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a b s t r a c t 

This paper considers an k -out-of- n:G repairable system with repairman’s single vacation and shut off

rule where the working times and repair times of components follow exponential distributions, and the 

duration of the repairman’s vacation is governed by a phase type distribution. Further, continuous oper- 

ation as shut off rule in this paper means that all the non-failed components are still subject to failure 

when the system is down. We derive the transient system availability, the rate of occurrence of failures 

at time t , the stationary availability, the stationary rate of occurrence of failures along with other system 

performance measures by using the Markov process theory and the matrix analytical method. Moreover, 

employing the probabilistic properties of the pH distribution, we deduce the system reliability, the mean 

time to the first failure of the system and the waiting time distribution of an arbitrary failed component. 

Based on this, we discuss the time-dependent behavior of the system performance measures under differ- 

ent initial system states. Finally, the Monte Carlo simulation and special cases of the system are provided 

to show the correctness of our results. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In reliability theory, k -out-of- n:G system as a popular type of

edundancy is firstly proposed by Birnbaum et al. [1] . For such a

ystem, all the n components are working initially even though

nly k of them are required for the system to operate. Classical

xamples of its applications include the hydraulic control system

ith multiple pumps, the redundant inertial navigation system in

n airborne integrated avionics system, the radar systems and the

roduction systems. For illustration, we consider an active phased

rray radar (APAR) system with four faces, in which each face con-

ists of hundreds of transmit and receive components. A certain

ercentage of the number of components is allowed to fail with-

ut losing the function of the radar system. If the total number of

omponents is 400, and the allowed percentage is 10%, then the

PAR system behaves as a 360-out-of-400: G system. Over the past

ecades, a few of many researchers have carried out the perfor-

ance measures of k -out-of- n:G system owing to the importance

n industry and system design. Comprehensive discussion of the
∗ Corresponding author. 
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ystem are directed to the monographs by Kuo and Zuo [2] , Cao

nd Cheng [3] . 

When k -out-of- n:G repairable system is considered, the expo-

ential distributions of random times involved are usually sup-

osed, for example, Smidt–Destombes et al. [4] , Zhang and Wu [5] ,

ain and Gupta [6] , Wu et al. [7] . They investigated such a redun-

ant system with different assumptions. Wu et al. [8] considered a

 -out-of- n:G system with N policy, repairman’s vacations and one

eplaceable repair equipment where the working times and repair

imes of components, the repairman’s vacation times, the operat-

ng times and replacement times of repair equipment follow ex-

onential distributions. Applying the quasi-birth-and-death process 

heory, various steady-state system performance measures are de-

ived. Although the memoryless property of the exponential distri-

ution largely simplifies analysis, it may not precisely model real-

orld scenarios. To overcome this limitations, Neuts [9] introduced

nd analyzed the phase-type (PH) distribution firstly. The class of

H distribution is dense in the continuous non-negative class of

istributions, and any such distribution can be approached by a pH

istribution. Chakravarthy et al. [10] studied a repairable k -out-of-

:G system with ( N, T ) policy and one unreliable repair equipment,

n which the repair times, the vacation times and the fixing times

re governed by pH distributions. A variety of steady-state system
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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performance measures are evaluated by using the matrix analyt-

ical method. Later, Ruiz-Castro and Li [11] discussed a discrete k -

out-of- n:G system with R repairmen where all random variables in-

volved follow discrete phase type distributions. We refer the reader

to Chakravarthy and Gómez-Corral [12] , Pérez-Ocón et al. [13] and

Wu et al. [14] for more details. 

Traditionally, the repairman is assumed remaining idle until the

failed components are presented or some repair control policies

are met, see Krishnamoorthy et al. [15,16] . However, in vast ma-

jority of small-size and medium-size enterprisers, repairman might

have two roles: one for looking after the components and one for

other duties. For example, Wang and Xu [17] , Yu et al. [18] , and

Wu and Ke [19] . Yuan [20] studied a repairable k -out-of- n:G system

with redundant dependency and repairmen’s vacations, in which

all random variables follow exponential distributions. In his/her

model, when the system is down, none of the other functioning

components are subject to failure. Later, Wu et al. [8,14,21] intro-

duced the “repairman’s vacation policy” into k -out-of- n:G system

and deduced a variety of system performance measures in tran-

sient regime or in stationary regime. But, the vacation policy being

considered in k -out-of- n:G repairable system is little more than a

beginning. With this knowledge, the case of repairman’s vacation

policy is taken into account in this paper. 

Another important factor in a k -out-of- n:G system is the shut

off rules which describes the status of the non-failed components

when the system is down. The most commonly used shut off rules

are suspended animation (SA) and continuous operation (CO). The

SA rule eliminates the possibility of additional failures of non-

failed components when the system is down, while the CO rule

assumes that all non-failed components are still subject to failure

when the system is down. Many publication are reported for avail-

ability and reliability analysis of k -out-of- n:G systems assuming

the SA rule. 2006, Li et al. [22] analyzed a repairable k -out-of- n:G

system with CO rule. When the system is down, some of (k − 1)

working components are suspended while others are still subject

to failure. By utilizing the Markov analysis method, formulas for

various system reliability measures including mean time between

failures, mean working time in a failure repair cycle, and mean

down time in a failure repair cycle are derived. Later, Moghaddsaa

et al. [23,24] studied the k -out-of- n:G system with CO rule where

random variables are all exponential distributions. However, the CO

as the shut off rule for k -out-of- n:G system has so far been limited.

This study is motivated by some practical applications. For ex-

ample, we consider a communication system with seven transmit-

ters. The average message load may require at least five transmit-

ters be operational, or some critical message may be lost. That as

many as three transmitters fail is insufficient for smoothly commu-

nication. When one transmitter fails, it will be repaired by a tech-

nician. The technician may perform other job whenever there is no

failed transmitter and then returns to the system after a random

length of time. Upon returning from vacation, if there are failed

transmitters in the system, he/she starts to repair them immedi-

ately until no failed transmitter presents, and then takes another

assigned job. Otherwise, he/she remains idle till a breakdown to

occur. When the system is down, the remaining non-failed trans-

mitters are still in work state and subject to failure. This practical

example can be viewed as a 5-out-of-7: G system with repairman’s

single vacation and CO rule. 

