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a b s t r a c t 

Different multi-criteria decision-making (MCDM) techniques require different levels of computational in- 

tensity and may produce different outputs, so selecting an appropriate technique largely determines the 

quality of the recommended decision and the effort required to obtain that decision. In most real envi- 

ronments, criteria and their constraints are not deterministic and cannot be specified precisely; therefore, 

those criteria are uncertain or fuzzy. To facilitate the selection of an appropriate MCDM method under a 

fuzzy environment, this study investigates and statistically compares the performances of ten commonly 

used MCDM techniques: simple additive weights (SAW), weighted product method (WPM), compromise 

programming (CP), technique for order preference by similarity to ideal solution (TOPSIS), four types of 

analytical hierarchy process (AHP), VIKOR (in Serbian: VIseKriterijumska Optimizacija I Kompromisno Re- 

senje), and ELECTRE (in French: ELimination Et Choix Traduisant la REalité). These techniques’ perfor- 

mances were compared using fuzzy criteria and constraints, matching the conditions usually found in 

real applications. To conduct the comparisons, the 10 multi-criteria decision ranking methods were ap- 

plied to 1250 simulated sets of decision matrices with fuzzy triangular values, and 12,500 sets of ranks 

were analyzed to compare the ranking methods. SAW and TOPSIS had statistically similar performances. 

ELECTRE was not preferable in providing full, sorted ranks among the alternatives. VIKOR considering its 

ranking process, for specific conditions, assigns identical ranks for several alternatives; when full, sorted 

ranks are required, VIKOR is unfavorable, although it is a powerful technique in introducing the closest 

alternative to the ideal condition. Types 1 and 3 of AHP and types 2 and 4 of AHP had close perfor- 

mances. Notably, no ranking method was significantly sensitive to uncertainty levels when uncertainty 

changed symmetrically. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

Different multi-criteria decision-making (MCDM) techniques re-

quire different levels of effort and produce different outputs so

the choice of which MCDM technique to use strongly influences

the quality of the recommended decision and the amount of effort

required to obtain that decision. While different decision-ranking

methods may rank specific alternatives in different orders, and dif-

ferent decision-ranking methods have different levels of computa-
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2214-7160/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article u
ional intensity, when a simple and a complicated decision-ranking

ethod produce similar sorts of ranks, using the simplest method

an save computation time and effort without sacrificing quality. 

This paper reviews the literature on MCDM techniques that

ave been used in diverse engineering projects, and then it evalu-

tes and compares the performances of those techniques in terms

f similarities and dissimilarities. Through theoretical, program-

ing, and simulation work, this study develops the extensions of

ach individual selected MCDM technique, and it analytically in-

estigates and statistically compares the performances of ten com-

only used MCDM techniques. Considering that, in most real en-

ironments, criteria and their constraints are not deterministic and

annot be specified precisely, the MCDM techniques are evaluated
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nder a fuzzy environment, with criteria and constraints repre-

ented as uncertain or fuzzy values. 

The detailed objectives of this paper include an analytical eval-

ation of the different decision ranking methods and a statisti-

al evaluation of the different ranking methods applied to deci-

ion matrices with fuzzy values. Overall, we statistically evaluated:

) the number of alternatives, 2) the number of criteria, 3) the

ractice of selecting criteria weights from different distributions,

) fuzziness level, and 5) the number of replications. These statis-

ical evaluations allowed us to see how these five criteria affect the

orrelation among the final sorting of ranks when those ranks are

btained through different ranking methods applied on the same

ecision matrices. The developed decision matrices include trian-

ular fuzzy numbers with both random left and right spreads and

 levels of biased, equal, left, and right spreads. For each category,

0 sets of decision matrices were simulated. In order to investigate

he role played by the size of the decision matrices (i.e., the num-

er of alternatives and the number of criteria), 5 different decision

atrices of D3,3 (3 alternatives, 3 criteria), D8,4 (8 alternatives, 4

riteria), D8.8 (8 alternatives, 8 criteria), D15,8 (15 alternatives, 8

riteria), and D15,15 (15 alternatives, 15 criteria) were defined. For

ach individual decision matrix, 300 sets of matrices with fuzzy

alues were produced (simulated) by MATLAB and designed in the

orm of that decision matrix (50 sets for random left and right

preads and 250 sets for 5 levels of biased symmetrical spreads).

n order to show the extension of each individual decision-making

ethod, a decision matrix with 3 alternatives and 3 criteria was

anked through all 10 decision ranking methods. The 10 selected

ecision ranking methods were applied on each decision matrix,

nd the alternatives of each decision matrix were ranked. Overall,

e statistically evaluated 300 different sets of data designed for 5

ifferent decision sizes and 10 different ranking methods. In statis-

ical analysis, in order to analyze the effect of increasing the un-

ertainty level (equal increases in the left and right spread), four

evels of uncertainty were selected for analysis; therefore, from

5,0 0 0 sets of produced ranks, 12,500 ranks were analyzed. 

In order to show the correlation among the produced, sorted

anks, the final, sorted ranks obtained from different methods were

tatistically analyzed by performing Kendall’s tau-b correlation test

nd Spearman’s rho test using SPSS software. The results from this

tudy can guide the selection of optimal decision-making processes

nder fuzzy environments and offer insight into detailed applica-

ions of decision-making techniques and their use in engineering

rojects. 

This paper does not claim that any method is better than

ther methods across all possible circumstances, but rather it em-

hasizes the importance of investigating different decision-making

echniques to rank the decisions of each method and the impor-

ance of finding the most appropriate method for ranking the de-

isions in consideration of the decision-making conditions. 

Previously, not much work has been conducted to evaluate

nd compare the performances of MCDM methods, and most ex-

sting work has been conducted under deterministic conditions

ather than the uncertain, or fuzzy, conditions that are more com-

only found in real applications. In the existing literature, Ce-

ik et al. [1] conducted a comprehensive review of MCDM tech-

iques according interval type-2 fuzzy sets, reviewing 82 differ-

nt papers developed on the basis of interval type-2 fuzzy sets

IT2FSs). They categorized the applications of MCDM techniques

n the fields of transportation and logistics, technology manage-

ent, risk management, manufacturing, investment management,

uman resources management, healthcare, environment, energy,

nd education. Another of the previous studies, conducted by

anakis et al. [2] , evaluated eight popular MCDM methods: ELim-

nation Et Choix Traduisant la REalité (ELECTRE), technique for or-

er preference by similarity to ideal solution (TOPSIS), simple ad-
itive weights (SAW), weighted product method (WPM), and four

ypes of the analytical hierarchy process (AHP) – original, geo-

etric scale, right eigenvector, and mean transformation solution

3] . Their work found that ELECTRE and VIKOR produced differ-

nt rankings than the other selected MCDM methods; additionally,

LECTRE and VIKOR did not produce global rankings of the alter-

atives. For design parameters in the simulation of the decision-

aking matrix, their investigation considered the number of crite-

ia, the number of alternatives, population distribution for select-

ng the weight of criteria, and number of replications. These re-

earchers also statistically investigated the ranking effects of dif-

erent methods for weighting decision criteria: 1) equal weights

or all decision criteria, 2) unbiased distribution (i.e., normal dis-

ribution) of weights, and 3) a biased weight distribution (e.g., a

-shaped distribution). Several other studies in which researchers

nvestigate specific MCDM techniques have also been conducted.

ul et al. [4] developed a literature review on VIKOR with its fuzzy

xtensions and applications, discussing extensions of the VIKOR

ethod under a fuzzy environment. In total, they evaluated about

43 papers that utilized the VIKOR method in 13 different appli-

ation areas. Their study showed that the major applications of

IKOR have been in the fields of mechanical engineering, manufac-

uring, and engineering design. Furthermore, Mardani et al. [5] de-

eloped a review study on the methodologies and applications of

IKOR method. They reviewed the studies that utilized VIKOR as

 decision-making tool, reviewing 176 papers published from 2004

o 2015. Researchers from 15 different fields have utilized VIKOR,

nd the fields that have utilized VIKOR most have been operation

anagement and human resource management. 

Behzadian et al. [6] developed a literature review on TOPSIS ap-

lications. They studied 266 papers that applied TOPSIS to rank the

lternatives. In another study, Behzadian et al. [7] developed a re-

iew on the methodologies and applications of a decision-making

echnique entitled “Preference Ranking Organization METHod for

nrichment of Evaluations (PROMETHEE)”. They reviewed and eval-

ated 217 papers and categorized their applications in different

elds such as environment management, water resource man-

gement and hydrology, energy management, and several other

ecision-making areas. 

A review by Behzadian et al. [6] categorized the applications

f TOPSIS in multiple areas: logistics and supply chain manage-

ent, manufacturing engineering, business management, health

are and environment management, energy and resources manage-

ent, chemical engineering management, water resources project,

nd several other decision-making fields. In addition, Zavadskas et

l. [8] developed a review study on different applications of TOP-

IS in ranking decisions in complicated decision-making projects.

hey reviewed 105 papers, published from 20 0 0 to 2015, that uti-

ized TOPSIS for ranking decisions. Their review study indicates

hat TOPSIS has compatibility potential with different existing con-

itions on decision-making environments. 

Chen [9] extended the application of the ELECTRE method un-

er a fuzzy environment for multi-criteria group decision-making.

n addition, Govindan and Jepsen [10] developed a comprehen-

ive review study on methodologies and different applications of

LECTRE. Govindan and Jepsen reviewed 686 papers, from which

44 papers considered the applications of ELECTRE in 13 major

reas and several sub-areas. Their review indicates that, although

LECTRE type I is a 40-year-old method, it is still used by several

ecision-makers in different fields; still, ELECTRE type III has been

he most popular method of the ELECTRE types. Overall, different

ypes of ELECTRE have been utilized for decision-making in the

elds of financial management, risk-related problems, energy man-

gement, and environmental and natural resources management. 

Mardani et al. [11] developed a review study on MCDM tech-

iques and their applications, based on works done from 20 0 0 to
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2014. They reviewed 393 papers, categorizing the applications of

those MCDM techniques in 15 different fields. 

Chen and Hwang [12] and Carlsson and Fuller [13] investi-

gated several MCDM methods under fuzzy environments. Men-

doza reviewed utilized MCDM methods in natural resources [14] .

Zarghami and Szidarovszky [3] studied the application of MCDM

techniques in environmental and water resource projects. Sabzi

and King [15] utilized MCDM methods to find the optimal so-

lution in a flood control system for a case study in Diez La-

gos pond in southern New Mexico, assuming deterministic condi-

tions. They ranked several flood controlling solutions (decisions)

designed through one decision matrix. In this study, several of

those techniques are formulated under fuzzy environment with tri-

angular fuzzy values. Triantaphyllou and Lin [16] evaluated 5 dif-

ferent MCDM methods and concluded that SAW would be the sim-

plest method to apply, but stated that fuzzy TOPSIS and fuzzy AHP

would be more able to satisfy human appraisal. 

Zavadskas and Turskis [17] developed a review study on differ-

ent applications of the MCDM techniques, mostly under determin-

istic conditions in economics. They emphasized the importance of

selecting optimal decisions in economics, since decisions are tied

to profit or loss. Finally, they concluded that, although no one can

say which model is the best model across all circumstances, wisely

selecting the decision-making method and its solution is part of an

optimal decision-making process. 

Liou and Tzeng [18] commented on the paper “Multiple crite-

ria decision making (MCDM) methods in economics: an overview,

by Zavadskas and Turskis (2011)”. They considered the actual ex-

isting conditions in decision-making environments, in which some

criteria may have different level of dependencies, whereas, in some

of the traditional decision-making models, those criteria were as-

sumed as independent variables. 

The work of Zanakis et al. [2] on MCDM methods can be

expanded by incorporating fuzzy values: these researchers used

deterministic conditions for their decision matrix, but generally

the decision-making environment is not deterministic, and the

boundaries among the criteria values and selected weights are not

sharp, but rather fuzzy. Therefore, in this paper, we developed the

decision-making matrix under a fuzzy environment; additionally,

since no previous study has performed a full pairwise comparison

of the MCDM methods, this study features a full pairwise compar-

ison of decision making methods in a fuzzy environment. In addi-

tion, in this study, the correlation analysis was performed through

statistical tests to show how these methods provide similar or dis-

similar sort of ranks for decision alternatives when they are ap-

plied to the same decision matrices. 

Mardani et al. [19] developed a review study on fuzzy MCDM

techniques and their applications. They reviewed more than 400

papers in the fields of engineering, business and management,

science and technology, showing that, in the last two decades,

AHP has been the most popular decision-making technique in

those fields. In addition, engineering-based fields utilized the fuzzy

MCDM techniques more than the other three fields did in the last

two decades. 

In this paper, we selected 10 common ranking methods – SAW,

WPM, CP, TOPSIS, four types of AHP, ELECTRE, and VIKOR – and

statistically and analytically investigated their similarities, differ-

ences, and performances in producing final, sorted ranks. The de-

tailed objectives of our study include an analytical evaluation of

the different ranking methods and a statistical evaluation of the

different ranking methods applied to decision matrices with fuzzy

values. In the course of the research, we statistically evaluated:

1) the number of alternatives, 2) the number of criteria, 3) the

practice of selecting criteria weights from different distributions,

4) fuzziness level, and 5) the number of replications. In the final

step, in order to show the correlation among the produced, sorted
anks, the final, sorted ranks obtained from different methods were

tatistically analyzed by performing Kendall’s tau-b correlation test

nd Spearman’s rho test using SPSS software. 

. Materials and methods 

The developed decision matrices include triangular fuzzy num-

ers with both random left and right spreads, and 5 levels of bi-

sed, equal, left and right spreads. For each category, 50 sets of

ecision matrices were simulated. In order to investigate the role

layed by the size of decision matrices (i.e., the number of alter-

atives and the number of criteria), 5 different decision matrices

f D 3,3 (3 alternatives, 3 criteria), D 8,4 (8 alternatives, 4 criteria),

 8.8 (8 alternatives, 8 criteria), D 15,8 (15 alternatives, 8 criteria),

nd D 15,15 (15 alternatives, 15 criteria) were defined. For each in-

ividual decision matrix, 300 sets of matrices with fuzzy values

ere produced by MATLAB and designed in the form of that de-

ision matrix (50 sets for random left and right spreads, and 250

ets for 5 levels of biased symmetrical spreads). In order to show

he extension of each individual decision-making method, a deci-

ion matrix with 3 alternatives and 3 criteria was ranked through

ll 10 decision ranking methods. The 10 popular selected ranking

ethods were applied on each decision matrix, and the alterna-

ives of each decision matrix were ranked. Overall, we statistically

valuated 300 different sets of data designed for 5 different deci-

ion sizes and 10 different ranking methods. In statistical analysis,

n order to analyze the effect of increasing the uncertainty level

equal increases in the left and right spread), four levels of uncer-

ainty were selected for analyzing; therefore, from 15,0 0 0 sets of

roduced ranks, 12,500 ranks were analyzed. Since, ELECTRE was

ot preferable in providing full, sorted ranks among the alterna-

ives, in comparison of the decision ranking methods, the ELECTRE

as not exploited. 

Considering the heavy amount of calculation and analysis for

eveloping the final ranks under each ranking method, a specific

acro was written in Microsoft Excel. As numerical results, 15,0 0 0

nal, sorted ranks were obtained by running 50 macros applied on

he 300 sets of decision matrices. In the final step, in order to show

he correlation among the produced, sorted ranks, the final, sorted

anks obtained from different methods were statistically analyzed

y performing Kendall’s tau-b correlation test and Spearman’s rho

est using SPSS software. The numerical result is discussed in the

ections 3 and 4 . 

The fuzzy environment involves the use of fuzzy sets, which

ave been defined by Zadeh [20] in 1965 and extended by Bell-

an and Zadeh [21] as a class of objects in which there is no

harp boundary between the objects that belong to the class and

he objectives that do not belong to the same class [21] . When un-

ertainty is involved in presenting the value of x in the set A , the

et will be fuzzy, and any statement regarding a number belong-

ng to the set will have a degree of truth which can be defined

y a membership function. Generally, a specific fuzzy set A in x is

efined as a set of pairs as shown in Eq. (1) : 

 = { ( x, μA ( x ) ) } , X = { x } (1)

here μA ( x ) is the membership degree of x in A, in which, for any

 , there is an associated value between 0 and 1 which represents

he degree of membership of x in A . 

Conceptually, membership degree is representative of the de-

ree to which any specific number x belongs to specific data set

 . The membership degrees range from 0 (completely not belong-

ng) to 1 (completely belonging) [21] . As long as uncertainty is in-

olved in most decision making processes, the decision-making en-

ironment will be fuzzy and the fuzzy optimization method can be

sed as a tool for finding the ideal and anti-ideal points in multi-

bjective problems. 
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Fig. 1. Schematic of a triangular fuzzy number ˜ A . 
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All quantitative criteria can be expressed as fuzzy numbers,

nd qualitative criteria values can be described by linguistic terms,

hich can be converted to the fuzzy numbers. 

.1. Triangular fuzzy numbers 

In this study, decision values were defined as triangular fuzzy

umbers. Typically, there are two forms for defining triangular

uzzy numbers ˜ A = ( m, α, β) and 

˜ A = ( l, m, u ) , where m is the

entral value of the triangle that has the highest membership de-

ree μ ˜ A 
(x ) = 1 , α and β are the extensions of the triangle to the

eft and right, respectively, and u and l represent the upper and

ower limits, respectively, for the fuzzy number m . 

Fig. 1 shows a triangular fuzzy number ˜ A = ( l, m, u ) . This fuzzy

umber is defined in Eq. (2) [22] . 

˜ A ( x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 , x ≤ l, 

x − l 

m − l 
, l < x ≤ m, 

u − x 

u − m 

, m < x ≤ u, 

0 , x > u. 

(2) 

.2. Algebraic operations of two triangular fuzzy numbers 

Algebraic operations for two triangular fuzzy numbers are con-

ucted as described below and have been widely used through

everal MCDM methods under fuzzy environment. Before introduc-

ng these operations, however, it should be established that a fuzzy

umber A is defined as a positive value if for all x < 0 , μ ˜ A 
(x ) = 0

12] . 

Addition and subtraction of two fuzzy numbers in the form of
˜ 
 = ( l, m, u ) and 

˜ B = ( a, b, c ) are defined as in Eqs. (3) and ( 4 ). 

˜ 
 ( + ) ̃  B = ( l + a, m + b, u + c ) (3) 

˜ 
 ( −) ̃  B = ( l − c, m − b, u − a ) (4) 

Addition and subtraction of two fuzzy numbers in the form of
˜ 
 = ( m, α, β) and 

˜ B = ( n, γ , δ) are defined as in Eqs. (5) and ( 6 ). 

