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ABSTRACT

Different multi-criteria decision-making (MCDM) techniques require different levels of computational in-
tensity and may produce different outputs, so selecting an appropriate technique largely determines the
quality of the recommended decision and the effort required to obtain that decision. In most real envi-
ronments, criteria and their constraints are not deterministic and cannot be specified precisely; therefore,
those criteria are uncertain or fuzzy. To facilitate the selection of an appropriate MCDM method under a
fuzzy environment, this study investigates and statistically compares the performances of ten commonly
used MCDM techniques: simple additive weights (SAW), weighted product method (WPM), compromise
programming (CP), technique for order preference by similarity to ideal solution (TOPSIS), four types of
analytical hierarchy process (AHP), VIKOR (in Serbian: VIseKriterijumska Optimizacija I Kompromisno Re-
senje), and ELECTRE (in French: ELimination Et Choix Traduisant la REalité). These techniques’ perfor-
mances were compared using fuzzy criteria and constraints, matching the conditions usually found in
real applications. To conduct the comparisons, the 10 multi-criteria decision ranking methods were ap-
plied to 1250 simulated sets of decision matrices with fuzzy triangular values, and 12,500 sets of ranks
were analyzed to compare the ranking methods. SAW and TOPSIS had statistically similar performances.
ELECTRE was not preferable in providing full, sorted ranks among the alternatives. VIKOR considering its
ranking process, for specific conditions, assigns identical ranks for several alternatives; when full, sorted
ranks are required, VIKOR is unfavorable, although it is a powerful technique in introducing the closest
alternative to the ideal condition. Types 1 and 3 of AHP and types 2 and 4 of AHP had close perfor-
mances. Notably, no ranking method was significantly sensitive to uncertainty levels when uncertainty
changed symmetrically.
© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

tional intensity, when a simple and a complicated decision-ranking
method produce similar sorts of ranks, using the simplest method

Different multi-criteria decision-making (MCDM) techniques re-
quire different levels of effort and produce different outputs so
the choice of which MCDM technique to use strongly influences
the quality of the recommended decision and the amount of effort
required to obtain that decision. While different decision-ranking
methods may rank specific alternatives in different orders, and dif-
ferent decision-ranking methods have different levels of computa-
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can save computation time and effort without sacrificing quality.
This paper reviews the literature on MCDM techniques that
have been used in diverse engineering projects, and then it evalu-
ates and compares the performances of those techniques in terms
of similarities and dissimilarities. Through theoretical, program-
ming, and simulation work, this study develops the extensions of
each individual selected MCDM technique, and it analytically in-
vestigates and statistically compares the performances of ten com-
monly used MCDM techniques. Considering that, in most real en-
vironments, criteria and their constraints are not deterministic and
cannot be specified precisely, the MCDM techniques are evaluated

2214-7160/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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under a fuzzy environment, with criteria and constraints repre-
sented as uncertain or fuzzy values.

The detailed objectives of this paper include an analytical eval-
uation of the different decision ranking methods and a statisti-
cal evaluation of the different ranking methods applied to deci-
sion matrices with fuzzy values. Overall, we statistically evaluated:
1) the number of alternatives, 2) the number of criteria, 3) the
practice of selecting criteria weights from different distributions,
4) fuzziness level, and 5) the number of replications. These statis-
tical evaluations allowed us to see how these five criteria affect the
correlation among the final sorting of ranks when those ranks are
obtained through different ranking methods applied on the same
decision matrices. The developed decision matrices include trian-
gular fuzzy numbers with both random left and right spreads and
5 levels of biased, equal, left, and right spreads. For each category,
50 sets of decision matrices were simulated. In order to investigate
the role played by the size of the decision matrices (i.e., the num-
ber of alternatives and the number of criteria), 5 different decision
matrices of D3,3 (3 alternatives, 3 criteria), D8,4 (8 alternatives, 4
criteria), D8.8 (8 alternatives, 8 criteria), D15,8 (15 alternatives, 8
criteria), and D15,15 (15 alternatives, 15 criteria) were defined. For
each individual decision matrix, 300 sets of matrices with fuzzy
values were produced (simulated) by MATLAB and designed in the
form of that decision matrix (50 sets for random left and right
spreads and 250 sets for 5 levels of biased symmetrical spreads).
In order to show the extension of each individual decision-making
method, a decision matrix with 3 alternatives and 3 criteria was
ranked through all 10 decision ranking methods. The 10 selected
decision ranking methods were applied on each decision matrix,
and the alternatives of each decision matrix were ranked. Overall,
we statistically evaluated 300 different sets of data designed for 5
different decision sizes and 10 different ranking methods. In statis-
tical analysis, in order to analyze the effect of increasing the un-
certainty level (equal increases in the left and right spread), four
levels of uncertainty were selected for analysis; therefore, from
15,000 sets of produced ranks, 12,500 ranks were analyzed.

In order to show the correlation among the produced, sorted
ranks, the final, sorted ranks obtained from different methods were
statistically analyzed by performing Kendall’s tau-b correlation test
and Spearman’s rho test using SPSS software. The results from this
study can guide the selection of optimal decision-making processes
under fuzzy environments and offer insight into detailed applica-
tions of decision-making techniques and their use in engineering
projects.

This paper does not claim that any method is better than
other methods across all possible circumstances, but rather it em-
phasizes the importance of investigating different decision-making
techniques to rank the decisions of each method and the impor-
tance of finding the most appropriate method for ranking the de-
cisions in consideration of the decision-making conditions.

Previously, not much work has been conducted to evaluate
and compare the performances of MCDM methods, and most ex-
isting work has been conducted under deterministic conditions
rather than the uncertain, or fuzzy, conditions that are more com-
monly found in real applications. In the existing literature, Ce-
lik et al. [1] conducted a comprehensive review of MCDM tech-
niques according interval type-2 fuzzy sets, reviewing 82 differ-
ent papers developed on the basis of interval type-2 fuzzy sets
(IT2FSs). They categorized the applications of MCDM techniques
in the fields of transportation and logistics, technology manage-
ment, risk management, manufacturing, investment management,
human resources management, healthcare, environment, energy,
and education. Another of the previous studies, conducted by
Zanakis et al. [2], evaluated eight popular MCDM methods: ELim-
ination Et Choix Traduisant la REalité (ELECTRE), technique for or-
der preference by similarity to ideal solution (TOPSIS), simple ad-

ditive weights (SAW), weighted product method (WPM), and four
types of the analytical hierarchy process (AHP) - original, geo-
metric scale, right eigenvector, and mean transformation solution
[3]. Their work found that ELECTRE and VIKOR produced differ-
ent rankings than the other selected MCDM methods; additionally,
ELECTRE and VIKOR did not produce global rankings of the alter-
natives. For design parameters in the simulation of the decision-
making matrix, their investigation considered the number of crite-
ria, the number of alternatives, population distribution for select-
ing the weight of criteria, and number of replications. These re-
searchers also statistically investigated the ranking effects of dif-
ferent methods for weighting decision criteria: 1) equal weights
for all decision criteria, 2) unbiased distribution (i.e., normal dis-
tribution) of weights, and 3) a biased weight distribution (e.g., a
U-shaped distribution). Several other studies in which researchers
investigate specific MCDM techniques have also been conducted.
Gul et al. [4] developed a literature review on VIKOR with its fuzzy
extensions and applications, discussing extensions of the VIKOR
method under a fuzzy environment. In total, they evaluated about
343 papers that utilized the VIKOR method in 13 different appli-
cation areas. Their study showed that the major applications of
VIKOR have been in the fields of mechanical engineering, manufac-
turing, and engineering design. Furthermore, Mardani et al. [5] de-
veloped a review study on the methodologies and applications of
VIKOR method. They reviewed the studies that utilized VIKOR as
a decision-making tool, reviewing 176 papers published from 2004
to 2015. Researchers from 15 different fields have utilized VIKOR,
and the fields that have utilized VIKOR most have been operation
management and human resource management.

Behzadian et al. [6] developed a literature review on TOPSIS ap-
plications. They studied 266 papers that applied TOPSIS to rank the
alternatives. In another study, Behzadian et al. [7] developed a re-
view on the methodologies and applications of a decision-making
technique entitled “Preference Ranking Organization METHod for
Enrichment of Evaluations (PROMETHEE)”. They reviewed and eval-
uated 217 papers and categorized their applications in different
fields such as environment management, water resource man-
agement and hydrology, energy management, and several other
decision-making areas.

A review by Behzadian et al. [6] categorized the applications
of TOPSIS in multiple areas: logistics and supply chain manage-
ment, manufacturing engineering, business management, health
care and environment management, energy and resources manage-
ment, chemical engineering management, water resources project,
and several other decision-making fields. In addition, Zavadskas et
al. [8] developed a review study on different applications of TOP-
SIS in ranking decisions in complicated decision-making projects.
They reviewed 105 papers, published from 2000 to 2015, that uti-
lized TOPSIS for ranking decisions. Their review study indicates
that TOPSIS has compatibility potential with different existing con-
ditions on decision-making environments.

Chen [9] extended the application of the ELECTRE method un-
der a fuzzy environment for multi-criteria group decision-making.
In addition, Govindan and Jepsen [10] developed a comprehen-
sive review study on methodologies and different applications of
ELECTRE. Govindan and Jepsen reviewed 686 papers, from which
544 papers considered the applications of ELECTRE in 13 major
areas and several sub-areas. Their review indicates that, although
ELECTRE type I is a 40-year-old method, it is still used by several
decision-makers in different fields; still, ELECTRE type IIl has been
the most popular method of the ELECTRE types. Overall, different
types of ELECTRE have been utilized for decision-making in the
fields of financial management, risk-related problems, energy man-
agement, and environmental and natural resources management.

Mardani et al. [11] developed a review study on MCDM tech-
niques and their applications, based on works done from 2000 to
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2014. They reviewed 393 papers, categorizing the applications of
those MCDM techniques in 15 different fields.

Chen and Hwang [12] and Carlsson and Fuller [13] investi-
gated several MCDM methods under fuzzy environments. Men-
doza reviewed utilized MCDM methods in natural resources [14].
Zarghami and Szidarovszky [3] studied the application of MCDM
techniques in environmental and water resource projects. Sabzi
and King [15] utilized MCDM methods to find the optimal so-
lution in a flood control system for a case study in Diez La-
gos pond in southern New Mexico, assuming deterministic condi-
tions. They ranked several flood controlling solutions (decisions)
designed through one decision matrix. In this study, several of
those techniques are formulated under fuzzy environment with tri-
angular fuzzy values. Triantaphyllou and Lin [16] evaluated 5 dif-
ferent MCDM methods and concluded that SAW would be the sim-
plest method to apply, but stated that fuzzy TOPSIS and fuzzy AHP
would be more able to satisfy human appraisal.

Zavadskas and Turskis [17] developed a review study on differ-
ent applications of the MCDM techniques, mostly under determin-
istic conditions in economics. They emphasized the importance of
selecting optimal decisions in economics, since decisions are tied
to profit or loss. Finally, they concluded that, although no one can
say which model is the best model across all circumstances, wisely
selecting the decision-making method and its solution is part of an
optimal decision-making process.

Liou and Tzeng [18] commented on the paper “Multiple crite-
ria decision making (MCDM) methods in economics: an overview,
by Zavadskas and Turskis (2011)”. They considered the actual ex-
isting conditions in decision-making environments, in which some
criteria may have different level of dependencies, whereas, in some
of the traditional decision-making models, those criteria were as-
sumed as independent variables.

The work of Zanakis et al. [2] on MCDM methods can be
expanded by incorporating fuzzy values: these researchers used
deterministic conditions for their decision matrix, but generally
the decision-making environment is not deterministic, and the
boundaries among the criteria values and selected weights are not
sharp, but rather fuzzy. Therefore, in this paper, we developed the
decision-making matrix under a fuzzy environment; additionally,
since no previous study has performed a full pairwise comparison
of the MCDM methods, this study features a full pairwise compar-
ison of decision making methods in a fuzzy environment. In addi-
tion, in this study, the correlation analysis was performed through
statistical tests to show how these methods provide similar or dis-
similar sort of ranks for decision alternatives when they are ap-
plied to the same decision matrices.

Mardani et al. [19] developed a review study on fuzzy MCDM
techniques and their applications. They reviewed more than 400
papers in the fields of engineering, business and management,
science and technology, showing that, in the last two decades,
AHP has been the most popular decision-making technique in
those fields. In addition, engineering-based fields utilized the fuzzy
MCDM techniques more than the other three fields did in the last
two decades.

In this paper, we selected 10 common ranking methods - SAW,
WPM, CP, TOPSIS, four types of AHP, ELECTRE, and VIKOR - and
statistically and analytically investigated their similarities, differ-
ences, and performances in producing final, sorted ranks. The de-
tailed objectives of our study include an analytical evaluation of
the different ranking methods and a statistical evaluation of the
different ranking methods applied to decision matrices with fuzzy
values. In the course of the research, we statistically evaluated:
1) the number of alternatives, 2) the number of criteria, 3) the
practice of selecting criteria weights from different distributions,
4) fuzziness level, and 5) the number of replications. In the final
step, in order to show the correlation among the produced, sorted

ranks, the final, sorted ranks obtained from different methods were
statistically analyzed by performing Kendall’s tau-b correlation test
and Spearman’s rho test using SPSS software.

