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In our paper, we analyze new exact approaches for the multi-mode resource-constrained project schedul-
ing (MRCPSP) problem with the aim of makespan minimization. For the single-mode RCPSP (SRCPSP) re-
cent exact algorithms combine a Branch and Bound algorithm with principles from Constraint Program-
ming (CP) and Boolean Satisfiability Solving (SAT). We extend the above principles for the solution of
MRCPSP instances. This generalization is on the one hand achieved on the modeling level. We propose

Keywords: three CP-based formulations of the MRCPSP for the G12 CP platform and the optimization framework
Multi-mode resource-constrained project SCIP which both provide solution techniques combining CP and SAT principles. For one of the latter we
scheduling implemented a new global constraint for SCIP, which generalizes the domain propagation and explanation
Constraint programming generation principles for renewable resources in the context of multi-mode jobs. Our constraint applies
EQITPSOIVing the above principles in a more general way than the existing global constraint in SCIP. We compare our

approaches with the state-of-the-art exact algorithm from the literature on MRCPSP instances with 20
and 30 jobs. Our computational experiments show that we can outperform the latter approach on these
instances. Furthermore, we are the first to close (find the optimal solution and prove its optimality for)
628 open instances with 50 and 100 jobs from the literature. In addition, we improve the best known
lower bound of 2815 instances and the best known upper bound of 151 instances.

© 2017 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Lazy clause generation
Exact algorithm

Silva and Sakallah [19]). Therefore, the different propagators of the
global constraints generate explanations, i.e. clauses consisting of

1. Introduction

The multi-mode resource-constrained project scheduling prob-
lem (MRCPSP) is a generalization of the single-mode RCPSP (SR-
CPSP) where an additional mode-assignment step has to be con-
sidered. The aim is to find the best mode-assignment for a number
of jobs subject to nonrenewable resource constraints such that the
optimal schedule for the resulting SRCPSP (if existing) optimizes a
specific objective function.

For the SRCPSP recent exact algorithms combine a Branch and
Bound (BaB) algorithm with principles from Constraint Program-
ming (CP) and Boolean Satisfiability Solving (SAT) (see [5], [15] and
[30]). The idea of the CP-SAT algorithms is to combine the domain
propagation processed through global constraints (Apt [3]) with
the Conflict Analysis (CA) techniques of a SAT solver (Marques-
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E-mail addresses: alexander.schnell@univie.ac.at (A.
richard.hartl@univie.ac.at (R.F. Hartl).

Schnell),
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Boolean literals, for their domain updates and the detected incon-
sistencies. The latter explanations are transfered to a SAT solving
mechanism. The SAT mechanism constructs a conflict graph based
on the explanations of the domain propagators and can possibly
deduce nogoods and backjumps via CA.

Roughly speaking, nogoods are valid clauses for a SAT model,
like e.g. cutting planes in Mixed-Integer Programming (MIP), which
possibly prune branches of the BaB-tree. Backjumps are backtrack-
ing moves which lead from the actual node a to a preceding node
p whereas d(a) — d(p) > 1 holds for the depth levels d(a) and d(p)
in the BaB tree. Moreover, the branching strategy of the underly-
ing BaB-algorithm uses conflict statistics of the literals forming the
explanations. In general, the algorithms branch on the variables
and values based on the number of conflicts the respective literals
were involved in (Moskewicz et al. [21]). For a more detailed in-
troduction to the principles of CP and SAT solving and the possible

2214-7160/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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combination of the both to one exact solution algorithm, we refer
to Schutt et al. [31], Schutt [27] and Achterberg [1,2].

The lazy clause generation approach (LCG), a CP-SAT hybrid in-
troduced by Ohrimenko et al. [23] and extended by Schutt et al.
[28], is up-to-date the best exact approach for the SRCPSP with
standard precedence relations and the aim of makespan minimiza-
tion. Furthermore, LCG was also applied to variants of the SR-
CPSP with more general constraints and with objective functions
differing from makespan minimization. Schutt et al. [31] success-
fully solve the SRCPSP with generalized precedence relations by
LCG. They outperform the state-of-the-art exact approaches for
this problem and also on average report better results compared
to state-of-the-art heuristics. Moreover, Schutt et al. [29] outper-
form the state-of-the-art exact algorithm for the SRCPSP with dis-
counted cash flows, again by generalizing LCG to this problem. One
can conclude, that LCG is a robust approach for variants of the
SRCPSP.