In this paper, we consider a k -out-of- n:G repairable system with

repairman’s single vacation and CO rule. Applying the Markov pro-

cess theory and matrix analytical method, the system availability

and the rate of occurrence of failures are obtained in transient

regime and in stationary regime. Further, the system reliability, the

mean time to the first failure and the waiting time distribution of

failed components are discussed by using the properties of pH dis-

tribution. In addition, we numerically show the influence of var-
ous parameters on the evolution of the system reliability mea-

ures under different initial states. The new contribution of this

ork is that the CO rule is considered and the repairman takes

ingle vacation, the duration of which follows a phase type distri-

ution. Moreover, we deduce some performance measures by us-

ng the probabilistic properties of pH distribution and discuss the

ime-dependent behavior of the system performance measures. 

The rest of this paper is arranged as follows. Section 2 gives

ome definitions and assumptions of the model. The infinitesimal

enerator of the vector-valued Markov process that governs the

ystem is constructed in Section 3 . Moreover, system reliability

easures are derived in Sections 4, 5 and 6 . In Section 7 , the wait-

ng time of failed components is discussed. Section 8 reports some

umerical results. Finally, conclusions are drawn in Section 9 . 

. Some definitions and model description 

.1. Some definitions 

efinition 1. [9] A distribution H ( x ) on [0 , + ∞ ) is of phase type

ith representation ( σ, S ), if it is the distribution of the time un-

il absorption in a Markov process on the states { 1 , 2 , . . . , r, r + 1 }
ith infinitesimal generator 

S r×r S 0 r×1 

0 1 ×r 0 1 ×1 

)
, 

nd initial probability vector ( σ1 ×r , 0 1 ×1 ). Assuming that the states

 1 , 2 , . . . , r} are all transient, and the state r + 1 is absorbing.

ence the matrix S can be interpreted as the rate transient ma-

rix among the transient states, while S 0 represents the column

ector of absorption rates. The matrix S is non-singular with

egative diagonal entries and non-negative off-diagonal entries

nd satisfies −S e r×1 = S 0 . The probability distribution H(x ) = 1 −
1 ×r exp ( S x ) e r×1 , x � 0 , and its mean E(χ ) = −σ1 ×r S 

−1 e r×1 . 

efinition 2. [25] Assume that χ has a pH distribution with irre-

ucible pH representation ( σ, S ) and σe = 1 . Its probability distri-

ution and mean value are given by H ( x ) and E [ χ ], respectively.

hen, the equilibrium distribution of χ is defined as 

 e (t) = 

1 

E[ χ ] 

∫ t 

0 
( 1 − H(x ) ) d x, t � 0 , 

hich is also a pH distribution with representation ( π, S ). Here

= 

1 
E[ χ ] 

(
−σS −1 

)
satisfies π

(
S + S 0 σ

)
= 0 , πe = 1 . 

.2. Model description 

The detailed assumptions of the system are described as fol-

ows. 

ssumption 1. The k -out-of- n:G system is composed of n identi-

al and independent components. It functions as long as there are

t least k of them operate. The system is down until the number

f working components goes down to k − 1 . When the system is

own, the remaining (k − 1) working components are still subject

o failure. 

ssumption 2. The working time X of each component has an

xponential distribution F (t) = 1 − exp (−λt) , λ > 0 , t � 0 . Failed

omponents in the system form a single waiting line and receive

epair provided by repairman in the order of their failures, i.e.,

CFS discipline. The repair time Y of each failed component follows

n exponential distribution G (t) = 1 − exp (−μt) , μ � 0 , t � 0 . 

ssumption 3. The repairman leaves for a vacation whenever

here is no failed component in the system. Upon returning from
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is/her vacation, the repairman will start to work finding there ex-

st failed components waiting for repair. Otherwise, the repairman

emains idle in the system for the first failed component appears.

he vacation time V is governed by a pH distribution with repre-

entation ( θ, T ) of order m . Its probability distribution and mean

alue are 

 (t) = 1 − θ exp ( T t) e m 

, t � 0 , E[ V ] = −θT −1 e m 

, 

here 

θ = ( θ1 , θ2 , . . . , θm 

) , T = 

⎛ ⎜ ⎜ ⎝ 

T 1 , 1 T 1 , 2 · · · T 1 ,m 

T 2 , 1 T 2 , 2 · · · T 2 ,m 

. . . 
. . . 

. . . 
. . . 

T m, 1 T m, 2 · · · T m,m 

⎞ ⎟ ⎟ ⎠ 

,

 

0 = 

⎛ ⎜ ⎜ ⎝ 

T 0 1 

T 0 2 
. . . 

T 0 m 

⎞ ⎟ ⎟ ⎠ 

. 

ssumption 4. The random variables X, Y , and V are assumed to

e independent of each other. 

emark 1. In order to make this work more practical and reason-

ble, we consider a data processing system with one repairman.

 minimum of k active video displays can meet full data display.

nce a working video display fails, it will be repaired by repair-

an. Further, the repairman may perform additional tasks (e.g.,

reventive maintenance or repair for other equipment) whenever

here is no failed video display. Finding failed video displays in the

ystem at the end of the additional task, he/she starts to repair

hem immediately. Otherwise, he/she waits until the first failed

ideo display appears. Therefore, this research is helpful in some

ractical applications. 

Furthermore, we define the following notations for use in the

equel. Let I l be identity matrix of order l , e l be a column vector of

rder l of1’s, and e l ( r ) be a column vector of order l with 1 in the

 th position and 0 others. We denote by 0 l a zero matrix of order

 , by 0 l × j a zero matrix of dimension l × j . 

. Infinitesimal generator 

The k -out-of- n:G repairable system as described above can

e studied as a block-structured continuous-time Markov chain

CTCM). To see this, define L ( t ) to be the number of failed compo-

ents (either waiting or being repaired) at time t , it follows that

 (t) = i (i = 0 , 1 , . . . , n ) . Let J ( t ) be the state of the repairman at
Fig. 1. State transition diagram 
ime t , and 

(t) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

−1 the repairman is idle in the system at time t, 
0 , the repairman is repairing failed component 

at time t, 
j, the repairman is on vacation at phase j, 

j = 1 , 2 , . . . , m. 

