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As we know, there is a belief in the finance literature that Value at Risk (VaR) and Conditional Value 

at Risk (CVaR) are new approaches to manage and control the risk. Regard to, value at risk is not a co- 

herent risk measure and it is not sub-additive and convex, so, we have considered conditional value at 

risk as a risk measure by different confidence level in the Mean-CVaR and multi objective proportional 

change Mean-CVaR models and compared these models with our previous mean-VaR models. This pa- 

per focuses on the performance evaluation process and portfolios selection by using Data Envelopment 

Analysis (DEA). Conventional DEA models assume non-negative values for inputs and outputs, but many 

of data take the negative value. Therefore, we have used our models based on Range Directional Mea- 

sure (RDM) that can take positive and negative values. Here value at risk is obtained by non-parametric 

methods such as historical simulation and Monte Carlo simulation. Finally, a numerical example in Iran’s 

market is presented. 

Published by Elsevier Ltd. 
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. Introduction 

Portfolio selection and portfolio management are the most im-

ortant problems from the past that have attracted the attention

f investors. To solve this problems, Markowitz [14] proposed his

odel that was named Markowitz or mean-variance (MV) model.

e believed that all investors want maximum return and mini-

um risk in their investment. This model results in an area with

 frontier called efficient frontier. Morey and Morey [15] proposed

ean-variance framework based on Data Envelopment Analysis, in

hich variance of the portfolio is used as an input and expected

eturn is used as an output to DEA models. Data Envelopment

nalysis has proved the efficiency for assessing the relative effi-

iency of Decision Making Units (DMUs) that employs multiple

nputs to produce multiple outputs [8] . Briec et al. [7] tried to

roject points in a preferred direction on efficient frontier and

valuate points’ efficiencies by their distances. Demonstrated

odel by Briec et al., which is also known as a shortage function,

as some advantages. For example optimization can be done in
∗ Corresponding author. 
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ny direction of a mean-variance space according to the investors’

deal. Furthermore, in shortage function, efficiency of each security

s defined as the distance between the asset and its projection in a

re-assumed direction. Based on this definition if distance equals

o zero, that security is on the frontier area and its efficiency

quals to 1. This number, in fact is the result of shortage function

hich tries to summarize value of efficiency by a number. In

hose papers, variance was considered as a risk measure. Measures

f risk have a crucial role in optimization under uncertainty,

specially in coping with the losses that might be incurred in

nance of the insurance industry. value at risk, or VaR for short, is

ne of the most popular measures due to its simplicity, which has

chieved the high status of being written into industry regulations.

ut this risk measure is not sub-additive, nor convex. This risk

easure is proposed by Baumol [6] . Duffie and Pan [10] used VaR

o measure the risk of firms. Glasserman et al. [12] use the Monte

arlo method along with quadratic estimation to measure the

ortfolio’s VaR. Chen and Tang [9] verified other nonparametric

pproximation of VaR for related financial returns. Artzner et al.

1,2] proposed the main properties that a risk measures must

atisfy, thus establishing the notion of coherent risk measure.

ockfeller and Uryasev [20,21] , expressed another risk measure

hich was named Conditional Value at Risk (CVaR). CVaR is also
e. ( http://creativecommons.org/licenses/by/4.0/ ) 
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called Expected shortfall (ES), Average Value at Risk (AVaR) and

expected tail loss (ETL). CVaR is defined as the weighted average of

VaR and losses strictly exceeding VaR for general distribution. The

CVaR risk measure has been proved to be a coherent risk measure

(Pflug [18] , Ogryczak and Ruszczynski [16] ) and researcher use

CVaR as a risk measure for portfolio and financial problems.