The aim of this paper is to provide a generalization of the CP-
SAT hybrids for the SRCPSP to the MRCPSP. Exact approaches for
the MRCPSP have been summarized and tested by Hartmann and
Drexl [12], whereas they conclude that the approach of Sprecher
and Drexl [32] is the exact method of choice. The most recent ex-
act algorithm of Zhu et al. [37] outperforms the latter approach.
They implemented a Branch-and-Cut procedure with a preprocess-
ing and a heuristic step to generate good upper bounds as an in-
put for their algorithm. A recent survey on heuristic approaches
for the MRCPSP and a detailed experimental evaluation is given by
Peteghem and Vanhoucke [35]. Their computational experiments
show that the scatter search procedure of Peteghem and Van-
houcke [34] produces the best results. In this context, it is also im-
portant to mention the approach of Coelho and Vanhoucke [8] as
they combine SAT solving techniques with a metaheuristic for the
SRCPSP to solve the MRCPSP.

Our contribution is an extension of recent exact approaches
combining CP and SAT techniques which are efficient for the SR-
CPSP to the MRCPSP, more precisely the MRCPSP with standard
precedence relations. This extension can be partly achieved on
the modeling level. We propose three CP models for the MRCPSP
which can be formulated in optimization frameworks that inte-
grate an exact solution approach combining CP, SAT and MIP tech-
niques. Moreover, for one modeling formulation we implemented
a new global constraint cumulativemm specially tailored to re-
newable resources in the context of multi-mode jobs. Note that
we already successfully generalized and applied recent CP-SAT ap-
proaches to the MRCPSP with generalized precedence relations in
[26]. The paper at hand can be seen as a predecessor of the latter
paper.

In the remainder of the paper, we proceed as follows. In
Section 2, we describe the MRCPSP and its computational com-
plexity. Section 3 introduces three problem formulations in
optimization frameworks which support the solution by a BaB
algorithm integrating CP, SAT and MIP techniques. In Section 4,
we describe the principles of our new global constraint
cumulativemm. Section 5 discusses the results of our computa-
tional experiments and draws a comparison to the state-of-the-art
exact approach of Zhu et al. [37]. The paper ends with a conclusion
derived from the obtained results.

2. Problem description and complexity

The MRCPSP is a generalization of the SRCPSP, where every job
jeJ=1{0,....,n+1} can be processed in different modes k € M; €
N. The jobs 0 and n+1 are dummy jobs representing the start
and the end of the complete project, i.e. in the beginning every
job with no predecessor and every job with no successor is con-

nected to the dummy job 0 and n+ 1 in the precedence network,
respectively. Moreover, the jobs can not be preempted.

Moreover, a set of nonrenewable (renewable) resources
N(R) € N with a maximal capacity of C’, r e N (C°, r e R) is given.
Every job’s integer duration d; ; > 0, nonrenewable (renewable) re-
source consumption ¢y, ., I € N(cf.k.r, r € R) is dependent on the
selected mode k € M;.

Nonrenewable resources r € N like e.g. a project budget or en-
ergy are available for the complete planning horizon. Once job j is
processed in mode k, C}' — c}.’_k_r units of the nonrenewable resource
r e N are still available for the remaining jobs. Moreover, a con-
stant amount C? of a renewable resource r € R like e.g. a number
of machines or workers is available at every point in time.

Furthermore, a job j € J cannot end after a job from its succes-
sor set &; has started, i.e. in our paper we only consider standard
precedence relations. As objective, we consider makespan mini-
mization.

The solution of the MRCPSP can be divided into two steps. The
first step consists of finding a feasible mode-assignment w.r.t. the
nonrenewable resource capacities. The knapsack problem is poly-
nomially reducible to the latter problem, i.e. already the mode-
assignment step is NP-complete for |[N| > 2 (Kolisch and Drexl
[17]). The second step consists of finding an optimal schedule for
a SRCPSP instance, i.e. of finding a schedule which minimizes the
makespan and respects the precedence constraints and the re-
newable resource capacities for a given mode-assignment.! Note,
that the SRCPSP with the objective of makespan minimization is
strongly NP-complete (Blazewicz et al. [6]).

In total, one has to find a feasible mode-assignment at which
the minimal makespan of the resulting SRCPSP is not larger than
the minimal makespan detected for any other feasible mode-
assignment.