2. Materials and methods

The developed decision matrices include triangular fuzzy num-
bers with both random left and right spreads, and 5 levels of bi-
ased, equal, left and right spreads. For each category, 50 sets of
decision matrices were simulated. In order to investigate the role
played by the size of decision matrices (i.e., the number of alter-
natives and the number of criteria), 5 different decision matrices
of D33 (3 alternatives, 3 criteria), Dg4 (8 alternatives, 4 criteria),
Dgg (8 alternatives, 8 criteria), Dysg (15 alternatives, 8 criteria),
and D545 (15 alternatives, 15 criteria) were defined. For each in-
dividual decision matrix, 300 sets of matrices with fuzzy values
were produced by MATLAB and designed in the form of that de-
cision matrix (50 sets for random left and right spreads, and 250
sets for 5 levels of biased symmetrical spreads). In order to show
the extension of each individual decision-making method, a deci-
sion matrix with 3 alternatives and 3 criteria was ranked through
all 10 decision ranking methods. The 10 popular selected ranking
methods were applied on each decision matrix, and the alterna-
tives of each decision matrix were ranked. Overall, we statistically
evaluated 300 different sets of data designed for 5 different deci-
sion sizes and 10 different ranking methods. In statistical analysis,
in order to analyze the effect of increasing the uncertainty level
(equal increases in the left and right spread), four levels of uncer-
tainty were selected for analyzing; therefore, from 15,000 sets of
produced ranks, 12,500 ranks were analyzed. Since, ELECTRE was
not preferable in providing full, sorted ranks among the alterna-
tives, in comparison of the decision ranking methods, the ELECTRE
was not exploited.

Considering the heavy amount of calculation and analysis for
developing the final ranks under each ranking method, a specific
macro was written in Microsoft Excel. As numerical results, 15,000
final, sorted ranks were obtained by running 50 macros applied on
the 300 sets of decision matrices. In the final step, in order to show
the correlation among the produced, sorted ranks, the final, sorted
ranks obtained from different methods were statistically analyzed
by performing Kendall's tau-b correlation test and Spearman’s rho
test using SPSS software. The numerical result is discussed in the
Sections 3 and 4.

The fuzzy environment involves the use of fuzzy sets, which
have been defined by Zadeh [20] in 1965 and extended by Bell-
man and Zadeh [21] as a class of objects in which there is no
sharp boundary between the objects that belong to the class and
the objectives that do not belong to the same class [21]. When un-
certainty is involved in presenting the value of x in the set A, the
set will be fuzzy, and any statement regarding a number belong-
ing to the set will have a degree of truth which can be defined
by a membership function. Generally, a specific fuzzy set A in x is
defined as a set of pairs as shown in Eq. (1):

A={(x pna(x)}. X ={x} (1)

where pa(x) is the membership degree of x in A, in which, for any
x, there is an associated value between 0 and 1 which represents
the degree of membership of x in A.

Conceptually, membership degree is representative of the de-
gree to which any specific number x belongs to specific data set
A. The membership degrees range from 0 (completely not belong-
ing) to 1 (completely belonging) [21]. As long as uncertainty is in-
volved in most decision making processes, the decision-making en-
vironment will be fuzzy and the fuzzy optimization method can be
used as a tool for finding the ideal and anti-ideal points in multi-
objective problems.
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Fig. 1. Schematic of a triangular fuzzy number A.

All quantitative criteria can be expressed as fuzzy numbers,
and qualitative criteria values can be described by linguistic terms,
which can be converted to the fuzzy numbers.

2.1. Triangular fuzzy numbers

In this study, decision values were defined as triangular fuzzy
numbers. Typically, there are two forms for defining triangular
fuzzy numbers A= (m,«, ) and A= (I, m,u), where m is the
central value of the triangle that has the highest membership de-
gree (1;(x) =1, « and B are the extensions of the triangle to the
left and right, respectively, and u and ! represent the upper and
lower limits, respectively, for the fuzzy number m.

Fig. 1 shows a triangular fuzzy number A = (I, m, u). This fuzzy
number is defined in Eq. (2) [22].

0, x<I,
x—1
el | <x<m,
Ka®) =19 1 _x (2)
, m<x<u,
u—m
0, X > U.

2.2. Algebraic operations of two triangular fuzzy numbers

Algebraic operations for two triangular fuzzy numbers are con-
ducted as described below and have been widely used through
several MCDM methods under fuzzy environment. Before introduc-
ing these operations, however, it should be established that a fuzzy
number A is defined as a positive value if for all x <0, ;(x) =0
[12].

Addition and subtraction of two fuzzy numbers in the form of
A= (I,m,u) and B = (a, b, ¢) are defined as in Eqgs. (3) and (4).

AF)B=(+am+bu+c) (3)

A(-)B=(—-c.m—b,u—a) (4)

_Addition and subtraction of two fuzzy numbers in the form of
A= (m,a,B) and B= (n, y,d) are defined as in Egs. (5) and (6).

AF)B=m+na+y.B+9) (5)

A)B=m-noa+8B+y) 6)

(
Multiplication of two fuzzy numbers A= (m,«, ) and B=
(n,y,d) is defined as in Eqs. (7)-(9).

A()B = (mn, my + na, md + nB) where, A and B > 0 (7)
A()B = (mn,na —ms,nB —my) where, A<0Oand B>0 (8)

A()B = (mn, —nB — m8, —nae — ny) where,A <0and B <0 (9)

Multiplication of two fuzzy numbers in the form of A = (I, m, u)
and B = (a, b, ) is defined as in Eqgs. (10)-(12).

A()B = (la, mb, uc) where,A and B> 0 (10)

A()B = (Ic, mb, ua) where,A <0 and B > 0 (11)

A()B = (uc, mb, la) where,A <0 and B <0 (12)

where for scalar multiplication, for k > 0,k e R : k.ﬁ = (kl, km, ku).
Division of two fuzzy numbers in the form of A = (I, m,u) and
B = (a,b,c) is defined as in Egs. (13)-(15).

. I mu - -

A(:)B= (c’ B a) where,A and B> 0 (13)

A()B = <u’m’l> where,A <0and B> 0 (14)
c’'b’'a

A()B = (ngé) where, A < 0 and B <0 (15)

Division of two fuzzy numbers in the form of A = (m, o, 8) and
B=(n.y.d) is defined as in Eqs. (16)-(18) [23].

A()B= (m, m5+2noz’ my 42—n,3> where,Aand B>0  (16)
n n n
& = m no—my nf—mé ~ ~
AC)B=| —, 5 3 where,A <0 and B> 0
n n n

(17)

AG)B = <m, —np — my —he " m(S) where,A<0and B<0
n n n

(18)

The normalization procedure for benefit and cost criteria is de-
veloped as shown in Eqgs. (19) and (20):

5 L: m:: u;:
fij=-—% — 2L (19)
Cj+ Cj+ C]'+

. m;- m;- m;-
r,»’j=< J ,7'], J > (20)

lij mj; Ujj

Where cjf = max;(u;;) and m; = min;(l;;)
Raising a fuzzy triangular number A = (I, m, u) to the power of
another fuzzy number B = (a, b, c) is performed as shown in Eq.

(21).

AB = (19, mb, uc) (21)
Raising a fuzzy triangular number A = (m, «, B) to the power

of p is performed as shown in Eq. (22):

AP = (mP, pmar, pmB) (22)

2.3. Constructing the decision matrix and developing decision ranking
techniques under a fuzzy environment

In general, a decision matrix under a fuzzy environment with
triangular fuzzy numbers can be established as X; ; = (I;;, m;j, u;j),
in which &; ; is a representative value of alternative A; against cri-
teria Cj, by assuming that each element in a fuzzy decision matrix
is a fuzzy triangular number [24]. However, different MCDMs uti-
lize different approaches for constructing the decision matrix and
developing the decision ranking techniques under a fuzzy environ-
ment.

In the following sections, we extend MCDM methods that
Zamani-Sabzi and King [15] extended under deterministic condi-
tions: TOPSIS, VIKOR, SAW, AHP, ELECTRE and CP. Sections 2.3.1 to
2.3.7.4 develop and define these methods under a fuzzy environ-
ment with fuzzy triangular values.
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2.3.1. Simple additive weighting method under fuzzy environment

SAW uses linear combinations of weighted criteria for each al-
ternative to represent and compare the overall score of the alter-
native, as shown in Eq. (23):

n
E=Y W, (23)
i=1

where 7;; is the fuzzy value of ith alternative against jth criteria in
the normalized fuzzy decision matrix for i=1, 2,..., m and j=1,
2,..., n, where Ww; is the fuzzy value of normalized weight for jth
criteria for j=1, 2,..., n.

In this method, we first acquire the cumulative evaluation for
each of the alternatives; then, the alternatives are ranked on the
basis of these values [3].

2.3.2. Weighted product method under fuzzy environment
The rankings in the weighted product methods are calculated
as shown in Eq. (24):

n ~
A=1{A]la; (24)
j=1

where §;; are numerically in comparable scale and indicate the
amount of ith alternative against jth criteria in the decision ma-
trix for i=1, 2,..., m and j=1, 2,..., n, where w; is the normalized
weight of jth criteria for j=1, 2,..., n.

Alternatives are ranked based on the Af values in which the
max (A;‘) is the best rank among all alternatives.

2.3.3. Compromise programming under fuzzy environment

On the basis of how distant alternatives are from the ideal
point, the compromise programming method ranks each of the
alternatives. Eq. (25) shows the approach for calculating this Eu-
clidean distance [25]:

[ G\ o)
by = Z Wf'ﬁ*_ﬁ. P (25)
s

j=1

where d;; is the fuzzy value of ith alternative against jth criteria in
the fuzzy decision matrix for i=1, 2,..., m and j=1, 2,..., n, where
W;j is the fuzzy value of normalized weight of jth criteria for j=1,
2,0 M.

For i=1, 2,..., m, d]f and d;, are defined for jth components of
optimum and anti-optimum values, P is variable from 1 to P=oo,
and 5f’ represents the relative distances of alternatives from the
ideal points under the fuzzy environment. Values for P show the
importance of a criteria’s deviation from their related ideal point.
The parameter of P can be considered as a fuzzy value of p in the
form of p= (p,a=0,8=0) or p= (I =p, m=p,u=p). Concep-
tually, left and right spreads (uncertainties) of P in its fuzzy form
can be considered as zero. Therefore, Eq. (21) can be utilized in the
required raising a fuzzy triangular number to the power of another
fuzzy triangular number.

Also, it should be noted that in compromise programming
method, in Eq. (25), the normalized values of @;; can be used,
where in that condition &;‘. and d;, would be defined for jth com-
ponents of optimum and anti-optimum values in the normalized
decision matrix. The numerical results of this study showed that
although Df is affected, the final rank of alternatives does not
change.

2.3.4. TOPSIS under fuzzy environment

TOPSIS as a well-known, classic ranking method, which was de-
veloped by Hwang and Yoon [26] was selected as another decision-
making method and investigated under fuzzy environment. The

parametric steps of using TOPSIS to select the optimal alterna-
tive are as follows [27]: 1) show all potential decisions as differ-
ent combinations of criteria in a defined mathematical model; 2)
develop an objective function that recognizes all impactful quanti-
tative and qualitative criteria; 3) quantify all impactful qualitative
criteria; 4) identify each potential alternative as a final action or
decision; 5) on the basis of the number of alternatives (m) and
the number of criteria (n), define the decision matrix - typically,
the value for m corresponds to the number of rows in the decision
matrix (number of alternatives), and the value of n corresponds
to the number of criteria; 6) normalize the defined decision ma-
trix; 7) determine the optimal and anti-optimal solutions; 8) calcu-
late the distance separating the optimal solution from each of the
alternatives; 9) calculate relative closeness of each alternative to
the optimal solution; and 10) rate and rank each potential alterna-
tive based on their relative closeness. TOPSIS has been widely used
through several MCDM projects under fuzzy environment [28].

For any decision making problem within TOPSIS, an objective
function is defined. Within this objective function, each alterna-
tive, the ideal point, the anti-ideal point, and the distance between
the ideal and anti-ideal distance are derived. All alternatives are
ranked and compared based on the defuzzified values of their rel-
ative closeness.

2.3.4.1. Normalizing the decision matrix with fuzzy values. Eqs. (26)-
(28) can be utilized to normalize the decision matrices. In this
study, we normalized all fuzzy values of benefit and cost criteria in
different alternatives through Eq. (26), which, conceptually, is the
same approach that we applied for normalizing the fuzzy numbers.
By using Eq. (26), each individual value in each column is normal-
ized by the maximum value of the same column. Sabzi and King
[15] utilized the same Eqs. (26) to (28) for normalizing the deci-
sion matrices under deterministic values.
~ Xij

fij = (26)

max (%;)
where all three elements of normalization value of max(%;;) are
considered equal to its upper level as demonstrated in the numer-
ical example in Eq. (57).