˜ 
 ( + ) ̃  B = ( m + n, α + γ , β + δ) (5) 

˜ 
 ( −) ̃  B = ( m − n, α + δ, β + γ ) (6) 

Multiplication of two fuzzy numbers ˜ A = ( m, α, β) and 

˜ B =
( n, γ , δ) is defined as in Eqs. (7) –( 9 ). 

˜ 
 ( . ) ̃  B = ( mn, mγ + nα, mδ + nβ) where , ˜ A and 

˜ B > 0 (7) 

˜ 
 (. ) ̃  B = ( mn , nα − mδ, nβ − mγ ) where , ˜ A < 0 and 

˜ B > 0 (8)

˜ 
 (. ) ̃  B = ( mn, −nβ − mδ, −nα − nγ ) where , ˜ A < 0 and 

˜ B < 0 (9)

Multiplication of two fuzzy numbers in the form of ˜ A = ( l, m, u )

nd 

˜ B = ( a, b, c ) is defined as in Eqs. (10) –( 12 ). 

˜ 
 (. ) ̃  B = ( la, mb, uc ) where , ˜ A and 

˜ B > 0 (10)
˜ 
 (. ) ̃  B = ( lc , mb , ua ) where , ˜ A < 0 and 

˜ B > 0 (11)

˜ 
 ( . ) ̃  B = ( uc, mb, la ) where , ˜ A < 0 and 

˜ B < 0 (12)

here for scalar multiplication, for k > 0 , k ∈ R : k. ̃  A = ( kl, km, ku ) .

Division of two fuzzy numbers in the form of ˜ A = ( l, m, u ) and
˜ 
 = ( a, b, c ) is defined as in Eqs. (13) –( 15 ). 

˜ 
 ( : ) ̃  B = 

(
l 

c 
, 

m 

b 
, 

u 

a 

)
where , ˜ A and 

˜ B > 0 (13) 

˜ 
 (:) ̃  B = 

(
u 

c 
, 

m 

b 
, 

l 

a 

)
where , ˜ A < 0 and 

˜ B > 0 (14)

˜ 
 ( : ) ̃  B = 

(
u 

a 
, 

m 

b 
, 

l 

c 

)
where , ˜ A < 0 and 

˜ B < 0 (15)

Division of two fuzzy numbers in the form of ˜ A = ( m, α, β) and
˜ 
 = ( n, γ , δ) is defined as in Eqs. (16) –( 18 ) [23] . 

˜ 
 ( : ) ̃  B = 

(
m 

n 

, 
mδ + nα

n 

2 
, 

mγ + nβ

n 

2 

)
where , ˜ A and 

˜ B > 0 (16) 

˜ 
 (:) ̃  B = 

(
m 

n 

, 
nα − mγ

n 

2 
, 

nβ − mδ

n 

2 

)
where , ˜ A < 0 and 

˜ B > 0 

(17) 

˜ 
 ( : ) ̃  B = 

(
m 

n 

, 
−nβ − mγ

n 

2 
, 
−nα − mδ

n 

2 

)
where , ˜ A < 0 and 

˜ B < 0 

(18) 

The normalization procedure for benefit and cost criteria is de-

eloped as shown in Eqs. (19) and ( 20 ): 

˜ 
 i, j = 

(
l i j 

c j + 
, 

m i j 

c j + 
, 

u i j 

c j + 

)
(19) 

˜ 
 i, j = 

(
m j 

−

l i j 

, 
m j 

−

m i j 

, 
m j 

−

u i j 

)
(20) 

here c + 
j 

= ma x j ( u i j ) and m 

−
j 

= mi n j ( l i j ) 

Raising a fuzzy triangular number ˜ A = ( l, m, u ) to the power of

nother fuzzy number ˜ B = ( a, b, c ) is performed as shown in Eq.

21) . 

˜ 
 

˜ B = ( l a , m 

b , u 

c ) (21) 

Raising a fuzzy triangular number ˜ A = ( m, α, β) to the power

f p is performed as shown in Eq. (22) : 

˜ 
 

p = ( m 

p , pmα, pmβ) (22) 

.3. Constructing the decision matrix and developing decision ranking

echniques under a fuzzy environment 

In general, a decision matrix under a fuzzy environment with

riangular fuzzy numbers can be established as ˜ x i, j = ( l i j , m i j , u i j ) ,

n which ˜ x i, j is a representative value of alternative ˜ A i against cri-

eria C j , by assuming that each element in a fuzzy decision matrix

s a fuzzy triangular number [24] . However, different MCDMs uti-

ize different approaches for constructing the decision matrix and

eveloping the decision ranking techniques under a fuzzy environ-

ent. 

In the following sections, we extend MCDM methods that

amani–Sabzi and King [15] extended under deterministic condi-

ions: TOPSIS, VIKOR, SAW, AHP, ELECTRE and CP. Sections 2.3.1 to

.3.7.4 develop and define these methods under a fuzzy environ-

ent with fuzzy triangular values. 
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2.3.1. Simple additive weighting method under fuzzy environment 

SAW uses linear combinations of weighted criteria for each al-

ternative to represent and compare the overall score of the alter-

native, as shown in Eq. (23) : 

˜ F i = 

n ∑ 

i =1 

˜ r i j . ̃  w j (23)

where ˜ r i j is the fuzzy value of ith alternative against jth criteria in

the normalized fuzzy decision matrix for i = 1, 2,…, m and j = 1,

2,…, n , where ˜ w j is the fuzzy value of normalized weight for jth

criteria for j = 1, 2,…, n . 

In this method, we first acquire the cumulative evaluation for

each of the alternatives; then, the alternatives are ranked on the

basis of these values [3] . 

2.3.2. Weighted product method under fuzzy environment 

The rankings in the weighted product methods are calculated

as shown in Eq. (24) : 

˜ A 

∗
i = 

{ 

˜ A i 

n ∏ 

j=1 

˜ a 
˜ w j 

i j 

} 

(24)

where ˜ a i j are numerically in comparable scale and indicate the

amount of ith alternative against jth criteria in the decision ma-

trix for i = 1, 2,…, m and j = 1, 2,…, n , where ˜ w j is the normalized

weight of jth criteria for j = 1, 2,…, n . 

Alternatives are ranked based on the ˜ A 

∗
i 

values in which the

max ( ̃  A 

∗
i 
) is the best rank among all alternatives. 

2.3.3. Compromise programming under fuzzy environment 

On the basis of how distant alternatives are from the ideal

point, the compromise programming method ranks each of the

alternatives. Eq. (25) shows the approach for calculating this Eu-

clidean distance [25] : 

˜ D 

P 
i = 

( 

n ∑ 

j=1 

(
˜ w j . 

˜ a ∗
j 
− ˜ a i j 

˜ a ∗
j 
− ˜ a j∗

)p 
) 

( 1 p ) (25)

where ˜ a i j is the fuzzy value of ith alternative against jth criteria in

the fuzzy decision matrix for i = 1, 2,…, m and j = 1, 2,…, n , where

˜ w j is the fuzzy value of normalized weight of jth criteria for j = 1,

2,…, n . 

For i = 1, 2,…, m , ˜ a ∗
j 

and ˜ a j ∗ are defined for jth components of

optimum and anti-optimum values, P is variable from 1 to P = ∞ ,

and 

˜ D 

P 
i 

represents the relative distances of alternatives from the

ideal points under the fuzzy environment. Values for P show the

importance of a criteria’s deviation from their related ideal point.

The parameter of P can be considered as a fuzzy value of ˜ p in the

form of ˜ p = ( p, α = 0 , β = 0 ) or ˜ p = ( l = p, m = p, u = p ) . Concep-

tually, left and right spreads (uncertainties) of P in its fuzzy form

can be considered as zero. Therefore, Eq. (21) can be utilized in the

required raising a fuzzy triangular number to the power of another

fuzzy triangular number. 

Also, it should be noted that in compromise programming

method, in Eq. (25) , the normalized values of ˜ a i j can be used,

where in that condition ˜ a ∗
j 

and ˜ a j ∗ would be defined for jth com-

ponents of optimum and anti-optimum values in the normalized

decision matrix. The numerical results of this study showed that

although 

˜ D 

P 
i 

is affected, the final rank of alternatives does not

change. 

2.3.4. TOPSIS under fuzzy environment 

TOPSIS as a well-known, classic ranking method, which was de-

veloped by Hwang and Yoon [26] was selected as another decision-

making method and investigated under fuzzy environment. The
arametric steps of using TOPSIS to select the optimal alterna-

ive are as follows [27] : 1) show all potential decisions as differ-

nt combinations of criteria in a defined mathematical model; 2)

evelop an objective function that recognizes all impactful quanti-

ative and qualitative criteria; 3) quantify all impactful qualitative

riteria; 4) identify each potential alternative as a final action or

ecision; 5) on the basis of the number of alternatives (m) and

he number of criteria (n), define the decision matrix - typically,

he value for m corresponds to the number of rows in the decision

atrix (number of alternatives), and the value of n corresponds

o the number of criteria; 6) normalize the defined decision ma-

rix; 7) determine the optimal and anti-optimal solutions; 8) calcu-

ate the distance separating the optimal solution from each of the

lternatives; 9) calculate relative closeness of each alternative to

he optimal solution; and 10) rate and rank each potential alterna-

ive based on their relative closeness. TOPSIS has been widely used

hrough several MCDM projects under fuzzy environment [28] . 

For any decision making problem within TOPSIS, an objective

unction is defined. Within this objective function, each alterna-

ive, the ideal point, the anti-ideal point, and the distance between

he ideal and anti-ideal distance are derived. All alternatives are

anked and compared based on the defuzzified values of their rel-

tive closeness. 

.3.4.1. Normalizing the decision matrix with fuzzy values. Eqs. (26)–

 28 ) can be utilized to normalize the decision matrices. In this

tudy, we normalized all fuzzy values of benefit and cost criteria in

ifferent alternatives through Eq. (26) , which, conceptually, is the

ame approach that we applied for normalizing the fuzzy numbers.

y using Eq. (26) , each individual value in each column is normal-

zed by the maximum value of the same column. Sabzi and King

15] utilized the same Eqs. (26) to ( 28 ) for normalizing the deci-

ion matrices under deterministic values. 

˜ 
 i j = 

˜ x i j 

max 
(

˜ x i j 

) (26)

here all three elements of normalization value of max ( ̃  x i j ) are

onsidered equal to its upper level as demonstrated in the numer-

cal example in Eq. (57) . 

˜ 
 i j = 

˜ x i j √ ∑ m 

i =1 ˜ x 2 
i j 

(27)

˜ 
 i j = 

˜ x i j ∑ m 

i =1 ˜ x i j 

(28)

here, in ( 26 ), ( 27 ), and ( 28 ), i = 1, 2,…, m and j = 1, 2,…, n 

Considering the importance preference of the criteria, different

eights are proposed or defined by experts. Those fuzzy values

f weights are defined in the form of matrix of weights. Then,

he normalized matrix is multiplied in the matrix of weights to

alculate the weighted normalized decision matrix. The matrix of

eights and the weighted normalized matrix with fuzzy values are

ormed as follows: 

 

˜ W i, j ] = 

⎡ ⎢ ⎣ 

˜ W 1 , 1 . . . 0 0 

0 

˜ W 2 , 2 0 0 

. . . . . . . . . . . . 

0 . . . 0 

˜ W n,n 

⎤ ⎥ ⎦ 

˜ 
 i j = 

[
˜ r i, j 

]
�

[
˜ w j, j 

]
= 

⎡ ⎢ ⎣ 

˜ r 1 , 1 � ˜ w 1 ... ˜ r 1 ,n −1 � ˜ w n −1 ˜ r 1 ,n � ˜ w n 

˜ r 2 , 1 � ˜ w 1 ... ˜ r 2 ,n −1 � ˜ w n −1 ˜ r 2 ,n � ˜ w n 

... ... ... ... 

˜ r m, 1 � ˜ w 1 ... ˜ r m,n −1 � ˜ w n −1 ˜ r m,n � ˜ w n 

⎤ ⎥ ⎦ 

here i = 1, 2,…, m and j = 1, 2,…, n . 
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.3.4.2. Determining the ideal and anti-ideal fuzzy values. Ideal and

nti-ideal points can be obtained using Eqs. (29) and ( 30 ). Addi-

ionally, several researchers, for benefit criteria, defined the opti-

al fuzzy value equals to ˜ v + 
i, j 

= (1,1,1), and the anti-ideal fuzzy

alue is represented by ˜ v −
i, j 

= (0 , 0 , 0) . 

Ideal and anti-ideal fuzzy values are determined using Eqs.

29) and ( 30 ) as follows:. 

˜ 
 

+ = 

(
˜ ϑ 

+ 
1 , . . . 

˜ ϑ 

+ 
n 

)
= { max ˜ ϑ i j | ( i = 1 , 2 , . . . , n ) , j = 1 , 2 , . . . , n ) } 

(29) 

˜ 
 

− = 

(
˜ ϑ 

−
1 , . . . 

˜ ϑ 

−
n 

)
= { min 

˜ ϑ i j | ( i = 1 , 2 , . . . , n ) , j = 1 , 2 , . . . , n ) } 
(30) 

.3.4.3. Determining the ideal and anti-ideal distances. The total

easure of the distance between each alternative and the anti-

deal points is defined as shown in Eqs. (31) and ( 32 ) [27, 29–31] :

˜ 
 

+ 
i 

= 

√ 

n ∑ 

j=1 

d 
(

˜ ϑ i j , 
˜ ϑ 

+ 
i j 

)
where i = 1 , . . . , m. (31)

˜ 
 

−
i 

= 

√ 

n ∑ 

j=1 

d 
(

˜ ϑ i j , 
˜ ϑ 

−
i j 

)
where i = 1 , . . . , m. (32)

.3.4.4. Calculating “the relative closeness to the ideal solution” [12] .

he closeness coefficient for each alternative is calculated using Eq.

33) , which is utilized to rank each individual alternative. Relative

loseness indicates the relative distance of each alternative from

he anti-ideal point; therefore, the highest value of closeness coef-

cient stands for the most preferable solution that has the farthest

istance value from the anti-ideal point. Relative closeness is cal-

ulated as shown in Eq. (33) . 

˜ 
 

∗
i = 

˜ s −
i 

˜ s −
i 

+ 

˜ s + 
i 

f or i = 1 , . . . , m. (33)

In final step, alternatives are ranked based on the values of ˜ C ∗
i 

. 

.3.5. The analytic hierarchy process under fuzzy environment 

The analytic hierarchy process was developed by Thomas L.

aaty in the 1970s, and it has been widely used in decision-making

n various fields [32–34] . This method is developed based on the

oncept of relative importance: all defined alternatives are com-

ared against each other versus each individual criteria to find

heir relative preferences. In classic AHP, linguistic variables can be

sed to compare all criteria and alternatives. The linguistic vari-

bles are quantified using the scalar approach, and the general

teps of developing the full list of ranks using AHP is as follows: 

1. In order to compare the criteria and weights with each other,

all defined criteria and defined weights are simulated in the

form of a matrix n ×n where n is the number of the weights. For

example, the comparisonwise matrix of criteria 1 and weights

is obtained as shown in Equations (These two following equa-

tions can be called formulations.) 34 and 35. 

[
˜ C w 

]
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ W 1 

˜ W 1 

... 
˜ W 1 

˜ W n −1 

˜ W 1 

˜ W n 

˜ W 2 

˜ W 1 

... 
˜ W 2 

˜ W n −1 

˜ W 2 

˜ W n 

... ... ... ... 

˜ W n 

˜ W 1 

... 
˜ W n 

˜ W n −1 

˜ W n 

˜ W n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(34) 
[
˜ C { ̃ A 1 , ̃ A 2 ,..., ̃  A 1 m against ̃ C 1 } 

]
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ x 11 

˜ x 11 

... 
˜ x 11 

˜ x m −1 , 1 

˜ x 11 

˜ x m 1 

˜ x 21 

˜ x 11 

... 
˜ x 21 

˜ x m −1 , 1 

˜ x 21 

˜ x m 1 

... ... ... ... 

˜ x m 1 

˜ x 11 

... 
˜ x m 1 

˜ x m −1 , 1 

˜ x m 1 

˜ x m 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(35) 

here [ ̃  C w 

] is the comparisonwise matrix of weights in which ˜ w 1 ,

˜  2 ,…, ˜ w n are the defined weights of criteria 1 ( ̃  C 1 ), criteria 2

 ̃

 C 2 ),…,criteria n ( ̃  C n ), respectively. ˜ C { ̃ A 1 , ̃ A 2 , ... , ̃  A 1 m against ̃ C 1 } is the com-

arisonwise matrix of alternatives against criteria 1. 

Against each individual criteria, the values of the alternatives

re compared according to Eq. (35) . All pairwise comparison ma-

rices are reciprocal. 

2. The weight vector or importance vector in comparisonwise ma-

trices (For each criteria, a separate comparisonwise matrix is

formed.), which in exact condition represents the eigenvector

and can be estimated through four major methods, is calculated

as follows: 
• The sum of the values in first row is calculated and normal-

ized by the sum of values of all rows. The normalized value

of the first row indicates the comparative importance of the

first alternative compared to the other alternatives against

the associated criteria in the comparisonwise matrix. 
• Within matrix ˜ C , the values included in each column are

summed. Then their reciprocals (1 / (sum of the values of

each column)) are calculated. Next, resulting reciprocal val-

ues are normalized using (dividing) the sum of all recipro-

cals. The normalized values of reciprocals indicate the com-

parative importance of alternatives against the associated

criteria in the comparisonwise matrix. 
• The values of each column are normalized by the sum of the

values in the same column, then the average of each row is

calculated, which stands for the relative importance of alter-

natives against criteria 1. Average of first row stands for the

comparative importance of the first alternative compared to

the other alternatives against the associated criteria in the

comparisonwise matrix. 
• Multiplying all of the values in each row of matrix ˜ C and

then normalizing the nth roots of those values are normal-

ized by some of their sum (sum the nth roots of those val-

ues). The normalized values indicate the relative importance

of alternatives against the associated criteria in the compar-

isonwise matrix. 

Numerical example in Sections 2.5.5.1 –2.5.5.4 clarifies the four

HP prioritizing methods. 

In each of these four methods, the relative importance values,

hen summed, produce a value of 1. However, as compared to the

ther methods, the fourth method produces relative importance

alues that more closely align with the pairwise comparison ma-

rix’s eigenvalues. 

