H 

−(x )) + d h (H 1 (x ) , H 

+ (x )) 

> 

d h (H 2 (x ) , H 

−(x )) 

d h (H 2 (x ) , H 

−(x )) + d h (H 2 (x ) , H 

+ (x )) 
. 

o we also have H 1 ( x ) � H 2 ( x ). The result is the same if other for-

ulas are used to deal with this problem. 

However, real elements ( u, v ) ∈ H 1 ( x ) × H 2 ( x ) exist that satisfy u

 v ; for example, (0.4,0.8). Therefore, it is uncertain whether H 1 ( x )

H 2 ( x ), which indicates that Xia and Xu’s [14] comparison law to

ank HFSs is also inflexible and significant information loss could

ccur. 

xample 4. Suppose that X = { x 1 , x 2 } . E 1 = (〈 x 1 , { 0 . 5 , 0 . 4 , 0 . 3 }〉 , 
〈 x 2 , {0.9, 0.8, 0.7, 0.1} 〉 ), E 2 = (〈 x 1 , { 0 . 5 , 0 . 3 }〉 , 〈 x 2 , { 0 . 6 , 0 . 5 , 0 . 3 }〉 )

nd E 3 = (〈 x 1 , { 0 . 8 , 0 . 7 , 0 . 4 , 0 . 3 }〉 , 〈 x 2 , {0.7, 0.4, 0.2} 〉 ) are three

esitant fuzzy sets on X . 

By employing the score function, we have 

 (h E 1 (x 1 )) = 0 . 4 , s (h E 1 (x 2 )) = 0 . 625 , 

 (h E 2 (x 1 )) = 0 . 4 , s (h E 2 (x 2 )) = 0 . 4667 , 

 (h E 3 (x 1 )) = 0 . 55 , s (h E 3 (x 2 )) = 0 . 4333 . 

core (E 1 ) = 0 . 5125 , Score (E 2 ) = 0 . 4335 , Score (E 3 ) = 0 . 4917 . 

Score ( E 1 ) > Score ( E 3 ) > Score ( E 2 ). According to Definition 6 , we

ave E 1 � E 3 � E 2 . 

Since s (h E 1 (x 1 )) < s (h E 3 (x 1 )) and s (h E 1 (x 2 )) > s (h E 3 (x 2 )) , ele-

ents (u 1 , v 1 ) ∈ h E 1 (x 1 ) × h E 3 (x 1 ) exist to satisfy u 1 < v 1 and

(u 2 , v 2 ) ∈ h E 1 (x 2 ) × h E 3 (x 2 ) satisfies u 2 < v 2 ; however, from the

ecision making viewpoint, it is not clear whether E 1 �E 3 . 

Many other aggregation operators (see [61] ) have been used to

ank HFSs. However, the same situation as shown in the above

xamples has been encountered, indicating that using aggregation

perators to deal with HFS ordering is inflexible and could lead to

nformation loss. 

In the following, a priority degree definition for hesitant fuzzy

ets is proposed and then a new method is introduced to solve the
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4. Priority degrees for hesitant fuzzy sets 

To overcome the current flaws, in this section, a priority degree

formula is proposed to deal with the ordering relations between

HFSs. 

Definition 7. Given a fixed set X = { x 1 , x 2 , · · · , x n } , suppose that

E 1 = { < x i , h E 1 (x i ) > | x i ∈ X} and E 2 = { < x i , h E 2 (x i ) > | x i ∈ X} are

two hesitant fuzzy sets. The priority degree for E 1 � E 2 is defined

by 

P (E 1 � E 2 ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∑ n 
i =1 S 1 (x i ) ∑ n 

i =1 S 1 (x i )+ 
∑ n 

i =1 S 2 (x i ) 
, 

n ∑ 

i =1 

S 1 (x i ) + 

n ∑ 

i =1 

S 2 (x i ) � = 0 , 

0 . 5 , 
n ∑ 

i =1 

S 1 (x i ) + 

n ∑ 

i =1 

S 2 (x i ) = 0 . 