R

fij = ——— (27)
Sy

. Xij

hij= —=— 28

1] Z:i] 2,] ( )

where, in (26), (27), and (28), i=1, 2,..., mand j=1, 2,..., n

Considering the importance preference of the criteria, different
weights are proposed or defined by experts. Those fuzzy values
of weights are defined in the form of matrix of weights. Then,
the normalized matrix is multiplied in the matrix of weights to
calculate the weighted normalized decision matrix. The matrix of
weights and the weighted normalized matrix with fuzzy values are
formed as follows:

Wi, ... 0 0
0 Wy, 0 0

W] = _ _
0 .0 Wi
19,'1' = [rj_j] ® [Wj,j]
F11®WwW; Fln-1 ® Wyq Fin ® Wy
_ | 21®@W 2 n—1 ®Wn_1 T2n ® Wn
Tm,1 @ Wy Fmn-1®Wnp_1 Tmn®Wy

where i=1, 2,..., mand j=1, 2,..., n.
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2.3.4.2. Determining the ideal and anti-ideal fuzzy values. 1deal and
anti-ideal points can be obtained using Eqgs. (29) and (30). Addi-
tionally, several researchers, for benefit criteria, defined the opti-
mal fuzzy value equals to fzzrj = (1,1,1), and the anti-ideal fuzzy

value is represented by 17;]. = (0,0,0).
Ideal and anti-ideal fuzzy values are determined using Eqgs.
(29) and (30) as follows:.
At = (5?5;) = {max 15,'j|(i: 1,2,...,n),j=1,2,...,n)}
(29)

..ﬁg)z{min yli=1,2,...,m),j=1,2,...,n)}
(30)

2.3.4.3. Determining the ideal and anti-ideal distances. The total
measure of the distance between each alternative and the anti-
ideal points is defined as shown in Egs. (31) and (32) [27, 29-31]:

where i=1,...,m. (31)

where i=1,...,m. (32)

2.3.4.4. Calculating “the relative closeness to the ideal solution” [12].
The closeness coefficient for each alternative is calculated using Eq.
(33), which is utilized to rank each individual alternative. Relative
closeness indicates the relative distance of each alternative from
the anti-ideal point; therefore, the highest value of closeness coef-
ficient stands for the most preferable solution that has the farthest
distance value from the anti-ideal point. Relative closeness is cal-
culated as shown in Eq. (33).

G = 5i
l' —_— ~_ ~
ST+5

fori=1,....,m. (33)
In final step, alternatives are ranked based on the values of Ci*.

2.3.5. The analytic hierarchy process under fuzzy environment

The analytic hierarchy process was developed by Thomas L.
Saaty in the 1970s, and it has been widely used in decision-making
in various fields [32-34]. This method is developed based on the
concept of relative importance: all defined alternatives are com-
pared against each other versus each individual criteria to find
their relative preferences. In classic AHP, linguistic variables can be
used to compare all criteria and alternatives. The linguistic vari-
ables are quantified using the scalar approach, and the general
steps of developing the full list of ranks using AHP is as follows:

1. In order to compare the criteria and weights with each other,
all defined criteria and defined weights are simulated in the
form of a matrix , x , where n is the number of the weights. For
example, the comparisonwise matrix of criteria 1 and weights
is obtained as shown in Equations (These two following equa-
tions can be called formulations.) 34 and 35.

Wi Wi Wi
Wl Wn—] Wn
W, v Wy
Co]=|W & W W, (34)
W We W
LW Wi Wa

X1 X1 X1 7]
le )Zm—l.l iml
5 )ZA 5{'2‘] )2'21
[C{,f\l,AZ ..... Al againstfl}] = | Xn T Xnoa Xm1 (35)
X1 Xm_ Xm1
L X]l im—l,] )zml -

where [C,] is the comparisonwise matrix of weights in which Wy,
Ws,..., Wy are the defined weights of criteria 1 (C;), criteria 2
_____ againstC; } is the com-
parisonwise matrix of alternatives against criteria 1.
Against each individual criteria, the values of the alternatives
are compared according to Eq. (35). All pairwise comparison ma-
trices are reciprocal.

2. The weight vector or importance vector in comparisonwise ma-
trices (For each criteria, a separate comparisonwise matrix is
formed.), which in exact condition represents the eigenvector
and can be estimated through four major methods, is calculated
as follows:

e The sum of the values in first row is calculated and normal-
ized by the sum of values of all rows. The normalized value
of the first row indicates the comparative importance of the
first alternative compared to the other alternatives against
the associated criteria in the comparisonwise matrix.

o Within matrix C, the values included in each column are

summed. Then their reciprocals (1 / (sum of the values of
each column)) are calculated. Next, resulting reciprocal val-
ues are normalized using (dividing) the sum of all recipro-
cals. The normalized values of reciprocals indicate the com-
parative importance of alternatives against the associated
criteria in the comparisonwise matrix.
The values of each column are normalized by the sum of the
values in the same column, then the average of each row is
calculated, which stands for the relative importance of alter-
natives against criteria 1. Average of first row stands for the
comparative importance of the first alternative compared to
the other alternatives against the associated criteria in the
comparisonwise matrix.
Multiplying all of the values in each row of matrix ¢ and
then normalizing the nth roots of those values are normal-
ized by some of their sum (sum the nth roots of those val-
ues). The normalized values indicate the relative importance
of alternatives against the associated criteria in the compar-
isonwise matrix.

Numerical example in Sections 2.5.5.1-2.5.5.4 clarifies the four
AHP prioritizing methods.

In each of these four methods, the relative importance values,
when summed, produce a value of 1. However, as compared to the
other methods, the fourth method produces relative importance
values that more closely align with the pairwise comparison ma-
trix’s eigenvalues.

W W W)W - W ]
W1 Wn_1 Whp W W,
W2 Wy W2 ’
[Ax W] = Wy Wn-_1 Wn = Amax
- - . w, Wh_1
W U .
_Wl Wn—l Wn_ L Wn - L Wn
= )\maxw (36)

where Apmgx is comparison matrix C4’s largest eigenvalue. To prior-
itize or weight the alternatives, eigenvector w is used [35].
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Table 1
Values for random index [36].
n 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
RIL 0O 0O 058 09 112 124 132 141 145 149 151 148 156 157 159

Within the comparison matrix, Gy = iy, djj = % for i, j=1, 2,
J
..., n,and d;; =1/ @;, showing the reciprocal matrix status of com-

parison matrix A. Furthermore, if the condition in Eq. (37) is met,
comparison matrix A will be consistent [36]:

ji = G/ (37)

where i, j, and k=1,..., n.

2.3.5.1. Calculating the consistency index. The consistency index (CI)
is a measure of inconsistency for a pairwise comparison, and CI
can be used to determine the consistency ratio. CI is calculated as
shown in Eq. (38):

Amax — T

Cl = —

= (38)
where Apmgyx is the largest eigenvalue of the comparisonwise matrix
of C4 and n is the dimension of the comparisonwise matrix of A.
On the basis of CI, the consistency ratio can be calculated as
shown in Eq. (39):
Cl
CR=—
RI
where RI is a predefined random index that is selected from
Table 1 on the basis of the comparison matrix’s dimensions (n). So
as long as CR <0.10, there is an acceptable degree of inconsistency
for using the eigenvector as a priority weight [36].

(39)

2.3.5.2. Finding the weight vector for each pairwise comparison ma-
trix. As stated in Section 2.3.5.1, normalized eigenvectors may
serve as priority weights for alternatives in a comparison matrix so
long as the consistency ratio is less than 0.10. Notably, the fourth
method in Section 2.3.5 gives values that are significantly near to
eigenvector values; therefore, the nth roots of the multiplicative
values in each row of the comparison matrix after normalization
indicate the priority weights of the considered alternatives in each
comparisonwise matrix of alternatives against each criteria.

2.3.5.3. Final ranking of alternatives with fuzzy values. To obtain
the final ranking of alternatives, we utilize the linear combina-
tion of the products of the calculated weights of the criteria from
the weight vector and the related weight component of alterna-
tives against each individual criteria. The numerical example in
Section 2.5.5 demonstrate the ranking procedure for AHP.

2.3.6. ELECTRE under fuzzy environment

ELECTRE, which originally was developed by Roy [37], devel-
ops alternatives’ pairwise dominance relationships through a pair-
wise comparison of the alternatives and by defining and using
concordance and discordance sets. The general steps of the ELEC-
TRE for decision making under fuzzy environment are detailed in
Sections 2.3.6.1 to 2.3.6.3. Extension of the ELECTRE method have
been described through numerical examples in several studies un-
der both deterministic and fuzzy environment [38].

2.3.6.1. Normalizing the decision matrix and developing weighted nor-
malized decision matrices with fuzzy values. ELECTRE develops the
normalized and weighted normalized matrices through the same
method used in TOPSIS and discussed in Section 2.3.4.

2.3.6.2. Developing the concordance and discordance sets considering
the fuzzy values. For any set of m alternatives, there are mx(m—1)
pairwise comparisons to be performed. In these comparisons,
two subsets of concordance and discordance are recognized for
each two alternatives k and [ In comparison of two fuzzy alter-
natives, Aj; = (1. &pp. ... %y) and Ayj = Ry, K. ..., Ky). cONCOI-
dance and discordance sets are obtained as follows:

Concordance and Discordance sets are defined respectively as:
Ckl = {ik] Z)'le}, Dkl = {)'ij < )?1]} where {jUZ], 2, ..., n}, k and
[=1, 2,..., m, where k # [, and m is the number of alternatives.

Conceptually and algebraically, the concordance set and the dis-
cordance set are complementary.

Developing the concordance matrix with fuzzy values. Within the
concordance matrix, each particular value represents the degree
of preference between two alternatives, A, and A, that are being
compared. The values of the concordance index can be calculated
as shown in Eq. (40):

(40)

where, for the normalized fuzzy triangular weights, the central
value of ZLI W; equals to 1. A higher value indicates the more
preferable choice.

Developing the discordance matrix with fuzzy values. In the dis-
cordance matrix, each value indicates the comparative degree of
inferiority between two alternatives, A, and A;,that are being com-
pared. These values in the discordance index are determined as
shown in Eq. (41).

max;ep, (|0 — vjl)
maxje; (|Uy; — y51)

W= (41)

As detailed in Section 2.3.4.1, each value of v;; and vj; represents
the number of Ith and kth alternatives and jth criteria within the
weighted normalized decision matrix for i=1, ..., m, j=1, ..., n
and kand I=1, ..., m.

When comparing the alternatives A, and A; a higher discor-
dance index value indicates that A is less favorable compared to
A

Developing the concordance dominance matrix, (F=[fi;]) . As a
necessary step in determining the concordance dominance matrix,
the concordance index values of the initial concordance matrix are
used to produce a threshold value, as shown in Eq. (42) [39]:

- (X

/(m(m—l))
k=

(42)

where k #1, fi; =1if ¢y > C,and fi; =0 if ¢y < C.

Developing the discordance dominance matrix, (G=[gy]). As
with the development of the concordance dominance matrix, to
produce the discordance dominance matrix, the discordance in-
dex values of the initial discordance matrix are used to produce
a threshold value, through the process shown in Eq. (43):

del /(m(m -1))

k=1 1=1
where k;ﬁ lvfkl =1if dkl > d_, and fkl =0 if dkl < d_

d= (43)
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Developing the aggregate dominance matrix, (E=[ey]) . The in-
tersection of the concordance and discordance dominance matrices
produces the aggregate dominance matrix, which is calculated as
shown in Eq. (44).

e = fu-8u (44)

2.3.6.3. Developmg the ﬁnal ranks of alternatives.
comparing A, and A, Ay is preferable to A,.

If e;=1, then, in

2.3.7. VIKOR under fuzzy environment

The VIKOR method makes use of the same basic approach uti-
lized in compromise programming (Section 2.3.3), in addition, in-
troduces L, jerric, Which conceptually is the same equation as Eq.
(25). The extension of the VIKOR method have been described
through numerical examples in several researches under both de-
terministic and fuzzy environment [40].

2.3.7.1. Determining the ideal and anti-ideal values of cost and bene-
fit criteria under fuzzy environment. Dukstein and Opricovic (1980)
introduced the parameter L, to represent the relative distance of
alternatives from the ideal points. Detailed process of ranking al-
ternatives in VIKOR method under the fuzzy environment are de-
scribed through Egs. (45) to (50) [41].

The parameter of Ly is defined in Eq. (45) as follows:

. p\ (5)
L,,,i=<Z(~ ){ £J>> (45)

where w; is the normalized fuzzy value of weight of jth criteria
for j=1,..., n. In Egs. (45) to (49), and each individual fij is the
fuzzy value of the ith alternative against jth criteria in the deci-
sion matrix. Similar to TOPSIS, the ideal and anti-ideal fuzzy values
(points), fjf and fj_ for j=1,..., m are obtained using Eqs. (46) and
(47):

{(maxf,,lj el). (minf,-jlje]/)h':l,2,...,m}
={ft.5.....F.f) (46)

fi” = {(min f|j €J). (max fiylj e J)li=1.2.....m}

={fr.f5.. . f; fv} (47)
where J={j=1, 2, ..., n|j, related to the benefit criteria}; J'={j=1,
2,..., n|j, related to the cost criteria}; for i=1, 2,..,m and j=1,

2,..., n, each individual f,-j is the amount of ith alternative against
jth criteria in the decision matrix for i=1, 2,...,m, j=1, 2,...,n, and
Fr.f5. .. f* fiys and {f7. f5 ,...,fj*,f,;} are the ideal and anti-
ideal fuzzy values of alternatives in the fuzzy decision matrix ver-
sus each individual criteria.