According to the model assumptions, one checks easily that the

tochastic process X = { L (t) , J(t) : t � 0 } is a CTMC with state

pace 

= { (0 , −1) } ∪ { (0 , j) , j = 1 , 2 , . . . , m } ∪ { (i, j) , 

i = 1 , 2 , . . . , n, j = 0 , 1 , . . . , m } . 
Here, in order to given the reader a good intuitive understand-

ng, we provide a state transition diagram of the system with the

ssumption that m = 2 ( Fig. 1 ). 

By partitioning the state space into levels with regard to the

umber of failed components and using lexicographical sequence

or the state, we know that the corresponding infinitesimal gener-

tor matrix Q of X is of dimension (n + 1)(m + 1) , exhibiting the

ollowing block-structured form 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

A 0 C 0 
B 1 A 1 C 1 

B 2 A 2 C 2 
. . . 

. . . 
. . . 

B n −1 A n −1 C n −1 

B n A n 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (1) 

ach block of the matrix Q are defined in the following 

B 1 = 

(
0 1 ×1 μθ1 ×m 

0 m ×1 0 m ×m 

)
, 

B r = 

(
μ 0 1 ×m 

0 m ×1 0 m ×m 

)
, r = 2 , 3 , . . . , n, 

 0 = 

(
−nλ 0 1 ×m 

T 0 T − nλI m 

)
, 

A r = 

(
−μ−(n −r) λ 0 1 ×m 

T 0 T −(n −r) λI m 

)
, r =1 , 2 , . . . , n −1 , 

 n = 

(
−μ 0 1 ×m 

T 0 T 

)
, 

C r = 

(
(n − r) λ 0 1 ×m 

0 m ×1 (n − r) λI m 

)
, r = 0 , 1 , . . . , n − 1 . 

. Transient analysis 

This section will discuss the transient behavior of system reli-

bility measures including the availability A ( t ) and the rate of oc-

urrence of failures m f ( t ). We first define the following notations 

P i, j (t) = P { L (t) = i, J(t) = j } , (i, j ) ∈ �, 
of the system with m = 2 . 
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P 0 (t) = (P 0 , −1 (t ) , P 0 , 1 (t ) , . . . , P 0 ,m 

(t )) , 

P i (t) = (P i, 0 (t ) , P i, 1 (t ) , . . . , P i,m 

(t )) , i = 1 , 2 , . . . , n. 

By a straightforward probability arguments, the transition equa-

tions of the Markov model are formed as ordinary differential

equations with initial condition { 

d 

d t 
P (t) = P (t) Q , 

P (0) = ω 1 ×(n +1)(m +1) (r) , 
(2)

where P (t) = ( P 0 (t ) , P 1 (t ) , . . . , P n (t )) , ω 1 ×(n +1)(m +1) (r) is a row

vector of dimension (n + 1)(m + 1) with 1 in the r th position and

0 others. 

The solution of the above ordinary differential equations can be

written as 

P (t) = P (0)e Q t . (3)

From Eq. (3) , we can get the system state probabilities P i, j ( t )(( i,

j ) ∈ �). Then the system availability and the rate of occurrence of

failures of the system at time t are easily obtained. 

• The system availability at time t 

A (t) = P 0 , −1 (t) + 

m ∑ 

j=1 

P 0 , j (t) + 

n −k ∑ 

i =1 

m ∑ 

j=0 

P i, j (t) . 

• The rate of occurrence of failures at time t 

m f (t) = kλ
m ∑ 

j=0 

P n −k, j (t) . 

5. Steady-state analysis 

This section will derive some system performance measures in

stationary regime. We first define the stationary system state prob-

abilities 

P i, j = lim 

t→∞ 

P i, j (t) = lim 

t→∞ 

P { L (t) = i, J(t) = j } , (i, j ) ∈ �, 

P 0 = (P 0 , −1 , P 0 , 1 , . . . , P 0 ,m 

) , P i = (P i, 0 , P i, 1 , . . . , P i,m 

) , i = 1 , 2 , . . . , n

P = ( P 0 , P 1 , . . . , P n ) . 

Then, it follows from the matrix equation P Q = 0 that 

P 0 A 0 + P 1 B 1 = 0 1 ×(m +1) , (4)

P i C i + P i +1 A i +1 + P i +2 B i +2 = 0 1 ×(m +1) , i = 0 , 1 , . . . , n − 2 , (5)

P n −1 C n −1 + P n A n = 0 1 ×(m +1) . (6)

Further, the following normalizing equation should be satis-

fied 

n ∑ 

i =0 

P i e m +1 = 1 . (7)

After some algebraic manipulation, we have 

P i = P 0 

i ∏ 

r=1 

ξr , i = 1 , 2 , . . . , n, (8)

P 0 
(
A 0 + ξ1 B 1 

)
= 0 1 ×(m +1) , (9)

where ξi = −C i −1 

(
A i + ξi +1 B i +1 

)−1 
, i = 1 , 2 , . . . , n − 1 , ξn =

−C n −1 A 

−1 
n are all square matrices of order m + 1 . Once

P 0 being obtained, then the steady-state probability vector

P = ( P , P , . . . , P n ) are determined. 
0 1 
With Eqs. (7) and (8) , we get 

 0 

( 

e m +1 + 

n ∑ 

i =1 

i ∏ 

r=1 

ξr e m +1 

) 

= 1 . (10)

Solving Eqs (9) and (10) simultaneously would get the station-

ry solution P 0 . Further, we obtain the steady-state system state

robabilities 

P 0 , −1 = P 0 e m +1 (1) , 

P 0 , j = P 0 e m +1 ( j + 1) , j = 1 , 2 , . . . , m, 

P i, j = P i e m +1 ( j + 1) , i = 1 , 2 , . . . , n, j = 0 , 1 , . . . , m. 

Having computed the system state probabilities, we give various

teady-state system performance measures straightforwardly. 

• The steady-state system availability 

 = P 0 , −1 + 

m ∑ 

j=1 

P 0 , j + 

n −k ∑ 

i =1 

m ∑ 

j=0 

P i, j . 

• The steady-state rate of occurrence of failure 

 f = kλ
m ∑ 

j=0 

P n −k, j . 

• The expected number of failed components in the system 

[ L ] = 

m ∑ 

j=0 

n ∑ 

i =1 

iP i, j . 