(5

where 

h E 1 (x i ) = { u l (x i ) | u l (x i ) ∈ [0 , 1] , l = 1 , 2 , · · · , r i } , 

h E 2 (x i ) = { v t (x i ) | v t (x i ) ∈ [0 , 1] , t = 1 , 2 , · · · , s i } , 

A 1 (x i ) = { (u l (x i ) , v t (x i )) | u l (x i ) − v t (x i ) > 0 , (u l (x i ) , v t (x i )) 

∈ h E 1 (x i ) × h E 2 (x i ) } , 

A 2 (x i ) = { (u l (x i ) , v t (x i )) | u l (x i ) − v t (x i ) < 0 , (u l (x i ) , v t (x i )) 

∈ h E 1 (x i ) × h E 2 (x i ) } , 

A 3 (x i ) = { (u l (x i ) , v t (x i )) | u l (x i ) − v t (x i ) = 0 , (u l (x i ) , v t (x i )) 

∈ h E 1 (x i ) × h E 2 (x i ) } , 

S 1 (x i ) = 

{ 

1 
r i s i 

∑ 

(u l (x i ) , v t (x i )) ∈ A 1 (x i ) 

( u l ( x i ) − v t ( x i )) , A 1 ( x i ) � = φ;
0 , A 1 ( x i ) = φ. 

S 2 (x i ) = 

{ 

1 
r i s i 

∑ 

(u l (x i ) , v t (x i )) ∈ A 2 (x i ) 

( v t ( x i ) − u l ( x i )) , A 2 ( x i ) � = φ;
0 , A 2 ( x i ) = φ. 

Remark 1. S 1 ( x i ) represents the average residual amount for

h E 1 (x i ) over h E 2 (x i ) . Corresponding, S 2 ( x i ) represents the average

residual amount for h E 2 (x i ) over h E 1 (x i ) , and P ( E 1 � E 2 ) repre-

sents the priority degree for E 1 � E 2 . For example, P (E 1 � E 2 ) = 0 . 5

indicates that the priority degree for E 1 � E 2 is 0.5. Note that

E 1 � P(E 1 � E 2 ) 
E 2 does not mean that E 1 is absolutely superior to

E 2 ; it just indicates that the priority degree for E 1 � E 2 is P ( E 1 �
E 2 ). In fact, the priority degree for E 2 � E 1 is 1 − P (E 1 � E 2 ) . 

Let X = { x 1 , x 2 , · · · , x n } . E 1 = { < x i , h E 1 (x i ) > | x i ∈ X} , E 2 = { <
x i , h E 2 (x i ) > | x i ∈ X} and E 3 = { < x i , h E 3 (x i ) > | x i ∈ X} are three hes-

itant fuzzy sets on X , where 

h E 1 (x i ) = { u l (x i ) | u l (x i ) ∈ [0 , 1] , l = 1 , 2 , · · · , r i } 

h E 2 (x i ) = { v t (x i ) | v t (x i ) ∈ [0 , 1] , t = 1 , 2 , · · · , s i } 

h E 3 (x i ) = { w k (x i ) | w k (x i ) ∈ [0 , 1] , k = 1 , 2 , · · · , q i } 

ū (x i ) = 

1 

r i 

r i ∑ 

l=1 

u l (x i ) , v̄ (x i ) = 

1 

s i 

s i ∑ 

t=1 

v t (x i ) , 

we can conclude some properties about priority degree as follows:

Property 2. (normalization). 0 ≤ P ( E 1 � E 2 ) ≤ 1, 0 ≤ P ( E 2 � E 1 ) ≤
1 . 
roperty 3. (complementarity). P (E 1 � E 2 ) + P (E 2 � E 1 ) = 1 . 

roof. It is obvious that properties 2–3 hold. �

roperty 4. (intuition). P (E 1 � E 2 ) = 1 if and only if u l ( x i ) ≥ v t ( x i )

or all x i , l, t and ∃ l ′ , t ′ , u l ′ (x i ) > v t ′ (x i ) . 

roof. u l ( x i ) ≥ v t ( x i ) for all x i , l, t and ∃ l ′ , t ′ , u l ′ (x i ) > v t ′ (x i ) ⇔
 n 
i =1 S 2 (x i ) = 0 ⇔ P (E 1 � E 2 ) = 1 . �

roperty 5. P (E 1 � E 2 ) ≥ 1 
2 if and only if 

∑ n 
i =1 ū (x i ) ≥

∑ n 
i =1 ̄v (x i ) . 

roof. 