 ̃

 A × ˜ w ] = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ w 1 

˜ w 1 

... 
˜ w 1 

˜ w n −1 

˜ w 1 

˜ w n 

˜ w 2 

˜ w 1 

... 
˜ w 2 

˜ w n −1 

˜ w 2 

˜ w n 

... ... ... ... 

˜ w n 

˜ w 1 

... 
˜ w n 

˜ w n −1 

˜ w n 

˜ w n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ w 1 

˜ w 2 

... 

... 

... 

˜ w n −1 

˜ w n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= λmax 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ w 1 

˜ w 2 

... 

... 

... 

˜ w n −1 

˜ w n 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= λmax ˜ w (36) 

here λmax is comparison matrix C A ’s largest eigenvalue . To prior-

tize or weight the alternatives, eigenvector w is used [35] . 
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Table 1 

Values for random index [36] . 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0 0 0 .58 0 .9 1 .12 1 .24 1 .32 1 .41 1 .45 1 .49 1 .51 1 .48 1 .56 1 .57 1 .59 
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Within the comparison matrix, ˜ C w 

= ˜ a i j , ˜ a i j = 

˜ w i 
˜ w j 

for i , j = 1, 2,

…, n , and ˜ a ji = 1/ ˜ a i j , showing the reciprocal matrix status of com-

parison matrix A . Furthermore, if the condition in Eq. (37) is met,

comparison matrix A will be consistent [36] : 

˜ a jk = 

˜ a ik / ̃  a i j (37)

where i , j , and k = 1,…, n . 

2.3.5.1. Calculating the consistency index. The consistency index (CI)

is a measure of inconsistency for a pairwise comparison, and CI

can be used to determine the consistency ratio. CI is calculated as

shown in Eq. (38) : 

I = 

λmax − n 

n − 1 

(38)

where λmax is the largest eigenvalue of the comparisonwise matrix

of ˜ C A and n is the dimension of the comparisonwise matrix of ˜ A . 

On the basis of CI, the consistency ratio can be calculated as

shown in Eq. (39) : 

 R = 

C I 

RI 
(39)

where RI is a predefined random index that is selected from

Table 1 on the basis of the comparison matrix’s dimensions ( n ) . So

as long as CR < 0.10, there is an acceptable degree of inconsistency

for using the eigenvector as a priority weight [36] . 

2.3.5.2. Finding the weight vector for each pairwise comparison ma-

trix. As stated in Section 2.3.5.1 , normalized eigenvectors may

serve as priority weights for alternatives in a comparison matrix so

long as the consistency ratio is less than 0.10. Notably, the fourth

method in Section 2.3.5 gives values that are significantly near to

eigenvector values; therefore, the nth roots of the multiplicative

values in each row of the comparison matrix after normalization

indicate the priority weights of the considered alternatives in each

comparisonwise matrix of alternatives against each criteria. 

2.3.5.3. Final ranking of alternatives with fuzzy values. To obtain

the final ranking of alternatives, we utilize the linear combina-

tion of the products of the calculated weights of the criteria from

the weight vector and the related weight component of alterna-

tives against each individual criteria. The numerical example in

Section 2.5.5 demonstrate the ranking procedure for AHP. 

2.3.6. ELECTRE under fuzzy environment 

ELECTRE, which originally was developed by Roy [37] , devel-

ops alternatives’ pairwise dominance relationships through a pair-

wise comparison of the alternatives and by defining and using

concordance and discordance sets. The general steps of the ELEC-

TRE for decision making under fuzzy environment are detailed in

Sections 2.3.6.1 to 2.3.6.3 . Extension of the ELECTRE method have

been described through numerical examples in several studies un-

der both deterministic and fuzzy environment [38] . 

2.3.6.1. Normalizing the decision matrix and developing weighted nor-

malized decision matrices with fuzzy values. ELECTRE develops the

normalized and weighted normalized matrices through the same

method used in TOPSIS and discussed in Section 2.3.4 . 
.3.6.2. Developing the concordance and discordance sets considering

he fuzzy values. For any set of m alternatives, there are m × ( m −1)

airwise comparisons to be performed. In these comparisons,

wo subsets of concordance and discordance are recognized for

ach two alternatives k and l . In comparison of two fuzzy alter-

atives, ˜ A l j = ( ̃  x l1 , ̃  x l2 , . . . , ̃  x ln ) and A k j = ( ̃  x k 1 , ̃  x k 2 , . . . , ̃  x kn ) , concor-

ance and discordance sets are obtained as follows: 

Concordance and Discordance sets are defined respectively as:

 kl = { ̃ x k j ≥ ˜ x l j } , D kl = { ̃ x k j < ˜ x l j } where { j | j = 1, 2, …, n }, k and

 = 1, 2,…, m , where k � = l , and m is the number of alternatives. 

Conceptually and algebraically, the concordance set and the dis-

ordance set are complementary. 

Developing the concordance matrix with fuzzy values. Within the

oncordance matrix, each particular value represents the degree

f preference between two alternatives, Ãk and Ãl , that are being

ompared. The values of the concordance index can be calculated

s shown in Eq. (40) : 

 kl = 

∑ 

j∈ C kl 
˜ w j ∑ n 

j=1 ˜ w j 

(40)

here, for the normalized fuzzy triangular weights, the central

alue of 
∑ n 

j=1 ˜ w j equals to 1. A higher value indicates the more

referable choice. 

Developing the discordance matrix with fuzzy values. In the dis-

ordance matrix, each value indicates the comparative degree of

nferiority between two alternatives, ˜ A k and 

˜ A l , that are being com-

ared. These values in the discordance index are determined as

hown in Eq. (41) . 

 kl = 

ma x j∈ D kl 
( | ̃ v k j − ˜ v l j | ) 

ma x j∈ J ( | ̃ v k j − ˜ v l j | ) (41)

As detailed in Section 2.3.4.1 , each value of v lj and v kj represents

he number of lth and kth alternatives and jth criteria within the

eighted normalized decision matrix for i = 1, …, m, j = 1, …, n

nd k and l = 1, …, m . 

When comparing the alternatives Ãk and Ãl , a higher discor-

ance index value indicates that Ãk is less favorable compared to

l . 

Developing the concordance dominance matrix, (F = [ f kl ]) . As a

ecessary step in determining the concordance dominance matrix,

he concordance index values of the initial concordance matrix are

sed to produce a threshold value, as shown in Eq. (42) [39] : 

¯
 = 

( 

m ∑ 

k =1 

m ∑ 

c kl 

l=1 

) /
( m ( m − 1 ) ) (42)

here k � = l, f kl = 1 if c kl ≥ c̄ , and f kl = 0 if c kl < c̄ . 

Developing the discordance dominance matrix, (G = [ g kl ]). As

ith the development of the concordance dominance matrix, to

roduce the discordance dominance matrix, the discordance in-

ex values of the initial discordance matrix are used to produce

 threshold value, through the process shown in Eq. (43) : 

 ̄= 

( 

m ∑ 

k =1 

m ∑ 

l=1 

d kl 

) /
( m ( m − 1 ) ) (43)

here k � = l, f = 1 if d ≥ d̄ , and f = 0 if d < d̄ . 
kl kl kl kl 
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Developing the aggregate dominance matrix, (E = [e kl ]) . The in-

ersection of the concordance and discordance dominance matrices

roduces the aggregate dominance matrix, which is calculated as

hown in Eq. (44) . 

 kl = f kl . g kl (44) 

.3.6.3. Developing the final ranks of alternatives. If e kl =1, then, in

omparing ˜ A k and 

˜ A l , ˜ A k is preferable to ˜ A l . 

.3.7. VIKOR under fuzzy environment 

The VIKOR method makes use of the same basic approach uti-

ized in compromise programming ( Section 2.3.3 ), in addition, in-

roduces L p −metric , which conceptually is the same equation as Eq.

25) . The extension of the VIKOR method have been described

hrough numerical examples in several researches under both de-

erministic and fuzzy environment [40] . 

.3.7.1. Determining the ideal and anti-ideal values of cost and bene-

t criteria under fuzzy environment. Dukstein and Opricovic (1980)

ntroduced the parameter L p to represent the relative distance of

lternatives from the ideal points. Detailed process of ranking al-

ernatives in VIKOR method under the fuzzy environment are de-

cribed through Eqs. (45) to ( 50 ) [41] . 

The parameter of L p is defined in Eq. (45) as follows: 

 p,i = 

( 

n ∑ 

j=1 

( 

˜ w j . 

˜ f ∗
j 
− ˜ f i j 

˜ f ∗
j 
− ˜ f j−

) p ) ( 1 p ) 

(45) 

here ˜ w j is the normalized fuzzy value of weight of jth criteria

or j = 1,…, n . In Eqs. (45) to ( 49 ), and each individual ˜ f i j is the

uzzy value of the ith alternative against jth criteria in the deci-

ion matrix. Similar to TOPSIS, the ideal and anti-ideal fuzzy values

points), ˜ f ∗
j 

and 

˜ f j− for j = 1,…, m are obtained using Eqs. (46) and

 47 ): 

˜ f ∗j = 

{(
max ˜ f i j | j ∈ J 

)
, 
(
min 

˜ f i j | j ∈ J ′ 
)| i = 1 , 2 , . . . , m 

}
= 

{
˜ f ∗1 , ˜ f ∗2 , . . . , ˜ f ∗j , ˜ f ∗n 

}
(46) 

f j 
− = 

{(
min 

˜ f i j | j ∈ J 
)
, 
(
max ˜ f i j | j ∈ J ′ 

)| i = 1 , 2 , . . . , m 

}
= 

{
˜ f −1 , ˜ f −2 , . . . , ˜ f −

j 
, ˜ f −n 

}
(47) 

here J = { j = 1, 2, …, n | j , related t o the benefit criteria }; J ′ = { j = 1,

2,…, n | j , related to the cost criteria}; for i = 1, 2,…, m and j = 1,

,…, n , each individual ˜ f i j is the amount of ith alternative against

th criteria in the decision matrix for i = 1, 2,…, m, j = 1, 2,…, n , and

 ̃

 f ∗1 , ˜ f ∗2 , . . . , ˜ f ∗
j 
, ˜ f ∗n } ; and { ̃  f −

1 
, ˜ f −

2 
, . . . , ˜ f −

j 
, ˜ f −n } are the ideal and anti-

deal fuzzy values of alternatives in the fuzzy decision matrix ver-

us each individual criteria. 

.3.7.2. Calculating the ˜ S i and ˜ R i under fuzzy environment. ˜ S i and 

˜ R i 
re calculated through Eqs. (48) and (49) as follows: 

˜ 
 i = 

n ∑ 

i =1 

˜ w j . 

˜ f ∗
j 
− ˜ f i j 

˜ f ∗
j 
− ˜ f j−

(48) 

here ˜ f ∗
j 
, ˜ f j−, and 

˜ f i j are defined parameters derived through Eqs.

45) to ( 47 ). 

˜ 
 i = max 

( 

˜ w j . 

˜ f ∗
j 
− ˜ f i j 

˜ ∗ ˜ 

) 

(49) 

f 

j 
− f j− r  
.3.7.3. Calculating the ˜ Q i . Q i is calculated as shown in Eq. (50) . 

˜ 
 i = υ. 

(
˜ S j − ˜ S ∗

˜ S − − ˜ S ∗

)
+ ( 1 − υ) . 

(
˜ R j − ˜ R 

∗

˜ R 

− − ˜ R 

∗

)
(50) 

here ˜ S ∗ = min ( ̃  S j ), ˜ S − = max ( ̃  S j ), ˜ R − = max ( ̃  R j ) , ˜ R ∗ = min ( ̃  R j ), υ
s the defined weight for maximum group utility (majority of the

riteria), and ( 1 − υ) is the defined weight for individual regret. 

.3.7.4. Developing final ranks of alternatives based on the fuzzy val-

es of ˜ S , ˜ R and ˜ Q . Typically, alternatives are ranked using three

ifferent ways on the basis of the ˜ S , ˜ R and 

˜ Q values. Different con-

itions affect the rating process, as detailed below. 

The alternative A 1 with the minimum 

˜ Q can hold the best rank

f the two subsequent conditions are met: 

1. ˜ Q ( A 2 ) − ˜ Q ( A 1 ) ≥ D ̃

 Q , where A 2 is the alternative that is ranked

second and D ̃

 Q = 

1 
J−1 , where J is the number of alternatives. 

2. When alternative A 1 holds the best rank on the basis of ˜ Q (i.e.,

A 1 has the minimum 

˜ Q ), A 1 also should have the best rank on

the basis of ˜ S , ˜ R , or both. Furthermore, for the compromise so-

lution to be stable, υ must be greater than 0.5. 

If either condition 1 or 2 is not satisfied, the ranking will be

erformed subject to the following rules: 

1. Alternatives A 1 and A 2 may share the same rank if only condi-

tion 2 is not satisfied. 

2. Alternatives ˜ A 1 , ˜ A 2 , . . . , ˜ A m 

my share the same rank if only con-

dition 1 is not satisfied. The value for ˜ A m 

is specified through

the consideration that ˜ Q ( ̃  A m 

) − ˜ Q ( ̃  A 1 ) < D ̃

 Q . 

.4. Numerical examples 

In this section, we develop an example to show the extension

f defuzzification process. 

.4.1. Transforming fuzzy numbers to crisp values through 

efuzzification methods 

In order to compare two fuzzy values, they should be de-

uzzified. Several defuzzification methods have been developed to

ransfer a fuzzy value to a crisp value. In order to have consistency

n the defuzzification process, Yager’s centroid index was utilized

hroughout the required defuzzification for all ranking methods. 

.4.2. Ranking of fuzzy numbers based on centroid index 

Based on Yager’s centroid index, the geometric center of fuzzy

umber ˜ x on the horizontal axis is calculated as follows: 

 0 = 

∫ 1 
0 g ( x ) μx dx ∫ 1 

0 μx dx 
(51) 

here g(x) can be considered as a weight function of x values.

sually, g(x) is assumed equal to x , μ ˜ x is the membership de-

ree of x values, and the denominator is considered as a normaliz-

ng factor equal to the total area under the membership degree

unction in Fig. 1 [12,42] . Fuzzy numbers can be ranked based

n x 0 values, with higher x 0 values standing for better rank. Ac-

ording to Eq. (51) , Yager’s centroid index can be considered as

 weighted mean of fuzzy number ˜ x = ( l, m, u ) . Eqs. (52) to ( 55 )

ffer a numerical example of calculating the centroid index for

anking two fuzzy numbers, ˜ x = ( 0 . 2917 , 0 . 3194 , 0 . 3472 ) and ˜ x =
1 2 
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( 0 . 3056 , 0 . 3264 , 0 . 34 4 4 ) . 

μ ˜ x 1 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 x ≤ 0 . 2917 

x − 0 . 2917 

0 . 3194 − 0 . 2917 

0 . 2917 < x ≤ 0 . 3194 

0 . 3472 − x 

x − 0 . 3194 

0 . 3194 < x ≤ 0 . 3472 

0 x > 0 . 3472 

(52)

x 0 1 = 

∫ 0 . 3194 

0 . 2917 x ∗
(

x −0 . 2917 
0 . 3194 −0 . 2917 

)
dx + 

∫ 0 . 3472 

0 . 3194 x ∗
(

0 . 3472 −x 
0 . 3472 −0 . 3194 

)
dx ∫ 0 . 3194 

0 . 2917 

(
x −0 . 2917 

0 . 3194 −0 . 2917 

)
dx + 

∫ 0 . 3472 

0 . 3194 

(
0 . 3472 −x 

0 . 3472 −0 . 3194 

)
dx 

= 0 . 3134 (53)

μ ˜ x 2 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 x ≤ 0 . 3056 

x − 0 . 3056 

0 . 3264 − 0 . 3056 

0 . 3056 < x ≤ 0 . 3264 

0 . 34 4 4 − x 

x − 0 . 3264 

0 . 3264 < x ≤ 0 . 34 4 4 

0 x > 0 . 34 4 4 

(54)

x 0 2 = 

∫ 0 . 3264 

0 . 3056 x ∗
(

x −0 . 3056 
0 . 3264 −0 . 3056 

)
dx + 

∫ 0 . 34 4 4 

0 . 3264 x ∗
(

0 . 34 4 4 −x 
0 . 34 4 4 −0 . 3264 

)
dx ∫ 0 . 3264 

0 . 3056 

(
x −0 . 3056 

0 . 3264 −0 . 3056 

)
dx + 

∫ 0 . 34 4 4 

0 . 3264 

(
0 . 34 4 4 −x 

0 . 34 4 4 −0 . 3264 

)
dx 

= 0 . 3248 (55)

where, by ranking based on the calculated x 0 1 and x 0 2 , ˜ x 2 > ˜ x 1 . 

2.5. Numerical examples for developing the final rankings through 

different ranking methods 

In this section, we use a decision matrix with three alterna-

tives against three criteria to present examples of how different

ranking methods develop final rankings. In the provided numerical

example, in order to the simplification, for all alternatives, all the

criteria have been considered as benefit criteria. All calculations

required through these numerical examples are developed based

on the algebraic and mathematical computations of fuzzy numbers

that have been explained in Eqs. (3) –( 21 ). 