2.3.7.2. Calculating the S; and R; under fuzzy environment. AS,» and R;
are calculated through Eqgs. (48) and (49) as follows:
fi-Fi
1-23 (48)
i=1 f]*

where f}‘, fj,, and ﬁj are defined parameters derived through Eqgs.
(45) to (47).

Ri= max(wj.]i?[ij) (49)

2.3.7.3. Calculating the Q;. Q; is calculated as shown in Eq. (50).

- (5-F B R; — R
Q_U.(§_5>+(1 U)( —R*) (50)

where $* =min (S ), §~ = max (S ), R~ = max (R ), R*=min (ﬁj), v
is the defined welght for maximum group ut111ty (majority of the
criteria), and (1 — v) is the defined weight for individual regret.

2.3.74. Developing final ranks of alternatives based on the fuzzy val-
ues of S, R and Q. Typically, alternatives are ranked using three
different ways on the basis of the S R and @ values. Different con-
ditions affect the rating process, as detailed below.

The alternative A; with the minimum Q can hold the best rank
if the two subsequent conditions are met:

1. G(Ay) — Q(Ay) = DQ, where A, is the alternative that is ranked
second and DQ = 131, where J is the number of alternatives.

2. When alternative A; holds the best rank on the basis of Q (i.e.,
A; has the minimum Q), A; also should have the best rank on
the basis of S, R, or both. Furthermore, for the compromise so-
lution to be stable, v must be greater than 0.5.

If either condition 1 or 2 is not satisfied, the ranking will be
performed subject to the following rules:

1. Alternatives A; and A, may share the same rank if only condi-
tion 2 is not satisfied.

2. Alternatives A;, A,, ..., An my share the same rank if only con-
dition 1 is not satisfied. The value for A, is specified through
the consideration that Q(A;,) — O (A;) < DO.

2.4. Numerical examples

In this section, we develop an example to show the extension
of defuzzification process.

2.4.1. Transforming fuzzy numbers to crisp values through
defuzzification methods

In order to compare two fuzzy values, they should be de-
fuzzified. Several defuzzification methods have been developed to
transfer a fuzzy value to a crisp value. In order to have consistency
in the defuzzification process, Yager’s centroid index was utilized
throughout the required defuzzification for all ranking methods.

2.4.2. Ranking of fuzzy numbers based on centroid index
Based on Yager’s centroid index, the geometric center of fuzzy
number ¥ on the horizontal axis is calculated as follows:

_ Jo 8padx

51
Jo xdx ey

where g(x) can be considered as a weight function of x values.
Usually, g(x) is assumed equal to x, wy is the membership de-
gree of x values, and the denominator is considered as a normaliz-
ing factor equal to the total area under the membership degree
function in Fig. 1 [12,42]. Fuzzy numbers can be ranked based
on Xy values, with higher x, values standing for better rank. Ac-
cording to Eq. (51), Yager's centroid index can be considered as
a weighted mean of fuzzy number & = (I, m, u). Egs. (52) to (55)
offer a numerical example of calculating the centroid index for
ranking two fuzzy numbers, X; = (0.2917, 0.3194, 0.3472) and X, =
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(0.3056, 0.3264, 0.3444).

0 x < 0.2917
x —0.2917
————— 0.2917 <x < 0.3194
[z, = gijs;l —0.2917 (52)
) —X
X — 03194 0.3194 < x < 0.3472
0 x> 0.3472
0.3194 _ 03472 _
xg = 20297 X x (g9ia200m ) X + Jo310a X * (o313 ) dX
" T T 03194 . 03472 Z
0.2917 (0.3)592'_23]27917)‘1" + Jo3104 (0.3%735‘2%).%94)‘1"
— 03134 (53)
0 x < 0.3056
x —0.3056
———————  0.3056 < x <0.3264
jt, = | 03264 - 03056 (54)
0.3444 — x
(m 0'3206;1:4:: <0.3444
x> 0.
0.3264 _ 0.3444 _
xo, — 103056 X% (0.3)56238.53%56)(1)( + Jos26a X * (0.3222f3.3§64)dx
) = 03264 - 03444 -
03056 (0.3)56238.53%56)(1)( + Jo3264 (0.391’23%.3264)‘1"
= 0.3248 (55)

where, by ranking based on the calculated xo, and xo,, & > &.

2.5. Numerical examples for developing the final rankings through
different ranking methods

In this section, we use a decision matrix with three alterna-
tives against three criteria to present examples of how different
ranking methods develop final rankings. In the provided numerical
example, in order to the simplification, for all alternatives, all the
criteria have been considered as benefit criteria. All calculations
required through these numerical examples are developed based
on the algebraic and mathematical computations of fuzzy numbers
that have been explained in Egs. (3)-(21).

Decision Matrix

(21,23, 25) (28,30,32) (61.5,63, 64.5)
—|(22,235,24.8) (25,27,29) (85.5,87,88.5)| (56)
(47.5,48,48.5) (81,83,85) (14.5,16,17.5)

The normalized decision matrix values are calculated by intro-
duced method in Eq. (26) as follows:

Normalized Decision Matrix
(21,23,25) (28,30,32) (61.5, 63, 64.5)
max{25, 24.8, 48.5} max{32, 29, 85} max{64.5, 88.5, 17.5}
_ (22,23.5,24.8) (25,27,29) (85.5,87,88.5) (57)
max{25, 24.8, 48.5} max{32, 29, 85} max{64.5, 88.5, 17.5}
(47.5, 48, 48.5) (81, 83,85) (14.5, 16, 17.5)
max{25, 24.8, 48.5} max{32, 29, 85} max{64.5, 88.5, 17.5}

(21,23, 25) (28,30,32) (61.5,63,64.5)
48.5 85 88.5
(22,23.5,24.8) (25,27,29) (85.5,87,88.5)
48.5 85 88.5
(47.5,48,48.5) (81,83,85) (14.5, 16, 17.5)
48.5 85 88.5
(0.4330, 0.4742, 0.5155)(0.3294, 0.3529, 0.3765) (0.6949, 0.7119, 0.7288)

Normalized Decision Matrix =

=1 (0.4536, 0.4845, 0.5113)(0.2941, 0.3176, 0.3412)(0.9661, 0.9831, 1.0000)

(0.9794, 0.9897. 1.0000)(0.9529, 0.9765, 1.0000)(0.1638, 0.1808, 0.1977)
(58)

The evaluated weights for three criteria are as follows: w; =
(0.799,0.8,0.801), w, = (0.4,0.5,0.6), and w3 = (0.3,0.4,0.5).
The normalized weights are calculated by Eq. (59) as follows:

Wl %) W3
PRIED DD D
where, Y% = (0.799, 0.8, 0.801) + (0.4,0.5, 0.6) + (0.3,0.4,0.5) =

(1.499,1.700, 1.901).
Therefore, the normalized weights are calculated as follows:

W=

(59)

(0.799,0.8,0.801)
(1.499, 1.700, 1.901)
0799 08 0.801
- (1.901’ 1.700° 1.499)
— (0.4203, 0.4706, 0.5344)
(0.799,0.8, 0.801)
(1.499, 1.700, 1.901)
04 05 06
- (1.901’ 1.700° 1.499)
— (0.2104, 0.2941, 0.4003
(0.799,0.8, 0.801)
(1.499, 1.700, 1.901)
03 04 05
- (1.901’ 1.700° 1.499)
— (0.1578,0.2353, 0.3336).

Normalized W, =

Normalized W, =

Normalized W3 =

In order to calculate the weighted and normalized decision ma-
trix, matrices of weights are formed as shown in Eq. (60).

[W11(0,0,0)(0,0,0)

W= (0,0,00 W,5(0,0,0)

| (0.0,0)(0,0,0) 133

7(0.4203, 0.4706, 0.5344), (0, 0, 0), (0, 0, 0)

= | (0,0, 0),(0.2104, 0.2941, 0.4003), (0, 0, 0) (60)
| (0.0.0), (0.0.0).(0.1578, 0.2353, 0.3336)

The weighted, normalized matrix is calculated as follows:

Fl1@Wi, Tio®@Wy, T13@Ws

F21 @W1, T2 @ Wy, T23 QW3

31 @W1, 32 @ Wy, 330 W3
[(0.4330, 0.4742, 0.5155) ® (0.4203, 0.4706, 0.5344); ]
(0.3294, 0.3529, 0.3765) ® (0.2104, 0.2941, 0.4003);
(0.6949, 0.7119, 0.7288) ® (0.1578, 0.2353, 0.3336)

(0.4536, 0.4845, 0.5113) ® (0.4203, 0.4706, 0.5344);
= | (0.2941, 0.3176, 0.3412) ® (0.2104, 0.2941, 0.4003);

(0.9661, 0.9831, 1.0000) ® (0.1578, 0.2353, 0.3336)

(0.9794, 0.9897, 1.0000) ® (0.4203, 0.4706, 0.5344);
(0.9529, 0.9765, 1.0000) ® (0.2104, 0.2941, 0.4003);

| (0.1638,0.1808, 0.1977) ® (0.1578,0.2353,0.3336) |
[7(0.1820, 0.2232, 0.2754);(0.0693, 0.1038, 0.1507);
(0.1097, 0.1675, 0.2431)
(0.1907, 0.2280, 0.2732);(0.0619, 0.0934, 0.1366);
| (0.1525,0.2313, 0.3336)
(0.4116, 0.4657, 0.5344);(0.2005, 0.2872, 0.4003);
| (0.0259, 0.0425, 0.0660)

Wij = [Fijl® (W ;] =

where, i=1, 2,..., m,and j=1, 2,..., n.
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2.5.1. Final ranking based on SAW
The overall score of each individual alternative is obtained
through the sum of weighted normalized values as follows:
3
ﬁ] = ZFU'W} = Wj-?lj
j=1
= {((0.4203, 0.4706, 0.5344) x (0.4330, 0.4742,0.5155))
+((0.2104, 0.2941, 0.4003) x (0.3294,0.3529,0.3765))
+((0.1578, 0.2353, 0.3336) x (0.6949,0.7119,0.7288))}
= (0.3610, 0.4945, 0.6692)

= {(((0.4203, 0.4706, 0.5344) x (0.4536, 0.4845, 0.5113)))
+((0.2104, 0.2941, 0.4003) x (0.2941, 0.3176, 0.3412)))
+((0.1578,0.2353, 0.3336) x (0.9661, 0.9831, 1.0000))}

= (0.4049, 0.5527, 0.7434)
3

B =3 FW; = w0
j=1
— {((0.4203, 0.4706, 0.5344) x (0.9794, 0.9897, 1.0000))
+((0.2104, 0.2941, 0.4003) x (0.9529, 0.9765, 1.0000))
+((0.1578,0.2353,0.3336) x (0.1638, 0.1808, 0.1977))}
— (0.6380, 0.7955, 1.0006)

In SAW, the final ranking is developed based on the centroids
values of F, which are calculated as follows:

3 0.3610 + 0.4945 + 0.6692

= : =0.5082,
f 04049+ 0.53.:327 T07434 _cer and
£ 0.6380-1-0.7??95 +1.0006 _ o0

Therefore, A; < A, < As.

2.5.2. Final ranking based on WPM i
According to Eq. (24), Af =[]}, d;vj,ﬁ‘]‘,ﬁ’ﬁ,and Ay are calcu-
lated as follows:

- ~W
A= ]‘[ !
% (28 30 32)(02104.042941,0.4003)

X (61 5 63 64. 5)(0 1578.0.2353,0.3336) __
A~; — l_[ az — (22 23.5. 24 8)(04203 ,0.4706,0.5344)
i ,23.5,24.

j6=1
><} (25,27, 29)(0:2104.02941.04003) (g5 5 g7 g 5)(0.1578.02353.03336)

=(14.56,33.31,95.51)

3
~ W
A=11a;] =
>J<: (81,83, 85)(02104.02941,04003) (14 5 16, 17.5)(01578.02353.0.3336)
=(19.48,43.54, 122.37)

— (21,23 25)(04203,0,4706.0‘5344)

= (13.88,31.52, 89.79)

(475 48 48.5)(0'4203'0'4706'0'5344)

Ranking is developed based on the centroid values of A;‘ which
are calculated as follows:

~ 13.88 +31.52 4+ 89.79

A = = = 45.06,
i — 14.56+33331 +9548 _ 1000 and
s 19.48+43.354+ 12237 _ o0

Therefore, A% < A% < A

2.5.3. Final ranking based on CP
By setting P=2 and considering Eq. (24), D}, D5, and DY are
calculated as follows:

3 G _d \P
~ a; —dyj
o b _ j 1
fori =1, D} = (Z W) 2 > )(p)
j
. @ —ap . @ —dp . @ —ap
<<1><~i = 2+ W2><,.ii~2+ W3><~i = 2 3
aj—aj* aj—a)-* aj—aj*

(48.5,48.5,48.5) — (28,30,32) \,
(48.5,485,48.5) —

(0.4203, 0.4706, 0.5344)

(21.0,21.0,21.0)

(0.2104, 0.2941, 0.4003) x

(85.85,85) — (61.5,63,64.5) \,
(85, 85, 85) — (25, 25, 25)

(88.5,.88.5,88.5) — (61.5.63,64.5) \,):
<(0 1578,0.2353,0.3336) x (oo =—055 885) — (14.5.145.145) ) )

.4076, 0.5193, 0.6770).