• The probability that the repairman is on vacation 

 v = 

n ∑ 

i =0 

m ∑ 

j=1 

P i, j . 

. System reliability and the mean time to the first failure 

In this section, we will employ the probabilistic properties of

H distribution to derive the expressions of the system reliability

nd the mean time to the first failure (MTTFF). To achieve this, we

ump all failure states together to make one absorbing state, say
∗”. Then, consider an absorbing Markov process with state space 

(0 , −1) , (0 , 1) , . . . , (0 , m ) , (1 , 0) , . . . , (1 , m ) , . . . , (n − k, 0) , . . . , 

(n − k, m ) , ∗, 

here only the state “∗” is absorbing and all other states are tran-

ient. 

The corresponding infinitesimal generator � of the absorbing

arkov process has the following form 

= 

( 

S (n −k +1)(m +1) ×(n −k +1)(m +1) S 0 (n −k +1)(m +1) ×1 

0 1 ×(n −k +1)(m +1) 0 1 ×1 

) 

, 

here 

 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

A 0 C 0 
B 1 A 1 C 1 

. . . 
. . . 

. . . 

B n−k−1 A n−k−1 C n−k−1 

B n −k A n −k 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

nd initial probability vector 
(
σ1 ×(n −k +1)(m +1) , 0 1 ×1 

)
. Here σ =

 1 ×(n −k +1)(m +1) (r) (r = 1 , 2 , . . . , (n − k + 1)(m + 1)) is determined

y the initial state of the system. 

According to the definition of the pH distribution, we know that

he reliability of the system is 

 (t) = σ1 ×(n −k +1)(m +1) exp ( S (n −k +1)(m +1) ×(n −k +1)(m +1) t) 

× e (n −k +1)(m +1) ×1 . 
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The mean time to the first failure of the system is 

TTFF = − σ1 ×(n −k +1)(m +1) S 
−1 
(n −k +1)(m +1) ×(n −k +1)(m +1) e (n −k +1)(m +1) ×1

. The waiting time of an arbitrary failed component 

In this section, employing the theory of pH distribution and the

robability decomposition technique, we will discuss the waiting

ime distribution and the mean waiting time of an arbitrary failed

omponent. 

First, let L −(t) = i (i = 0 , 1 , . . . , n − 1) be the number of failed

omponents at an instant just prior to time t which is a

ailed component arrival epoch. Then, the new process L =
 

L −(t) , J(t) : t � 0 } forms a Markov process with state space ˜ = { (0 , −1) } ∪ { (0 , j) : j =1 , 2 , . . . , m } ∪ { (i, j) : 

i = 1 , 2 , . . . , n −1 , j =0 , 1 , . . . , m } . 
Moreover, define the following system state probabilities 

P −0 , −1 = lim 

t→∞ 

P { L −(t) = 0 , J(t) = −1 } , 
P −

0 , j 
= lim 

t→∞ 

P { L −(t) = 0 , J(t) = j} , j = 1 , 2 , . . . , m, 

P −
i, j 

= lim 

t→∞ 

P { L −(t) = i, J(t) = j} , i = 1 , 2 , . . . , n − 1 , j = 0 , 1 , . . . , m. 

Denote by A (t , t + �t ) the event that one of the working com-
onents fails during the time interval (t , t + �t ] . We have that 

 

−
0 , −1 = lim 

t→∞ 

lim 

�t→ 0 
P{ L (t) = 0 , J(t) = −1 | A (t , t + �t ) } 

= lim 

t→∞ 

lim 

�t→ 0 

P{ A (t , t + �t ) | L (t ) = 0 , J(t) = −1 } P 0 , −1 (t) ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

nλ�t P 0 , −1 (t ) + 

m ∑ 

j=1 

P{ A (t, t + �t) | L (t) = 0 , J(t) = j} P 0 , j (t) 

+ 

n −1 ∑ 

i =1 

m ∑ 

j=0 

P{ A (t , t + �t ) | L (t ) = i, J(t) = j} P i, j (t) 

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ 

= lim 

t→∞ 

lim 

�t→ 0 

nλ�t P 0 , −1 (t ) + o(�t ) 

nλ�t P 0 , −1 (t ) + 

m ∑ 

j=1 

nλ�t P 0 , j (t ) + 

n −1 ∑ 

i =1 

m ∑ 

j=0 

(n −i ) λ�t P i, j (t ) + o(�t ) 

= 

nP 0 , −1 

nP 0 , −1 + 

m ∑ 

j=1 

nP 0 , j + 

n −1 ∑ 

i =1 

m ∑ 

j=0 

(n − i ) P i, j 

. 

Similarly, we get 

 

−
0 , j 

= 

nP 0 , j 

nP 0 , −1 + 

m ∑ 

r=1 

nP 0 ,r + 

n −1 ∑ 

i =1 

m ∑ 

r=0 

(n − i ) P i,r 

, j = 1 , 2 , . . . , m, 

P −
i, j 

= 

(n − i ) P i, j 

nP 0 , −1 + 

m ∑ 

r=1 

nP 0 ,r + 

n −1 ∑ 

i =1 

m ∑ 

r=0 

(n − i ) P i,r 

, i = 1 , 2 , . . . , n −1 , 

j = 0 , 1 , . . . , m. 

Let W 

(i, j) 
q be the actual waiting time of an arbitrary failed com-

onent in the system, given that the system state is (L −(t) , J(t)) =
(i, j) , (i, j) ∈ 

˜ � prior to its arrival instant. Further, setting 

 

(i, j) 
q (t) = P 

{
W 

(i, j) 
q � t 

}
, t � 0 , E[ W 

(i, j) 
q ] 

= 

∫ ∞ 

0 

t d W 

(i, j) 
q (t ) , ( i, j ) ∈ 

˜ �. 

We now derive the expressions of W 

(i, j) 
q (t) and E[ W 

(i, j) 
q ] by the

ollowing four cases. Here, we take the arriving failed component

s the tagged one, and assume its position in the waiting line is

 (i = 0 , 1 , . . . , n − 1) . Based on the model description, its position

ay gradually move as the failed components ahead of it complete

he repair. 