P (E 1 � E 2 ) ≥ 1 
2 

⇔ 

n ∑ 

i =1 

S 1 (x i ) ≥
n ∑ 

i =1 

S 2 (x i ) 

⇔ 

n ∑ 

i =1 

1 
r i s i 

∑ 

(u l (x i ) , v t (x i )) ∈ A 1 (x i ) 

(u l (x i ) − v t (x i )) 

≥
n ∑ 

i =1 

1 
r i s i 

∑ 

(u l (x i ) , v t (x i )) ∈ A 2 (x i ) 

(v t (x i ) − u l (x i )) 

⇔ 

n ∑ 

i =1 

1 
r i s i 

∑ 

(u l (x i ) , v t (x i )) ∈ A 1 (x i ) 

u l (x i ) + 

n ∑ 

i =1 

1 
r i s i 

∑ 

(u l (x i ) , v t (x i )) ∈ A 2 (x i ) 

u l (x i ) 

+ 

n ∑ 

i =1 

1 
r i s i 

∑ 

(u l (x i ) , v t (x i )) ∈ A 3 (x i ) 

u l (x i ) 

≥
n ∑ 

i =1 

1 
r i s i 

∑ 

(u l (x i ) , v t (x i )) ∈ A 1 (x i ) 

v t (x i ) + 

n ∑ 

i =1 

1 
r i s i 

∑ 

(u l (x i ) , v t (x i ) ∈ A 2 (x i ) 

v t (x i ) 

+ 

n ∑ 

i =1 

1 
r i s i 

∑ 

(u l (x i ) , v t (x i ) ∈ A 3 (x i ) 

v t (x i ) 

⇔ 

n ∑ 

i =1 

1 
r i 

r i ∑ 

l=1 

u l (x i ) ≥
n ∑ 

i =1 

1 
s i 

s i ∑ 

l=1 

v t (x i ) ⇔ 

n ∑ 

i =1 

ū (x i ) ≥
n ∑ 

i =1 

v̄ (x i ) . 

�

roperty 6. (weak transitivity). If P (E 1 � E 2 ) ≥ 1 
2 , P (E 2 � E 3 ) ≥ 1 

2 ,

hen P (E 1 � E 3 ) ≥ 1 
2 . 

roof. P (E 1 � E 2 ) ≥ 1 
2 ⇔ 

∑ n 
i =1 ū (x i ) ≥

∑ n 
i =1 ̄v (x i ) and P (E 2 � E 3 ) ≥

1 
2 ⇔ 

∑ n 
i =1 ̄v (x i ) ≥

∑ n 
i =1 w̄ (x i ) , we have 

∑ n 
i =1 ū (x i ) ≥

∑ n 
i =1 w̄ (x i ) ⇒

 (E 1 � E 3 ) ≥ 1 
2 , so property 6 holds. �

xample 5. The proposed priority degree is employed to deal with

xample 2 above, so we have 

 1 (x ) = 0 . 2 , S 2 (x ) = 0 . 1 , 

 (H 1 (x ) � H 2 (x )) = 0 . 6 6 67 , P (H 2 (x ) � H 1 (x )) = 0 . 3333 , 

 1 (x ) �(0 . 6667) H 2 (x ) , H 2 (x ) �(0 . 3333) H 1 (x ) . 