N 3 A — @ p
for i — 2, B — Z(Wwi ff> )
=1 aj = Gjs

~, ~ ~. ~ 2
(1*—022 2 . Clj;-—azz ) - as — dy3 1
1 x = Wy x " )2 4 [ W3 x 2-— 3
@ —dj. @ —aj, a —aj.

< (48.5,48.5,48.5) — (22,23.5,24.8) )2

(48.5,48.5,48.5) — (21.0,21.0, 21.0)
+ ((0‘2104. 0.2941,0.4003) x

|

(0.4203, 0.4706, 0.5344) x

(85,85,85) — (25,27.29) \,
(85,85, 85) — (25, 25, 25)

+((0.1578, 0.2353,0.3336)

 (88.5,88.5,88.5) — (85.5,87,88.5) ,
(885,885, 885)  (14.5, 14,5, 14.5)

= (0.4120, 0.5137, 0.6523)

3 5*7(’1‘3_,‘ P .
fori=3, D5= (> (w. 21— )
3 @ —a;
j=1 J I
_a;—as @ —d3p @ —as3 1
:<<]><~17..2+ W2><..J*7~2+ W3 X ——— 2 2
@ — ;. a —aj a - aj

( (48.5,48.5,48.5) — (47.5,48,48.5) )2

(48.5,48.5,48.5) — (21.0,21.0, 21.0)
T ((o 2104, 0.2941,0.4003) x

<

(0.4203, 0.4706, 0.5344) x

(85, 85,85) —
(85, 85, 85) —

(88.5.88.5.88.5) — (145.16.175) ),
(88.5,88.5,88.5) — (14.5, 14.5, 14.5)

(81.83.85)\,
(25. 25, 25)

((0 1578, 0.2353, 0.3336) x

= (0.1514, 0.2309, 0.3352)

For the ideal and anti-ideal points, in order to avoid having neg-
ative values for lower and upper levels through the calculation pro-
cess, their uppre and lower values have been assumed equal to
their central values. Ranking is developed based on the centroid
values of Df, which are calculated as follows:

B — 0.4076 + 0.53193 +0.6770 05313,
B, — 0.4120 + 0.53137 +0.6523 — 0.5260. and
B = 0.1514 + 0.2;09, +0.3352 —0.2392.

In the compromise programming method, a lower value of ljiZ
is ranked as D; > D, > D5. Therefore, A; < A, < A;.
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2.5.4. Final ranking based on TOPSIS B
After calculating the weighted normalized decision matrix, geometrical distances of alternatives from both ideal A} =(1, 1, 1) and anti-

ideal A; =(0, 0, 0) distances are calculated as follows:

= \/((1, 1,1) — (0.1820, 0.2232, 0.2754))* + ((1,1,1) — (0.0693, 0.1038, 0.1507))* + ((1,1,1) — (0.1097, 0.1675, 0.2431))?

- \/(1—0.2754)2+(0.2232)2+(1 ~0.1820)*+(1-0.1507)%+(1-0.1038)%+(1-0.0693)%+(1-0.2431)?+(1-0.1675)*+(1—0.1097) >
—258

With the same approach: s, =2.28, s3*=2.20, s;~ =045, s~ =0.78, and s3~ =0.81.
In order to develop the final ranking, the relative closeness coefficients are calculated as follows:

s 045 s 0718 s 081
s 157 0451258 ~ 00 G = =G5 1208 = 0> G =T = G900 - 0269
C; > G, > C3. Therefore, A; < A; < As

G =

2.5.5. Final ranking based on AHP
In order to develop the final ranking of alternatives through the AHP method, Saaty’s four major prioritizing methods are calculated
and evaluated. These methods are described in Sections 2.5.5.1-2.5.5.4 [36].

2.5.5.1. Final ranking based on the AHP prioritizing method 1. General form of comparisonwise matrix as explained in Eq. (35), for three
factors is developed as shown in Eq. (61):

[C] = G 99 (61)

In the above comparisonwise matrix ¢, for three factors in the first row, —1 are representatives for comparing ¢; against

5] s 62, and 63.

The priority vector according to method AHP1 is calculated as follows:

As explained in the Section 2.3.5, the sum of each row is normalized by the sum of all elements of the comparisonwise matrix. Then,
the importance of each alternative compared to the other alternatives against the associated criteria in the comparisonwise matrix is
obtained.

It should be noted that, division of two same fuzzy values is assumed as 1 through all computation process, and it does not
follow division rules for two fuzzy values as shown in Eq. (15). Considering the Eq. (35) and Eq. (15), for Ay = (21,23,25), Ay =
(22,23.5,24.8), and A3y = (47.5, 48, 48.5), priority vectors of alternatives Cayy - Cay,» and g, are calculated as follows:

rdy dpn dn ] (21, 23, 25) (21, 23, 25) (21, 23, 25)
Gy Gy ds (21, 23, 25)° (22, 23.5, 24.8)°  (47.5, 48, 48.5)
& _|8n Gn dn | _| (22,235 248) (22,235 248) (22, 235, 248)
G| Gy @y @y || (21,23, 25) (22, 235, 24.8)°  (47.5, 48, 48.5)
Ay A3 Ay (47.5, 48, 48.5) (475, 48, 48.5)  (47.5, 48, 48.5)
Ldy  dn dnd L (21, 23,25) ° (22, 23.5, 24.8)" (475, 48, 485) |
™(1.0000, 1.0000, 1.0000)(0.8468, 0.9787, 1.1364)(0.4330, 0.4792, 0.5263)
= | (0.8800, 1.0217, 1.1810)(1.0000, 1.0000, 1.0000)(0.4536, 0.4896, 0.5221) (62)

| (1.9000, 2.0870, 2.3095)(1.9153, 2.0426, 2.2045)(1.0000, 1.0000, 1.0000)

According to the method 1, priority vector for ¢z, (for i=1,2, and 3) is calculated as follows:
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Gy | dp |, dn 7
an an asy

a a a a a a a a a
A o Ay A A Sy S 3
an ax 43 dn axyx 43 dn axn a3
@ @ dn (0.2095, 0.2434, 0.2824)
Priority of C; = | — T2 Gn Gn | = (0.2145,0.2487, 0.2867)
Tl dn o Oy OGn Gn Gn O3 On
dl] 621 631 @11 qu (:1:31 dll &2] 631 (04426’ 05079’ 05848)

asz; as; | 03

an an asy
an  dn Gy Gn Gy G dn G
Gy Gz dn Gy 3y

For &1, = (28,30, 32), &, = (25,27,29), and &, = (81, 83, 85)

dn
~ + ~ ~ ~
L dn ax asq agn

Gy Gz 7] (28, 30, 32) (28, 30, 32) (28, 30, 32)

dip’ a3 (28, 30, 32)" (25, 27, 29)" (81, 83, 85)

G _ |82 @n @p | _| (25.27.29) (25, 27.29) (25, 27.29)
% T ldp dptan || (28,30, 32)7 (25, 27, 29)° (81, 83, 85)
Gy Gz s (81, 83, 85) (81, 83, 85) (81, 83, 85)

| Gy Gy Gy (28, 30, 32)" (25, 27, 29)" (81, 83, 85)

[(1.0000, 1.0000, 1.0000)(0.9655, 1.1111, 1.2800)(0.3294, 0.3614, 0.3951)
= | (0.7813,0.9000, 1.0357)(1.0000, 1.0000, 1.0000)(0.2941, 0.3253, 0.3580)
| (2.5313,2.7667, 3.0357)(2.7931, 3.0741, 3.4000) (1.0000, 1.0000, 1.0000)

(0.1835, 0.2143, 0.2501)
Priority of Gz, = | (0.1660, 0.1929, 0.2238)
(0.5058, 0.5929, 0.6953)
For &3 = (61.5,63, 64.5), &3 = (85.5, 87, 88.5), and &3 = (14.5, 16, 17.5)
i3’ dp3’ ds3 (0.3209, 0.3795, 0.4492)
Ci= | 23 98 B3 | priority of C;, = | (0.4442, 05241, 0.6186)
a3 dx3 033
I O (0.0855, 0.0964, 0.1078)

dl3 623 533

Wy = (0.4203, 0.4706, 0.5344), w, = (0.2104, 0.2941, 0.4003), and ws; = (0.1578,0.2353, 0.3336)

Wy Wy W1
Wy Wy W3
= | w Wy W
Y Wy Wy W3

W3 W3 W3

LWy Wy W3
r (0.4203, 0.4706, 0.5344) (0.4203, 0.4706, 0.5344) (0.4203, 0.4706, 0.5344)
(0.4203, 0.4706, 0.5344) (0.2104, 0.2941, 0.4003) " (0.1578, 0.2353, 0.3336)
(0.2104, 0.2941, 0.4003) (0.2104, 0.2941, 0.4003) (0.2104, 0.2941, 0.4003)
(0.4203, 0.4706, 0.5344)  (0.2104, 0.2941, 0.4003) " (0.1578, 0.2353, 0.3336)
(0.1578, 0.2353, 0.3336)  (0.1578, 0.2353, 0.3336) (0.1578, 0.2353, 0.3336)
L (0.4203, 0.4706, 0.5344) " (0.2104, 0.2941, 0.4003)" (0.1578, 0.2353, 0.3336)
‘(1 1. 1) (0.4203 0.4706 0.5344) (0.4203 0.4706 0.5344)
T 0.4003° 0.2941° 0.2104” "0.3336° 0.2353" 0.1578
0.2104 0.2941 0.4003) 1. 1. 1) (0.2104 0.2941 0.4003
0.5344° 0.4706° 0.4203 T 0.3336° 0.2353" 0.1578
0.1578 0.2353 0.3336) (0.1578 0.2353 0.3336) 1.1. 1)
0.4003° 0.2941° 0.2104 T

=1 )

_( 0.5344° 0.4706° 0.4203
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(1.0000, 1.0000, 1.0000)(1.3317, 1.6000, 2.0025)(1.5980, 2.0000, 2.6700)

= | (0.4994, 0.6250, 0.7509)(1.0000, 1.0000, 1.0000)(0.8000, 1.2500, 2.000)
(0.3745, 0.5000, 0.6258)(0.5000, 0.8000, 1.2500)(1.0000, 1.0000, 1.0000)

(0.3195, 0.4706, 0.7000)
Priority of Gz = | (0.1870, 0.2941, 0.4629)
(0.1524, 0.2353, 0.3549)

The final priority of alternatives is calculated as follows:

(0.2095, 0.2434, 0.2824)(0.2145, 0.2487, 0.2867) (0.4426, 0.5079, 0.5848)
[Ca, Cas Ca ] ® [Ca] = | (0.1835,0.2143,0.2501)(0.1660, 0.1929, 0.2238)(0.5058, 0.5929, 0.6953)
(0.3209, 0.3795, 0.4492)(0.4442.0.5241, 0.6186) (0.0855, 0.0964, 0.1078)

(0.3195, 0.4706, 0.7000) (0.1502, 0.2669, 0.4729)
®| (0.1870,0.2941, 0.4629) | = | (0.1673,0.2971,0.5238)
(0.1524, 0.2353, 0.3549) (0.2490, 0.4361, 0.7695)

In order to compare the final ranking, the centroids of the final priority ranking values are calculated as follows:

_ 0.1502 + 0.23669 +0.4729 0.1673 + 0.2971 + 0.5238 —0.3294, and f; — 0.2490 + 0.4361 + 0.7695 — 0.4848.

3 3
Therefore, A; < A, < As.

T

=0.2966, F, =

2.5.5.2. Final ranking based on the AHP prioritizing method 2. As explained in Section 2.3.5, the sum of the values in each column of matrix
C is calculated, and then the reciprocals, which are 1/(Sum of the values of each column), are calculated. Next, the reciprocal values are
normalized by the sum of all reciprocals. The normalized values of the reciprocals indicate the relative importance values of alternatives
against the considered criteria in comparisonwise matrix. o .

Considering ¢y, Cg, . Cg,,, and Cg, in the above comparisonwise matrix ¢, for three factors in the first row, £, &, and g—; are representa-
tives for comparing ¢; against ¢;, &, and Cs.