Decision Matrix 

= 

[ 

(21 , 23 , 25) (28 , 30 , 32) (61 . 5 , 63 , 64 . 5) 
(22 , 23 . 5 , 24 . 8) (25 , 27 , 29) (85 . 5 , 87 , 88 . 5) 
(47 . 5 , 48 , 48 . 5) (81 , 83 , 85) (14 . 5 , 16 , 17 . 5) 

] 

(56)

The normalized decision matrix values are calculated by intro-
duced method in Eq. (26) as follows: 

Normalized Decision Matrix 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

(21 , 23 , 25) 

max { 25 , 24 . 8 , 48 . 5 } 
(28 , 30 , 32) 

max { 32 , 29 , 85 } 
(61 . 5 , 63 , 64 . 5) 

max { 64 . 5 , 88 . 5 , 17 . 5 } 
(22 , 23 . 5 , 24 . 8) 

max { 25 , 24 . 8 , 48 . 5 } 
(25 , 27 , 29) 

max { 32 , 29 , 85 } 
(85 . 5 , 87 , 88 . 5) 

max { 64 . 5 , 88 . 5 , 17 . 5 } 
(47 . 5 , 48 , 48 . 5) 

max { 25 , 24 . 8 , 48 . 5 } 
(81 , 83 , 85) 

max { 32 , 29 , 85 } 
(14 . 5 , 16 , 17 . 5) 

max { 64 . 5 , 88 . 5 , 17 . 5 } 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

(57)

Normalized Decision Matrix = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(21 , 23 , 25) 

48 . 5 

(28 , 30 , 32) 

85 

(61 . 5 , 63 , 64 . 5) 

88 . 5 

(22 , 23 . 5 , 24 . 8) 

48 . 5 

(25 , 27 , 29) 

85 

(85 . 5 , 87 , 88 . 5) 

88 . 5 

(47 . 5 , 48 , 48 . 5) 

48 . 5 

(81 , 83 , 85) 

85 

(14 . 5 , 16 , 17 . 5) 

88 . 5 

⎤⎥⎥⎥⎥⎥⎦

= 

⎡ ⎢ ⎢ ⎣ 

(0 . 4330 , 0 . 4742 , 0 . 5155) (0 . 3294 , 0 . 3529 , 0 . 3765) (0 . 6949 , 0 . 7119 , 0 . 7288) 

(0 . 4536 , 0 . 4845 , 0 . 5113) (0 . 2941 , 0 . 3176 , 0 . 3412) (0 . 9661 , 0 . 9831 , 1 . 0 0 0 0) 

(0 . 9794 , 0 . 9897 , 1 . 0 0 0 0) (0 . 9529 , 0 . 9765 , 1 . 0 0 0 0) (0 . 1638 , 0 . 1808 , 0 . 1977) 

⎤⎥⎥⎦
(58)
The evaluated weights for three criteria are as follows: ˜ w 1 =
( 0 . 799 , 0 . 8 , 0 . 801 ) , ˜ w 2 = ( 0 . 4 , 0 . 5 , 0 . 6 ) , and ˜ w 3 = ( 0 . 3 , 0 . 4 , 0 . 5 ) . 

The normalized weights are calculated by Eq. (59) as follows: 

˜ 
 = 

˜ w 1 ∑ ˜ w j 
, 

˜ w 2 ∑ ˜ w j 
, 

˜ w 3 ∑ ˜ w j 
(59)

here, 
∑ ˜ w j = ( 0 . 799 , 0 . 8 , 0 . 801 ) + ( 0 . 4 , 0 . 5 , 0 . 6 ) + (0 . 3 , 0 . 4 , 0 . 5) =

( 1 . 499 , 1 . 700 , 1 . 901 ) . 

Therefore, the normalized weights are calculated as follows: 

ormalized ˜ w 1 = 

( 0 . 799 , 0 . 8 , 0 . 801 ) 

( 1 . 499 , 1 . 700 , 1 . 901 ) 

= 

(
0 . 799 

1 . 901 

, 
0 . 8 

1 . 700 

, 
0 . 801 

1 . 499 

)
= ( 0 . 4203 , 0 . 4706 , 0 . 5344 ) 

ormalized ˜ w 2 = 

( 0 . 799 , 0 . 8 , 0 . 801 ) 

( 1 . 499 , 1 . 700 , 1 . 901 ) 

= 

(
0 . 4 

1 . 901 

, 
0 . 5 

1 . 700 

, 
0 . 6 

1 . 499 

)
= (0 . 2104 , 0 . 2941 , 0 . 4003 

ormalized ˜ w 3 = 

( 0 . 799 , 0 . 8 , 0 . 801 ) 

( 1 . 499 , 1 . 700 , 1 . 901 ) 

= 

(
0 . 3 

1 . 901 

, 
0 . 4 

1 . 700 

, 
0 . 5 

1 . 499 

)
= ( 0 . 1578 , 0 . 2353 , 0 . 3336 ) . 

In order to calculate the weighted and normalized decision ma-

rix, matrices of weights are formed as shown in Eq. (60) . 

˜ 
 = 

⎡ ⎣ 

˜ w 1 , 1 (0 , 0 , 0)(0 , 0 , 0) 

(0 , 0 , 0) ˜ w 2 , 2 (0 , 0 , 0) 

(0 , 0 , 0)(0 , 0 , 0) ˜ w 3 , 3 

⎤ ⎦ 

= 

⎡ ⎣ 

(0 . 4203 , 0 . 4706 , 0 . 5344) , (0 , 0 , 0) , (0 , 0 , 0) 

(0 , 0 , 0) , (0 . 2104 , 0 . 2941 , 0 . 4003) , (0 , 0 , 0) 

(0 , 0 , 0) , (0 , 0 , 0) , (0 . 1578 , 0 . 2353 , 0 . 3336) 

⎤ ⎦ (60)

The weighted, normalized matrix is calculated as follows: 

˜ 
 i j = [ ̃ r i, j ] � [ ̃  w j, j ] = 

⎡ ⎣ 

˜ r 1 , 1 � ˜ w 1 , ˜ r 1 , 2 � ˜ w 2 , ˜ r 1 , 3 � ˜ w 3 

˜ r 2 , 1 � ˜ w 1 , ˜ r 2 , 2 � ˜ w 2 , ˜ r 2 , 3 � ˜ w 3 

˜ r 3 , 1 � ˜ w 1 , ˜ r 3 , 2 � ˜ w 2 , ˜ r 3 , 3 � ˜ w 3 

⎤ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(0 . 4330 , 0 . 4742 , 0 . 5155) � (0 . 4203 , 0 . 4706 , 0 . 5344) ;
(0 . 3294 , 0 . 3529 , 0 . 3765) � (0 . 2104 , 0 . 2941 , 0 . 4003) ;
(0 . 6949 , 0 . 7119 , 0 . 7288) � (0 . 1578 , 0 . 2353 , 0 . 3336) 

(0 . 4536 , 0 . 4845 , 0 . 5113) � (0 . 4203 , 0 . 4706 , 0 . 5344) ;
(0 . 2941 , 0 . 3176 , 0 . 3412) � (0 . 2104 , 0 . 2941 , 0 . 4003) ;
(0 . 9661 , 0 . 9831 , 1 . 0 0 0 0) � (0 . 1578 , 0 . 2353 , 0 . 3336) 

(0 . 9794 , 0 . 9897 , 1 . 0 0 0 0) � (0 . 4203 , 0 . 4706 , 0 . 5344) ;
(0 . 9529 , 0 . 9765 , 1 . 0 0 0 0) � (0 . 2104 , 0 . 2941 , 0 . 4003) ;
(0 . 1638 , 0 . 1808 , 0 . 1977) � (0 . 1578 , 0 . 2353 , 0 . 3336) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(0 . 1820 , 0 . 2232 , 0 . 2754) ;(0 . 0693 , 0 . 1038 , 0 . 1507) ;
(0 . 1097 , 0 . 1675 , 0 . 2431) 

(0 . 1907 , 0 . 2280 , 0 . 2732) ;(0 . 0619 , 0 . 0934 , 0 . 1366) ;
(0 . 1525 , 0 . 2313 , 0 . 3336) 

(0 . 4116 , 0 . 4657 , 0 . 5344) ;(0 . 2005 , 0 . 2872 , 0 . 4003) ;
(0 . 0259 , 0 . 0425 , 0 . 0 6 60) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

here, i = 1, 2,…, m , and j = 1, 2,…, n . 
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.5.1. Final ranking based on SAW 

The overall score of each individual alternative is obtained

hrough the sum of weighted normalized values as follows: 

˜ 
 1 = 

3 ∑ 

j=1 

˜ r 1 j . ̃  w j = 

˜ w j ̃  .r 1 j 

= { ( ( 0 . 4203 , 0 . 4706 , 0 . 5344 ) × ( 0 . 4330 , 0 . 4742 , 0 . 5155 ) ) 

+ ( ( 0 . 2104 , 0 . 2941 , 0 . 4003 ) × ( 0 . 3294 , 0 . 3529 , 0 . 3765 ) ) 

+ ( ( 0 . 1578 , 0 . 2353 , 0 . 3336 ) × ( 0 . 6949 , 0 . 7119 , 0 . 7288 ) ) } 
= ( 0 . 3610 , 0 . 4945 , 0 . 6692 ) 

˜ 
 2 = 

3 ∑ 

j=1 

= 

˜ r 2 j . ̃  w j = 

˜ w j . ̃ r 2 j 

= { ( ( ( 0 . 4203 , 0 . 4706 , 0 . 5344 ) × ( 0 . 4536 , 0 . 4845 , 0 . 5113) ) ) 

+ ( ( 0 . 2104 , 0 . 2941 , 0 . 4003 ) × ( 0 . 2941 , 0 . 3176 , 0 . 3412) ) ) 

+ ( ( 0 . 1578 , 0 . 2353 , 0 . 3336 ) × ( 0 . 9661 , 0 . 9831 , 1 . 0 0 0 0 ) ) } 
= ( 0 . 4049 , 0 . 5527 , 0 . 7434 ) 

˜ 
 3 = 

3 ∑ 

j=1 

˜ r 3 j . ̃  w j = 

˜ w j . ̃ v 3 j 

= { ( ( 0 . 4203 , 0 . 4706 , 0 . 5344 ) × ( 0 . 9794 , 0 . 9897 , 1 . 0 0 0 0 ) ) 

+ ( ( 0 . 2104 , 0 . 2941 , 0 . 4003 ) × ( 0 . 9529 , 0 . 9765 , 1 . 0 0 0 0 ) ) 

+ ( ( 0 . 1578 , 0 . 2353 , 0 . 3336 ) × ( 0 . 1638 , 0 . 1808 , 0 . 1977 ) ) } 
= ( 0 . 6380 , 0 . 7955 , 1 . 0 0 06 ) 

In SAW, the final ranking is developed based on the centroids

alues of ˜ F i , which are calculated as follows: 

˜ 
 1 = 

0 . 3610 + 0 . 4945 + 0 . 6692 

3 

= 0 . 5082 , 

˜ 
 2 = 

0 . 4049 + 0 . 5527 + 0 . 7434 

3 

= 0 . 5670 , and 

˜ 
 3 = 

0 . 6380 + 0 . 7995 + 1 . 0 0 06 

3 

= 0 . 8114 . 

Therefore, ˜ A 1 < 

˜ A 2 < 

˜ A 3 . 

.5.2. Final ranking based on WPM 

According to Eq. (24) , ˜ A 

∗
i 

= 

∏ n 
j=1 ˜ a 

˜ w j 

ij 
, ˜ A 

∗
1 
, ˜ A 

∗
2 
, and 

˜ A 

∗
3 

are calcu-

ated as follows: 

˜ A 

∗
1 = 

3 ∏ 

j=1 

˜ a 
˜ w j 

1 j 
= ( 21 , 23 , 25 ) ( 

0 . 4203 , 0 . 4706 , 0 . 5344 ) 

× ( 28 , 30 , 32 ) ( 
0 . 2104 , 0 . 2941 , 0 . 4003 ) 

× ( 61 . 5 , 63 , 64 . 5 ) ( 
0 . 1578 , 0 . 2353 , 0 . 3336 ) = ( 13 . 88 , 31 . 52 , 89 . 79 ) 

˜ A ∗2 = 

3 ∏ 

j6=1 

˜ a 
˜ w j 

2 j 
= ( 22 , 23 . 5 , 24 . 8 ) ( 

0 . 4203 , 0 . 4706 , 0 . 5344 ) 

× ( 25 , 27 , 29 ) ( 
0 . 2104 , 0 . 2941 , 0 . 4003 ) × ( 85 . 5 , 87 , 88 . 5 ) ( 

0 . 1578 , 0 . 2353 , 0 . 3336 ) 

= ( 14 . 56 , 33 . 31 , 95 . 51 ) 

˜ A ∗3 = 

3 ∏ 

j=1 

˜ a 
˜ w j 

3 j 
= ( 47 . 5 , 48 , 48 . 5 ) ( 

0 . 4203 , 0 . 4706 , 0 . 5344 ) 

× ( 81 , 83 , 85 ) ( 
0 . 2104 , 0 . 2941 , 0 . 4003 ) × ( 14 . 5 , 16 , 17 . 5 ) ( 

0 . 1578 , 0 . 2353 , 0 . 3336 ) 

= ( 19 . 48 , 43 . 54 , 122 . 37 ) 

Ranking is developed based on the centroid values of ˜ A 

∗
i 

which

re calculated as follows: 

˜ 
 

∗
1 = 

13 . 88 + 31 . 52 + 89 . 79 

3 

= 45 . 06 , 

˜ 
 

∗
2 = 

14 . 56 + 33 . 31 + 95 . 48 

3 

= 47 . 79 , and 

˜ 
 

∗
3 = 

19 . 48 + 43 . 54 + 122 . 37 

3 

= 61 . 80 . 
Therefore, ˜ A 

∗
1 

< 

˜ A 

∗
2 

< 

˜ A 

∗
3 
. 
.5.3. Final ranking based on CP 

By setting P = 2 and considering Eq. (24) , ˜ D 

P 
1 
, ˜ D 

P 
2 
, and 

˜ D 

P 
3 

are

alculated as follows: 

or i = 1 , ˜ D P 1 = 

( 
3 ∑ 

j=1 

(
˜ w j . 

˜ a ∗
j 
− ˜ a 1 j 

˜ a ∗
j 
− ˜ a j∗

)p 
) 

( 1 p ) 

= 

((
˜ w 1 ×

˜ a ∗
j 
− ˜ a 12 

˜ a ∗
j 
− ˜ a j∗

)
2 + 

(
˜ w 2 ×

˜ a ∗
j 
− ˜ a 12 

˜ a ∗
j 
− ˜ a j∗

)
2 + 

(
˜ w 3 ×

˜ a ∗
j 
− ˜ a 13 

˜ a ∗
j 
− ˜ a j∗

)
2 

))
1 
2 

= 

((
( 0 . 4203 , 0 . 4706 , 0 . 5344 ) 

( 4 8 . 5 , 4 8 . 5 , 4 8 . 5 ) − ( 28 , 30 , 32 ) 

( 4 8 . 5 , 4 8 . 5 , 4 8 . 5 ) − ( 21 . 0 , 21 . 0 , 21 . 0 ) 

)
2 

+ 

(
( 0 . 2104 , 0 . 2941 , 0 . 4003 ) × ( 85 , 85 , 85 ) − ( 61 . 5 , 63 , 64 . 5 ) 

( 85 , 85 , 85 ) − ( 25 , 25 , 25 ) 

)
2 

+ 

(
( 0 . 1578 , 0 . 2353 , 0 . 3336 ) × ( 88 . 5 , 88 . 5 , 88 . 5 ) − ( 61 . 5 , 63 , 64 . 5 ) 

( 88 . 5 , 88 . 5 , 88 . 5 ) − ( 14 . 5 , 14 . 5 , 14 . 5 ) 

)
2 

)
1 
2 

= ( 0 . 4076 , 0 . 5193 , 0 . 6770 ) . 

or i = 2 , ˜ D P 2 = 

( 
3 ∑ 

j=1 

(
˜ w j . 

˜ a ∗
j 
− ˜ a 2 j 

˜ a ∗
j 
− ˜ a j∗

)p 
) 

( 1 p ) 

= 

((
˜ w 1 ×

˜ a ∗
j 
− ˜ a 22 

˜ a ∗
j 
− ˜ a j∗

)
2 + 

(
˜ w 2 ×

˜ a ∗
j 
− ˜ a 22 

˜ a ∗
j 
− ˜ a j∗

)
2 + 

(
˜ w 3 ×

˜ a ∗
j 
− ˜ a 23 

˜ a ∗
j 
− ˜ a j∗

)2 ))
1 
2 

= 

((
( 0 . 4203 , 0 . 4706 , 0 . 5344 ) × ( 4 8 . 5 , 4 8 . 5 , 4 8 . 5 ) − ( 22 , 23 . 5 , 24 . 8 ) 

( 4 8 . 5 , 4 8 . 5 , 4 8 . 5 ) − ( 21 . 0 , 21 . 0 , 21 . 0 ) 

)
2 

+ 

(
( 0 . 2104 , 0 . 2941 , 0 . 4003 ) × ( 85 , 85 , 85 ) − ( 25 , 27 , 29 ) 

( 85 , 85 , 85 ) − ( 25 , 25 , 25 ) 

)
2 

+ 

(
( 0 . 1578 , 0 . 2353 , 0 . 3336 ) 

× ( 88 . 5 , 88 . 5 , 88 . 5 ) − ( 85 . 5 , 87 , 88 . 5 ) 

( 88 . 5 , 88 . 5 , 88 . 5 ) − ( 14 . 5 , 14 . 5 , 14 . 5 ) 

)
2 

)
1 
2 

= ( 0 . 4120 , 0 . 5137 , 0 . 6523 ) 

or i = 3 , ˜ D P 3 = 

( 
3 ∑ 

j=1 

(
˜ w j . 

˜ a ∗
j 
− ˜ a 3 j 

˜ a ∗
j 
− ˜ a j∗

)p 
) 

( 1 p ) 

= 

((
˜ w 1 ×

˜ a ∗
j 
− ˜ a 32 

˜ a ∗
j 
− ˜ a j∗

)
2 + 

(
˜ w 2 ×

˜ a ∗
j 
− ˜ a 32 

˜ a ∗
j 
− ˜ a j∗

)
2 + 

(
˜ w 3 ×

˜ a ∗
j 
− ˜ a 33 

˜ a ∗
j 
− ˜ a j∗

)
2 

))
1 
2 

= 

((
( 0 . 4203 , 0 . 4706 , 0 . 5344 ) × ( 4 8 . 5 , 4 8 . 5 , 4 8 . 5 ) − ( 47 . 5 , 48 , 48 . 5 ) 

( 4 8 . 5 , 4 8 . 5 , 4 8 . 5 ) − ( 21 . 0 , 21 . 0 , 21 . 0 ) 

)
2 

+ 

(
( 0 . 2104 , 0 . 2941 , 0 . 4003 ) × ( 85 , 85 , 85 ) − ( 81 , 83 , 85 ) 

( 85 , 85 , 85 ) − ( 25 , 25 , 25 ) 

)
2 

+ 

(
( 0 . 1578 , 0 . 2353 , 0 . 3336 ) × ( 88 . 5 , 88 . 5 , 88 . 5 ) − ( 14 . 5 , 16 , 17 . 5 ) 

( 88 . 5 , 88 . 5 , 88 . 5 ) − ( 14 . 5 , 14 . 5 , 14 . 5 ) 

)
2 

)
1 
2 

= ( 0 . 1514 , 0 . 2309 , 0 . 3352 ) 

For the ideal and anti-ideal points, in order to avoid having neg-

tive values for lower and upper levels through the calculation pro-

ess, their uppre and lower values have been assumed equal to

heir central values. Ranking is developed based on the centroid

alues of ˜ D 

2 
i 
, which are calculated as follows: 

˜ 
 1 = 

0 . 4076 + 0 . 5193 + 0 . 6770 

3 

= 0 . 5313 , 

˜ 
 2 = 

0 . 4120 + 0 . 5137 + 0 . 6523 

3 

= 0 . 5260 , and 

˜ 
 3 = 

0 . 1514 + 0 . 2309 , +0 . 3352 

3 

= 0 . 2392 . 