Hong and Liu [13] used the Monte Carlo simulation method to

calculate CVaR for portfolio optimization. The group of fully non

parametric estimators based on the empirical conditional quantile

function are considered in Peracchi and Tanase [17] . For using DEA

models, must defined inputs and outputs (For example risk can be

considered as input and return as output). Majority of DEA models

cannot be used for the case in which DMUs include both negative

and positive inputs/outputs. For example, CCR model (Charnes,

Cooper, Rhodes [8] ) and BCC model (Banker, Charnes, Coopper,

[5] ). Portela et al. [19] represented a DEA model by name Range

Directional Measure (RDM) model which can be used in cases

where input/output data take positive and negative values. In

2014, [4] proposed non-linear mean-variance and modified mean-

variance-skewness based on RDM model for portfolio performance

evaluation. In 2016, regard to this subject that variance is not

a good measure of risk, they replaced variance by value at risk

and tried to decrease it in a mean-value at risk framework with

negative data by using mean-value at risk efficiency (MVE) model

and multi objective mean-value at risk (MOMV) model. Investors

have different attitudes, but always the main concern of investors

are the return and risk. Maximizing return and minimizing risk

are two opposite target that the investor wants to focus on both

of them at the same time. To achieve compromise solutions in this

context, the Multi Objective Decision Making (MODM) models are

used. Markowitz [14] was the first one who expressed the portfo-

lio management as a MODM problem with two objectives (return

and risk). Zopounidis [25] was the researcher who has noted the

multidimensional nature of financial decisions and considered all

relevant factors involved. Steuer and Paul [23] augmented a general

review of MODM for financial problems. Subbu et al. [24] proposed

a model that maximizes the return and minimizes the variance

and VaR of portfolio. In this paper, regard to VaR is a very popular

risk measure but it is not a coherent risk measure and it has unde-

sirable mathematical characteristic such as a lack of sub-additivity

and convexity, we proposed Mean-CVaR model and multi objective

proportional change Mean-CVaR by mean of return as output and

risk measure CVaR as input. we used MODM to maximize the

mean of return and minimize the risk measure of CVaR. 

The remainder of this paper is organized as follows. Mathe-

matical definitions and formulations are explained in Section 2 .

Methodology is described in Section 3 . The experimental testing

of methodology and comparing the different results of different

risk measures in Iran’s market is represented in Section 4 . The

conclusion is represented in Section 5 . 

2. Mathematical definition and formulation 

2.1. Mean-variance models consist of Markowitz model, Morey and 

Morey model and Briec model 

First portfolio theory for investing was published by Markowitz

[14] . The model he introduced, was known as Markowitz or

mean-variance (MV) model, tries to decrease variance as a risk

parameter in all levels of mean. This model results in an area with

a frontier calling efficient frontier. Assume that, n is the number

of total assets, r R i R j σR i 
σR j 

is the covariance between returns of

asset i and j, μi is the expected return of asset i and R f is the

riskless return. The decision variable λi represents the proportion

of capital to be invested in asset i . The MV model or Markowitz
odel is description as follow: 

in z = 

n ∑ 

i =1 

n ∑ 

j=1 

λi λ j r R i R j σR i σR j 

.t. 

n ∑ 

j=1 

λ j μ j ≥ R f 

n ∑ 

j=1 

λ j = 1 

0 ≤ λ j ≤ 1 , j = 1 , 2 , . . . , n (1)

The objective is finding a portfolio with the minimum standard

eviation (as a risk) under the situation that the corresponding

xpected return must be greater than riskless return ( R f ). The sum

f the proportions of capital allocated to all stocks must be equal

o 1 and they should be in the range of [0, 1]. 

Based on Markowitz [14] theory, it is required to characterize

he whole efficient frontier, which for large number of assets

s cumbersome. In contrast Morey and Morey [15] measured

fficiency of under evaluation assets through DEA models. Data

nvelopment Analysis (DEA) is a nonparametric method for eval-

ating the efficiency of systems with multiple inputs or outputs.

n this section we present, not discussing in details, some basic

efinitions, models and concepts that will be used in other sec-

ions. Consider DMU j ( j = 1 , . . . , n ) where each DMU consumes

 inputs to produce s outputs. Also, Suppose that the observed

nput and output vectors of DMU j are X j = ( x 1 j , . . . , x m j ) and

 j = ( y 1 j , . . . , y s j ) respectively, and let X j ≥ 0, X j � = 0 and Y j ≥ 0, Y j 
= 0. A basic DEA formulation in input orientation is as follows: 

in θ − ε 

( 

s ∑ 

r=1 

s + r + 

m ∑ 

i =1 

s −
i 

) 

.t. 

n ∑ 

j=1 

λ j x i j + s −
i 

= θx io i = 1 , . . . , m, 

n ∑ 

j=1 

λ j y r j − s + r = y ro r = 1 , . . . , s, 

λ ε �, 

s + , s − ≥ 0 , 

ε ≥ 0 (2)

here λ is a n-vector of variables λi , s + is a s-vector of output

lacks, s − is a m-vector of input slacks, ɛ is a non-Archimedes

actor, and the set � is defined as follows: 

= 

{ 

λ ε R 

n 
+ with constant returns to scale, 

λ ε R 

n 
+ , 1 

T λ ≤ 1 with non − incr easing r eturns to scale, 

λ ε R 

n 
+ , 1 

T λ = 1 with v ariable returns to scale. 

(3)

Note that subscript ‘o’ refers to the under evaluation unit. A

ecision Making Unit (DMU) is efficient if and only if θ = 1 and

ll slack variables ( s + and s −) are equal to zero otherwise it is

nefficient, [8] . In the DEA formulation ( 5 ), the left-hand-sides of

onstraints define an efficient unit, while, the scalars in the right-

and sides are the inputs and outputs of the under evaluation unit

nd the theta is a multiplier that defines the distance from the

fficient frontier. The slack variables are also used to ensure that

he efficient points are fully efficient. 