• Case 1: (L −(t) , J(t)) = (i, 0) , i = 1 , 2 , . . . , n − 1 
In this case, there are i failed components ahead of the tagged

one, and the repairman is busy with components. We observe

the behavior of the tagged component since the arrival instant.

Because the future failed components arrival after the tagged

one can not change its position in the waiting line, its position

only occurs to one direction, namely, (i, 0) → (i − 1 , 0) → · · · →
(2 , 0) → (1 , 0) → � , where � is an absorbing state in the sense

that the tagged component is taken for repair by the repairman.

Thus, the actual waiting time W 

(i, 0) 
q of the tagged component is

the time till absorbing in the Markov china L . The infinitesimal

generator matrix is given by (
�i ×i �0 

i ×1 

0 1 ×i 0 1 ×1 

)
, 

where 

� = 

⎛ ⎜ ⎜ ⎝ 

−μ μ
. . . 

. . . 

−μ μ
−μ

⎞ ⎟ ⎟ ⎠ 

, �0 = 

⎛ ⎜ ⎜ ⎝ 

0 

. . . 
0 

μ

⎞ ⎟ ⎟ ⎠ 

. 

The initial probability vector is ( ω 1 × i (1), 0 1 × 1 ). Therefore, we

have that 

W 

(i, 0) 
q (t) = 1 −ω 1 ×i (1) exp ( �i ×i t) e i ×1 , E[ W 

(i, 0) 
q ] 

= −ω 1 ×i (1) �−1 
i ×i e i ×1 , i = 1 , 2 , . . . , n −1 . 

Remark 2. From the definition of the Erlangian distribution, we

can rewritten 

W 

(i, 0) 
q (t) = 1 −

i −1 ∑ 

r=0 

1 

r! 
e −μx (μx ) r , E[ W 

(i, 0) 
q ]= 

i 

μ
, 

i = 1 , 2 , . . . , n −1 . 

In order to give an uniform expression for W 

(i, j) 
q (t) and

E[ W 

(i, j) 
q ] under four cases, the well-structured matrix expres-

sion are chosen in this paper. 

• Case 2: (L −(t) , J(t)) = (i, j) , i = 1 , 2 , . . . , n − 1 , j = 1 , 2 , . . . , m 

In this case, there are i failed components ahead of the tagged

one, and the repairman is on vacation. So, the tagged compo-

nent receives repair until the repairman returns from the va-

cation and all the i failed components complete the repair. We

enumerate all possible states of this situation in lexicographic

order 

(i, 1) , (i, 2) , . . . , (i, m ) , (i, 0) , (i − 1 , 0) , (i − 2 , 0) , . . . , (2 , 0) , 

(1 , 0) , � , 

where the states (i, 1) , . . . , (i, m ) , (i, 0) , (i − 1 , 0) , . . . , (1 , 0) are

transient, the state � is absorbing. Thus, the actual waiting time

W 

(i, j) 
q of the tagged component is the time till absorbing in the

Markov chain L . The infinitesimal generator matrix is ( 

ϒ(m + i ) ×(m + i ) ϒ0 
(m + i ) ×1 

0 1 ×(m + i ) 0 1 ×1 

) 

, 

where 

ϒ= 

⎛ ⎜ ⎝ 

T m ×m 

(
T 0 m ×1 0 m ×(i −1) 

)
0 i ×m 

�i ×i 

⎞ ⎟ ⎠ 

, ϒ0 = 

(
0 (m + i −1) ×1 

μ

)
. 

From Definition 2 , the equilibrium distribution of the repair-

man’s vacation time with pH representation ( θ1 × m 

, T m × m 

)

is also a pH distribution with an explicit pH representation

( β1 × m 

, T m × m 

), where β1 ×m 

= 

1 
E[ V ] 

( −θ1 ×m 

T −1 
m ×m 

) . 



34 Y. Zhang et al. / Operations Research Perspectives 4 (2017) 29–38 

 

 

 

 

 

 

 

 

 

 

 

 

 

W

E

8

 

d

E  

o  

o  

d  

k  

t  

w

T

 

t  

c

 

t  

r  

a  

o  

t  

c  

t  

T  

d  

i  

c  

w  

f  

f

The initial probability vector is ( � 

(i, j) 
1 ×(m + i ) , 0 1 ×1 ) , where

� 

(i, j) 
1 ×(m + i ) = ( β1 ×m 

( j) , 0 1 ×i ) , j = 1 , 2 , . . . , m . Therefore, we know

that 

W 

(i, j) 
q (t) = 1 − � 

(i, j) 
1 ×(m + i ) exp 

(
ϒ(m + i ) ×(m + i ) t 

)
e (m + i ) ×1 , 

E[ W 

(i, j) 
q ] = −� 

(i, j) 
1 ×(m + i ) ϒ

−1 
(m + i ) ×(m + i ) e (m + i ) ×1 , 

i = 1 , 2 , . . . , n − 1 , j = 1 , 2 , . . . , m. 

• Case 3: ( L −(t) , J(t) ) = ( 0 , j ) , j = 1 , 2 , . . . , m 

In this case, there is no failed component in the system and the

repairman is on vacation. Thus, the tagged component is being

repaired while the repairman comes back from his/her vacation.

According to the results derived in case 2, the distribution and

the mean of the actual waiting time W 

(0 , j) 
q of the tagged com-

ponent is 

W 

(0 , j) 
q (t) = 1 − β1 ×m 

( j) exp ( T m ×m 

t) e m ×1 , 

E[ W 

(0 , j) 
q ] = −β1 ×m 

( j) T −1 
m ×m 

e m ×1 , j = 1 , 2 , . . . , m. 

• Case 4: ( L −(t) , J(t) ) = ( 0 , −1 ) 
In this case, there is no failed component in the system and the

repairman is idle. So, the tagged component receives repair im-

mediately, and its actual waiting time W 

(0 , −1) 
q is zero. Thus, the

distribution and the mean of W 

(0 , −1) 
q of the tagged component

is 

W 

(0 , −1) 
q (t) = 1 , E[ W 

(0 , −1) 
q ] = 0 . 