In the compromise programming method, a lower value of ˜ D 

2 
i 

s ranked as ˜ D > 

˜ D > 

˜ D . Therefore, ˜ A < 

˜ A < 

˜ A . 
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etrical distances of alternatives from both ideal ˜ A 

+ 
1 

= (1, 1, 1) and anti- 

93 , 0 . 1038 , 0 . 1507)) 
2 + ((1 , 1 , 1) − (0 . 1097 , 0 . 1675 , 0 . 2431)) 

2 

 −0 . 1038) 
2 + (1 −0 . 0693) 

2 + (1 −0 . 2431) 
2 + (1 −0 . 1675) 

2 + (1 −0 . 1097) 
2 

− =0.78, and s 3 
− =0.81. 

cients are calculated as follows: 

C
8 

 2 . 28 

= 0 . 255 , and C 3 = 

s 3 
−

s 3 − + s 3 + 
= 

0 . 81 

0 . 81 + 2 . 20 

= 0 . 269 

e AHP method, Saaty’s four major prioritizing methods are calculated 

.5.4 [36] . 

ral form of comparisonwise matrix as explained in Eq. (35) , for three 

(61) 

 first row, 
˜ c 1 
˜ c 1 

, 
˜ c 1 
˜ c 2 

, and 

˜ c 1 
˜ c 3 

are representatives for comparing ˜ c 1 against 

ollows: 

alized by the sum of all elements of the comparisonwise matrix. Then, 

atives against the associated criteria in the comparisonwise matrix is 

is assumed as 1 through all computation process, and it does not 

) . Considering the Eq. (35) and Eq. (15) , for ˜ A 11 = ( 21 , 23 , 25 ) , ˜ A 21 = 

atives ˜ c ˜ a i 1 
, ̃  c ˜ a i 2 

, and ˜ c ˜ a i 3 
are calculated as follows: 

C

 

 8) 
, 

(21 , 23 , 25) 

(47 . 5 , 48 , 48 . 5) 

 8) 

 8) 
, 

(22 , 23 . 5 , 24 . 8) 

(47 . 5 , 48 , 48 . 5) 

 5) 

 8) 
, 

(47 . 5 , 48 , 48 . 5) 

(47 . 5 , 48 , 48 . 5) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

0 , 0 . 4792 , 0 . 5263) 

6 , 0 . 4896 , 0 . 5221) 

 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) 

⎤ ⎥ ⎦ 

(62) 

and 3 ) is calculated as follows: 
2.5.4. Final ranking based on TOPSIS 

After calculating the weighted normalized decision matrix, geom

ideal ˜ A 

−
1 

= (0, 0, 0) distances are calculated as follows: 

s 1 
+ = 

√ 

n ∑ 

j=1 

d 
(

˜ ϑ i j , 
˜ ϑ 

+ 
1 j 

)
= 

√ 

((1 , 1 , 1) − (0 . 1820 , 0 . 2232 , 0 . 2754)) 
2 + ((1 , 1 , 1) − (0 . 06

= 

√ 

(1 −0 . 2754) 
2 + (0 . 2232) 

2 + (1 −0 . 1820) 
2 + (1 −0 . 1507) 

2 + (1

= 2 . 58 

With the same approach: s 2 
+ =2.28, s 3 

+ =2.20, s 1 
− =0.45, s 2 

In order to develop the final ranking, the relative closeness coeffi

 1 = 

s 1 
−

s 1 − + s 1 + 
= 

0 . 45 

0 . 45 + 2 . 58 

= 0 . 149 , C 2 = 

s 2 
−

s 2 − + s 2 + 
= 

0 . 7

0 . 78 +
C 1 > C 2 > C 3 . Therefore , ˜ A 1 < 

˜ A 2 < 

˜ A 3 

2.5.5. Final ranking based on AHP 

In order to develop the final ranking of alternatives through th

and evaluated. These methods are described in Sections 2.5.5.1 –2.5

2.5.5.1. Final ranking based on the AHP prioritizing method 1. Gene

factors is developed as shown in Eq. (61) : 

[ ̃  C ] = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ C 1 
˜ C 1 

, 
˜ C 1 
˜ C 2 

, 
˜ C 1 
˜ C 3 

˜ C 2 
˜ C 1 

, 
˜ C 2 
˜ C 2 

, 
˜ C 2 
˜ C 3 

˜ C 3 
˜ C 1 

, 
˜ C 3 
˜ C 2 

, 
˜ C 3 
˜ C 3 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

In the above comparisonwise matrix ˜ c , for three factors in the

˜ c 1 , ̃  c 2 , and ˜ c 3 . 

The priority vector according to method AHP1 is calculated as f

As explained in the Section 2.3.5 , the sum of each row is norm

the importance of each alternative compared to the other altern

obtained. 

It should be noted that, division of two same fuzzy values 

follow division rules for two fuzzy values as shown in Eq. (15

( 22 , 23 . 5 , 24 . 8 ) , and 

˜ A 31 = ( 47 . 5 , 48 , 48 . 5 ) , priority vectors of altern

˜ 
 ˜ a i 1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ a 11 

˜ a 11 

, 
˜ a 11 

˜ a 21 

, 
˜ a 11 

˜ a 31 

˜ a 21 

˜ a 11 

, 
˜ a 21 

˜ a 21 

, 
˜ a 21 

˜ a 31 

˜ a 31 

˜ a 11 

, 
˜ a 31 

˜ a 21 

, 
˜ a 31 

˜ a 31 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(21 , 23 , 25) 

(21 , 23 , 25) 
, 

(21 , 23 , 25)

(22 , 23 . 5 , 24 .

(22 , 23 . 5 , 24 . 8) 

(21 , 23 , 25) 
, 

(22 , 23 . 5 , 24 .

(22 , 23 . 5 , 24 .

(47 . 5 , 48 , 48 . 5) 

(21 , 23 , 25) 
, 

(47 . 5 , 48 , 48 .

(22 , 23 . 5 , 24 .

= 

⎡ ⎢ ⎣ 

(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) (0 . 8468 , 0 . 9787 , 1 . 1364) (0 . 433

(0 . 8800 , 1 . 0217 , 1 . 1810)(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) (0 . 453

(1 . 90 0 0 , 2 . 0870 , 2 . 3095)(1 . 9153 , 2 . 0426 , 2 . 2045)(1 . 0 0 0

According to the method 1, priority vector for ˜ c ˜ a ( for i = 1 , 2 , 

i 1 
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P

˜ a 31 

˜ a 21 

+ 

˜ a 31 

˜ a 31 

˜ a 31 

˜ a 21 

+ 

˜ a 31 

˜ a 31 

˜ a 31 

˜ a 21 

+ 

˜ a 31 

˜ a 31 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎣ 

(0 . 2095 , 0 . 2434 , 0 . 2824) 

(0 . 2145 , 0 . 2487 , 0 . 2867) 

(0 . 4426 , 0 . 5079 , 0 . 5848) 

⎤ ⎥ ⎦ 

C

30 , 32) 

83 , 85) 

27 , 29) 

83 , 85) 

83 , 85) 

83 , 85) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

 , 0 . 3614 , 0 . 3951) 

1 , 0 . 3253 , 0 . 3580) 

 , 1 . 0 0 0 0 , 1 . 0 0 0 0) 

⎤ ⎦ 

P

 16 , 17 . 5 ) 

C

492) 

186) 

078) 

⎤ ⎥ ⎥ ⎦ 

w nd 

˜ w 3 = ( 0 . 1578 , 0 . 2353 , 0 . 3336 ) 

C

 . 4203 , 0 . 4706 , 0 . 5344 ) 

 . 1578 , 0 . 2353 , 0 . 3336 ) 

 2104 , 0 . 2941 , 0 . 4003 ) 

 1578 , 0 . 2353 , 0 . 3336 ) 

 . 1578 , 0 . 2353 , 0 . 3336 ) 

 . 1578 , 0 . 2353 , 0 . 3336 ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

0 . 5344 

0 . 1578 

) 

0 . 4003 

0 . 1578 

) 

(1 , 1 , 1) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
riority of ˜ C ˜ a i 1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ a 11 

˜ a 12 

+ 

˜ a 11 

˜ a 21 

+ 

˜ a 11 

˜ a 31 

˜ a 11 

˜ a 11 

+ 

˜ a 11 

˜ a 21 

+ 

˜ a 11 

˜ a 31 

+ 

˜ a 21 

˜ a 11 

+ 

˜ a 21 

˜ a 21 

+ 

˜ a 21 

˜ a 31 

+ 

˜ a 31 

˜ a 11 

+ 

˜ a 21 

˜ a 12 

+ 

˜ a 21 

˜ a 21 

+ 

˜ a 21 

˜ a 31 

˜ a 11 

˜ a 11 

+ 

˜ a 11 

˜ a 21 

+ 

˜ a 11 

˜ a 31 

+ 

˜ a 21 

˜ a 11 

+ 

˜ a 21 

˜ a 21 

+ 

˜ a 21 

˜ a 31 

+ 

˜ a 31 

˜ a 11 

+ 

˜ a 31 

˜ a 11 

+ 

˜ a 31 

˜ a 21 

+ 

˜ a 31 

˜ a 31 

˜ a 11 

˜ a 11 

+ 

˜ a 11 

˜ a 21 

+ 

˜ a 11 

˜ a 31 

+ 

˜ a 21 

˜ a 11 

+ 

˜ a 21 

˜ a 21 

+ 

˜ a 21 

˜ a 31 

+ 

˜ a 31 

˜ a 11 

+ 

For ˜ c 12 = ( 28 , 30 , 32 ) , ̃  c 22 = ( 25 , 27 , 29 ) , and ˜ c 32 = ( 81 , 83 , 85 ) 

˜ 
 ˜ a i 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ a 12 

˜ a 12 

, 
˜ a 12 

˜ a 22 

, 
˜ a 12 

˜ a 32 

˜ a 22 

˜ a 12 

, 
˜ a 22 

˜ a 22 

, 
˜ a 22 

˜ a 32 

˜ a 32 

˜ a 12 

, 
˜ a 32 

˜ a 22 

, 
˜ a 32 

˜ a 32 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(28 , 30 , 32) 

(28 , 30 , 32) 
, 
(28 , 30 , 32) 

(25 , 27 , 29) 
, 

(28 , 

(81 , 

(25 , 27 , 29) 

(28 , 30 , 32) 
, 

(25 , 27 , 29) 

(25 , 27 , 29) 
, 
(25 , 

(81 , 

(81 , 83 , 85) 

(28 , 30 , 32) 
, 

(81 , 83 , 85) 

(25 , 27 , 29) 
, 

(81 , 

(81 , 

= 

⎡ ⎣ 

(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) (0 . 9655 , 1 . 1111 , 1 . 2800) (0 . 3294

(0 . 7813 , 0 . 90 0 0 , 1 . 0357)(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) (0 . 294

(2 . 5313 , 2 . 7667 , 3 . 0357)(2 . 7931 , 3 . 0741 , 3 . 40 0 0)(1 . 0 0 0 0

riority of ˜ C ˜ a i 2 = 

⎡ ⎣ 

(0 . 1835 , 0 . 2143 , 0 . 2501) 

(0 . 1660 , 0 . 1929 , 0 . 2238) 

(0 . 5058 , 0 . 5929 , 0 . 6953) 

⎤ ⎦ 

For ˜ c 13 = ( 61 . 5 , 63 , 64 . 5 ) , ̃  c 23 = ( 85 . 5 , 87 , 88 . 5 ) , and ˜ c 33 = ( 14 . 5 ,

˜ 
 ˜ a i 3 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ a 13 

˜ a 13 

, 
˜ a 13 

˜ a 23 

, 
˜ a 13 

˜ a 33 

˜ a 23 

˜ a 13 

, 
˜ a 23 

˜ a 23 

, 
˜ a 23 

˜ a 33 

˜ a 33 

˜ a 13 

, 
˜ a 33 

˜ a 23 

, 
˜ a 33 

˜ a 33 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Priority of ˜ C ˜ a i 3 = 

⎡ ⎢ ⎢ ⎣ 

(0 . 3209 , 0 . 3795 , 0 . 4

(0 . 4 4 42 , 0 . 5241 , 0 . 6

(0 . 0855 , 0 . 0964 , 0 . 1

˜ 
 1 = ( 0 . 4203 , 0 . 4706 , 0 . 5344 ) , ˜ w 2 = ( 0 . 2104 , 0 . 2941 , 0 . 4003 ) , a

˜ 
 ˜ w 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ w 1 

˜ w 1 

, 
˜ w 1 

˜ w 2 

, 
˜ w 1 

˜ w 3 

˜ w 2 

˜ w 1 

, 
˜ w 2 

˜ w 2 

, 
˜ w 2 

˜ w 3 

˜ w 3 

˜ w 1 

, 
˜ w 3 

˜ w 2 

, 
˜ w 3 

˜ w 3 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(0 . 4203 , 0 . 4706 , 0 . 5344 ) 

(0 . 4203 , 0 . 4706 , 0 . 5344 ) 
, 

(0 . 4203 , 0 . 4706 , 0 . 5344 ) 

(0 . 2104 , 0 . 2941 , 0 . 4003 ) 
, 

(0

(0

(0 . 2104 , 0 . 2941 , 0 . 4003 ) 

(0 . 4203 , 0 . 4706 , 0 . 5344 ) 
, 

(0 . 2104 , 0 . 2941 , 0 . 4003 ) 

(0 . 2104 , 0 . 2941 , 0 . 4003 ) 
, 
(0 .

(0 .

(0 . 1578 , 0 . 2353 , 0 . 3336 ) 

(0 . 4203 , 0 . 4706 , 0 . 5344 ) 
, 

(0 . 1578 , 0 . 2353 , 0 . 3336 ) 

(0 . 2104 , 0 . 2941 , 0 . 4003 ) 
, 

(0

(0

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(1 , 1 , 1) ( 
0 . 4203 

0 . 4003 

, 
0 . 4706 

0 . 2941 

, 
0 . 5344 

0 . 2104 

) ( 
0 . 4203 

0 . 3336 

, 
0 . 4706 

0 . 2353 

, 

( 
0 . 2104 

0 . 5344 

, 
0 . 2941 

0 . 4706 

, 
0 . 4003 

0 . 4203 

) (1 , 1 , 1) ( 
0 . 2104 

0 . 3336 

, 
0 . 2941 

0 . 2353 

, 

( 
0 . 1578 

0 . 5344 

, 
0 . 2353 

0 . 4706 

, 
0 . 3336 

0 . 4203 

) ( 
0 . 1578 

0 . 4003 

, 
0 . 2353 

0 . 2941 

, 
0 . 3336 

0 . 2104 

) 
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 , 2 . 0 0 0 0 , 2 . 6700) 

 0 , 1 . 2500 , 2 . 0 0 0) 

 , 1 . 0 0 0 0 , 1 . 0 0 0 0) 

⎤ ⎦ 

 , 0 . 2867) (0 . 4426 , 0 . 5079 , 0 . 5848) 

 0 . 2238) (0 . 5058 , 0 . 5929 , 0 . 6953) 

 0 . 6186) (0 . 0855 , 0 . 0964 , 0 . 1078) 

⎤ ⎦ 

 , 0 . 2669 , 0 . 4729) 

 , 0 . 2971 , 0 . 5238) 

 , 0 . 4361 , 0 . 7695) 

⎤ ⎦ 

 priority ranking values are calculated as follows: 

 0 . 5238 = 0 . 3294 , and 

˜ F 3 = 

0 . 2490 + 0 . 4361 + 0 . 7695 

3 

= 0 . 4 84 8 . 

lained in Section 2.3.5 , the sum of the values in each column of matrix 

 values of each column), are calculated. Next, the reciprocal values are 

f the reciprocals indicate the relative importance values of alternatives 

atrix ˜ c , for three factors in the first row, 
˜ c 1 
˜ c 1 

, 
˜ c 1 
˜ c 2 

, and 

˜ c 1 
˜ c 3 

are representa- 

 48 . 5 ) , the comparison matrix of alternatives against criteria 1 is ob- 

C

0 , 0 . 4792 , 0 . 5263) 

 , 0 . 4896 , 0 . 5221) 

 , 1 . 0 0 0 0 , 1 . 0 0 0 0) 

⎤ ⎦ 

and 3 ) is calculated as follows: 

 of each column is calculated as follows: 

870 , 2 . 3095) = (3 . 7800 , 4 . 1087 , 4 . 4905) 

 . 0426 , 2 . 2045) = (3 . 7621 , 4 . 0213 , 4 . 3409) 

 0 0 0 , 1 . 0 0 0 0) = (1 . 8866 , 1 . 9688 , 2 . 0484) 

onsidered as 1 
˜ A 

= 

˜ A 

−1 which equals to its inverse, which is calculated 

(63) 

llows: 

 = (0 . 2227 , 0 . 2434 , 0 . 2646) 

= (0 . 2304 , 0 . 2487 , 0 . 2658) 

 = (0 . 4882 , 0 . 5079 , 0 . 5301) 

calculated based on normalizing the reciprocals of the sums of each 

nwise matrix of alternatives against criteria 1, as follows: 

2 , 0 . 5079 , 0 . 5301) 
= (0 . 2100 , 0 . 2434 , 0 . 2811) 

2 , 0 . 5079 , 0 . 5301) 
= (0 . 2172 , 0 . 2487 , 0 . 2824) 

= (0 . 4604 , 0 . 5079 , 0 . 5631) 
= 

⎡ ⎣ 

(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0)(1 . 3317 , 1 . 60 0 0 , 2 . 0025)(1 . 5980

(0 . 4994 , 0 . 6250 , 0 . 7509)(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) (0 . 80 0

(0 . 3745 , 0 . 50 0 0 , 0 . 6258) (0 . 50 0 0 , 0 . 80 0 0 , 1 . 2500)(1 . 0 0 0 0

Priority of ˜ C ˜ w 

= 

⎡ ⎣ 

(0 . 3195 , 0 . 4706 , 0 . 70 0 0) 

(0 . 1870 , 0 . 2941 , 0 . 4629) 

(0 . 1524 , 0 . 2353 , 0 . 3549) 

⎤ ⎦ 

The final priority of alternatives is calculated as follows: 

[ ̃  C ˜ a i 1 
˜ C ˜ a i 2 

˜ C ˜ a i 3 ] �
[

˜ C ˜ w 

]
= 

⎡ ⎣ 

(0 . 2095 , 0 . 2434 , 0 . 2824) (0 . 2145 , 0 . 2487

(0 . 1835 , 0 . 2143 , 0 . 2501) (0 . 1660 , 0 . 1929 ,

(0 . 3209 , 0 . 3795 , 0 . 4492) (0 . 4 4 42 . 0 . 5241 ,

�

⎡ ⎣ 

(0 . 3195 , 0 . 4706 , 0 . 70 0 0) 

(0 . 1870 , 0 . 2941 , 0 . 4629) 

(0 . 1524 , 0 . 2353 , 0 . 3549) 

⎤ ⎦ = 

⎡ ⎣ 

(0 . 1502

(0 . 1673

(0 . 2490

In order to compare the final ranking, the centroids of the final

˜ F 1 = 

0 . 1502 + 0 . 2669 + 0 . 4729 

3 

= 0 . 2966 , ˜ F 2 = 

0 . 1673 + 0 . 2971 +
3 

Therefore, ˜ A 1 < 

˜ A 2 < 

˜ A 3 . 