In solving DEA models three different attitudes can be con-

idered. DEA models can be input, output or combined oriented,

here, each orientation has its own interpretation in financial

elds. In recent years following models have been widely used

o evaluate portfolio efficiency that have DEA-like framework.
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orey and Morey [15] used this model to measure efficiency of

nder evaluation assets only by characterizing projection points.

ased on this model, efficiency measure of an asset ( θ ) is the

istance between an asset and its projection. In Morey and Morey

15] model, there are n assets, and λj is the weight of asset j in

he projection point. r j is the expected return of asset j . s 1 is a

-vector of output slacks and s 2 is a m-vector of input slacks. Also,

 is a non-Archimedes factor and μo and σ 2 
o are expected return

nd variance of under evaluation asset respectively. Efficiency

easure ( θ ) can be determined by following model: 

in θ − ε ( s 1 + s 2 ) 

.t. E 

[ 

n ∑ 

j=1 

λ j r j 

] 

− s 1 = μo , 

E 

⎡ 

⎣ 

( 

n ∑ 

j=1 

λ j 

(
r j − μ j 

)) 2 
⎤ 

⎦ + s 2 = θσ 2 
o , 

n ∑ 

j=1 

λ j ≤ 1 ∀ λ ≥ 0 (4) 

Model ( 4 ) is achieved by the non-parametric efficiency analysis

ata Envelopment Analysis. Briec et al. [7] used direction in opti-

ization. They tried to project the under evaluation assets on the

fficient frontier via maximizing return and minimizing variance

imultaneously in the direction of the vector g = (| μo | , −| δ2 
o | )

sing the following model: 

ax β

.t. E 

[ 

n ∑ 

j=1 

λ j r j 

] 

≥ μo + βμo , 

v ar [ r ( λ) ] ≤ σ 2 
o − βσ 2 

o , 

n ∑ 

j=1 

λ j = 1 λ ≥ 0 . (5) 

here var [ r ( λ)]can be defined as following: 

 ar [ r ( λ) ] = E 
[
( r ( λ) − E [ r ( λ) ] ) 

2 
]

= 

n ∑ 

i, j=1 

λi λ j 
i j . (6)

When model ( 5 ) equals zero, the under evaluation unit is

n the efficient frontier. In Eq. (6) n is number of assets in the

ortfolio. λj is proportion of portfolio’s initial value invested in

sset j and λ is a n-vector of variables λj . Also r j is return of asset

 and 
ij is covariance of returns between asset i and asset j. 

.2. Range Directional Measure (RDM) model 

In the conventional DEA models, each DMU j ( j = 1 , . . . , n ) is

pecified by a pair of non-negative input and output vectors

( x i , y j ) ε R m + s 
+ , in which inputs x i j ( i = 1 , . . . , m ) are utilized to

roduce outputs, y r j ( r = 1 , . . . , s ) . These models cannot be used

or the cases in which DMUs include both negative and positive

nputs and/or outputs. Portela et al. [19] considered a DEA model

hich can be applied in cases where input/output data take

ositive and negative values. Range Directional Measure (RDM)

odel proposed by Portela et al. [19] is as follow: 

ax β

.t. 

n ∑ 

j=1 

λ j x i j ≤ x io − βR io i = 1 , . . . , m 

n ∑ 

j=1 

λ j y r j ≥ y ro + βR ro r = 1 , . . . , s 
n ∑ 

j=1 

λ j = 1 

λ j ≥ 0 j = 1 , . . . , n (7) 

here, directions can be defined as following: 

 io = x io − min 

j 

{
x i j : j = 1 , . . . , n 

}
, i = 1 , . . . , m (8)

 ro = max 
j 

{
y r j : j = 1 , . . . , n 

}
− y ro , r = 1 , . . . , s (9)

Ideal point (I) within the attendance of negative data is: 

 = 

(
max 

j 

{
y r j : r = 1 , . . . , s 

}
, min 

j 

{
x i j : i = 1 , . . . , m 

})
(10) 

nd the purpose is to project each under evaluation asset’s point

o this ideal point. Other models that use negative data are mod-

fied slacks-based measure model (MSBM), Emrouznejad [11] and

emi-oriented radial measure (SORM), Sharp et al. [22] . 

In the later sections, the measure of risk consists of Value at

isk (VaR) and Conditional Value at Risk (CVaR) are defined. 

.3. Value at Risk (VaR) 

VaR is defined as maximum quantity of invest that one may

oss in a specified time interval. In the other words, VaR can

nswer this question: how much one can expect to loss in the

pecified time (a day, weak, month, …). VaR defined as the quan-

ile of a distribution. Suppose that P t is the initial wealth and P t+ k 
s the Secondary wealth after k period time, probability of loss is: 

p ( −�k P t < V aR ) = α (11) 

here �k P t = P t+ k − P t and 1 − α is the margin of error so α is the

onfidence level. 

There are different methods for computing the VaR, such as

ariance-Covariance method, Historical simulation and Monte 

arlo simulation. Variance-covariance method only uses for nor-

al distribution data. Since the price of stock have not normal

istribution, so we cannot use this method for calculating the

aR. There is no need for normal distribution data in Historical

imulation and Monte Carlo simulation methods, thus we can use

hese methods for computing the VaR. 