The result only show that the priority degree for H 1 ( x ) � H 2 ( x )

s 0.6 6 67 and the priority degree for H 2 ( x ) � H 1 ( x ) is 0.3333; how-

ver, this does not mean that H 1 ( x ) is absolutely superior to H 2 ( x ).

xample 6. The proposed priority degree is employed to deal with

xample 4 above, so we have 

 1 (x 1 ) = 0 . 05 , S 1 (x 2 ) = 0 . 25 , 

 2 (x 1 ) = 0 . 05 , S 2 (x 2 ) = 0 . 0917 , 

 (E 1 � E 2 ) = 0 . 6792 , P (E 2 � E 1 ) = 0 . 3208 , 

imilarly, 

 (E 1 � E 3 ) = 0 . 5362 , P (E 3 � E 1 ) = 0 . 4638 , 

 (E 2 � E 3 ) = 0 . 3138 , P (E 3 � E 2 ) = 0 . 6862 . 

 1 �(0 . 6792) E 3 �(0 . 6862) E 2 , E 3 �(0 . 6862) E 2 �(0 . 3208) E 1 

 3 �(0 . 4638) E 1 �(0 . 6792) E 2 , E 2 �(0 . 3138) E 3 �(0 . 4638) E 1 
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Table 1 

Hesitant fuzzy decision matrix. 

P 1 P 2 P 3 P 4 

A 1 {0.5, 0.4, 0.3} {0.9, 0.8, 0.7, 0.1} {0.5, 0.4, 0.2} {0.9, 0.6, 0.5, 0.3} 

A 2 {0.5, 0.3} {0.9, 0.7, 0.6, 0.5, 0.2} {0.8, 0.6, 0.5, 0.1} {0.7, 0.4, 0.3} 

A 3 {0.8, 0.7, 0.4, 0.3} {0.7, 0.4, 0.2} {0.8, 0.1} {0.9, 0.8, 0.6} 

A 4 {0.9, 0.7, 0.6, 0.3, 0.1} {0.8, 0.7, 0.6, 0.4} {0.9, 0.8, 0.7} {0.9, 0.7, 0.6, 0.3} 

Table 2 

Converted decision matrix. 

P 1 P 2 P 3 P 4 

A 1 {0.075, 0.06, 0.045} {0.27, 0.24, 0.21, 0.03} {0.1, 0.08, 0.04} {0.315, 0.21, 0.5, 0.105} 

A 2 {0.075, 0.045} {0.27, 0.21, 0.18, 0.15, 0.06} {0.16, 0.12, 0.1, 0.02} {0.245, 0.14, 0.105} 

A 3 {0.12, 0.105, 0.06, 0.045} {0.21, 0.12, 0.06} {0.16, 0.02} {0.315, 0.28, 0.21} 

A 4 {0.135, 0.105, 0.09, 0.045, 0.015} {0.12, 0.105, 0.09, 0.06} {0.135, 0.12, 0.105} {0.135, 0.105, 0.09, 0.045} 
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Table 3 

Results obtained using priority degree. 

E A 1 E A 2 E A 3 E A 4 

E A 1 0.5 0.2734 0.3721 0.7672 

E A 2 0.7266 0.5 0.3777 0.7194 

E A 3 0.6279 0.6223 0.5 0.8019 

E A 4 0.2328 0.2806 0.1981 0.5 
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These results only show the degree of priority but not a abso-

ute order relations. Compared with existing HFS order relations,

he proposed priority degree formula conforms to the actual situ-

tion and has the following advantages: it is flexible, it does not

oss decision making information, the results meet the conditions

f Property 2 . For convenient computation, before a new multiple

ttribute decision making method is proposed, we first introduce a

ew HFE operator. 

efinition 8. For any HFE h , a new HFE operator is defined by 

� h = ∪ r∈ h { λr} , 0 < λ ≤ 1 (6) 

. A new approach to multiple attribute decision making 

Multiple attribute decision making has attracted significant at-

ention [62,63] recently due to its practicability. In this section, we

evelop a new approach to hesitant fuzzy multiple attribute deci-

ion making based on the proposed priority degree. 