As a preprocessing step one can remove redundant nonrenew-
able resources, inefficient and non-executable modes (see [32] and
[11]). Furthermore, lower and upper bounds Ib(s;) and ub(s;) can be
deduced for the starting times s; by applying forward (backward)
recursion [7]. This approach is based on longest path calculations
in the precedence network where the arc weights correspond to
the minimal mode durations of every job j € J w.r.t. the remain-
ing modes. For the evaluation of ub(s;), an upper bound T on the
makespan is needed. T can be given by a problem specific heuristic
or Tmax defined in Section 4.

3. CP-models for the MRCPSP

There are two solution frameworks which provide a solution al-
gorithm consisting of a combination of CP, SAT and MIP techniques.

The first is the Constraint Integer Programming framework SCIP,
developed by Achterberg [2] and maintained and extended by
members of the Zuse Institute in Berlin. SCIP provides a general
BaB algorithm for optimization and allows the user to implement
plugins, e.g. special branching strategies, primal heuristics and con-
straint handlers (i.e. global constraints). Moreover, default plug-
ins exist to use SCIP as a stand-alone CP or MIP solver. Further-
more, when the formulated model only consists of default con-
straint handlers provided by SCIP, the solution algorithm integrates
techniques from CP, SAT Solving and MIP.

The second framework is the G12 Constraint Programming Plat-
form [9] provided by the NICTA research team [22]. The user
can formulate a problem in the modeling language Zinc [20] and
choose between different solution algorithms. Thereby, LCG can
also be chosen for the solution of a model. With the G12 Con-

T Note that, it can happen that no feasible schedule for the resulting SRCPSP ex-

ists, if mode m has been chosen for job j and cfm >CP.
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straint Programming Platform [9] the user is not that flexible as
with SCIP but he can solve his model with the state-of-the-art ex-
act algorithm for different variants of the SRCPSP.

In the following, we present three CP-models for the MR-
CPSP in the above optimization frameworks. Section 3.1 contains
one model which can be used within the Zinc-modeling lan-
guage and Section 3.2 describes two models which can be im-
plemented within SCIP. We also implemented a new constraint
handler cumulativemm for SCIP, which we apply for a model in
Section 3.2. The principles of the latter are described in Section 4.

3.1. Formulation for the Zinc-modeling language

For the modeling of the starting time of job i and the mode
assignment of job i, we use the integer variables s; and x;, respec-
tively. With the latter variables and the notation of Section 2, the
MRCPSP can be formulated as follows in the CP-modeling language
Zinc:

min  Sy4q (1)

st. si+diy <sj, Vje&,Vie] (2)
Zc}thr <C', VreN (3)
ctrjnulative(s, d,c.C’), VreR (4)
sj e {Ib(s)), ..., ub(sp)}, Vje] (5)
xjeM;, Vjej (6)

where

s=[s;:je]] (7)

d=1[dj, : je)] (8)

= [c]ﬁ.ijvr T je]] 9)

The dummy job n+ 1 represents the end of the project. It can
only be processed in mode 1 and d,,;1 1, Craldr Cﬁ+l,].r =0, Vre
RU N. Moreover, every non-dummy job which has no non-dummy
successor is connected to the dummy job n+ 1 in the precedence
network. Thus, minimising the makespan is equal to minimising
Sn+1-

(2) are multi-mode precedence constraints. With (3) and (4),
we assure that the available capacities of the nonrenewable and
renewable resources are not exceeded. Hereby, in (4) we use the
scheduling specific global constraint cumulative (Baptiste et al.
[4]). To apply this constraint for the MRCPSP, we define the vari-
able vectors s,d and ¢ in (7)-(9).

In the above formulation, variables appear in the indices of
parameters, like e.g. in d;,. This modeling technique can only
be applied if the respective solver supports the global element-
constraint introduced by Hentenryck and Carillon [33].

In general, the element-constraint has the following form:

element(y, X, Z) (10)

(10) guarantees, that the yth element of the variable (or parameter)
vector X equals the variable z, i.e. Xy = z. Clearly, if X has n entries,
it must hold that y <n—1 if zero is the first index. Propagation
algorithms captured by the element-constraint can infer domain
updates for the variable z in case of domain updates of y or of the
entries x; of x and vice versa.