Let W q be the waiting time of an arbitrary failed component in

the system. By using the probability decomposition technique, we

get 

 q (t) = P { W q � t } 

= 

n −1 ∑ 

i =1 

P 
{

W q � t , L −(t ) = i, J(t ) = 0 

}
+ 

n −1 ∑ 

i =1 

m ∑ 

j=1 

P 
{

W q � t , L −(t ) = i, J(t ) = j 
}

+ 

m ∑ 

j=1 

P 
{

W q � t , L −(t ) = 0 , J(t ) = j 
}

+ P 
{

W q � t , L −(t ) = 0 , J(t ) = −1 

}
= 

n −1 ∑ 

i =1 

P 
{

W 

(i, 0) 
q � t 

}
P −

i, 0 
+ 

n −1 ∑ 

i =1 

m ∑ 

j=1 

P 
{

W 

(i, j) 
q � t 

}
P −

i, j 

+ 

m ∑ 

j=1 

P 
{

W 

(0 , j) 
q � t 

}
P −

0 , j 
+ P −0 , −1 

= 

n −1 ∑ 

i =1 

( 1 − ω 1 ×i (1) exp ( �i ×i t) e i ×1 ) P 
−
i, 0 

+ 

n −1 ∑ 

i =1 

m ∑ 

j=1 

(
1 − � 

(i, j) 
1 ×(m + i ) exp 

(
ϒ(m + i ) ×(m + i ) t 

)
e (m + i ) ×1 

)
P −

i, j 

+ 

m ∑ 

j=1 

(
1 − β1 ×m 

( j) exp ( T m ×m 

t) e m ×1 

)
P −

0 , j 
+ P −0 , −1 

= 1 −
n −1 ∑ 

i =1 

ω 1 ×i (1) exp ( �i ×i t) e i ×1 P 
−
i, 0 

+ 

n −1 ∑ 

i =1 

m ∑ 

j=0 

� 

(i, j) 
1 ×(m + i ) exp 

(
ϒ(m + i ) ×(m + i ) t 

)
e (m + i ) ×1 P 

−
i, j 

+ 

m ∑ 

j=1 

β1 ×m 

( j) exp ( T m ×m 

t) e m ×1 P 
−
0 , j 

. 
The mean waiting time is given by 

[ W q ] = 

n −1 ∑ 

i =1 

E 
[
W q ; L −(t) = i, J(t) = 0 

]
+ 

n −1 ∑ 

i =1 

m ∑ 

j=1 

E 
[
W q ; L −(t) = i, J(t) = j 

]
+ 

m ∑ 

j=1 

E 
[
W q ; L −(t) = 0 , J(t) = j 

]
+ E 

[
W q ; L −(t) = 0 , J(t) = −1 

]
= 

n −1 ∑ 

i =1 

E 
[
W 

(i, 0) 
q 

]
P −

i, 0 
+ 

n −1 ∑ 

i =1 

m ∑ 

j=1 

E 
[
W 

(i, j) 
q 

]
P −

i, j 
+ 

m ∑ 

j=1 

E 
[
W 

(0 , j) 
q 

]
P −

0 , j 

= −
n −1 ∑ 

i =1 

(
ω 1 ×i (1) �−1 

i ×i e i ×1 

)
P −

i, 0 

−
n −1 ∑ 

i =1 

m ∑ 

j=1 

(
� 

(i, j) 
1 ×(m + i ) ϒ

−1 
(m + i ) ×(m + i ) e (m + i ) ×1 

)
P −

i, j 

−
m ∑ 

j=1 

(
β1 ×m 

( j) T −1 
m ×m 

e m ×1 

)
P −

0 , j 

. Numerical examples 

This section provides a variety of numerical examples to

emonstrate the applicability of the theoretical results. 

xample 1. This example discusses the time-dependent behavior

f the system availability A ( t ), the transient rate of occurrence

f failures m f ( t ), the system reliability R ( t ), and the waiting time

istribution of an arbitrary failed component W q ( t ). First, we let

 = 5 , n = 14 , μ = 3 . 5 . The vacation time follows a pH distribu-

ion with representation ( θ, T ) of order 4 and mean value 3.8125,

here 

θ = (0 . 5 , 0 . 2 , 0 . 15 , 0 . 15) , T = 

⎛ ⎜ ⎜ ⎜ ⎝ 

− 4 
5 

4 
5 

0 0 

0 − 4 
5 

4 
5 

0 

0 0 − 4 
5 

4 
5 

0 0 0 − 4 
5 

⎞ ⎟ ⎟ ⎟ ⎠ 

, 

 

0 = 

⎛ ⎜ ⎝ 

0 

0 

0 

4 
5 

⎞ ⎟ ⎠ 

. 

Table 1 , Fig. 2 and Table 2 perform the above specific parame-

ers with λ= 0.6. Fig. 3 performs the above specific parameters by

ollocating with different values of λ= 0.5, 0.6, 0.7, 0.8. 

We observe from Fig. 2 that these curves display violent fluc-

uations in the early stage. The higher the probability that the

epairman returns from his/her vacation, the bigger the system

vailability and system reliability are, and the smaller the rate of

ccurrence of failures is. But after some time units this fluctua-

ions of them tend to disappear. Further, one checks easily that the

onvergence of these reliability measures are independent of ini-

ial conditions, which is as we have anticipated. It appears from

able 2 that the mean time to the first failure is a monotonically

ecreasing function of the number of failed components initially

n the system. Table 2 shows it is also sensitive to system initial

onditions. Fig. 3 indicates the waiting time distribution decreases

ith the increase of λ. This is what we had expected due to the

act that having larger value of λ would increase the number of

ailed component in the system. 
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Table 1 

System state probabilities at time t under initial condition (0 , −1) . 

( i, j ) P i, j (0.5) P i, j (1.0) P i, j (3.0) P i, j (5.0) P i, j (10) P i, j (15) 

(0, -1) 0.123480 0.0 0 0495 0.0 0 0 020 0.0 0 0 011 0.0 0 0 012 0.0 0 0 013 

(0, 1) 0.047637 0.005397 0.0 0 0598 0.0 0 0358 0.0 0 0374 0.0 0 0411 

(0, 2) 0.022140 0.002842 0.0 0 0294 0.0 0 0175 0.0 0 0182 0.0 0 020 0 

(0, 3) 0.015678 0.001979 0.0 0 0206 0.0 0 0123 0.0 0 0128 0.0 0 0141 

(0, 4) 0.015284 0.001869 0.0 0 0198 0.0 0 0118 0.0 0 0123 0.0 0 0136 

(1, 0) 0.236247 0.020596 0.002981 0.001859 0.001972 0.002162 

(1, 1) 0.033635 0.007924 0.0 0 0621 0.0 0 0354 0.0 0 0363 0.0 0 0401 

(1, 2) 0.016803 0.005282 0.0 0 0368 0.0 0 0206 0.0 0 0211 0.0 0 0233 

(1, 3) 0.011631 0.003622 0.0 0 0252 0.0 0 0141 0.0 0 0144 0.0 0 0159 

(1, 4) 0.011184 0.003233 0.0 0 0231 0.0 0 0130 0.0 0 0133 0.0 0 0147 

Fig. 2. Illustration of system reliability measures under different initial conditions. 