.3.1. Historical simulation 

One of nonparametric methods for calculating the VaR is

istorical simulation. In this method there is no need to know

istribution of data. In fact, VaR is computed by attention of an

ssumptive time series of returns and supposition that changes of

uture data are based on historical changes. The convenience of

his method is no variance and covariance need to calculate. This

ethod believes that behavior of returns is the same as before. 

.3.2. Monte Carlo simulation 

Another nonparametric method for calculating the VaR is

onte Carlo simulation. This method is based on stronger suppo-

ition about distribution of returns in comparison with historical

imulation method. This method specifies possibility distribution

f returns. First distribution most determines, then a lot of sam-

les of returns will simulate and parameters will calculate based

n those samples. 

For using Monte Carlo method to calculate the VaR, distribution

f stock companies must be known. Because of the fluctuations of

tock price, it is hard to obtain distributions. Thus, we used sam-

ling methods. First, we specified the margin of error and number

f needed samples that is shown the whole population. Then, we

sed boot strapping method. We repeat sampling procedure for
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10 0 0 times and calculate VaR of each stock companies. At the end,

the V aR is: 

 aR = 

1 

10 0 0 

10 0 0 ∑ 

i =1 

V a R i (12)

Where VaR i is the value at risk of stock company i and V aR is the

estimate of value at risk of population. 

Definition 2.1. Assume that a portfolio is going to be selected

from n financial assets, λi is the proportion of invested money in

asset i . The set of our acceptable portfolios is: 

φ = 

{ 

λi ε R 

n ;
n ∑ 

i =1 

λi = 1 , λi ≥ 0 

} 

(13)

Return of portfolio r ( λ) is: 

r ( λ) = 

n ∑ 

i =1 

λi r i (14)

Expected return of this portfolio is: 

E ( r ( λ) ) = 

n ∑ 

i =1 

λi E ( r i ) (15)

2.4. Conditional Value at Risk (CVaR) 

Let λ ε φ ⊂ R 

n be a decision vector, r ε R 

n be the random

vector representing the value of under lying risk factors, and

f ( λ, r ) be the corresponding loss. For simplicity, we assume that

r ε R 

n is a continuous random vector. For a given portfolio λ, the

probability of the loss not exceeding a threshold � is given by the

probability function P (·) 
ψ ( λ, �) := P ( f ( λ, r ) ≤ �) (16)

The VaR associated with a portfolio λ and a specified confi-

dence level α (0 < α < 1) is the minimal � satisfying ( λ, �) ≥ α,

that is: 

 a R α( λ) := inf { �ε R , ψ ( λ, �) ≥ α} (17)

Since ψ( λ, �) is continuous by assumption, we have: 

P ( f ( λ, r ) ≤ V a R α( λ) ) = ψ ( λ, V a R α( λ) ) = α (18)

CVaR is defined as the conditional expectation of the portfolio

loss exceeding or equal to VaR 

V a R α( λ) : = E [ f ( λ, r ) | f ( λ, r ) ≥ V a R α( λ) ] 

= 

1 

1 − α

+ ∞ 

∫ 
Va R α( λ) 

xp ( x ) dx (19)

where E is the expectation operator and p ( x ) is the probability

density function of the loss f ( λ, r ). 

Rockfeller and Uryasev [20,21] prove that CVaR has an equiva-

lent definition as follows: 

V a R α( λ) = min 

�
F α( λ, �) (20)

where F α( λ, �) is defined as: 

F α( λ, �) := � + 

1 

1 − α
E 
[
( f ( λ, r ) − �) 

+ ]
(21)

with (x ) + = max { x, 0 } . They also show that minimizing CVaR

over λ ε φ ⊂ R 

n is equivalent to minimizing F α( λ, �) over

( λ, �) ε φ × R . i.e., 

min 

λ ε φ
CV a R α( λ) = min 

( λ, �) ε φ×R 

F α( λ, �) . (22)

Furthermore, when φ is a convex set and f ( λ, r ) is convex with

respect to λ, the problem is a convex programming problem. 
efinition 2.2. Weakly efficient frontier described as: 

f r w (φ) = { ( μ, R ) ε S; ( −μ′ ,CV a R 

′ ) 
< ( −μ, CV aR ) ⇒ ( μ′ , CV a R 

′ ) / ∈ S} (23)

This frontier is a part of the boundary of the disposal region set

 S ). The weakly frontier can contain points that are not reachable

y real portfolios. 

efinition 2.3. Strongly efficient frontier described as: 

f r s (φ) = { ( μ, CV aR ) ε S; ( −μ′ ,CV a R 

′ ) 
≤ ( −μ, CV aR ) and ( −μ′ , CV a R 

′ ) � = ( −μ, CV aR ) 

⇒ ( μ′ , CV a R 

′ ) / ∈ S} (24)