In the case of our model, the terms d; ,, and c?

i, r are internally

transformed to new variables d;, c;’i and c}". by posting the follow-
ing constraints:

element(X;, [dif 1 ke M;], d}), Vie] (11)

element (x;, [c”

Per s ke M, C;f;), Vie] VreR (12)

element(X;, [}, i ke Mi].ci}),

Vie], VreN (13)

Thus, in our application, after a transformation of the respective
solver only the variables d; and c;/; are used in the cumulative-
constraint.

3.2. Formulations for SCIP

SCIP provides the optcumulative-constraint introduced by
Heinz et al. [14] to model renewable resource constraints in the
context of multi-mode jobs. However, to apply the above con-
straint for the MRCPSP, we have to introduce integer starting time
variables s;  for every job i and mode k and the binary vari-
ables x; ; for the mode assignment of job i. Note, that the mode-
assignment is modeled by binary variables as SCIP does not sup-
port the element(...)-constraint.

With the latter variables and the notation of Section 2,
the MRCPSP can be formulated as follows in SCIP with the
optcumulative-constraint:

min Snt1.1 (14)
sty xx=1 Vie] (15)
keM;

Sik + ik Xik < Sj1s

VjEG,',ViE], VkEMj, VlGM] (16)
ZZcxkfx,-,kgCr”, VreN (17)
ie] keM;
optcumulative(S, X, C-l, c, C,’?), VreR (18)
Sj.k € {lb(Sjyk), ey ub(Sj’k)}, V] 6], Vk e M] (19)
Xj,k € {O, 1}, V] E], Vk e MJ (20)
where
§=s%0...0s"1  wheres, =s;;, Vke M;, Vie] (21)
x=x"0-.-ox"1,  wherex} =x;;, Vke M;, Vie] (22)
d=d%...od™!, whered| =d;;, Yke M;, Vie] (23)

¢ =c"0..oc™ wherec;" =cf, .

VkeM;, Vie], VreR
(24)

Again, we minimize the starting time s, ; of the dummy job n+
1, which can only be processed in mode 1. With (15), (16) and (17),
we formulate the uniqueness of the mode-assignments, the multi-
mode precedence constraints and the nonrenewable resource con-
straints, respectively. (18) guarantees that the maximal capacities
of the renewable resources are not exceeded. To guarantee a cor-
rect input for optcumulative we have to use the variable vec-
tors § and X and the parameter vectors d and ¢ which are given
in (21)-(24). In this context, the operator o is defined as the con-
catenation of two vectors, whereas the vector ¢ = ao b is obtained
by appending the elements of b coordinate-wise to a.

The above SCIP-formulation has two major disadvantages.
Firstly, we have to introduce starting time variables for every job-
mode combination (i, k),i € ],k € M;.

The second disadvantage has to do with the implementation
of the optcumulative-constraint [14]. The domain propaga-
tion step and the inconsistency check for a variable s; ., in the
optcumulative-constraint only considers variables s; i, j # i for
which x;;, =1 in the recent node of the BaB-tree. However, also
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variables s; i, j # i, where the mode-assignment has not been done
yet, can be considered for the domain propagation and the incon-
sistency check of a variable s; .

To overcome the above disadvantages, we aimed at implement-
ing a new global constraint cumulativemm for SCIP to be able to
apply a more general form of domain propagation and explanation
generation for renewable resources in the context of multi-mode
jobs where we only have to introduce starting time variables s; for
every job j € J. The principles of the cumulativemm-constraint are
outlined in Section 4.

With our new constraint and again binary variables x; ; for the
mode-assigment, we formulate the MRCPSP as follows in SCIP:

min Sy (25)
sty xyp=1, Vie] (26)
keM;

sit Y dig-Xp<s;, Vje&.Vie] (27)

keM;
YN s xik<C. VreN (28)

ie] keM;
cumulativemm(s, X, El, c, C;D), VreR (29)
sj e {Ib(s)).....ub(sp)}. Vje] VkeM; (30)
ijk S {0,1}, VjE_’, VkEMj (31)

4. Principles of the cumulativemm-constraint

With our cumulativemm-constraint, one can model renewable
resource constraints for multi-mode jobs. The main ingredients of
the cumulativemm-constraint are a feasibility check, constraint
propagation and explanation generation (see Sections 4.1 and 4.2)
for a certain resource r € R.