2.5.5.2. Final ranking based on the AHP prioritizing method 2. As exp

˜ c is calculated, and then the reciprocals, which are 1/(Sum of the

normalized by the sum of all reciprocals. The normalized values o

against the considered criteria in comparisonwise matrix. 

Considering ˜ c ˜ w 

, ˜ c ˜ a i 1 
, ̃  c ˜ a i 2 

, and ˜ c ˜ a i 3 
in the above comparisonwise m

tives for comparing ˜ c 1 against ˜ c 1 , ̃  c 2 , and ˜ c 3 . 

For ˜ c 11 = ( 21 , 23 , 25 ) , ̃  c 21 = ( 22 , 23 . 5 , 24 . 8 ) , and ˜ c 31 = ( 47 . 5 , 48 ,

tained as follows: 

˜ 
 ˜ a i 1 = 

⎡ ⎣ 

(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) (0 . 8468 , 0 . 9787 , 1 . 1364) (0 . 433

(0 . 8800 , 1 . 0217 , 1 . 1810)(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) (0 . 4536

(1 . 90 0 0 , 2 . 0870 , 2 . 3095)(1 . 9153 , 2 . 0426 , 2 . 2045)(1 . 0 0 0 0

According to method 2, the priority vector for ˜ c ˜ a 1 j 
( for j = 1 , 2 , 

• By considering the comparison matrix against criteria 1, the sum

(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0)+ (0 . 8800 , 1 . 0217 , 1 . 1810) + (1 . 90 0 0 , 2 . 0

(0 . 8468 , 0 . 9787 , 1 . 1364) + (1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) + (1 . 9153 , 2

(0 . 4330 , 0 . 4792 , 0 . 5263)+ (0 . 4536 , 0 . 4896 , 0 . 5221) + (1 . 0 0 0 0 , 1 . 0

Reciprocal of a triangular fuzzy number ˜ A = ( l, m , u ) can be c

using Eq. (63) as follows: 

˜ A 

−1 = 

(
1 

u 

, 
1 

m 

, 
1 

l 

)
then, 

• The reciprocals of the sums of the columns are calculated as fo

(3 . 7800 , 4 . 1087 , 4 . 4905) 
−1 = (1 / 4 . 4905 , 1 / 4 . 1087 , 1 / 3 . 7800)

(3 . 7621 , 4 . 0213 , 4 . 3409) 
−1 = (1 / 4 . 3409 , 1 / 4 . 0213 , 1 / 3 . 7621) 

(1 . 8866 , 1 . 9688 , 2 . 0484) 
−1 = (1 / 2 . 0484 , 1 / 1 . 9688 , 1 / 1 . 8866)

then, 
• The final priority weights of alternatives against criteria 1 is 

column by sum of the reciprocals of all columns in a compariso

(0 . 2227 , 0 . 2434 , 0 . 2646) 

(0 . 2227 , 0 . 2434 , 0 . 2646) + (0 . 2304 , 0 . 2487 , 0 . 2658)+ (0 . 488

(0 . 2304 , 0 . 2487 , 0 . 2658) 

(0 . 2227 , 0 . 2434 , 0 . 2646) + (0 . 2304 , 0 . 2487 , 0 . 2658)+ (0 . 488

(0 . 4882 , 0 . 5079 , 0 . 5301) 
(0 . 2227 , 0 . 2434 , 0 . 2646) + (0 . 2304 , 0 . 2487 , 0 . 2658)+ (0 . 4882 , 0 . 5079 , 0 . 5301) 
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P

 

 

(0 . 1864 , 0 . 2143 , 0 . 2457) 

(0 . 1664 , 0 . 1929 , 0 . 2227) 

(0 . 5392 , 0 . 5929 , 0 . 6527) 

⎤ ⎦ 

 

 

(0 . 3562 , 0 . 4706 , 0 . 6412) 

(0 . 1991 , 0 . 2941 , 0 . 4243) 

(0 . 1493 , 0 . 2353 , 0 . 3536) 

⎤ ⎦ 

[

 0 . 2867) (0 . 4426 , 0 . 5079 , 0 . 5848) 

0 . 2238) (0 . 5058 , 0 . 5929 , 0 . 6953) 

 0 . 6186) (0 . 0855 , 0 . 0964 , 0 . 1078) 

⎤ ⎦ 

 , 0 . 2669 , 0 . 4283) 

 0 . 2971 , 0 . 4729) 

 , 0 . 4361 , 0 . 6771) 

⎤ ⎦ 

 priority ranking values are calculated as follows: 

F
 0 . 4729 = 0 . 3180 , and 

˜ F 3 = 

0 . 2838 + 0 . 4361 + 0 . 6771 

3 

= 0 . 4657 . 

2 r developing the comparisonwise matrix of alternative values against 

e um of the values in the same column, then the average of each row 

i ves against that criteria. For example, based on the developed priority 

w red against criteria 1, the average of the first row stands for the relative 

i ond row stands for the relative importance of alternative 2 against the 

c

ch column is normalized by the sum of the values in the same column, 

a

 . 90 0 0 , 2 . 0870 , 2 . 3095 ) 

 . 8866 , 1 . 9688 , 2 . 0484) 

1 . 9153 , 2 . 0426 , 2 . 2045) 

 . 8866 , 1 . 9688 , 2 . 0484) 

 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) 

1 . 8866 , 1 . 9688 , 2 . 0484) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

 0 . 2434 , 0 . 2790) 
 , 0 . 2487 , 0 . 2767) 
 0 . 5079 , 0 . 5301) 

] 

ive in comparison with other alternatives against the same criteria, the 

a

P

021)+ (0 . 2114 , 0 . 2434 , 0 . 2790) 

658)+ (0 . 2214 , 0 . 2487 , 0 . 2767) 

60)+ (0 . 4882 , 0 . 5079 , 0 . 5301) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎣ 

(0 . 2097 , 0 . 2434 , 0 . 2819) 

(0 . 2159 , 0 . 2487 , 0 . 2850) 

(0 . 4508 , 0 . 5079 , 0 . 5757) 

⎤ ⎥ ⎦ 

P

 

 

 

(0 . 3420 , 0 . 3795 , 0 . 4237) 

(0 . 4734 , 0 . 5241 , 0 . 5838) 

(0 . 0842 , 0 . 0964 , 0 . 1094) 

⎤ ⎥ ⎦ 

P

Therefore, 

riority of ˜ C 
˜ a i 1 

= 

⎡ ⎣ 

(0 . 2100 , 0 . 2434 , 0 . 2811) 

(0 . 2172 , 0 . 2487 , 0 . 2824) 

(0 . 4604 , 0 . 5079 , 0 . 5631) 

⎤ ⎦ Priority of ˜ C 
˜ a i 2 

= 

⎡⎣

Priority of ˜ C 
˜ a i 3 

= 

⎡ ⎣ 

(0 . 3542 , 0 . 3795 , 0 . 4067) 

(0 . 4925 , 0 . 5241 , 0 . 5580) 

(0 . 0835 , 0 . 0964 , 0 . 1103) 

⎤ ⎦ Priority of ˜ C ˜ w 

= 

⎡⎣
Final priority of alternatives is calculated as follows: 

 ̃

 C ˜ a i 1 
˜ C ˜ a i 2 

˜ C ˜ a i 3 ] � [ ̃  C ˜ w 

] = 

⎡ ⎣ 

(0 . 2095 , 0 . 2434 , 0 . 2824) (0 . 2145 , 0 . 2487 ,

(0 . 1835 , 0 . 2143 , 0 . 2501) (0 . 1660 , 0 . 1929 , 

(0 . 3209 , 0 . 3795 , 0 . 4492) (0 . 4 4 42 . 0 . 5241 ,

�

⎡ ⎣ 

(0 . 3195 , 0 . 4706 , 0 . 70 0 0) 

(0 . 1870 , 0 . 2941 , 0 . 4629) 

(0 . 1524 , 0 . 2353 , 0 . 3549) 

⎤ ⎦ = 

⎡ ⎣ 

(0 . 1648

(0 . 1841 ,

(0 . 2838

In order to compare the final ranking, the centroids of the final

˜ 
 1 = 

0 . 1648 + 0 . 2669 + 0 . 4283 

3 

= 0 . 2867 , ˜ F 2 = 

0 . 1841 + 0 . 2971 +
3 

Therefore, ˜ A 1 < 

˜ A 2 < 

˜ A 3 . 

.5.5.3. Final ranking based on the AHP prioritizing method 3. Afte

ach criteria, the values of each column are normalized by the s

s calculated, which stands for the relative importance of alternati

eights for the comparisonwise matrix of alternative values compa

mportance of alternative 1 against criteria 1, the average of the sec

riteria 1, and so on. 

Then, the sum of each column is calculated, and each value in ea

s follows: ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) 

(3 . 7800 , 4 . 1087 , 4 . 4905) 
, 

(0 . 8800 , 1 . 0217 , 1 . 1810 ) 

(3 . 7621 , 4 . 0213 , 4 . 3409) 
, 

(1

(1

(0 . 8468 , 0 . 9787 , 1 . 1364) 

(3 . 7800 , 4 . 1087 , 4 . 4905) 
, 

(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) 

(3 . 7621 , 4 . 0213 , 4 . 3409) 
, 

(

(1

(0 . 4330 , 0 . 4792 , 0 . 5263) 

(3 . 7800 , 4 . 1087 , 4 . 4905) 
, 

(0 . 4536 , 0 . 4896 , 0 . 5221) 

(3 . 7621 , 4 . 0213 , 4 . 3409) 
, 

(1

(

= 

[ 

(0 . 2227 , 0 . 2434 , 0 . 2646) (0 . 1951 , 0 . 2434 , 0 . 3021) (0 . 2114 ,

(0 . 1960 , 0 . 2487 , 0 . 3124) (0 . 2304 , 0 . 2487 , 0 . 2658) (0 . 2214
(0 . 4231 , 0 . 5079 , 0 . 6110) (0 . 4412 , 0 . 5079 , 0 . 5860) (0 . 4882 ,

Then, in order to find the final priority weights of each alternat

verage of each row is calculated as follows: 

riority of ˜ C 
˜ a i 1 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

(0 . 2227 , 0 . 2434 , 0 . 2646)+ (0 . 1951 , 0 . 2434 , 0 . 3

3 

(0 . 1960 , 0 . 2487 , 0 . 3124)+ (0 . 2304 , 0 . 2487 , 0 . 2

3 

(0 . 4231 , 0 . 5079 , 0 . 6110)+ (0 . 4412 , 0 . 5079 , 0 . 58

3 

With the same approach: 

riority of ˜ C 
˜ a i 2 

= 

⎡ ⎢ ⎣ 

(0 . 1850 , 0 . 2143 , 0 . 2481) 

(0 . 1660 , 0 . 1929 , 0 . 2236) 

(0 . 5204 , 0 . 5929 , 0 . 6781) 

⎤ ⎥ ⎦ 

Priority of ˜ C 
˜ a i 3 

= 

⎡⎢⎣
riority of ˜ C ˜ w 

= 

⎡ ⎢ ⎣ 

(0 . 3386 , 0 . 4706 , 0 . 6755) 

(0 . 1955 , 0 . 2941 , 0 . 4475) 

(0 . 1505 , 0 . 2353 , 0 . 3566) 

⎤ ⎥ ⎦ 
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 0 . 2481) (0 . 3420 , 0 . 3795 , 0 . 4237) 

 0 . 2236) (0 . 4734 , 0 . 5241 , 0 . 5838) 

 0 . 6781) (0 . 0842 , 0 . 0964 , 0 . 1094) 

⎤ ⎥ ⎦ 

 , 0 . 2669 , 0 . 4525) 

 , 0 . 2971 , 0 . 5008) 

 , 0 . 4361 , 0 . 7313) 

⎤ ⎥ ⎦ 

 priority ranking values are calculated as follows: 

 0 . 5008 = 0 . 3249 , and 

˜ F 3 = 

0 . 2670 + 0 . 4361 + 0 . 7313 

3 

= 0 . 4782 . 

roduct of all values of each row in matrix ˜ C is calculated and their n th 

 relative importance of ˜ A 1 , ˜ A 2 , and 

˜ A 3 . 

ow is calculated as follows: 

 , 0 . 4792 , 0 . 5263) 
 , 0 . 4896 , 0 . 5221) 
 , 1 . 0 0 0 0 , 1 . 0 0 0 0) 

] 

 0 0 0 � 1 . 1364 � 0 . 5263) 
10 � 1 . 0 0 0 0 � 0 . 5221) 

095 � 2 . 2045 � 1 . 0 0 0 0) 

] 

= 

[ 

(0 . 36 6 6 , 0 . 4690 , 0 . 5981) 
(0 . 3992 , 0 . 5002 , 0 . 6166) 
(3 . 6391 , 4 . 2627 , 5 . 0915) 

] 

s fuzzy value of ( 1 3 , 
1 
3 , 

1 
3 ) , which prevents producing negative fuzzy 

) are calculated as follows: 

 . 598 1 

1 
3 ) 

 . 616 6 

1 
3 ) 

 . 091 5 

1 
3 ) 

⎤ ⎦ = 

[ 

(0 . 7157 , 0 . 7769 , 0 . 8425) 
(0 . 7363 , 0 . 7938 , 0 . 8511) 
(1 . 5381 , 1 . 6214 , 1 . 7203) 

] 

he same criteria are calculated by normalizing the matrix P by the sum 

 1 . 6214 , 1 . 7203) 

 1 . 6214 , 1 . 7203) 

 1 . 6214 , 1 . 7203) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ ⎢ ⎣ 

(0 . 2096 , 0 . 2434 , 0 . 2818) 

(0 . 2157 , 0 . 2487 , 0 . 2846) 

(0 . 4505 , 0 . 5079 , 0 . 5753) 

⎤ ⎥ ⎦ 

t criteria 1, is obtained as: 0.2434 + 0.2487 + 0.5079 ≈ 1. 

0 . 3411 , 0 . 3795 , 0 . 4225) 
0 . 4721 , 0 . 5241 , 0 . 5823) 
0 . 0843 , 0 . 0964 , 0 . 1094) 

] 

t criteria 2, is obtained as: 0.2143 + 0.199 + 0.5929 ≈ 1. 

t criteria 3, is obtained as: 0.3795 + 0.5241 + 0.0964 = 1. 

706 + 0.2941 + 0.2353 = 1. 

 , 0 . 2479) (0 . 3411 , 0 . 3795 , 0 . 4225) 
 , 0 . 2235) (0 . 4721 , 0 . 5241 , 0 . 5823) 
 0 . 6774) (0 . 0843 , 0 . 0964 , 0 . 1094) 

] 

 , 0 . 2669 , 0 . 4493) 
 , 0 . 2971 , 0 . 4972) 
 , 0 . 4361 , 0 . 7255) 

] 

 priority ranking values are calculated as follows: 

 0 . 4972 = 0 . 3233 , and 

˜ F 3 = 

0 . 2649 + 0 . 4361 + 0 . 7255 

3 

= 0 . 4755 . 
Final priorities of alternatives are calculated as follows: 

[ ̃  C ˜ a i 1 
˜ C ˜ a i 2 

˜ C ˜ a i 3 ] � [ ̃  C ˜ w 

] = 

⎡ ⎢ ⎣ 

(0 . 2097 , 0 . 2434 , 0 . 2819) (0 . 1850 , 0 . 2143 ,

(0 . 2159 , 0 . 2487 , 0 . 2850) (0 . 1660 , 0 . 1929 ,

(0 . 4508 , 0 . 5079 , 0 . 5757) (0 . 5204 . 0 . 5929 ,

�

⎡ ⎢ ⎣ 

(0 . 3386 , 0 . 4706 , 0 . 6755) 

(0 . 1955 , 0 . 2941 , 0 . 4475) 

(0 . 1505 , 0 . 2353 , 0 . 3566) 

⎤ ⎥ ⎦ 

= 

⎡ ⎢ ⎣ 

(0 . 1586

(0 . 1768

(0 . 2670

In order to compare the final ranking, the centroids of the final

˜ F 1 = 

0 . 1586 + 0 . 2669 + 0 . 4525 

3 

= 0 . 2927 , ˜ F 2 = 

0 . 1768 + 0 . 2971 +
3 

Therefore, ˜ A 1 < 

˜ A 2 < 

˜ A 3 . 