For ¢y = (21, 23,25), ¢y = (22,23.5,24.8),and C3; = (47.5,48,48.5), the comparison matrix of alternatives against criteria 1 is ob-
tained as follows:

(1.0000, 1.0000, 1.0000)(0.8468, 0.9787, 1.1364)(0.4330, 0.4792, 0.5263)
Gz, = | (0.8800, 1.0217, 1.1810)(1.0000, 1.0000, 1.0000)(0.4536, 0.4896, 0.5221)
(1.9000, 2.0870, 2.3095)(1.9153, 2.0426, 2.2045) (1.0000, 1.0000, 1.0000)

-
N}

According to method 2, the priority vector for 65”_ (for j=1,2,and 3) is calculated as follows:

By considering the comparison matrix against criteria 1, the sum of each column is calculated as follows:

(1.0000, 1.0000, 1.0000)+(0.8800, 1.0217, 1.1810) + (1.9000, 2.0870, 2.3095) = (3.7800, 4.1087, 4.4905)
(0.8468, 0.9787, 1.1364) + (1.0000, 1.0000, 1.0000) + (1.9153, 2.0426, 2.2045) = (3.7621, 4.0213, 4.3409)
(0.4330,0.4792, 0.5263)+(0.4536, 0.4896, 0.5221) + (1.0000, 1.0000, 1.0000) = (1.8866, 1.9688, 2.0484)

Reciprocal of a triangular fuzzy number A= (I, m, u) can be considered as % = A-1 which equals to its inverse, which is calculated
using Eq. (63) as follows:
~ 111
A= (7, - f) 63
u'ml (63)
then,

The reciprocals of the sums of the columns are calculated as follows:

(3.7800, 4.1087, 4.4905) ' = (1/4.4905, 1/4.1087, 1/3.7800) =(0.2227, 0.2434, 0.2646)
(3.7621, 4.0213, 4.3409) ' = (1/4.3409, 1/4.0213, 1/3.7621) =(0.2304, 0.2487, 0.2658)
(1.8866, 1.9688, 2.0484) ' = (1/2.0484, 1/1.9688, 1/1.8866) =(0.4882, 0.5079, 0.5301)

then,
The final priority weights of alternatives against criteria 1 is calculated based on normalizing the reciprocals of the sums of each
column by sum of the reciprocals of all columns in a comparisonwise matrix of alternatives against criteria 1, as follows:

(0.2227, 0.2434, 0.2646)
(0.2227, 0.2434, 0.2646) + (0.2304, 0.2487,0.2658)+(0.4882,0.5079, 0.5301)

(0.2304, 0.2487,0.2658)
(0.2227, 0.2434, 0.2646) + (0.2304, 0.2487, 0.2658)+(0.4882, 0.5079, 0.5301)

(0.4882, 0.5079,0.5301)
(0.2227, 0.2434, 0.2646) + (0.2304, 0.2487,0.2658)+(0.4882, 0.5079, 0.5301)

= (0.2100, 0.2434, 0.2811)

= (0.2172,0.2487,0.2824)

= (0.4604, 0.5079, 0.5631)
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Therefore,
(0.2100, 0.2434, 0.2811)
Priority of@“ = | (0.2172,0.2487,0.2824) | Priority ofCﬁiz =
(0.4604, 0.5079, 0.5631)
(0.3542,0.3795, 0.4067)
Priority ofc”% = | (0.4925,0.5241,0.5580) | Priority of Gz =

(0.0835, 0.0964, 0.1103)

[7(0.1864, 0.2143, 0.2457) ]
(0.1664, 0.1929, 0.2227)
| (0.5392,0.5929,0.6527) |

7(0.3562, 0.4706, 0.6412) ]
(0.1991, 0.2941, 0.4243)

| (0.1493,0.2353, 0.3536) |

Final priority of alternatives is calculated as follows:

(0.2095, 0.2434, 0.2824)(0.2145, 0.2487, 0.2867)(0.4426, 0.5079, 0.5848)
(0.1835, 0.2143, 0.2501)(0.1660, 0.1929, 0.2238)(0.5058, 0.5929, 0.6953)
(0.3209, 0.3795, 0.4492)(0.4442.0.5241, 0.6186) (0.0855, 0.0964, 0.1078)

(0.3195, 0.4706, 0.7000) (0.1648, 0.2669, 0.4283)
(0.1870, 0.2941, 0.4629) (0.1841,0.2971, 0.4729)
(0.1524, 0.2353, 0.3549) (0.2838,0.4361,0.6771)

[Ca, Ca, Cay] ® [Cir)

®

In order to compare the final ranking, the centroids of the final priority ranking values are calculated as follows:

_0.1648 +0.2669 + 0.4283 0.1841 + 0.2971 + 0.4729 0.2838 + 0.4361 + 0.6771
N 3 3 3

Therefore, A, < A, < As.

13

=0.2867, F = =0.3180, and§ = = 0.4657.

—_

2.5.5.3. Final ranking based on the AHP prioritizing method 3. After developing the comparisonwise matrix of alternative values against
each criteria, the values of each column are normalized by the sum of the values in the same column, then the average of each row
is calculated, which stands for the relative importance of alternatives against that criteria. For example, based on the developed priority
weights for the comparisonwise matrix of alternative values compared against criteria 1, the average of the first row stands for the relative
importance of alternative 1 against criteria 1, the average of the second row stands for the relative importance of alternative 2 against the
criteria 1, and so on.

Then, the sum of each column is calculated, and each value in each column is normalized by the sum of the values in the same column,
as follows:

(1.0000, 1.0000, 1.0000)
(3.7800, 4.1087, 4.4905) °

(0.8468, 0.9787, 1.1364)
(3.7800, 4.1087, 4.4905)°

(0.8800, 1.0217, 1.1810)
(3.7621,4.0213, 4.3409)
(1.0000, 1.0000, 1.0000)
(3.7621,4.0213, 4.3409) °
(0.4330, 0.4792, 0.5263) (0.4536, 0.4896, 0.5221) (1.0000, 1.0000, 1.0000)
(3.7800, 4.1087, 4.4905)° (3.7621,4.0213, 4.3409) ° (1.8866, 1.9688, 2.0484)
|:(0.2227, 0.2434, 0.2646)(0.1951, 0.2434, 0.3021)(0.2114, 0.2434, 0.2790)i|

(1.9000, 2.0870, 2.3095)
(1.8866, 1.9688, 2.0484)
(1.9153, 2.0426, 2.2045)
(1.8866, 1.9688, 2.0484)

(0.1960, 0.2487,0.3124)(0.2304, 0.2487, 0.2658)(0.2214, 0.2487, 0.2767)
(0.4231, 0.5079, 0.6110) (0.4412, 0.5079, 0.5860)(0.4882, 0.5079, 0.5301)

Then, in order to find the final priority weights of each alternative in comparison with other alternatives against the same criteria, the
average of each row is calculated as follows:

[(0.2227,0.2434, 0.2646)+(0.1951, 0.2434, 0.3021)+(0.2114, 0.2434, 0.2790)
3 (0.2097, 0.2434, 0.2819)
Priority qu“ _ | (0.1960, 0.2487, 0.3124)+(0.2304, 0.2;187, 0.2658)+(0.2214, 0.2487, 0.2767) (0.2159, 0.2487. 0.2850)
(0.4231,0.5079, 0.6110)+(0.4412, 0.5079, 0.5860)+(0.4882, 0.5079, 0.5301) (0.4508, 0.5079, 0.5757)
L 3
With the same approach:
[7(0.1850, 0.2143, 0.2481) (0.3420, 0.3795, 0.4237)
Priority ofC;i2 = | (0.1660, 0.1929, 0.2236) | Priority ofC}_3 = | (0.4734,0.5241, 0.5838)
(0.5204, 0.5929, 0.6781) (0.0842, 0.0964, 0.1094)
_(0.3386, 0.4706, 0.6755)
Priority of Gy = | (0.1955, 0.2941, 0.4475)

(0.1505, 0.2353, 0.3566)
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Final priorities of alternatives are calculated as follows:
(0.2097,0.2434,0.2819)(0.1850, 0.2143, 0.2481)(0.3420, 0.3795, 0.4237)

[Cs, Ca, Ca, 1@ [Ca] = | (0.2159,0.2487, 0.2850)(0.1660, 0.1929, 0.2236)(0.4734, 0.5241, 0.5838)
(0.4508, 0.5079, 0.5757)(0.5204.0.5929, 0.6781) (0.0842, 0.0964, 0.1094)

(0.3386, 0.4706, 0.6755) (0.1586, 0.2669, 0.4525)
®| (0.1955,0.2941, 0.4475) | = | (0.1768,0.2971, 0.5008)
(0.1505, 0.2353, 0.3566) (0.2670,0.4361,0.7313)

In order to compare the final ranking, the centroids of the final priority ranking values are calculated as follows:

_ 0.1586 + 0.23669 +0.4525 — 02927, F — 0.1768 + 0.23971 +0.5008 — 0.3249, andf; — 0.2670 + 0.4361 + 0.7313 04782

3
Therefore, A; < A5 < As.

R

—_

2.5.5.4. Final ranking based on the AHP prioritizing method 4. The product of all values of each row in matrix C is calculated and their nt®
roots are normalized. The resultant normalized values stand for the relative importance of Aq, A,, and As.
In comparisonwise matrix C, the product of the values in each row is calculated as follows:

(1.0000, 1.0000, 1.0000) ® (0.8468, 0.9787, 1.1364) ® (0.4330, 0.4792, 0.5263)
(0.8800, 1.0217,1.1810) ® (1.0000, 1.0000, 1.0000) ® (0.4536, 0.4896, 0.5221)
(1.9000, 2.0870, 2.3095) ® (1.9153, 2.0426, 2.2045) ® (1.0000, 1.0000, 1.0000)

(1.0000 ® 0.8468 ® 0.4330, 1.0000 ® 0.9787 ® 0.4792, 1.0000 ® 1.1364 ® 0.5263) (0.3666, 0.4690, 0.5981)
= | (0.8800 ® 1.0000 ® 0.4536, 1.0217 ® 1.0000 ® 0.4896, 1.1810 ® 1.0000 ® 0.5221) | = | (0.3992, 0.5002, 0.6166)
(1.9000 ® 1.9153 ® 1.0000, 2.0870 ® 2.0426 ® 1.0000, 2.3095 ® 2.2045 ® 1.0000) (3.6391, 4.2627, 5.0915)

As explained in Section 2.3.3, power of % can be considered as fuzzy value of (%, % %), which prevents producing negative fuzzy
values. The nt roots of the product values according to the Eq. (21) are calculated as follows:

(0.3666, 0.4690, 0.5981) 333 (0.3666%,0.4690%, 0.5981}% ) (0.7157,0.7769, 0.8425)
P = (0.3992,0.5002, 0.6166)3-3-3) | = | (0.3992%,0.50023,0.6166%) | = | (0.7363,0.7938,0.8511)
(3.6391,4.2627, 5.0915) 353 (3.63913,4.26275, 5.09155) (1.5381, 1.6214, 1.7203)

Then, the final priority values of alternatives compared against the same criteria are calculated by normalizing the matrix P by the sum
of the values, calculated as follows:
(0.7157,0.7769, 0.8425)
(0.7157,0.7769, 0.8425) + (0.7363, 0.7938, 0.8511) + (1.5381, 1.6214, 1.7203) (0.2096, 0.2434,0.2818)
(0.7363,0.7938, 0.8511) — | (02157, 0.2487. 0.2846)
(0.7157,0.7769, 0.8425) + (0.7363, 0.7938, 0.8511) + (1.5381, 1.6214, 1.7203) ' T T
(1.5381,1.6214,1.7203) (0.4505, 0.5079,0.5753)
(0.7157,0.7769, 0.8425) + (0.7363, 0.7938, 0.8511) + (1.5381, 1.6214, 1.7203)
where the centroid values of priority weights of alternatives against criteria 1, is obtained as: 0.2434+0.2487 +0.5079 ~ 1.
with the same approach:
(0.1849, 0.2143, 0.2479) ~
|:(0.1659, 0.1929, 0.2235):| Priority ofCﬂ.B =
(0.5198, 0.5929, 0.6774)

(0.4721, 0.5241, 0.5823)
(0.0843, 0.0964, 0.1094)

Priority of C, =

i2

|:(O.3411, 0.3795, 0.4225):|

~ (0.3371, 0.4706, 0.6739)
Priority of Gy = | (0.1930, 0.2941, 0.4413)
(0.1500, 0.2353, 0.3551)

where the centroid values of priority weights of alternatives against criteria 2, is obtained as: 0.2143 +0.199 +0.5929 ~ 1.
where the centroid values of priority weights of alternatives against criteria 3, is obtained as: 0.3795+0.5241+0.0964 =1.
where the centroid values of priority of weights is obtained as: 0.4706 +0.2941 +0.2353=1.

Final priorities of alternatives are calculated as follows:

o _ (0.2096, 0.2434, 0.2818)(0.1849, 0.2143, 0.2479)(0.3411, 0.3795, 0.4225)
[ an Cay a,.s] ® [C] =] (0.2157,0.2487,0.2846)(0.1659, 0.1929, 0.2235)(0.4721, 0.5241, 0.5823)
(0.4505, 0.5079, 0.5753)(0.5198.0.5929, 0.6774)(0.0843, 0.0964, 0.1094)
(0.3371, 0.4706, 0.6739) (0.1575, 0.2669, 0.4493)
®| (0.1930,0.2941, 0.4413) | = | (0.1755, 0.2971,0.4972)
(0.1500, 0.2353, 0.3551) (0.2649, 0.4361, 0.7255)
In order to compare the final ranking, the centroids of the final priority ranking values are calculated as follows:
_ 0.1575 + 0.22369 +0.4493 — 02912 F — 0.1755 + 0.2397] +0.4972 — 03233, andf — 0.2649 + 0.4336] +0.7255 — 04755

Therefore, A; <Ay < As.

T
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Table 2

Numerical results of Kendall’s tau-b test of correlation significance of rank between the compared methods as an example for decision

matrix with 15 alternatives and 15 criteria.