Our constraint enforces feasibility w.r.t. the renewable resource

reR:
Z Cj,m,r = C;a’

jeJ. meMj: t—djm+1 <sj <t A Xjp=1

The other constraints in the SCIP-model of the MRCPSP are mod-
eled by SCIP-intern constraints and can therefore be handled by
the SCIP-intern solution principles.

The constraint propagation procedure consists of a redundancy
check and a domain reduction step. We firstly check the multi-
mode data for redundancy in the current node of the BaB tree. In
concrete, if we assume the maximal mode duration, the maximal
resource consumption and the maximal processing interval for ev-
ery job j € J in the current node and the underlying schedule is
feasible w.r.t. the renewable resource r € R, we can locally remove
our constraint from the solution procedure. This is due to the fact,
that in the above case, it cannot be violated anymore in the suc-
ceeding branches of the BaB tree.

The domain reduction step is mainly based on the calculation
of a minimal problem instance (MPI) [13] in every processed node
of the BaB tree, i.e. the transformation of the multi-mode data to a
single-mode representative. Therefore, we calculate a minimal pro-
cessing version MPV;, = (domain(s;); d;"i“; c‘j?fri") for every jobj € J
and renewable resource r € R as follows:

Vie(l,---.T)

amn - = 1’323} {djx : ub(xjy) > 0} (32)
c™Mn —  min {c’.’ sub(xjy) > O} (33)
Jr keM; Uikr ’

In (32) and (33), we calculate the minimal duration and resource
consumption of resource r € R w.r.t. the modes which have not

been excluded (ub(x; ; > 0) in the recent node of the BaB tree.
With the MPI at hand, we can apply standard constraint propaga-
tion algorithms for renewable resources like e.g. timetable prop-
agation (TP) and edge finding [4]. Our current implementation of
the cumulativemm-constraint only integrates TP. TP is based on
the evaluation and reasoning on the so-called compulsory parts cp;
of the jobs j € J (Schutt et al. [28]):

if Ib(s;) +d™ > ub(s)) :
cpj = {ub(s)). ... Ib(sy) +d"™ — 1} G4
Else cpj =9

If cp; # @, job j is surely processed at all timepoints t € cp;.

Example 4.1 TP for multi-mode jobs. Assume that in the course
of the BaB-algorithm of SCIP and after the redundancy check, our
constraint propagation procedure has the following input:

(domain(s;), domain(xy 1), dq 1, cfvm) =({3,4,5},{0,1},2,1)
(domain(s; ), domain(x; ), di 2, Cfl]) =({3,4,5},{0,1},3,2)
(domain(s, ), domain(x; 1), dzj,cg,],l) =({2,3,4},{1},3,2)

The maximal capacity of the renewable resource 1, Cf =2. We can
see that job 2 is processed in mode 1, as x 1 = 1. Thus, dg”i” =3
and cfzrjil” = 2. Moreover, job 2 is surely processed at the time point
4, as its compulsory part cp, = {4}. Next, we consider job 1 with
dMn =2 and ¢ = 1. cp; = ¢ but we can deduce a domain up-
date. As Ib(sq) + dTi” =3+ 2 >4, starting job 1 at its lower bound
would lead to a resource conflict at the time point 4. The TP al-
gorithm will find the largest time point t; — 1 =4 such that the
capacity is violated (2 + 1 > 2). After that Ib(s;) would be updated
to t; = 5 which equals ub(s;) and a new compulsory part of job 1
cpy = {5, 6} is evaluated.

Note, that the principles of our constraint propagation proce-
dure are standard techniques. These are applied in a similar way
in CP solvers like e.g. JaCop [16] which provide the cumulative-
constraint supporting variable durations and resource consump-
tions for every job.

The idea of integrating explanation generation, i.e. of processing
reasons for the deduced domain reductions or inconsistencies to a
SAT solving mechanism is rather new. To our knowledge, there are
only two optimization frameworks integrating this feature, i.e. SCIP
and the G12 Constraint Programming Platform [9]. Schutt [27] de-
scribes principles for explanation generation in the context of jobs
having variable durations and resource consumptions. These expla-
nation generation techniques are integrated in the cumulative-
constraint provided by the G12 Constraint Programming Platform
[9]. In our cumulativemm-constraint, we explain the reasons for
the domain reductions or inconsistencies in a different way. In the
next two sections we introduce our strategy for explanation gener-
ation and compare it to the strategy of Schutt [27].