In Definition 2.2 and 2.3 , μ and CVaR are expected return

mean) and risk measure of a point in disposal region. Simi-

arly, μ′ and CVaR ′ are expected return (mean) and risk measure

f an optional point in Mean-CVaR space. As we know, weakly

fficient frontier is included in the strongly efficient frontier 

.5. Non-linear mean-variance RDM model and Mean-VaR model 

In the Last papers, we have proposed two models based on

DM model. Banihashemi et al. [3] have presented following

on-linear mean-variance RDM model on the negative data. Let 

 = ( R μo 
, R δ2 ) ε [ 0 , + ∞ ) × [ 0 , + ∞ ) (25)

e a vector that shows direction in which β is going to be

aximized. Non-linear mean-variance RDM model is defined as: 

: R 

2 → (0 , 1] , 

( y ) = sup { β; y + βgεS| β ε R + } . (26)

Based on vector g , definition and mentioned set of β , it is

bvious that the aim is to increase mean of return and to re-

uce variance of portfolio as risk of a portfolio in direction of

ector g simultaneously. One of them should care about direc-

ions in interpretation of model while directions affect non-linear

ean-variance RDM model. Vector of direction can be chosen as

ollowing: 

 = 

( (
max j 

(
μ j : j = 1 , . . . , n 

)
− μo 

)
= R μo ([

δ2 
o − min 

(
δ2 

j : j = 1 , . . . , n 

)])
= R δ2 

o 

)
. (27)

efinition 2.4. Consider a vector with specified direction g = ( R μo ,

 δ2 
o 
) and an under evaluation asset y, y = ( μo , δ2 

o ) , the non-linear

ean-variance RDM model is description as fallow: 

ax β

.t. E ( r ( λ) ) ≥ μo + βR μo 

v ar [ r ( λ) ] ≤ σ 2 
o − βσ 2 

o , 

n ∑ 

j=1 

λ j = 1 

β ≥ 0 , 0 ≤ λ j ≤ 1 j = 1 , . . . , n (28)

In 2016, regard to this subject that variance is not a good mea-

ure of risk, Banihashemi et al. replaced variance by value at risk

nd tried to decrease it in a mean-value at risk framework with

egative data by using mean-value at risk efficiency (MVE) model

nd multi objective mean-value at risk (MOVM) model. The MVE

odel can be obtained through solving following linear model: 
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ax β

.t. E 
[
r 
(
λ
)]

≥ μo + βR μo 
, 

V aR 

[
r 
(
λ
)]

≤ V a R o + βR Va R O , 

n ∑ 

i =1 

λ j = 1 , 

β ≥ 0 , 0 ≤ λ j ≤ 1 f or j ε { 1 , . . . , n } . (29) 

Also MOMV model can be obtained through solving following

inear model: 

ax 
1 

2 

( β1 + β2 ) 

.t. E 
[
r 
(
λ
)]

≥ μo + β1 R μo 
, 

V aR 

[
r 
(
λ
)]

≤ V a R o + β2 R Va R o , 

n ∑ 

j=1 

λ j = 1 , 

β1 , β2 ≥ 0 , 0 ≤ λ j ≤ 1 f or j ε { 1 , . . . , n } . (30) 

In the later section we have proposed Mean-CVaR and multi

bjective proportional change Mean-CVaR models. 

. Modeling and analyzing MVaR and MCVaR portfolio 

Based on the RDM model provided by Portela et al. [19] , we

ropose the Mean- CVaR model and the multi objective propor-

ional change Mean-CVaR model. After using our proposed models,

he efficient stock companies will select for making the portfolio.

et 

g = ( R μo 
R CVa R o ) ε [ 0 , + ∞ ) × [ 0 , + ∞ ) 

 = 

( (
max j 

(
μ j : j = 1 , . . . , n 

)
− μo 

)
= R μo ([

C V a R 

2 
o − min 

(
C V a R 

2 
j : j = 1 , . . . , n 

)])
= R CVa R 2 o 

)
(31) 

e a vector shows direction in which βis going to be maximized. 

efinition 3.1. Consider a vector with specified direction g = ( R μo ,

 CVa R o ) and an under evaluation asset = ( μo , CV a R o ) , the Mean-

VaR model is: 

ax β

.t. E ( r ( λ) ) ≥ μo + βR μo 

C V aR ( r ( λ) ) ≤ C V a R o + βR CVa R o 

n ∑ 

i =1 

λi = 1 

β ≥ 0 , 0 ≤ λi ≤ 1 i = 1 , . . . , n (32) 

The efficient projected point in the direction of vector g

s the point in Mean-CVaR space with coordinates deter-

ined by the right- hand sides of the inequality constraints

f above model evaluated at the optimal solution (i.e.,( μo + β∗R μo ,

V a R o + β∗R CVa R o ) . Mechanism of the Mean-CVaR model is just

ike the RDM model. When amount of β for under evaluation asset

quals to zero, it will be understood that this asset is efficient and

ean-CVaR point is part of the weakly efficient frontier. Other-

ise, as can be seen from the right-hand-sides of the inequality

onstraints of the above model, the optimal β indicates a change

n mean of return and risk measure CVaR that results in a projec-

ion of the evaluated Mean-CVaR point onto the weakly efficient

rontier. In the other words, 1 − β is amount of the efficiency.