Generally speaking, let A = { A 1 , A 2 , · · · , A m 

} be the discrete set

f alternatives, and C = { C 1 , C 2 , · · · , C n } be the set of attributes. For

ach alternative A i ∈ A , an expert gives a preference value a ij with

espect to attribute C j ∈ C [64] . w = (w 1 , w 2 , · · · , w n ) 
T are the

ttribute weight vectors, for which w j ∈ [0 , 1] , j = 1 , 2 , · · · , n and
 n 
j=1 w j = 1 . Note that a ij represents the assessment information

iven by an expert about the j th attribute for alternative A i , where

 ij is a hesitant fuzzy element, and all preference values for the

lternatives make up the decision-making matrix A = (a i j ) m ×n . 

In the following, a new method for multiple attribute decision

aking problems is proposed, in which the attribute weight infor-

ation is known and the attribute values take the form of hesitant

uzzy elements. This new approach has the following steps: 

Step 1: Let A = (a i j ) m ×n be a hesitant fuzzy decision-making

atrix in which a ij is each alternative A i ∈ A for each attribute C j 
 C , and let w = (w 1 , w 2 , · · · , w n ) T be the attribute weight vector

n which w j ∈ [0 , 1] , j = 1 , 2 , · · · , n, and 

∑ n 
j=1 w j = 1 . 

Step 2: Convert ( a ij ) m × n into (h i j ) m ×n = ( w j � a i j ) m ×n using

efinition 8 . 

Step 3: Let C = { C 1 , C 2 , · · · , C n } . The hesitant fuzzy sets are con-

tructed on C as follows, 

 A i = { < C j , h i j > | j = 1 , 2 , · · · , n } , i = 1 , 2 , · · · , m. 

Step 4: Calculate the priority degree between E A i and E A j (i � =
j, i, j = 1 , 2 , · · · , m ) . 

Step 5: Rank the alternatives. 

Step 6: End. 
. Illustrative example 

In this section, a numerical example and a comparison analy-

is are given to show the feasibility and validity of the proposed

riority degree. 

Example (adapted from [22] ). Consider a decision-making prob-

em that requires the assessment of various engines. Suppose that

here are four engine brands (alternatives) A i (i = 1 , 2 , 3 , 4) to be

ssessed, from which the best needs to be selected. Four attributes

re considered: P 1 : responsiveness, P 2 : fuel economy, P 3 : vibra-

ion, and P 4 : start. Assume that the attribute weight vector is

 = (0 . 15 , 0 . 3 , 0 . 2 , 0 . 35) . A hesitant fuzzy decision matrix is used

o display the assessment values given by the decision makers as

hown in Table 1 . 

In the following, assuming X = { P 1 , P 2 , P 3 , P 4 } , the hesitant fuzzy

ets are constructed as follows ( Table 2 ): 

E A 1 = {〈 P 1 , { 0 . 075 , 0 . 06 , 0 . 045 }〉 , 〈 P 2 , { 0 . 27 , 0 . 24 , 0 . 21 , 0 . 03 }〉 , 
〈 P 3 , { 0 . 1 , 0 . 08 , 0 . 04 }〉 , 〈 P 4 , { 0 . 315 , 0 . 21 , 0 . 5 , 0 . 105 }〉} 
E A 2 = {〈 P 1 , { 0 . 075 , 0 . 045 }〉 , 〈 P 2 , { 0 . 27 , 0 . 21 , 0 . 18 , 0 . 15 , 0 . 06 }〉 , 
〈 P 3 , { 0 . 16 , 0 . 12 , 0 . 1 , 0 . 02 }〉 , 〈 P 4 , { 0 . 245 , 0 . 14 , 0 . 105 }〉} 
E A 3 = {〈 P 1 , { 0 . 12 , 0 . 105 , 0 . 06 , 0 . 045 }〉 , 〈 P 2 , { 0 . 21 , 0 . 12 , 0 . 06 }〉 , 
〈 P 3 , { 0 . 16 , 0 . 02 }〉 , 〈 P 4 , { 0 . 315 , 0 . 28 , 0 . 21 }〉} 
E A 4 = {〈 P 1 , { 0 . 135 , 0 . 105 , 0 . 09 , 0 . 045 , 0 . 105 }〉 , 