Kendall's tau-b SAW WPM cp TOPSIS  AHP1 AHP2 AHP3 AHP4 VIKOR
SAW Correlation Coefficient ~ 1.000 600" .619** .886** .619** 695 638  .676* 637+
Sig. (2-tailed) .002 .001 .000 .001 .000 .001 .000 .004
N 15 15 15 15 15 15 15 15 15
WPM Correlation Coefficient ~ .600  1.000 562 676" 676" 790 657 TJ71 292
Sig. (2-tailed) .002 .004 .000 .000 .000 .001 .000 184
N 15 15 15 15 15 15 15 15 15
CP Correlation Coefficient — .619** 562 1.000 .619%* 429+ 543 410* 486* .558*
Sig. (2-tailed) .001 .004 .001 .026 .005 .033 .012 .011
N 15 15 15 15 15 15 15 15 15
TOPSIS Correlation Coefficient ~ .886*  .676** 619 1.000 .695*  .810** .676%* .752%  531*
Sig. (2-tailed) .000 .000 .001 .000 .000 .000 .000 .016
N 15 15 15 15 15 15 15 15 15
AHP1 Correlation Coefficient ~ .619** 676" 429+ .695** 1.000 695* .943= 790  .266
Sig. (2-tailed) .001 .000 .026 .000 .000 .000 .000 228
N 15 15 15 15 15 15 15 15 15
AHP2 Correlation Coefficient ~ .695*  .790*  .543*  .810* .695**  1.000 714 905 319
Sig. (2-tailed) .000 .000 .005 .000 .000 .000 .000 148
N 15 15 15 15 15 15 15 15 15
AHP3 Correlation Coefficient ~ .638**  .657** 410" .676%* 943 714** 1.000 .810% 319
Sig. (2-tailed) .001 .001 .033 .000 .000 .000 .000 148
N 15 15 15 15 15 15 15 15 15
AHP4 Correlation Coefficient  .676** 7717 486" 752% 790" 905  .810** 1.000 266
Sig. (2-tailed) .000 .000 .012 .000 .000 .000 .000 228
N 15 15 15 15 15 15 15 15 15
VIKOR Correlation Coefficient  .637** 292 .558* .531* .266 319 319 .266 1.000
Sig. (2-tailed) .004 184 .011 .016 228 148 148 228
N 15 15 15 15 15 15 15 15 15
Table 3

Numerical results of Spearman’s rho test of correlation significance of rank between the compared methods as an example for decision

matrix with 15 alternatives and 15 criteria.

Spearman’s rho SAW WPM CcP TOPSIS  AHP1 AHP2 AHP3 AHP4 VIKOR
SAW Correlation Coefficient ~ 1.000 768 811* 964+ 779 .832% 793  811* T77
Sig. (2-tailed) .001 .000 .000 .001 .000 .000 .000 .001
N 15 15 15 15 15 15 15 15 15
WPM Correlation Coefficient  .768** 1.000 739 843 796%  .925%  811** 907+ 362
Sig. (2-tailed) .001 .002 .000 .000 .000 .000 .000 185
N 15 15 15 15 15 15 15 15 15
CcP Correlation Coefficient  .811* 739%* 1.000 814 .604* 739 579* 6827 . 706**
Sig. (2-tailed) .000 .002 .000 .017 .002 .024 .005 .003
N 15 15 15 15 15 15 15 15 15
TOPSIS Correlation Coefficient ~ .964**  .843 814" 1.000 825 918** 829" 889" 665"
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .007
N 15 15 15 15 15 15 15 15 15
AHP1 Correlation Coefficient ~ .779*  .796*  .604* .825** 1.000 .850* 986"  .925* 323
Sig. (2-tailed) .001 .000 .017 .000 .000 .000 .000 240
N 15 15 15 15 15 15 15 15 15
AHP2 Correlation Coefficient ~ .832** .925% 739* 918+ .850** 1.000 .850** .979** 411
Sig. (2-tailed) .000 .000 .002 .000 .000 .000 .000 128
N 15 15 15 15 15 15 15 15 15
AHP3 Correlation Coefficient ~ .793*  .811** .579* .829** 986*  .850** 1.000 918+ 364
Sig. (2-tailed) .000 .000 .024 .000 .000 .000 .000 182
N 15 15 15 15 15 15 15 15 15
AHP4 Correlation Coefficient — .811** 907+ .682*  .889™ 925*  979* 918" 1.000 351
Sig. (2-tailed) .000 .000 .005 .000 .000 .000 .000 .200
N 15 15 15 15 15 15 15 15 15
VIKOR Correlation Coefficient  .777* 362 .706*  .665* 323 A11 364 351 1.000
Sig. (2-tailed) .001 185 .003 .007 240 128 182 .200
N 15 15 15 15 15 15 15 15 15

Notably, comparison of the calculated values for F,F,and £
using four different AHP prioritizing methods shows that those pri-
ority values are significantly close together. In addition, in all four
types of AHP prioritizing methods, the sum of the centroid values
in final priority values of comparisonwise matrices of alternatives
against three different criteria (¢, , Cg,. and g, ) yields 1.

2.5.6. Final ranking based on ELECTRE
Based on the same numerical example that was investigated
above in order to develop the concordance and discordance sets
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and matrices, the weighted and normalized decision matrix should
be defuzzified. Therefore, all fuzzy values are defuzzified through
the selected defuzzification method. In order to compare the fi-
nal rankings of different alternative through several decision rank-
ing techniques, the same defuzzification method should be used
throughout all decision ranking techniques. Here, the centroid
method is applied to defuzzify the fuzzy values. The defuzzi-
fied form of the weighted normalized decision-making matrix and
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Fig. 2. Statistical results of correlation significance among different outranking methods applied on decision matrix with 3 alternatives versus 3 criteria.

weights of criteria is as follows:

0.2269, 0.1079, 0.1734
0.2306, 0.0973, 0.2391
0.4706, 0.2960, 0.0448

weighted normalized decision matrix =

w; = 0.4751, w, = 0.3016, and w; = 0.2422

where A;={0.2269, 0.1079, 0.1734}, A,={0.2306, 0.0973,
0.2391}, and A3={0.4706, 0.2960, 0.0448} are the values of
alternatives A, A,, and A3 against criteria 1, 2, and 3 after the
defuzzification.

In comparisonwise matrices, among the alternatives
A;={0.2269, 0.1079, 0.1734}, A,={0.2306, 0.0973, 0.2391},
and A3 ={0.4706, 0.2960, 0.0448}, concordance and discordance
sets are developed as follows:

In the comparison of alternatives 1 and 2, ifay; > ayj, then1,
otherwise 0. For example, (if 0.2269 < 0.2306, then0), (if 0.1097
> 0.0973, then 1), and (if 0.1734 < 0.2391, then 0).

2.5.6.1. Developing the concordance matrix. The concordance sets
and related values in the concordance matrix for Cjfori=1, 2,

and 3andj=1, 2, and 3 are as follows:

C2=1{0,1, 0}, Co =0®@w; +1®@w; +0®ws =0.3016
Ci3=1{0,0, 1}, C3 =0@w; +0®@w, +1®@ws =0.2422
Ci={1,0,1}, Ci=1@w+0@w,+1®@w; =0.7173
C23 = {0,0, 1}, C23 =0@w; +0Q@w, +1 @ W3 =0.2422
G ={1,1,0}, GGi=1@w;+1@w, +0®w; =0.7766
Cp={1.1,0}, Ga=1@w;+1®@w, +0® ws =0.7766
Finally, the concordance matrix is developed as follows:
- (2 G - 0.3016  0.2422
G - G3|=107173 - 0.2422
G G — 0.7766  0.7766 -

The discordance set is the complementary of concordance sets;
therefore:

Di; ={1,0, 1}, D13={1,1, 0}, Dy; ={0,1, 0}, D3 = {1,1, 0},
D31 = {O, 0, 1}, and D3y = {0, 0, 1}

2.5.6.2. Developing the discordance matrix. Each value in the dis-
cordance matrix indicates the relative degree of inferiority of two
compared alternatives A, and A;. Discordance index values are cal-
culated as follows:

By considering Eq. (41) for calculating the values of discor-
dance matrix, discordance sets, and using the defuzzified values in
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Fig. 3. Statistical results of correlation significance among different outranking methods applied on decision matrix with 8 alternatives versus 4 criteria.

weighted normalized decision matrix, all discordance values of the
discordance matrix are calculated as follows:
MaXjep,, (|Vu — U2
man€](|U1j — Uz] |)
max of |0.2269-0.2306|, and |(0.1734-0.2391)|}

~ maxof [0.2269—0.2306], |0.1079—0.0973], and [(0.1734—0.2391)]}

0.0657

~ 0.0657 =1
With the same approach, dy3, dy;, d»3, d3;, andds, are calcu-

lated as follows:
dix = MAXjep, 3 (JDU?T@]D -1
B maxjg (|70 )
MaXjcpyy (lﬁzi’ﬂ3j|) =1
maxje (|2 =03; ) ’
and dsp = maxie”3z(|’73j*'~’2j|) — 0.8099
maxje; (|73—7s; ) :
Finally, the discordance matrix is developed as follows:
- dp d - 1.0000 1.0000

dy — dy | =0.1621 - 1.0000
dy  d;; - 0.5278  0.8099 -

In the comparison of two alternatives A, and A, a higher value
of the concordance index represents the more preferable alterna-
tive, and a higher discordance index value represents a less favor-
able A, in comparison with A,.

dyy = "o P D) _ g 4621,

1= Tmang (Jr-0])

dy = ma"f6931(|l~'31'*'71)’|) =0.5278,

maxje; (|03 )

)

dy3 =

In order to develop the concordance dominance matrix, a
threshold value is calculated based on the concordance index val-
ues of the concordance matrix. This threshold value is calculated
as follows:

m m 3 3
e= (YY) /mem-1)=(¥X Yea)/6G-1)
k=1 I=1 k=1 =1
0.3016 + 0.2422 + 0.7173 + 0.2422 + 0.7766 + 0.7766
6

= 0.5095
where k # lvfkl =1if Crl = ¢, and fkl =0if Cpl < C.
Therefore, dominance concordance matrix is developed as fol-
lows: 0 0

1 - 0
1 1 -

In order to develop the discordance dominance matrix, a
threshold value is calculated based on the discordance index val-
ues of concordance matrix. This threshold value is calculated as
follows:

dominance concordance matrix = fi; =

m m . >
i szkl /(m(m—1)):(szk’)/(BG_U)
k=1 I=1 k=t 1=
_ 1+1+0.1621 + 16+ 0.5278+0.8099 _ /..

where k#1; f,=1if dy >d,and f; =0 if dy < d.
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Fig. 4. Statistical result of correlation significance among different outranking methods applied on decision matrix with 8 alternatives versus 8 criteria.

Therefore, the dominance concordance matrix is developed as
follows:
- 1 1
dominance discordance matrix =gy=,0 — 1
0o 1 -

In order to determine the aggregate dominance matrix, the in-
tersection of the two concordance and discordance dominance ma-
trices is calculated as follows:

— (0Ox1) (0x1) - 0 0
(1x0) - Ox1) | =
(1x0) (1x1) -

e = fu8u= 0
0

—_
|

where each individual array value in the matrix ey, is the product
of arrays of concordance and discordance matrices with the same
positions.

In developing the final ranking, if e,; =1, A, is preferred to
A;. The aggregate matrix A3 has dominance on A,, but A; and A,
can be categorized as the same rank, because none of them shows
clear dominance to the other one. Therefore, A; ~ A, and A, < As.

2.5.7. Final ranking based on VIKOR

Considering the basic decision matrix, the ideal and anti-ideal
points are developed as follows:

The maximum and minimum values of alternatives for the
same criteria are taken for finding the ideal and anti-ideal points
as follows:

maxof ;; foriand j=1,2,and 3
= (48.5,48.5,48.5), (85, 85,85), and (88.5, 88.5, 88.5)

minof %;; foriand j=1,2,and 3
= (21,21,21), (25.25,25), and (14, 14, 14)

In VIKOR, $; and R; are calculated as shown below.

S = Xn:w,ff%jfi” = (0.5962,0.7871,0.9907)
5, — (0.5586. 0.7169, 0.8928)
S3 = (0.1514, 0.2489, 0.3632)
where f, fi_, and f; are parameters derived through Egs. (45) and
(47).
fr— fu

~ _ o~ }
Ry = max{ wj. =—— =

= 0.0824, R; = 0.0038, and R; = 0.0061

i -
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Fig. 5. Statistical result of correlation significance among different outranking methods applied on decision matrix with 15 alternatives versus 8 criteria.

For calculating Q;, considering Eq. (50), Q; =1.0000,Q, =
0.9140, and Q3 = 0.0000. Therefore, based on the VIKOR method,
A] %Az < A3.