he Mean-CVaR model seeks simultaneously to improve mean of

eturn and to reduce risk in the direction of the vector g. The use

f this model guarantees that a projected Mean-CVaR point is part

f the weakly efficient subset. To ensure that the projection of
he Mean-CVaR point is part of the strongly efficient subset, one

hould change proportional in all dimension. Therefore, we should

ntroduce another model that projects the point proportionally. 

efinition 3.2. Consider a vector with specified direction g = ( R μo ,

 CVa R o ) and an under evaluation asset DM U o = ( μo , CV a R o ) , by us-

ng multi objective function for the Mean-CVaR model, the model

ill be: 

ax ( β1 , β2 ) 

.t. E ( r ( λ) ) ≥ μo + β1 R μo 

C V aR ( r ( λ) ) ≤ C V a R o + β2 R CVa R o 

n ∑ 

i =1 

λi = 1 

β1 , β2 ≥ 0 , 0 ≤ λi ≤ 1 i = 1 , . . . , n (33) 

Multi objective proportional change functions are more flexible

han single objective functions in determination of optimal direc-

ions. Multi objective functions try to maximize the average of

bjects (because of having more than one parameter to maximize).

f the multi objective proportional change model equals zero, then

he Mean-CVaR point is part of the strongly efficient frontier. If it

s nonzero, then the optimal β i indicate the proportional change

er expected return, CVaR that guaranties a projection of the

valuated Mean-CVaR point onto the strongly efficient frontier.

ulti objective functions in here try to maximize β in directions

f mean and risk measure separately. Mechanism of the multi

bjective proportional change Mean-CVaR model is just like the

ean-CVaR model. When amount of β for the under evaluation

sset equals to zero, means that the under evaluation asset is

fficient. In the other words, 1 − β is amount of the efficiency.

ut there is a fundamental difference between these models; the

nder evaluation assets which are efficient in the Mean-CVaR

odel locate on the weakly efficient frontier but the under evalu-

tion assets which are efficient in the multi objective proportional

hange Mean-CVaR model locate on the strongly efficient frontier.

e want to compare different results of these models by using

ifferent risk measures. The risk measures are VaR and CVaR.

ection 4 includes the practical work and comparing the results. 

. Application in Iranian stock companies 

.1. Data collection 

The dataset was randomly collected from the stock’s price of

he 15 Iranian stock companies, from 25/04/2015 till 25/04/2016.

lso missing data over holidays estimated through interpolation.

he dataset was obtained from http://www.irvex.ir/index . 

All of the stock companies are shown by company symbol in

able 1 . 

The price volatility of the stock companies is shown in Fig. 1 . 

.2. Constructing the portfolio and calculating the efficiency 

In this section a comparison study is conducted to compare

odels introduced in previous section and Mean-VaR model and

ulti objective mean-VaR model that were introduced in previous

apers. To do this a sample of 15 corporations from Tehran stock is

andomly selected. Efficiency of each asset is going to be evaluated

nd methods of computing efficiencies compared. The software

atlab was used to calculate value at risk and conditional value

t risk stock companies. In these Table 2 reveals input and output

hat include amounts of expected return, value at risk which has

alculated by historical simulation and Monte Carlo simulation

ethods, or conditional value at risk as risk measures for the

tock companies. 

http://www.irvex.ir/index
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Table 1 

Symbol of the stock companies that were used. 

Company symbol Company symbol Company symbol Company symbol Company symbol 

CONT1 NAFT1 TRIR1 RENA1 PSIR1 

DJBR1 SHND1 TRNS1 GHAT1 KRTI1 

DSIN1 KHAZ1 AZAB1 IPAR1 PASH1 

Fig. 1. The price volatility of the stock companies. 

Table 2 

Input and output consist of expected return and value at risk or conditional value at risk as risk measures. 

Number Stock Expected Value at risk historical simulation Value at risk Monte Carlo simulation Conditional value at risk (CVaR) 