2.5.5.4. Final ranking based on the AHP prioritizing method 4. The p

roots are normalized. The resultant normalized values stand for the

In comparisonwise matrix ˜ C , the product of the values in each r[ 

(1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) � (0 . 8468 , 0 . 9787 , 1 . 1364) � (0 . 4330
(0 . 8800 , 1 . 0217 , 1 . 1810) � (1 . 0 0 0 0 , 1 . 0 0 0 0 , 1 . 0 0 0 0) � (0 . 4536
(1 . 90 0 0 , 2 . 0870 , 2 . 3095) � (1 . 9153 , 2 . 0426 , 2 . 2045) � (1 . 0 0 0 0

= 

[ 

(1 . 0 0 0 0 � 0 . 8468 � 0 . 4330 , 1 . 0 0 0 0 � 0 . 9787 � 0 . 4792 , 1 . 0
(0 . 8800 � 1 . 0 0 0 0 � 0 . 4536 , 1 . 0217 � 1 . 0 0 0 0 � 0 . 4896 , 1 . 18
(1 . 90 0 0 � 1 . 9153 � 1 . 0 0 0 0 , 2 . 0870 � 2 . 0426 � 1 . 0 0 0 0 , 2 . 3

As explained in Section 2.3.3 , power of 1 
3 can be considered a

values. The n th roots of the product values according to the Eq. (21

P = 

⎡ ⎣ 

(0 . 36 6 6 , 0 . 4690 , 0 . 5981) 
( 1 3 , 

1 
3 , 

1 
3 ) 

(0 . 3992 , 0 . 5002 , 0 . 6166) 
( 1 3 , 

1 
3 , 

1 
3 ) 

(3 . 6391 , 4 . 2627 , 5 . 0915) 
( 1 3 , 

1 
3 , 

1 
3 ) 

⎤ ⎦ = 

⎡ ⎣ 

(0 . 366 6 

1 
3 , 0 . 469 0 

1 
3 , 0

(0 . 399 2 

1 
3 , 0 . 500 2 

1 
3 , 0

(3 . 639 1 

1 
3 , 4 . 262 7 

1 
3 , 5

Then, the final priority values of alternatives compared against t

of the values, calculated as follows: ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(0 . 7157 , 0 . 7769 , 0 . 8425) 

(0 . 7157 , 0 . 7769 , 0 . 8425) + (0 . 7363 , 0 . 7938 , 0 . 8511) + (1 . 5381 ,

(0 . 7363 , 0 . 7938 , 0 . 8511) 

(0 . 7157 , 0 . 7769 , 0 . 8425) + (0 . 7363 , 0 . 7938 , 0 . 8511) + (1 . 5381 ,

(1 . 5381 , 1 . 6214 , 1 . 7203) 

(0 . 7157 , 0 . 7769 , 0 . 8425) + (0 . 7363 , 0 . 7938 , 0 . 8511) + (1 . 5381 ,

where the centroid values of priority weights of alternatives agains

with the same approach: 

Priority of ˜ C 
˜ a i 2 

= 

[ 

(0 . 1849 , 0 . 2143 , 0 . 2479) 
(0 . 1659 , 0 . 1929 , 0 . 2235) 
(0 . 5198 , 0 . 5929 , 0 . 6774) 

] 

Priority of ˜ C 
˜ a i 3 

= 

[ 

(
(
(

Priority of ˜ C ˜ w 

= 

[ 

(0 . 3371 , 0 . 4706 , 0 . 6739) 
(0 . 1930 , 0 . 2941 , 0 . 4413) 
(0 . 1500 , 0 . 2353 , 0 . 3551) 

] 

where the centroid values of priority weights of alternatives agains

where the centroid values of priority weights of alternatives agains

where the centroid values of priority of weights is obtained as: 0.4

Final priorities of alternatives are calculated as follows: [
˜ C ˜ a i 1 

˜ C ˜ a i 2 
˜ C ˜ a i 3 

]
�

[
˜ C ˜ w 

]
= 

[ 

(0 . 2096 , 0 . 2434 , 0 . 2818) (0 . 1849 , 0 . 2143
(0 . 2157 , 0 . 2487 , 0 . 2846) (0 . 1659 , 0 . 1929
(0 . 4505 , 0 . 5079 , 0 . 5753) (0 . 5198 . 0 . 5929 ,

�

[ 

(0 . 3371 , 0 . 4706 , 0 . 6739) 
(0 . 1930 , 0 . 2941 , 0 . 4413) 
(0 . 1500 , 0 . 2353 , 0 . 3551) 

] 

= 

[ 

(0 . 1575
(0 . 1755
(0 . 2649

In order to compare the final ranking, the centroids of the final

˜ F 1 = 

0 . 1575 + 0 . 2669 + 0 . 4493 

3 

= 0 . 2912 , ˜ F 2 = 

0 . 1755 + 0 . 2971 +
3 

Therefore, ˜ A < 

˜ A < 

˜ A . 
1 2 3 
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Table 2 

Numerical results of Kendall’s tau-b test of correlation significance of rank between the compared methods as an example for decision 

matrix with 15 alternatives and 15 criteria. 

Kendall’s tau-b SAW WPM CP TOPSIS AHP1 AHP2 AHP3 AHP4 VIKOR 

SAW Correlation Coefficient 1.0 0 0 .600 ∗∗ .619 ∗∗ .886 ∗∗ .619 ∗∗ .695 ∗∗ .638 ∗∗ .676 ∗∗ .637 ∗∗

Sig. (2-tailed) .002 .001 .0 0 0 .001 .0 0 0 .001 .0 0 0 .004 

N 15 15 15 15 15 15 15 15 15 

WPM Correlation Coefficient .600 ∗∗ 1.0 0 0 .562 ∗∗ .676 ∗∗ .676 ∗∗ .790 ∗∗ .657 ∗∗ .771 ∗∗ .292 

Sig. (2-tailed) .002 .004 .0 0 0 .0 0 0 .0 0 0 .001 .0 0 0 .184 

N 15 15 15 15 15 15 15 15 15 

CP Correlation Coefficient .619 ∗∗ .562 ∗∗ 1.0 0 0 .619 ∗∗ .429 ∗ .543 ∗∗ .410 ∗ .486 ∗ .558 ∗

Sig. (2-tailed) .001 .004 .001 .026 .005 .033 .012 .011 

N 15 15 15 15 15 15 15 15 15 

TOPSIS Correlation Coefficient .886 ∗∗ .676 ∗∗ .619 ∗∗ 1.0 0 0 .695 ∗∗ .810 ∗∗ .676 ∗∗ .752 ∗∗ .531 ∗

Sig. (2-tailed) .0 0 0 .0 0 0 .001 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .016 

N 15 15 15 15 15 15 15 15 15 

AHP1 Correlation Coefficient .619 ∗∗ .676 ∗∗ .429 ∗ .695 ∗∗ 1.0 0 0 .695 ∗∗ .943 ∗∗ .790 ∗∗ .266 

Sig. (2-tailed) .001 .0 0 0 .026 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .228 

N 15 15 15 15 15 15 15 15 15 

AHP2 Correlation Coefficient .695 ∗∗ .790 ∗∗ .543 ∗∗ .810 ∗∗ .695 ∗∗ 1.0 0 0 .714 ∗∗ .905 ∗∗ .319 

Sig. (2-tailed) .0 0 0 .0 0 0 .005 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .148 

N 15 15 15 15 15 15 15 15 15 

AHP3 Correlation Coefficient .638 ∗∗ .657 ∗∗ .410 ∗ .676 ∗∗ .943 ∗∗ .714 ∗∗ 1.0 0 0 .810 ∗∗ .319 

Sig. (2-tailed) .001 .001 .033 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .148 

N 15 15 15 15 15 15 15 15 15 

AHP4 Correlation Coefficient .676 ∗∗ .771 ∗∗ .486 ∗ .752 ∗∗ .790 ∗∗ .905 ∗∗ .810 ∗∗ 1.0 0 0 .266 

Sig. (2-tailed) .0 0 0 .0 0 0 .012 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .228 

N 15 15 15 15 15 15 15 15 15 

VIKOR Correlation Coefficient .637 ∗∗ .292 .558 ∗ .531 ∗ .266 .319 .319 .266 1.0 0 0 

Sig. (2-tailed) .004 .184 .011 .016 .228 .148 .148 .228 

N 15 15 15 15 15 15 15 15 15 

Table 3 

Numerical results of Spearman’s rho test of correlation significance of rank between the compared methods as an example for decision 

matrix with 15 alternatives and 15 criteria. 

Spearman’s rho SAW WPM CP TOPSIS AHP1 AHP2 AHP3 AHP4 VIKOR 

SAW Correlation Coefficient 1.0 0 0 .768 ∗∗ .811 ∗∗ .964 ∗∗ .779 ∗∗ .832 ∗∗ .793 ∗∗ .811 ∗∗ .777 ∗∗

Sig. (2-tailed) .001 .0 0 0 .0 0 0 .001 .0 0 0 .0 0 0 .0 0 0 .001 

N 15 15 15 15 15 15 15 15 15 

WPM Correlation Coefficient .768 ∗∗ 1.0 0 0 .739 ∗∗ .843 ∗∗ .796 ∗∗ .925 ∗∗ .811 ∗∗ .907 ∗∗ .362 

Sig. (2-tailed) .001 .002 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .185 

N 15 15 15 15 15 15 15 15 15 

CP Correlation Coefficient .811 ∗∗ .739 ∗∗ 1.0 0 0 .814 ∗∗ .604 ∗ .739 ∗∗ .579 ∗ .682 ∗∗ .706 ∗∗

Sig. (2-tailed) .0 0 0 .002 .0 0 0 .017 .002 .024 .005 .003 

N 15 15 15 15 15 15 15 15 15 

TOPSIS Correlation Coefficient .964 ∗∗ .843 ∗∗ .814 ∗∗ 1.0 0 0 .825 ∗∗ .918 ∗∗ .829 ∗∗ .889 ∗∗ .665 ∗∗

Sig. (2-tailed) .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .007 

N 15 15 15 15 15 15 15 15 15 

AHP1 Correlation Coefficient .779 ∗∗ .796 ∗∗ .604 ∗ .825 ∗∗ 1.0 0 0 .850 ∗∗ .986 ∗∗ .925 ∗∗ .323 

Sig. (2-tailed) .001 .0 0 0 .017 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .240 

N 15 15 15 15 15 15 15 15 15 

AHP2 Correlation Coefficient .832 ∗∗ .925 ∗∗ .739 ∗∗ .918 ∗∗ .850 ∗∗ 1.0 0 0 .850 ∗∗ .979 ∗∗ .411 

Sig. (2-tailed) .0 0 0 .0 0 0 .002 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .128 

N 15 15 15 15 15 15 15 15 15 

AHP3 Correlation Coefficient .793 ∗∗ .811 ∗∗ .579 ∗ .829 ∗∗ .986 ∗∗ .850 ∗∗ 1.0 0 0 .918 ∗∗ .364 

Sig. (2-tailed) .0 0 0 .0 0 0 .024 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .182 

N 15 15 15 15 15 15 15 15 15 

AHP4 Correlation Coefficient .811 ∗∗ .907 ∗∗ .682 ∗∗ .889 ∗∗ .925 ∗∗ .979 ∗∗ .918 ∗∗ 1.0 0 0 .351 

Sig. (2-tailed) .0 0 0 .0 0 0 .005 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .200 

N 15 15 15 15 15 15 15 15 15 

VIKOR Correlation Coefficient .777 ∗∗ .362 .706 ∗∗ .665 ∗∗ .323 .411 .364 .351 1.0 0 0 

Sig. (2-tailed) .001 .185 .003 .007 .240 .128 .182 .200 

N 15 15 15 15 15 15 15 15 15 
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Notably, comparison of the calculated values for ˜ F 1 , ̃  F 2 , and 

˜ F 3 
sing four different AHP prioritizing methods shows that those pri-

rity values are significantly close together. In addition, in all four

ypes of AHP prioritizing methods, the sum of the centroid values

n final priority values of comparisonwise matrices of alternatives

gainst three different criteria ( ̃ c ˜ a i 1 
, ̃  c ˜ a i 2 

, and ˜ c ˜ a i 3 
) yields 1. 

.5.6. Final ranking based on ELECTRE 

Based on the same numerical example that was investigated

bove in order to develop the concordance and discordance sets
nd matrices, the weighted and normalized decision matrix should

e defuzzified. Therefore, all fuzzy values are defuzzified through

he selected defuzzification method. In order to compare the fi-

al rankings of different alternative through several decision rank-

ng techniques, the same defuzzification method should be used

hroughout all decision ranking techniques. Here, the centroid

ethod is applied to defuzzify the fuzzy values. The defuzzi-

ed form of the weighted normalized decision-making matrix and
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Fig. 2. Statistical results of correlation significance among different outranking methods applied on decision matrix with 3 alternatives versus 3 criteria. 
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weights of criteria is as follows: 

weighted normalized decision matrix = 

[ 

0 . 2269 , 0 . 1079 , 0 . 1734 

0 . 2306 , 0 . 0973 , 0 . 2391 

0 . 4706 , 0 . 2960 , 0 . 0448 

]

w 1 = 0 . 4751 , w 2 = 0 . 3016 , and w 3 = 0 . 2422 

where A 1 ={0.2269, 0.1079, 0.1734}, A 2 ={0.2306, 0.0973,

0.2391}, and A 3 ={0.4706, 0.2960, 0.0448} are the values of

alternatives A 1 , A 2 , and A 3 against criteria 1, 2, and 3 after the

defuzzification. 

In comparisonwise matrices, among the alternatives

A 1 ={0.2269, 0.1079, 0.1734}, A 2 ={0.2306, 0.0973, 0.2391},

and A 3 ={0.4706, 0.2960, 0.0448}, concordance and discordance

sets are developed as follows: 

In the comparison of alternatives 1 and 2, if a 1 j ≥ a 2 j , then 1,

otherwise 0. For example, ( if 0.2269 ≤ 0.2306, then 0), (if 0.1097

> 0.0973, then 1), and (if 0.1734 < 0.2391, then 0). 

2.5.6.1. Developing the concordance matrix. The concordance sets
and related values in the concordance matrix for C ij for i = 1, 2,

and 3 and j = 1, 2, and 3 are as follows: 
d  
 12 = { 0 , 1 , 0 } , C 12 = 0 � w 1 + 1 � w 2 + 0 � w 3 = 0 . 3016 

 13 = { 0 , 0 , 1 } , C 13 = 0 � w 1 + 0 � w 2 + 1 � w 3 = 0 . 2422 

 21 = { 1 , 0 , 1 } , C 21 = 1 � w 1 + 0 � w 2 + 1 � w 3 = 0 . 7173 

 23 = { 0 , 0 , 1 } , C 23 = 0 � w 1 + 0 � w 2 + 1 � w 3 = 0 . 2422 

 31 = { 1 , 1 , 0 } , C 31 = 1 � w 1 + 1 � w 2 + 0 � w 3 = 0 . 7766 

 32 = { 1 , 1 , 0 } , C 32 = 1 � w 1 + 1 � w 2 + 0 � w 3 = 0 . 7766 

Finally, the concordance matrix is developed as follows: 
 

 

− C 12 C 13 

C 21 − C 23 

C 31 C 32 −

⎤ ⎦ = 

⎡ ⎣ 

− 0 . 3016 0 . 2422 

0 . 7173 − 0 . 2422 

0 . 7766 0 . 7766 −

⎤ ⎦ 

The discordance set is the complementary of concordance sets;

herefore: 

D 12 = { 1 , 0 , 1 } , D 13 = { 1 , 1 , 0 } , D 21 = { 0 , 1 , 0 } , D 23 = { 1 , 1 , 0

D 31 = { 0 , 0 , 1 } , and D 32 = { 0 , 0 , 1 } 
.5.6.2. Developing the discordance matrix. Each value in the dis-

ordance matrix indicates the relative degree of inferiority of two

ompared alternatives A k and A l . Discordance index values are cal-

ulated as follows: 

By considering Eq. (41) for calculating the values of discor-

ance matrix, discordance sets, and using the defuzzified values in
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Fig. 3. Statistical results of correlation significance among different outranking methods applied on decision matrix with 8 alternatives versus 4 criteria. 
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eighted normalized decision matrix, all discordance values of the

iscordance matrix are calculated as follows: 

 12 = 

ma x j∈ D 12 

(∣∣v 1 j − v 2 j 
∣∣)

ma x j∈ J 
(∣∣v 1 j − v 2 j 

∣∣)
= 

max of | 0 . 2269 −0 . 2306 | , and | ( 0 . 1734 −0 . 2391 ) |} 
max of | 0 . 2269 −0 . 2306 | , | 0 . 1079 −0 . 0973 | , and | ( 0 . 1734 −0 . 2391 ) |}

= 

0 . 0657 

0 . 0657 
= 1 

With the same approach, d 13 , d 21 , d 23 , d 31 , and d 32 are calcu-

ated as follows: 

 13 = 

ma x j∈ D 13 ( | ̃ v 1 j −˜ v 3 j | ) 
ma x j∈ J ( | ̃ v 1 j −˜ v 3 j | ) = 1 , d 21 = 

ma x j∈ D 21 ( | ̃ v 2 j −˜ v 1 j | ) 
ma x j∈ J ( | ̃ v 2 j −˜ v 1 j | ) = 0 . 1621 , 

 23 = 

ma x j∈ D 23 ( | ̃ v 2 j −˜ v 3 j | ) 
ma x j∈ J ( | ̃ v 2 j −˜ v 3 j | ) = 1 , d 31 = 

ma x j∈ D 31 ( | ̃ v 3 j −˜ v 1 j | ) 
ma x j∈ J ( | ̃ v 3 j −˜ v 1 j | ) = 0 . 5278 , 

nd d 32 = 

ma x j∈ D 32 ( | ̃ v 3 j −˜ v 2 j | ) 
ma x j∈ J ( | ̃ v 3 j −˜ v 2 j | ) = 0 . 8099 

Finally, the discordance matrix is developed as follows: 
 

 

− d 12 d 13 

d 21 − d 23 

d 31 d 32 −

⎤ ⎦ = 

⎡ ⎣ 

− 1 . 0 0 0 0 1 . 0 0 0 0 

0 . 1621 − 1 . 0 0 0 0 

0 . 5278 0 . 8099 −

⎤ ⎦ 

In the comparison of two alternatives A k and A l , a higher value

f the concordance index represents the more preferable alterna-

ive, and a higher discordance index value represents a less favor-

ble A in comparison with A . 
k l 

w

In order to develop the concordance dominance matrix, a

hreshold value is calculated based on the concordance index val-

es of the concordance matrix. This threshold value is calculated

s follows: 

¯
 = 

( 

m ∑ 

k =1 

m ∑ 

c kl 

l=1 

) / 

( m ( m − 1 ) ) = 

3 (∑ 

k =1 

3 ∑ 

c kl 

)
l=1 

/ 

( 3 ( 3 − 1 ) ) 

= 

0 . 3016 + 0 . 2422 + 0 . 7173 + 0 . 2422 + 0 . 7766 + 0 . 7766 

6 

= 0 . 5095 

here k � = l, f kl = 1 if c kl ≥ c̄ , and f kl = 0 i f c kl < c̄ . 