Table 2 

The mean time to the first failure under different initial conditions. 

( i, j ) MTTFF ( i, j ) MTTFF ( i, j ) MTTFF ( i, j ) MTTFF 

(0, -1) 3.71099503 (2, 2) 1.98033721 (4, 4) 2.69774882 (7, 1) 0.86486112 

(0, 1) 2.08838396 (2, 3) 2.41058385 (5, 0) 3.65577663 (7, 2) 0.90953956 

(0, 2) 2.32032006 (2, 4) 3.20101062 (5, 1) 1.28460834 (7, 3) 1.06760738 

(0, 3) 2.79970655 (3, 0) 4.02254891 (5, 2) 1.38262802 (7, 4) 1.56765258 

(0, 4) 3.49342452 (3, 1) 1.6384 856 8 (5, 3) 1.66813633 (8, 0) 2.23890172 

(1, 0) 3.59194741 (3, 2) 1.79364313 (5, 4) 2.37129314 (8, 1) 0.61825570 

(1, 1) 1.94724718 (3, 3) 2.18386977 (6, 0) 3.31478324 (8, 2) 0.64133617 

(1, 2) 2.15561659 (3, 4) 2.97610558 (6, 1) 1.08490172 (8, 3) 0.73426543 

(1, 3) 2.61459056 (4, 0) 3.89616641 (6, 2) 1.15514530 (8, 4) 1.08381328 

(1, 4) 3.35365590 (4, 1) 1.46816357 (6, 3) 1.37877976 

(2, 0) 3.97515589 (4, 2) 1.59482778 (6, 4) 1.99581410 

(2, 1) 1.79767084 (4, 3) 1.93632603 (7, 0) 2.85780890 

Fig. 3. The waiting time distribution under different values of λ. 

E  

s  

l  

o

xample 2. This example investigates an 4-out-of-7: G repairable

ystem with μ = 3 . 5 , and λ from 0.2 to 1.0. We specify the fol-

owing three cases of pH vacation time with representation ( θ, T )

f order 3. 
• Case 1. Phase type distribution (PH): 

θ = (1 , 0 , 0) , T = 

⎛ ⎜ ⎝ 

−13 8 3 

2 −15 10 

1 3 −18 

⎞ ⎟ ⎠ 

, 

T 0 = 

( 

2 

3 

14 

) 

, E[ V ] = 0 . 1926 . 

• Case 2. Coxian distribution (COX): 

θ = (1 , 0 , 0) , T = 

⎛ ⎜ ⎝ 

−3 2 0 

0 −6 5 

0 0 −7 

⎞ ⎟ ⎠ 

, 

T 0 = 

( 

1 

1 

) 

, E[ V ] = 0 . 5238 . 
7 
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Fig. 4. Different vacation time distributions on the system performance measures. 
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r  
• Case 3. Erlangian distribution (ERL): 

θ = (1 , 0 , 0) , T = 

⎛ ⎜ ⎝ 

−3 . 3 3 . 3 0 

0 −3 . 3 3 . 3 

0 0 −3 . 3 

⎞ ⎟ ⎠ 

, 

T 0 = 

( 

0 

0 

3 . 3 

) 

, E[ V ] = 0 . 9091 . 

The numerical computation results of system performance mea-

sures are displayed in Fig. 4 (a)–(d). It appears from Fig. 4 that the

system availability and the mean time to the first failure are mono-

tonically decreasing function of E [ V ], and the rate of occurrence of

failures and the mean waiting time of failed component go up with

the increasing values of E [ V ]. On the other hand, for fixed value of

E [ V ], the availability and the mean time to the first failure decrease

with the increase of λ. Fig. 4 (b) and (d) show the reverse pattern,

namely, the rate of occurrence of failures and the mean waiting

time of failed component increase as λ increases. This is because

the larger value of λ, the working components are more easily fail.

Example 3. In this numerical example, we select k = 2 , n = 3 ,

μ = 5 . 5 , θ = 1 , T = (−10) , and λ from 0.2 to 0.8. The Monte Carlo

simulation is carried out by 50 0,0 0 0 trials. It appears from Table 3

and Fig. 5 that the numerical results obtained by the matrix an-

alytical method are close to those obtained by the Monte Carlo

simulation. Moreover, this example shows that the validity of these

theoretical results of system reliability measures in this paper. 

Example 4. Let n = 2 , k = 1 , P { V = 0 } = 1 , thus our model can be

reduced to the special case 2-component parallel system. Employ-

ing the Markov analysis method, Cao and Cheng [ 3 , pp. 216–219]

deduced the transient system reliability measures which are given

as follows. 

A 

a (t) = 

2 λμ + μ2 

2 λ2 + 2 λμ + μ2 
− 2 λ2 ( s 2 e 

s 1 t − s 1 e 
s 2 t ) 

s 1 s 2 (s 1 − s 2 ) 
, 
m 

a 
f (t) = 

2 λ2 μ

2 λ2 + 2 λμ + μ2 
+ 

2 λ2 ( s 1 + μ) 

s 1 ( s 1 − s 2 ) 
e s 1 t + 

2 λ2 ( s 2 + μ) 

s 2 ( s 2 − s 1 ) 
e s 2 t ,

R 

a (t) = 

c 1 e 
c 2 t − c 2 e 

c 1 t 

c 1 − c 2 
, 

here s 1 , s 2 = 

1 
2 [ −(3 λ + 2 μ) ±

√ 

λ2 + 4 λμ] , c 1 , c 2 =
1 
2 [ −(3 λ + μ) ±

√ 

λ2 + 6 λμ + μ2 ] . 