of asset companies return %90 %95 %95 %90 %95 %99 %90 %95 %99 

1 AZAB1 0 .0026 0 .0315 0 .0392 0 .0469 0 .0285 0 .0352 0 .0374 0 .0392 0 .0430 0 .0476 

2 CONT1 0 .0085 0 .0225 0 .0364 0 .0513 0 .0195 0 .0310 0 .0348 0 .0361 0 .0452 0 .0513 

3 DJBR1 0 .0013 0 .0074 0 .0137 0 .0315 0 .0088 0 .0222 0 .0267 0 .0231 0 .0348 0 .0901 

4 DSIN1 0 .0023 0 .0046 0 .0080 0 .0500 0 .0066 0 .0217 0 .0267 0 .0195 0 .0328 0 .0941 

5 IPAR1 0 .0019 0 .0101 0 .0197 0 .0470 0 .0115 0 .0233 0 .0273 0 .0265 0 .0396 0 .0681 

6 KHAZ1 0 .0017 0 .0385 0 .0469 0 .0503 0 .0321 0 .0418 0 .0451 0 .0471 0 .0516 0 .0653 

7 KRTI1 −0 .0 0 03 0 .0303 0 .0442 0 .1302 0 .0299 0 .0557 0 .0643 0 .0586 0 .0802 0 .1945 

8 NAFT1 −0 .0 0 06 0 .0364 0 .0453 0 .0512 0 .0321 0 .0402 0 .0429 0 .0455 0 .0499 0 .0574 

9 PASH1 0 .0 0 09 0 .0040 0 .0077 0 .0243 0 .0046 0 .0135 0 .0165 0 .0150 0 .0245 0 .0749 

10 RENA1 0 .0030 0 .0339 0 .0447 0 .0497 0 .0320 0 .0392 0 .0416 0 .0433 0 .0471 0 .0506 

11 SHND1 −0 .0029 0 .0304 0 .0393 0 .0734 0 .0296 0 .0723 0 .0866 0 .0755 0 .1163 0 .3914 

12 TRIR1 −0 .0035 0 .0220 0 .0397 0 .0570 0 .0260 0 .0686 0 .0828 0 .0680 0 .1062 0 .3497 

13 TRNS1 0 .0027 0 .0216 0 .0343 0 .0466 0 .0212 0 .0302 0 .0332 0 .0343 0 .0422 0 .0476 

14 PSIR1 0 .0011 0 .0322 0 .0397 0 .0499 0 .0300 0 .0442 0 .0489 0 .0481 0 .599 0 .1227 

15 GHAT1 −0 .0023 0 .0353 0 .0456 0 .1074 0 .0326 0 .0683 0 .0802 0 .0717 0 .1021 0 .3059 
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The return volatility of the stock companies is shown in Fig. 2 . 

As mentioned before, we have used the Mean-VaR and

Mean-CVaR models and the Multi objective proportional change

Mean-VaR and multi objective proportional change Mean-CVaR

models to calculate the efficiency of the stock companies. The soft-

ware GAMS was used to measure the relative efficiency of selected

stock companies. In these models β shows amount of inefficiency.

Therefore, when amount of β for the stock company equal to zero,

means that the stock company is efficient. Now based on values at

risk in Table 2 , and using Mean-VaR model, efficiency of each asset

is calculated. Table 3 reveals amount of inefficiency of the stock

companies by using Mean-VaR and Mean-CVaR models. Based on

data in Table 3 , assets 2,11,15 in all levels of historical and Monet

Carlo simulation in VaR and all levels of CVaR are efficient. How-
ver, asset 13 in highest level of CVaR is efficient. For all assets

t can be interpreted, as the confidence level of risk increases,

ssets get less amount of efficiency and amount of efficiencies are

ccurate. Same data is used and efficiency of assets is calculated

y using multi objective proportional change models. Results

re provided in Table 4 . Table 4 reports values of inefficiency

 β). Interpretations are same as before. Based on multi objective

roportional change models assets 2,11,15 are efficient. Also same

s single objective models in higher levels of confidence, assets get

ess amount of efficiency and amount of efficiencies are accurate.

lso by comparing results of Tables 3 and 4 , it can be concluded

hat results of multi objective proportional change models gener-

lly greater than results of single objective models. It is a general

haracteristic of multi objective proportional change models.
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Fig. 2. The Return volatility of the stock companies. 

Table 3 

Inefficiency of the stock companies by using the Mean-VaR and Mean-CVaR models. 

Number of asset Stock companies β with VaR historical simulation β with VaR Monte Carlo simulation β with CVaR 

90% 95% 99% 90% 95% 99% 90% 95% 99% 

1 AZAB1 0 .45 0 .36 0 .19 0 .46 0 .35 0 .31 0 .34 0 .20 0 .00 

2 CONT1 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 

3 DJBR1 0 .10 0 .13 0 .00 0 .10 0 .11 0 .15 0 .11 0 .11 0 .32 

4 DSIN1 0 .00 0 .00 0 .26 0 .00 0 .09 0 .14 0 .00 0 .04 0 .28 

5 IPAR1 0 .12 0 .16 0 .22 0 .12 0 .12 0 .14 0 .12 0 .16 0 .23 

6 KHAZ1 0 .47 0 .40 0 .23 0 .45 0 .36 0 .35 0 .36 0 .32 0 .34 

7 KRTI1 0 .36 0 .31 0 .55 0 .44 0 .51 0 .52 0 .49 0 .52 0 .54 

8 NAFT1 0 .48 0 .41 0 .27 0 .47 0 .39 0 .38 0 .38 0 .35 0 .38 

9 PASH1 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .18 

10 RENA1 0 .39 0 .28 0 .06 0 .45 0 .34 0 .30 0 .29 0 .16 0 .08 

11 SHND1 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 

12 TRIR1 0 .05 0 .17 0 .09 0 .20 0 .35 0 .36 0 .30 0 .35 0 .39 

13 TRNS1 0 .29 0 .30 0 .20 0 .30 0 .23 0 .22 0 .23 0 .22 0 .00 

14 PSIR1 0 .40 0 .31 0 .20 0 .41 0 .36 0 .35 0 .35 0 .52 0 .39 

15 GHAT1 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 

Table 4 

Inefficiency of the stock companies by using the multi objective proportional change models. 