4.1. Explanations for timetable propagation with multi-mode jobs

In order to integrate our constraint into the SCIP-intern CA
mechanism, we have to provide functions for the cumulativemm-
constraint which derive explanations for the inconsistencies or do-
main updates detected by the TP algorithm. These explanations can
be seen as clauses consisting of boolean literals of the form:

{[[ijt]], [[Sth]]I t:O,...,T—])}
and

{[[Xj,k ==0]. [xjx == 1]]}
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Assume now, the TP algorithm found an inconsistency because of
the jobs having their compulsory parts cp; (see (34)) at time t, and
cause a resource violation:

min 4
DRRCHEe

Jiteecp;

Then, our constraint handler derives the following explanation:

/\ EXP, = false (35)

Jiteecp;

(35) can be divided into the subexplanations EXP; for every job
participating in the conflict:

EXPj = [[te —d]™ +1 < s]] A [ls; < tel]
A /\ [[Xjm ==0l] (36)

m:meM; and ub(xj;m)=0

EXP; is correct as in a situation, where the variables s; and x;
have bounds as in (36), the compulsory parts cp; of the involved
jobs would again include the timepoint t, and this would again
lead to a resource violation. Note, that d;.”"“ and CT;'” are calculated
by (32) and (33), respectively.

In addition to explanations for inconsistencies, our constraint
handler also processes explanations for domain updates deduced
by our TP algorithm to the SCIP-intern CA mechanism. SCIP stores
information about the time the bound changes took place through
a so-called bound change index (BCI) and about the constraints
which processed the domain updates. In the course of the BaB-
algorithm, the SCIP-intern CA can ask our constraint handler for
an explanation of the new lower bound [b*(s;) of job i at the BCI b,
if it was deduced by the cumulativemm-constraint.

Therefore, we introduce the timepoint t = [b*(s;) — 1. Jobs j €
J\i} with compulsory parts cp? where t € cp? such that:

Cz{,nrm.b_i_ Z C;l}in,b - Crp
j#i:tecp;

were responsible for the bound change at the BCI b. Additionally
the lower bound Ib(s;) of job i has to exceed a certain value for the
domain update. The complete explanation consists of two clauses
e; and f, where e; contains the minimal lower bound of s; and f
the compulsory parts cp’} of jobs j # i with t cp’]’.. e; is given as
follows:

e= [t—d"™ +1<s] ~ A
m:meM; and ub(xt, =0

[[Xi,m == 0]]

The clause f is as follows:

= A

jij#i and tecp?

EXP;

where EXP; is given through a small variation of (36). We replace
te by t, dj.“i“ by d;.“i“’b and ub(x; 1) by ub®(x; ). Thus, we evaluate
the latter values for the given BCI b. The complete explanation for
the bound change Ib(s;) — Ib*(s;) is given through:

ei A f=[[Ib"(s;) <sill (37)

The argument for the correctness of the above explanation is
the same as in the inconsistency case. Note, that the explanation
(37) depends on the BCI b.

In our TP algorithm we process the bound changes in a point-
wise manner, i.e. we guarantee that Ib*(s;) — Ib(s;) < d}“i"*b. With
this, we want to imitate the pointwise explanations proposed by
Schutt et al. [28]. The explanations for the upper bound changes
are processed in a symmetric way.

SCIP generates a conflict graph based on the explanations of
our constraint handler and the explanation generators of the other
constraints and can possibly deduce nogoods and backjumps for
the following branches in the BaB algorithm. If a constraint propa-
gation algorithm leads to many domain reductions, CA can be very
efficient for the complete solution procedure. An example for the
CA process, i.e. for nogood generation on a conflict graph can be
found in Schutt et al. [31].

The following example illustrates a possible outcome of our ex-
planation generation procedure.

Example 4.2. Firstly, we extend Example 4.1 by another job with
two modes and the following input:

(domain(s3), domain(xs 1), ds 1, ¢§ | ) = ({5}, {1}, 2,2)

Note, that there is a resource conflict at time point t, =6, as 6 €
cp1neps and ¢ | (=2) +cMM(=1) > 2. The explanation for this
inconsistency is as follows:

([5 =sill Allst = 61D A ([15 < s3 Alls3 < 6] A llx32 == 0ID
— false (38)

Note, that job 3 is processed in mode 1 and for job 1 it holds, that
ub(xq, x) > 0,VYk e M;. After the initialization of the SCIP-intern CA,
SCIP asks our constraint handler for the reason of the lower bound
change of s; from 3 to 5 from Example 4.1, i.e. an explanation for
the literal [[5 < s1]].