To validate the correctness of the analytical results of our

odel, we select k = 1 , n = 2 , λ = 0 . 9 , μ = 2 . 5 , θ = 1 , T = (−10 3 ) .

he numerical results presented in Table 4 indicate that the ex-

ressions of reliability measures derived in this paper exactly

atch the one reported by Cao and Cheng [3] . 

xample 5. Set k = 1 , P { V = 0 } = 1 , then our model reduces to

he classical n components parallel repairable system. Applying the

arkov analysis method, Cao and Cheng [ 3 , pp. 212–216] derived

he steady-state system reliability measures which provided be-

ow. 

A 

b = 

∑ n 
i =1 

1 

i ! 

(
μ

λ

)i 

∑ n 
i =0 

1 

i ! 

(
μ

λ

)i 
, m 

b 
f = 

μ∑ n 
i =0 

1 

i ! 

(
μ

λ

)i 
, 

TTFF b = 

1 

μ

n ∑ 

i =1 

i −1 ∑ 

j=0 

j! 

i ! 

(
μ

λ

)i − j 

. 

To verify the correctness of the formulae obtained in the

resent paper, we choose k = 1 , λ = 0 . 85 , μ = 2 . 0 , θ = 1 , T =
(−10 3 ) . The computation results tabulated in Table 5 show that

he formulae obtained in this paper exactly agree with that given

n Cao and Cheng [3] . 

. Conclusions 

This paper discussed a repairable k -out-of- n:G system with CO

ule and repairman’s single vacation, the duration of which follows
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Table 3 

Reliability measures for different values of λ. 

λ A m f 

Analytical Simulation Absolute error Analytical Simulation Absolute error 

0.20 0.99232461 0.99276747 0.0 0 044286 0.04009295 0.03863633 0.00145662 

0.25 0.98814412 0.98919622 0.00105210 0.06118701 0.05808302 0.00310399 

0.30 0.98314101 0.98458279 0.00144179 0.08598835 0.08096614 0.00502221 

0.35 0.97736308 0.97960425 0.00224118 0.11413672 0.10650742 0.00762931 

0.40 0.97086038 0.97417715 0.00331677 0.14527884 0.13399007 0.01128877 

0.45 0.96368439 0.96763623 0.00395183 0.17907155 0.16574597 0.01332558 

0.50 0.95588727 0.96067108 0.00478381 0.21518442 0.19658309 0.01860134 

0.55 0.94752115 0.95414978 0.00662864 0.25330183 0.22831478 0.02498705 

0.60 0.93863762 0.94680956 0.00817194 0.29312446 0.26303828 0.03008618 

0.65 0.92928726 0.93863565 0.00934839 0.33437037 0.29777606 0.03659431 

0.70 0.91951922 0.92987761 0.01035839 0.37677571 0.3334 994 9 0.04327621 

0.75 0.90938092 0.92187423 0.01249331 0.42009499 0.36926743 0.05082757 

0.80 0.89891782 0.91358741 0.01466959 0.46410122 0.40393407 0.06016714 

Fig. 5. System reliability measures for different values of λ. 

Table 4 

Illustration of transient system reliability measures with time t . 

A ( t ) A a ( t ) m f ( t ) m 

a 
f 
(t) R ( t ) R a ( t ) 

t = 0.5 0.93494618 0.934 9546 8 0.29326997 0.32445578 0.90239092 0.90240148 

t = 1.0 0.89166465 0.8916 854 9 0.32124910 0.33115186 0.76890619 0.76894079 

t = 1.5 0.87634720 0.87637398 0.32580197 0.32891352 0.65142769 0.65148258 

t = 2.0 0.87135768 0.87138669 0.32696320 0.32790735 0.55157217 0.55164088 

t = 3.0 0.86924738 0.86927747 0.32742519 0.32745673 0.39538359 0.39546483 

t = 5.0 0.86901025 0.86904048 0.32747646 0.32740555 0.20316293 0.20323756 

t = 10.0 0.86900777 0.86903799 0.32747699 0.32740501 0.03845112 0.03848081 

t = 15.0 0.86900777 0.86903799 0.32747699 0.32740501 0.00727735 0.00728592 

Table 5 

System reliability measures for different values of n . 

n A A b m f m 

b 
f 

MTTFF MTTFF b 

2 0.83663061 0.83663086 0.33035367 0.32673827 3.11268564 3.14878893 

3 0.87940484 0.87940500 0.24418102 0.24118999 5.01461489 5.08786213 

4 0.89549951 0.89549961 0.21074691 0.2090 0 079 6.45158206 6.52261108 

5 0.90167483 0.90167488 0.19750714 0.19665023 7.38346237 7.43308117 

6 0.90390183 0.90390184 0.19255636 0.19219630 7.95671879 7.98620669 

7 0.90462792 0.90462793 0.19087439 0.19074415 8.32340445 8.34019847 

8 0.90483939 0.90483940 0.19036219 0.19032121 8.58126407 8.59137252 

9 0.90489453 0.90489453 0.19022231 0.19021095 8.78098817 8.78775789 

10 0.904 9074 9 0.904 9074 9 0.19018783 0.19018502 8.94660062 8.95161327 

11 0.90491026 0.90491026 0.19018011 0.19017948 9.08964155 9.09361443 

a  

t  

a  

s  

s  

i  

m  

fi  

n  

a

 

t  

n  

i  

t  

s

 pH distribution. Utilizing the Markov process theory and the ma-

rix analytical method, a variety of system performance measures

re derived in transient regime and in stationary regime. Further,

ome numerical examples are given to illustrate how the various

ystem parameters influence the behavior of the system. Employ-

ng the theory of pH distribution, we deduced the well-structured

atrix expressions of the system reliability, the mean time to the

rst failure, and the waiting time of an arbitrary failed compo-
ent. Compared with previous theoretical results, our expressions

re more concise and numerically tractable. 

In the future, an interesting extension is to study such a sys-

em with repairman’s vacation policy and non-identical compo-

ents subject to repair priorities. Once a working component fails,

t is immediately replaced and exchanged with a good component

aken from the spare parts inventory. The failed components are

ent to a central repair center for repair considering priority rule. 
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