Number of asset Stock companies β with VaR historical simulation β with VaR Monte Carlo simulation β with CVaR 

90 % 95 % 99 % 90 % 95 % 99 % 90 % 95 % 99 % 

1 AZAB1 0 .52 0 .40 0 .26 0 .55 0 .46 0 .42 0 .42 0 .30 0 .06 

2 CONT1 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 

3 DJBR1 0 .10 0 .14 0 .00 0 .10 0 .12 0 .15 0 .12 0 .12 0 .56 

4 DSIN1 0 .00 0 .00 0 .38 0 .00 0 .10 0 .15 0 .00 0 .06 0 .54 

5 IPAR1 0 .12 0 .18 0 .31 0 .15 0 .12 0 .14 0 .16 0 .22 0 .51 

6 KHAZ1 0 .55 0 .49 0 .33 0 .54 0 .52 0 .51 0 .51 0 .47 0 .51 

7 KRTI1 0 .43 0 .41 0 .57 0 .48 0 .52 0 .53 0 .52 0 .53 0 .54 

8 NAFT1 0 .56 0 .48 0 .36 0 .57 0 .53 0 .51 0 .51 0 .45 0 .55 

9 PASH1 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .53 

10 RENA1 0 .43 0 .37 0 .19 0 .46 0 .38 0 .36 0 .35 0 .27 0 .11 

11 SHND1 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 

12 TRIR1 0 .20 0 .27 0 .25 0 .30 0 .37 0 .37 0 .35 0 .37 0 .40 

13 TRNS1 0 .35 0 .34 0 .27 0 .43 0 .35 0 .33 0 .33 0 .29 0 .00 

14 PSIR1 0 .50 0 .39 0 .31 0 .51 0 .50 0 .50 0 .49 0 .55 0 .52 

15 GHAT1 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 

T  

a

 

b

 

V  

c  

fi

 

 

 

his means that multi objective proportional change models are

ccurate because proportional change in input and output. 

Table 4 reveals amount of inefficiency of the stock companies

y using multi objective proportional change models. 

Here we have used the same inputs and outputs for the Mean-

aR and Mean-CVaR models and the multi objective proportional

hange models. By comparing the results of Tables 3 and 4 , we

gure out: 
a. In calculating VaR, the results of Monte Carlo simula-

tion method are more accurate than historical simulation

method. 

b. In calculating VaR and CVaR, the higher confidence levels are

more accurate than lower levels. 

c. CVaR is the most accurate risk measure. 
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Fig. 3. Mean-CVaR frontiers by different confidence levels. 
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d. We can derive that results of the multi objective proportional

change models are generally better and more accurate than

results of the Mean-Risk models. 

Since the CVaR is the more accurate than VaR, we compare

Mean-CVaR frontiers with different confidence levels. 

Frontiers are shown in Fig. 3 in three different confidence. In

this figure frontiers are made using conditional value at risk and

expected return. Fig. 3 illustrates as the risk’s confidence level,

increases the whole efficient frontier moves rightward. Therefore,

as the confidence level increases, investors get surer about the

amount of risk that may face on a predefined level of return.

Also, the curve of above segment of efficient frontiers increase by

confidence levels increasing. In higher levels of confidence levels,

risk of an under evaluation asset is calculated more preciously.

In fact, by comparing efficient frontiers in Fig. 3 , we find out the

higher confidence levels are more accurate than lower levels. This

means that, in Fig. 3 , 99% confidence level is better than 90% and

95% confidence levels. 

5. Conclusion 

In this paper, we have compared two risk measures such as

value at risk (historical simulation and Monte Carlo simulation)

and conditional value at risk to find the best one for portfolio

optimization. By comparing the results of Tables 3 and 4 , we figure

out CVaR is the more accurate than VaR. As you see in the figure

and the results of tables, we find out the higher confidence levels

are more accurate than lower levels. For calculating the efficiency

of the stock companies, we must use DEA models. So we used the

Mean-Risk model and the multi objective mean-risk proportional

change model by different risk measures consist of VaR and CVaR

to calculate the efficiency of the stock companies. Multi objective

proportional change functions are more accurate, so the general

results of the multi objective proportional change Mean-Risk

model are generally better than results of the Mean-Risk model.

Finally, the method was applied to the Iran’s market and the
esults were shown in the tables and figure. As it is said, CVaR

s more accurate than other risk measures such as, variance, semi

ariance and VaR because these risk measures except variance are

ownside risk measures. In this paper, one of Data Envelopment

nalysis models named RDM model is considered. In other papers,

ther models are presented. 

For future studies, other risk measure can be compared to find

he best one. 
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