〈 P 2 , { 0 . 12 , 0 . 105 , 0 . 09 , 0 . 06 }〉 , 〈 P 3 , { 0 . 135 , 0 . 12 , 0 . 105 }〉 , 
〈 P 4 , { 0 . 135 , 0 . 105 , 0 . 09 , 0 . 045 }〉} 

Compute the priority degree of each using Eq.(5), the results for

hich are shown in Table 3 . 

Analyzing the above priority degrees, the ranking of the alter-

atives is as follows: 

 3 �(0 . 6223) A 2 �(0 . 7266) A 1 �(0 . 7672) A 4 , 

These results only show the degree of priority between the al-

ernatives not the absolute order relations; that is, A 3 is not nec-

ssarily the optimal alternative. Similarly, A 4 is not necessarily the

orst alternative. 

Li et al. [22] used distance and a similarity measures to deal

ith this problem, the results for which were as follows: 
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Table 4 

Results obtained using the distance measure d ωphug in [22] with α = 

0 . 8 , β = 0 . 2 . 

A 1 A 2 A 3 A 4 Rankings 

λ = 1 0.6814 0.6639 0.6195 0.6675 A 3 � A 2 � A 4 � A 1 
λ = 2 0.6967 0.6802 0.6380 0.6909 A 3 � A 2 � A 4 � A 1 
λ = 6 0.7212 0.7159 0.6782 0.7251 A 3 � A 2 � A 1 � A 4 
λ = 10 0.7346 0.7355 0.7059 0.7379 A 3 � A 1 � A 2 � A 4 

Table 5 

Results obtained using the distance measure d ωg in [22] . 

A 1 A 2 A 3 A 4 Rankings 

λ = 1 0.4779 0.5027 0.4292 0.3558 A 4 � A 3 � A 1 � A 2 
λ = 2 0.5378 0.5451 0.5052 0.4129 A 4 � A 3 � A 1 � A 2 
λ = 6 0.6599 0.6476 0.6704 0.5699 A 4 � A 2 � A 1 � A 3 
λ = 10 0.7213 0.7046 0.7373 0.6537 A 4 � A 2 � A 1 � A 3 
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Results obtained using the score function in Definition 6 . 

Score (A 1 ) = 0 . 1508 Score (A 2 ) = 0 . 1193 

Score (A 3 ) = 0 . 1427 Score (A 4 ) = 0 . 1009 

Score (A 1 ) > Score (A 3 ) > Score (A 2 ) > Score (A 4 ) 

According to Definition 6 , we conclude 

A 1 � A 3 � A 2 � A 4 . 

The above result is still too absolutely, contrast to the proposed

method, which is short of flexible and can led to the decision in-

formation loss. 

α and β are the preference ratio between the hesitance degree

and the membership values. When the ratio of the hesitance de-

gree is greater than the membership values, the result is similar to

that when using the proposed priority degree. Otherwise, the re-

sult is different from that obtained using the distance measure in

[22] . 

The results shown in Tables 4 and 5 are absolutely order re-

lations. Compared to the results obtained using the priority de-

gree in Table 3 , it can be concluded that the proposed priority

degree formula better conforms to the actual situation, it is more

flexible and retains the decision making information. In contrast,

Tables 4 and 5 indicate that using distance and similar measures

to determine the HFS order is inflexible and could lead to a loss of

decision making information. 

7. Conclusions 

In this paper, we analyzed the existing order relations for HFSs

and provided a priority degree definition. Then, some desirable

properties for the proposed priority degree formula were studied.

For computation convenience, a new operator between the hesi-

tant fuzzy elements was proposed. Based on the presented prior-

ity degree, a new multiple attribute decision making method was

obtained. Finally, an illustrative example was given to show the ra-

tionality of the proposed priority degree. 
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