2.6. Statistical comparison of ranking methods using Kendall’s tau-b
and Spearman’s rho

While several alternatives in a decision matrix are ranked by
several decision ranking techniques, the produced ranks for those
alternatives would have different levels of similarities. Conceptu-
ally, in order to investigate the similarities of the produced ranks,
the Kendall’s tau-b and Spearman’s rho were selected to analyze
the produced ranks through different decision-ranking methods in
terms of their pairwise correlations. These two statistical tests are
non-parametric tests that are used to measure the ordinal asso-
ciation between the two measured quantities. The Kendall’s tau-
b represents the similarities in the ordering of ranked quantities.
For identical produced ranks, the Kendall's correlation coefficient
would be 1, and for full differentiated produced ranks (completely
dissimilar), the Kendall's correlation coefficient would be —1. Ba-
sically, the Kendall’s tau-b and Spearman’s rho are considered as
two accepted measures of non-parametric rank correlations that
are used for bivariate analysis of the values’ ranks. In more de-
tail, Spearman’s rank correlation coefficient represents a monotonic

function describing the strength of the linear relationship between
the produced ranks. Conceptually, Spearman’s rho is equal to the
Pearson correlation coefficient between the obtained ranks of two
measured variables, which here are two sets of alternatives.

Since the same sort of rank ranges are produced for all
decision-making techniques (except VIKOR and ELECTRE); there-
fore, the mean of the ranks from the application of all techniques
will be same. As a result, non-parametric tests should be used
to see how the final ranks compare among the methods. In both
developed tests on ranked value, the objective is to show how
different decision-making methods lead to similar and dissimilar
ranks. These two nonparametric tests were performed to describe
the strength of correlation between the rank orders of two groups.
Both Kendall’s tau-b and Spearman’s rho are performed for inves-
tigating the correlation of rank orders for each pair of two groups.

2.6.1. Kendall’s tau-b

Kendall’s tau-b test is a coefficient indicates the concordant and
discordant association between the ranks of two compared groups
of ranks. Kendall’s tau-b coefficient is calculated using Eq. (64) as
follows [43]:

Nne — Ny

= (64)
’ V(g —ny) (ng — nz)
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Fig. 6. Statistical result of correlation significance among different outranking methods applied on decision matrix with 15 alternatives versus 15 criteria.

where ng=n(n-1)/2, ny = 3 t;(t; — 1)/2, np = 3" u;(uj — 1)/2, n¢
is the number of concordant pairs, n; is the number of discordant
pairs, t; is the number of tied values in the ith group of ties for the
first quantity, and u; is the number of tied values in the jth group
of ties for the second quantity [44].

This formulation yields 7 between —1 and +1. The value of —1
stands for 100% negative association, and the value of +1 stands
for 100% positive associations. The value of zero stands for the ab-
sence of any association.

2.6.2. Spearman’s rho [43]

In order to assess the correlation between the bivariate pairs
of data in the form of rank values, Spearman’s rho is calculated.
The Spearman rank correlation coefficient, denoted by p, is defined
using Eq. (65) as follows:

PR » M (C Y1) )
VI =27 5 04— 97

where x; and y; are the ranks of each variable in group 1 and
group 2, and X and y are the averages of rank values in groups 1
and 2, respectively. This formulation yields p between —1 and + 1.
Positive values of p indicate that higher values of one group are
associated with higher values of the other group, and vice versa.

Negative values of p indicate that higher values of one group are
associated with lower values of the other group. Higher absolute
values indicate stronger associations between the two compared
sets of ranks.

2.6.3. Sensitivity of final ranks to the selected fuzziness intervals

The fuzziness interval is related to the uncertainty level, degree
of bias, and random nature of the values. The fuzziness intervals
are selected from different biased and unbiased distributions. The
main concept behind selecting the fuzziness values from different
distributions is to investigate the sensitivity of final rankings to the
fuzziness levels.

2.6.4. Sensitivity of the similarities and dissimilarities of different
decision ranking methods to dimensions of the decision matrix

In this section, the same decision-making matrices are sim-
ulated in the form of different matrix sizes, and the fi-
nal rankings are compared to each other statistically. Statis-
tical analysis is performed to investigate the role of matrix
size on the final rankings. In the simulation process, five dif-
ferent decision matrices with different combinations of alter-
natives and criteria of D3 3(3 alternatives and 3 criteria), Dg 4,
Dg,s, D15,8’ D]5,]5 were defined.
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Fig. 7. Multiple comparison of statistical results of correlation significance percentage among different outranking methods applied on symmetrical decision matrices with
3, 8, and 15 alternatives.
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Fig. 8. Multiple comparison of statistical results of correlation significance percentage among different outranking methods applied on decision matrices with D8,4 (Decision
matrix with 8 alternatives and 4 criteria) and D8,8.
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Fig. 9. Multiple comparison of statistical results of correlation significance percentage among different outranking methods applied on decision matrices with D15,8, and

D15,15.
3. Numerical results and discussion

Tables 2 and 3 represent a sample of the statistical results of
the Kendall's tau-b and Spearman’s rho tests developed to investi-
gate the significant correlation percentage among the order of the
ranks developed by 9 different methods on the same decision ma-
trix with 15 alternatives and 15 criteria (D1515). The significant val-
ues in Tables 2 and 3 represent statistically indistinguishable corre-
lation rates between both Kendall’s tau-b and Spearman’s rho tests.
By assuming that «-level =0.05, the results of statistical analysis
in Tables 2 and 3 indicate that there is extremely similar perfor-
mances between two tests of Kendall’s tau-b and Spearman’s rho;
therefore, Kendall’s tau-b has been selected to evaluate the sim-
ilarity and dissimilarity of the final ranks produced by different
decision-ranking techniques. Whenever reported p-values less than
«-level=0.05, which indicates that there is a statistically signifi-
cant correlation among the produced ranks of the two compared
methods.

Figs. 2-6 illustrate the statistical results of the corre-
lation significance percentages among 9 different ranking
methods applied on decision matrices with the random left
and right spreads of triangular fuzzy values and sizes of
D5, 3 (3 alternative and 3 criteria), Dg 4 (8 alternative and 4 criteria),
Dg, g (8 alternative and 8 criteria), Dys, g(15 alternative and 8 crite-
ria), andDys 15(15 alternative and 15 criteria).  Generally, the
ELECTRE method did not produce a complete sorting of alterna-
tives; therefore, we excluded it from the statistical comparison
of the performances of the ranking methods. Fig. 7 illustrates
multiple comparisons of statistical results of correlation signifi-
cance percentages among different ranking methods applied on
symmetrical decision matrices with 3, 8, and 15 alternatives.

Fig. 8 illustrates multiple comparisons of statistical results of
correlation significance percentage among different ranking meth-
ods applied on decision matrices with Dg4 (8 alternatives and
4 criteria), and Dgg. Fig. 9 illustrates multiple comparisons of
statistical results of correlation significance percentage among
different ranking methods applied on decision matrices with Dysg,
and Dqs1s. Fig. 10 illustrates multiple comparisons of statistical
results of correlation significance percentage among different
ranking methods applied on decision matrices of D3 3, Dg 4,
Dg g, Dys, 8, and Dys, 15. Fig. 11 illustrates multiple comparisons of
statistical results of correlation significance percentage applied on
Dg g with 4 uncertainty levels. Significantly similar patterns were
observed for other evaluated sizes of matrices D3 3, Dg 4, Dis g,
and Dq5, 15 with 4 uncertainty levels. Fig. 12 shows the agreement
percentage between the methods in selecting the first rank. In
order to compare the performance of ranking methods in selecting
the first rank, 8 methods were compared with SAW.

The numerical results in Fig. 2 show that, for the 50 sets of de-
cision matrices of D3 3 (3 alternative and 3 criteria), SAW, in com-
parison with the other 8 methods, had the highest significant cor-
relation percentage (76%) with the AHP2; WPM had the high-
est significant correlation percentage (68%) with SAW; CP had the
highest significant correlation percentage (66%) with the AHP2;
TOPSIS has the highest significant correlation percentage (50%)
with the VIKOR; and AHP1, AHP2, AHP3 and AHP4 behave similarly
and have the highest significant correlation percentage with each
other. AHP1 and AHP3 produced 100% correlation percentages.
AHP1 had the lowest similar behavior with TOPSIS. VIKOR had sim-
ilarly significant correlation percentages with the other methods.
The same interpretative approach applies for Figs. 3 through 6.
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Fig. 10. Multiple comparison of statistical results of correlation significance percentage among different outranking methods applied on decision matrices of D3 3, Dg 4,

Dg s, Dis s, and Dis, 15.

Numerical results in Fig. 7 indicate that, as the size of the deci-
sion matrices (number of alternatives) increases, the percentage of
statistically significant correlations increases.

Graphical illustration of the statistical analysis in Fig. 8 shows
that, statistically, for matrices with an equal number of alterna-
tives, as the number of criteria increased, the statistically signif-
icant correlation percentage decreased as investigated for 50 sets
of decision matrices of Dg4 and Dgg.

The graphical illustration of the statistical analysis in Fig.
9 shows that, statistically, for matrices with an equal number of
alternatives, as the number of criteria increases, the statistically
significant correlation percentage decreases as investigated for 50
sets of decision matrices of D55 and Djs15. However, the differ-
ence in the significant correlation percentage for matrices with 15
alternatives with a different number of criteria is less than ma-
trices with 8 alternatives, because, as shown in Figs. 8 and 9, with
an increasing number of alternatives, the percentage of statistically
significant correlation increased.

4. Conclusion

The findings rank MCDMs under fuzzy environment by the per-
formances and show when simple MCDMs match the performance
of complicated MCDMs, making it possible to optimize results
while minimizing computational effort. The findings also reveal
several general results. Statistical analysis of the decision matrices
Dg 4, Dg s, Dis g, and Dys 15, shown in Figs. 7 and 10, indicates
that SAW, TOPSIS, WPM, AHP1, AHP2, AHP3, and AHP4 have similar

performances; AHP1 and AHP3 produced identical performances,
and AHP2 and AHP4 produced very similar performances. In con-
trast, as compared to the other methods, CP and VIKOR had a less
significant correlation percentage. Notably, Fig. 11 shows that when
the uncertainty levels are raised through equal increases in the left
and right spreads (i.e., when the uncertainty is changed symmetri-
cally) there was no significant impact on the final ranking. Fig. 12,
for its part, shows the performance of the ranking methods com-
pared with SAW in finding the first rank among all alternatives.
Since VIKOR, in comparison with the other methods, categorizes
several alternatives with the same ranks, it exhibits more similarity
to SAW. However, when the other ranking methods are compared
to SAW, SAW and TOPSIS exhibit higher similarity for choosing the
first rank from decision matrices Dg 4, Dg g, Dis g, and Dys 1s.

The numerical results, along with the examples for each indi-
vidual method, show that SAW, WPM, CP, and TOPSIS are com-
putationally simple to apply; in contrast, ELECTRE, VIKOR, and the
four types of AHP are computationally large and elaborate. In com-
parison with the other evaluated methods, SAW proved to be an
especially simple method to understand and apply in ranking the
alternatives of a decision matrix.

The graphical representation of the results of statistical analy-
sis, shown in Fig. 7, indicates that in most of the evaluated meth-
ods except VIKOR, by increasing the size of the decision matrix
(number of alternatives), the percentage of significant correlation
among the ranks of pairwise compared methods increases regu-
larly for SAW versus WPM, CP, TOPSIS, AHP1, AHP2, AHP3, AHP4,
and VIKOR; WPM versus SAW, TOPSIS, AHP1, AHP2, AHP3, and
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Fig. 11. Multiple comparison of statistical results of correlation significance percentage applied on Dg s with 4 uncertainty levels.
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AHP4; TOPSIS versus SAW, WPM, AHP1, AHP2, AHP3, and AHP4;
AHP1 versus SAW, WPM, AHP2, AHP3, and AHP4; AHP2 versus
SAW, WPM, AHP1, AHP3, and AHP4; AHP3 versus SAW, WPM,
AHP1, and AHP4; and AHP4 versus SAW, WPM, AHP1, AHP3, and
AHP4. Statistical results show that VIKOR has the lowest signif-
icant correlation percentage with the other methods. Significant
correlation among the methods demonstrates strong similarity of
the ranks’ orders between pairwise compared methods applied on
the same sort of alternatives. As the size of matrices increased, the
similarity of rank orders increased. Numerical results in Figs. 8 and
9 demonstrate that increasing the number of criteria in decision
matrices with equal numbers of alternatives led to a lower per-
centage of significant correlation among the ranks obtained from
different methods. Since some methods produce similar ranks, and
considering that different methods have different levels of diffi-
culty, it is rational to use the easiest and simplest method for de-
veloping the full range of ranks on the same decision matrices.

For the investigated decision matrix sizes, the Kendall’s tau-b
correlation coefficients have been provided as supplementary data
sets through the excel files, in which they provide reliable sources
for investigating the correlation strengths between the produced
ranks by different MCDM techniques applied on the same decision
matrices. In addition to the multiple comparison of statistical re-
sults of correlation significance percentage, it is recommended to
investigate the magnitude of the correlation coefficients among the
produced ranks by different techniques when those techniques are
applied on the same decision matrices.

The methods selected and discussed through this paper are
classic, but still in use; for example, the Analytical Hierarchy Pro-
cess has been in continuous use since the 1970s. However, there
is a need to discuss and investigate recently developed techniques,
such as stepwise weight assessment ratio analysis (SWARA), the
weighted aggregated sum product assessment (WASPAS), additive
ratio assessment (ARAS), the method of complex proportional as-
sessment (COPRAS), multi-objective optimization by ratio analy-
sis (MOORA), and MOORA plus a full multiplicative form (MULTI-
MOORA). The evaluation of these techniques, absent in this paper,
is suggested as a future direction of research.
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