Therefore, dominance concordance matrix is developed as fol-

ows: 

dominance concordance matrix = f kl = 

⎡ ⎣ 

− 0 0 

1 − 0 

1 1 −

⎤ ⎦ 

In order to develop the discordance dominance matrix, a

hreshold value is calculated based on the discordance index val-

es of concordance matrix. This threshold value is calculated as

ollows: 

 ̄= 

( 

m ∑ 

k =1 

m ∑ 

l=1 

d kl 

) / 

( m ( m − 1 ) ) = 

3 (∑ 

k =1 

3 ∑ 

l=1 

d kl 

)/ 

( 3 ( 3 − 1 ) ) 

= 

1 + 1 + 0 . 1621 + 1 + 0 . 5278 + 0 . 8099 

6 

= 0 . 7500 

here k � = l; f = 1 i f d ≥ d̄ , and f = 0 i f d < d̄ . 
kl kl kl kl 
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Fig. 4. Statistical result of correlation significance among different outranking methods applied on decision matrix with 8 alternatives versus 8 criteria. 
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Therefore, the dominance concordance matrix is developed as

follows: 

domi nance disc orda nce matr ix = g kl = 

⎡ ⎣ 

− 1 1 

0 − 1 

0 1 −

⎤ ⎦ 

In order to determine the aggregate dominance matrix, the in-

tersection of the two concordance and discordance dominance ma-

trices is calculated as follows: 

e kl = f kl .g kl = 

⎡ ⎣ 

− ( 0 ×1 ) ( 0 ×1 ) 

( 1 ×0 ) − ( 0 ×1 ) 

( 1 ×0 ) ( 1 ×1 ) −

⎤ ⎦ = 

⎡ ⎣ 

− 0 0 

0 − 0 

0 1 −

⎤ ⎦ 

where each individual array value in the matrix e kl is the product

of arrays of concordance and discordance matrices with the same

positions. 

In developing the final ranking, if e kl = 1, A k is preferred to

A l . The aggregate matrix A 3 has dominance on A 2 , but A 1 and A 2 

can be categorized as the same rank, because none of them shows

clear dominance to the other one. Therefore, ˜ A ≈ ˜ A and ̃

 A < 

˜ A . 
1 2 2 3 
.5.7. Final ranking based on VIKOR 

Considering the basic decision matrix, the ideal and anti-ideal

oints are developed as follows: 

The maximum and minimum values of alternatives for the

ame criteria are taken for finding the ideal and anti-ideal points

s follows: 

max of ˜ x i j for i and j = 1 , 2 , and 3 

= ( 4 8 . 5 , 4 8 . 5 , 4 8 . 5 ) , ( 85 , 85 , 85 ) , and ( 88 . 5 , 88 . 5 , 88 . 5 ) 

min of ˜ x i j for i and j = 1 , 2 , and 3 

= ( 21 , 21 , 21 ) , ( 25 , 25 , 25 ) , and ( 14 , 14 , 14 ) 

In VIKOR, ˜ S i and 

˜ R i are calculated as shown below. 

˜ 
 1 = 

n ∑ 

i =1 

˜ w j . 

˜ f ∗
j 
− ˜ f 1 j 

˜ f ∗
i 

− ˜ f i −
= ( 0 . 5962 , 0 . 7871 , 0 . 9907 ) 

˜ 
 2 = ( 0 . 5586 , 0 . 7169 , 0 . 8928 ) 

˜ 
 3 = ( 0 . 1514 , 0 . 2489 , 0 . 3632 ) 

here f ∗
i 

, f i − , and f ij are parameters derived through Eqs. (45) and

 47 ). 

˜ 
 1 = max 

( 

˜ w j . 

˜ f ∗
j 
− ˜ f 1 j 

˜ f ∗
i 

− ˜ f i −

) 

= 0 . 0824 , ˜ R 1 = 0 . 0038 , and 

˜ R 1 = 0 . 0061
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Fig. 5. Statistical result of correlation significance among different outranking methods applied on decision matrix with 15 alternatives versus 8 criteria. 
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For calculating Q i , considering Eq. (50) , ˜ Q 1 = 1 . 0 0 0 0 , ˜ Q 2 =
 . 9140 , and ˜ Q 3 = 0 . 0 0 0 0 . Therefore, based on the VIKOR method,

˜ 
 1 ≈ ˜ A 2 < 

˜ A 3 . 

.6. Statistical comparison of ranking methods using Kendall’s tau-b 

nd Spearman’s rho 

While several alternatives in a decision matrix are ranked by

everal decision ranking techniques, the produced ranks for those

lternatives would have different levels of similarities. Conceptu-

lly, in order to investigate the similarities of the produced ranks,

he Kendall’s tau-b and Spearman’s rho were selected to analyze

he produced ranks through different decision-ranking methods in

erms of their pairwise correlations. These two statistical tests are

on-parametric tests that are used to measure the ordinal asso-

iation between the two measured quantities. The Kendall’s tau-

 represents the similarities in the ordering of ranked quantities.

or identical produced ranks, the Kendall’s correlation coefficient

ould be 1, and for full differentiated produced ranks (completely

issimilar), the Kendall’s correlation coefficient would be −1. Ba-

ically, the Kendall’s tau-b and Spearman’s rho are considered as

wo accepted measures of non-parametric rank correlations that

re used for bivariate analysis of the values’ ranks. In more de-

ail, Spearman’s rank correlation coefficient represents a monotonic
unction describing the strength of the linear relationship between

he produced ranks. Conceptually, Spearman’s rho is equal to the

earson correlation coefficient between the obtained ranks of two

easured variables, which here are two sets of alternatives. 

Since the same sort of rank ranges are produced for all

ecision-making techniques (except VIKOR and ELECTRE); there-

ore, the mean of the ranks from the application of all techniques

ill be same. As a result, non-parametric tests should be used

o see how the final ranks compare among the methods. In both

eveloped tests on ranked value, the objective is to show how

ifferent decision-making methods lead to similar and dissimilar

anks. These two nonparametric tests were performed to describe

he strength of correlation between the rank orders of two groups.

oth Kendall’s tau-b and Spearman’s rho are performed for inves-

igating the correlation of rank orders for each pair of two groups. 

.6.1. Kendall’s tau-b 

Kendall’s tau-b test is a coefficient indicates the concordant and

iscordant association between the ranks of two compared groups

f ranks. Kendall’s tau-b coefficient is calculated using Eq. (64) as

ollows [43] : 

B = 

n c − n d √ 

( n 0 − n 1 ) ( n 0 − n 2 ) 
(64) 
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Fig. 6. Statistical result of correlation significance among different outranking methods applied on decision matrix with 15 alternatives versus 15 criteria. 
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where n 0 = n ( n −1)/2, n 1 = 

∑ 

i t i ( t i − 1 ) / 2 , n 2 = 

∑ 

j u j ( u j − 1 ) / 2 , n c
is the number of concordant pairs, n d is the number of discordant

pairs, t i is the number of tied values in the i th group of ties for the

first quantity, and u j is the number of tied values in the j th group

of ties for the second quantity [44] . 

This formulation yields τ B between −1 and + 1. The value of −1

stands for 100% negative association, and the value of + 1 stands

for 100% positive associations. The value of zero stands for the ab-

sence of any association. 

2.6.2. Spearman’s rho [43] 

In order to assess the correlation between the bivariate pairs

of data in the form of rank values, Spearman’s rho is calculated.

The Spearman rank correlation coefficient, denoted by ρ , is defined

using Eq. (65) as follows: 

ρ = 

∑ n 
i =1 { ( x i − x̄ )( y i − ȳ ) } √ ∑ n 

i =1 ( x i − x̄ ) 
2 

√ ∑ n 
i =1 ( y i − ȳ ) 

2 

(65)

where x i and y i are the ranks of each variable in group 1 and

group 2, and x̄ and ȳ are the averages of rank values in groups 1

and 2, respectively. This formulation yields ρ between −1 and + 1.

Positive values of ρ indicate that higher values of one group are

associated with higher values of the other group, and vice versa.
egative values of ρ indicate that higher values of one group are

ssociated with lower values of the other group. Higher absolute

alues indicate stronger associations between the two compared

ets of ranks. 

.6.3. Sensitivity of final ranks to the selected fuzziness intervals 

The fuzziness interval is related to the uncertainty level, degree

f bias, and random nature of the values. The fuzziness intervals

re selected from different biased and unbiased distributions. The

ain concept behind selecting the fuzziness values from different

istributions is to investigate the sensitivity of final rankings to the

uzziness levels. 

.6.4. Sensitivity of the similarities and dissimilarities of different 

ecision ranking methods to dimensions of the decision matrix 

In this section, the same decision-making matrices are sim-

lated in the form of different matrix sizes, and the fi-

al rankings are compared to each other statistically. Statis-

ical analysis is performed to investigate the role of matrix

ize on the final rankings. In the simulation process, five dif-

erent decision matrices with different combinations of alter-

atives and criteria of D 3 , 3 (3 alternatives and 3 criteria ) , D 8 , 4 ,

 8 , 8 , D 15 , 8 , D 15 , 15 were defined. 
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Fig. 7. Multiple comparison of statistical results of correlation significance percentage among different outranking methods applied on symmetrical decision matrices with 

3, 8, and 15 alternatives. 
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Fig. 8. Multiple comparison of statistical results of correlation significance percentage among different outranking methods applied on decision matrices with D8,4 (Decision 

matrix with 8 alternatives and 4 criteria) and D8,8. 
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Fig. 9. Multiple comparison of statistical results of correlation significance percentage among different outranking methods applied on decision matrices with D15,8, and 

D15,15. 
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3. Numerical results and discussion 

Tables 2 and 3 represent a sample of the statistical results of

the Kendall’s tau-b and Spearman’s rho tests developed to investi-

gate the significant correlation percentage among the order of the

ranks developed by 9 different methods on the same decision ma-

trix with 15 alternatives and 15 criteria (D 15,15 ). The significant val-

ues in Tables 2 and 3 represent statistically indistinguishable corre-

lation rates between both Kendall’s tau-b and Spearman’s rho tests.

By assuming that α-level = 0.05, the results of statistical analysis

in Tables 2 and 3 indicate that there is extremely similar perfor-

mances between two tests of Kendall’s tau-b and Spearman’s rho;

therefore, Kendall’s tau-b has been selected to evaluate the sim-

ilarity and dissimilarity of the final ranks produced by different

decision-ranking techniques. Whenever reported p-values less than

α-level = 0.05, which indicates that there is a statistically signifi-

cant correlation among the produced ranks of the two compared

methods. 

Figs. 2–6 illustrate the statistical results of the corre-

lation significance percentages among 9 different ranking

methods applied on decision matrices with the random left

and right spreads of triangular fuzzy values and sizes of

D 3, 3 (3 alternative and 3 criteria), D 8, 4 (8 alternative and 4 criteria),

D 8, 8 (8 alternative and 8 criteria), D 15, 8 (15 alternative and 8 crite-

ria), and D 15, 15 (15 alternative and 15 criteria). Generally, the

ELECTRE method did not produce a complete sorting of alterna-

tives; therefore, we excluded it from the statistical comparison

of the performances of the ranking methods. Fig. 7 illustrates

multiple comparisons of statistical results of correlation signifi-

cance percentages among different ranking methods applied on

symmetrical decision matrices with 3, 8, and 15 alternatives.
ig. 8 illustrates multiple comparisons of statistical results of

orrelation significance percentage among different ranking meth-

ds applied on decision matrices with D 8,4 (8 alternatives and

 criteria), and D 8,8 . Fig. 9 illustrates multiple comparisons of

tatistical results of correlation significance percentage among

ifferent ranking methods applied on decision matrices with D 15,8 ,

nd D 15,15 . Fig. 10 illustrates multiple comparisons of statistical

esults of correlation significance percentage among different

anking methods applied on decision matrices of D 3, 3 , D 8, 4 ,

D 8, 8 , D 15, 8 , and D 15, 15 . Fig. 11 illustrates multiple comparisons of

tatistical results of correlation significance percentage applied on

 8, 8 with 4 uncertainty levels. Significantly similar patterns were

bserved for other evaluated sizes of matrices D 3, 3 , D 8, 4 , D 15, 8 ,

and D 15, 15 with 4 uncertainty levels. Fig. 12 shows the agreement

ercentage between the methods in selecting the first rank. In

rder to compare the performance of ranking methods in selecting

he first rank, 8 methods were compared with SAW. 

The numerical results in Fig. 2 show that, for the 50 sets of de-

ision matrices of D 3, 3 (3 alternative and 3 criteria), SAW, in com-

arison with the other 8 methods, had the highest significant cor-

elation percentage (76%) with the AHP2; WPM had the high-

st significant correlation percentage (68%) with SAW; CP had the

ighest significant correlation percentage (66%) with the AHP2;

OPSIS has the highest significant correlation percentage (50%)

ith the VIKOR; and AHP1, AHP2, AHP3 and AHP4 behave similarly

nd have the highest significant correlation percentage with each

ther. AHP1 and AHP3 produced 100% correlation percentages.

HP1 had the lowest similar behavior with TOPSIS. VIKOR had sim-

larly significant correlation percentages with the other methods.

he same interpretative approach applies for Figs. 3 through 6. 
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Fig. 10. Multiple comparison of statistical results of correlation significance percentage among different outranking methods applied on decision matrices of D 3, 3 , D 8, 4 , 

D 8, 8 , D 15, 8 , and D 15, 15 . 
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Numerical results in Fig. 7 indicate that, as the size of the deci-

ion matrices (number of alternatives) increases, the percentage of

tatistically significant correlations increases. 

Graphical illustration of the statistical analysis in Fig. 8 shows

hat, statistically, for matrices with an equal number of alterna-

ives, as the number of criteria increased, the statistically signif-

cant correlation percentage decreased as investigated for 50 sets

f decision matrices of D 8,4 and D 8,8 . 

The graphical illustration of the statistical analysis in Fig.

 shows that, statistically, for matrices with an equal number of

lternatives, as the number of criteria increases, the statistically

ignificant correlation percentage decreases as investigated for 50

ets of decision matrices of D 15,8 and D 15,15 . However, the differ-

nce in the significant correlation percentage for matrices with 15

lternatives with a different number of criteria is less than ma-

rices with 8 alternatives, because, as shown in Figs. 8 and 9 , with

n increasing number of alternatives, the percentage of statistically

ignificant correlation increased. 

. Conclusion 

The findings rank MCDMs under fuzzy environment by the per-

ormances and show when simple MCDMs match the performance

f complicated MCDMs, making it possible to optimize results

hile minimizing computational effort. The findings also reveal

everal general results. Statistical analysis of the decision matrices

 8, 4 , D 8, 8 , D 15, 8 , and D 15, 15 , shown in Figs. 7 and 10 , indicates

hat SAW, TOPSIS, WPM, AHP1, AHP2, AHP3, and AHP4 have similar
erformances; AHP1 and AHP3 produced identical performances,

nd AHP2 and AHP4 produced very similar performances. In con-

rast, as compared to the other methods, CP and VIKOR had a less

ignificant correlation percentage. Notably, Fig. 11 shows that when

he uncertainty levels are raised through equal increases in the left

nd right spreads (i.e., when the uncertainty is changed symmetri-

ally) there was no significant impact on the final ranking. Fig. 12 ,

or its part, shows the performance of the ranking methods com-

ared with SAW in finding the first rank among all alternatives.

ince VIKOR, in comparison with the other methods, categorizes

everal alternatives with the same ranks, it exhibits more similarity

o SAW. However, when the other ranking methods are compared

o SAW, SAW and TOPSIS exhibit higher similarity for choosing the

rst rank from decision matrices D 8, 4 , D 8, 8 , D 15, 8 , and D 15, 15 . 

The numerical results, along with the examples for each indi-

idual method, show that SAW, WPM, CP, and TOPSIS are com-

utationally simple to apply; in contrast, ELECTRE, VIKOR, and the

our types of AHP are computationally large and elaborate. In com-

arison with the other evaluated methods, SAW proved to be an

specially simple method to understand and apply in ranking the

lternatives of a decision matrix. 

The graphical representation of the results of statistical analy-

is, shown in Fig. 7 , indicates that in most of the evaluated meth-

ds except VIKOR, by increasing the size of the decision matrix

number of alternatives), the percentage of significant correlation

mong the ranks of pairwise compared methods increases regu-

arly for SAW versus WPM, CP, TOPSIS, AHP1, AHP2, AHP3, AHP4,

nd VIKOR; WPM versus SAW, TOPSIS, AHP1, AHP2, AHP3, and
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Fig. 11. Multiple comparison of statistical results of correlation significance percentage applied on D 8, 8 with 4 uncertainty levels. 

Fig. 12. Pairwise comparison of outranking methods with SAW in introducing the first rank alternatives among all potential alternatives. 
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HP4; TOPSIS versus SAW, WPM, AHP1, AHP2, AHP3, and AHP4;

HP1 versus SAW, WPM, AHP2, AHP3, and AHP4; AHP2 versus

AW, WPM, AHP1, AHP3, and AHP4; AHP3 versus SAW, WPM,

HP1, and AHP4; and AHP4 versus SAW, WPM, AHP1, AHP3, and

HP4. Statistical results show that VIKOR has the lowest signif-

cant correlation percentage with the other methods. Significant

orrelation among the methods demonstrates strong similarity of

he ranks’ orders between pairwise compared methods applied on

he same sort of alternatives. As the size of matrices increased, the

imilarity of rank orders increased. Numerical results in Figs. 8 and

 demonstrate that increasing the number of criteria in decision

atrices with equal numbers of alternatives led to a lower per-

entage of significant correlation among the ranks obtained from

ifferent methods. Since some methods produce similar ranks, and

onsidering that different methods have different levels of diffi-

ulty, it is rational to use the easiest and simplest method for de-

eloping the full range of ranks on the same decision matrices. 

For the investigated decision matrix sizes, the Kendall’s tau-b

orrelation coefficients have been provided as supplementary data

ets through the excel files, in which they provide reliable sources

or investigating the correlation strengths between the produced

anks by different MCDM techniques applied on the same decision

atrices. In addition to the multiple comparison of statistical re-

ults of correlation significance percentage, it is recommended to

nvestigate the magnitude of the correlation coefficients among the

roduced ranks by different techniques when those techniques are

pplied on the same decision matrices. 

The methods selected and discussed through this paper are

lassic, but still in use; for example, the Analytical Hierarchy Pro-

ess has been in continuous use since the 1970s. However, there

s a need to discuss and investigate recently developed techniques,

uch as stepwise weight assessment ratio analysis (SWARA), the

eighted aggregated sum product assessment (WASPAS), additive

atio assessment (ARAS), the method of complex proportional as-

essment (COPRAS), multi-objective optimization by ratio analy-

is (MOORA), and MOORA plus a full multiplicative form (MULTI-

OORA). The evaluation of these techniques, absent in this paper,

s suggested as a future direction of research. 
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