Our constraint handler gives the following explanation:

[B3=silA 3 =s20Alls2 =4l Allxe2 ==0]) = [[5 < s1]
(39)

Every boolean literal from (38) and (39) is added as a new node
to the SCIP-intern conflict graph. Moreover, an arc is constructed
from every boolean literal of the left-hand side of the explanation
to the boolean literal on the right-hand side.

4.2. Comparison to other explanation generation techniques and
possible improvements

Schutt [27, p.96] also introduces explanations for the
cumulative-constraint where the durations and the resource
consumptions of the jobs can be variables. In our G12-model of

Section 3, we use this constraint with the duration vector d and
the resource consumption vector ¢/ to model the resource con-
straint for the renewable resource r € R. After the transformation
given by (11) and (12), the G12 solution approach will only use the
variable vectors d’ and ¢/’ in the cumulative-constraint. These
are connected to the original durations and resource consumptions
by the element-constraint (see (11) and (12)). With our notation,
the preliminary version of the explanations for a lower bound
update of s; to Ib*(s;) applied in the cumulative-constraint (see
[27, p.96]) are as follows (at the BCI b):

[ib* (s;) — 16 (d}) < s;] A lIBP(d}) < df]l A D" () < ] A

- Lr

A\ [b* (sp) = 1" (d)) < s A Dlsj < Ib*(s0) = 1D A TIBP () < dj]l - A
jijzi and [ecp?
A [b° ) <cfil = [Ib*(s) <) (40)

jijzi and tecp?

Schutt [27] notes, that these explanations can be strength-
ened by choosing different values g; and [; instead of lbb(dlf) and
Ibb (C;ﬁ), respectively. For example consider the case where the do-
main of d] is internally encoded as a range of consecutive val-
ues but the set D; = {d;;, m € M;} consists of nonconsecutive val-
ues and it holds that lbb(d;) ¢ D;. Then, by using q = min{d;,, :
dim > lbb(d{)}, the explanation (40) can be strengthened. Schutt
[27] specifies the values g; and [; which lead to the strongest
explanations.
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In our explanation for a domain update (see (37)), we omit the
part where the resource consumptions of the involved jobs are ex-
plained as in (40). This is due to the fact, that as soon as cer-
tain modes are excluded, we can reason about the minimal du-
ration d™" and the minimal resource consumption c”““ Thus we
do not have to introduce explanations for both duratlons and re-
source consumptions. This can be an advantage compared to the
explanations of Schutt [27].

Assume therefore, that we are in a situation in a node c of the
BaB tree where the input is the same for both algorithms, and both
algorithms already generated the explanations (37) and (40), re-
spectively at node b with the same set of jobs Jexp involved in both
explanations. Additionally,

A = 16(d}), V€ Jexp (41)
;nrm b =1IpP (C/p) VJj € Jexp (42)
Moreover, the left hand side of (37) is true at node ¢ and

Ak efexp: ty € cPALL(c) > 1b°(c)) (43)

whereat the first two lines of (40) are true. As (37) is true, our
algorithm will immediately deduce Ib*(s;) < s;.

Because of (43), the G12-algorithm will not immediately deduce
the latter lower bound update. As the first two lines of (40) are
true and (41) and (42) hold, we can conclude that

xjeMl={m:meM; and ub(x}, ) > 0}, Vj € Jexp (44)

and thus lbb(c’p) < ck . ie. Ib°(c’) can be updated to lbb(cl ).
Now, the complete left hand 51de of (40) is true and the G12-
algorithm will also deduce Ib*(s;) < s;.

The update of [b“(x;) outlined in (44) and the update of lbf(c;(”r)
have to be processed by the element-constraints (11) and (12) in
the G12-algorithm before the explanation (40) leads to the update
of Ib*(s;). As this update happens immediately with our explana-
tion (37), there are cases where our explanation generation strat-
egy can lead to time savings.

Our explanations can also be strengthened.

Example 4.3. Consider a job 1 with the following input at the cur-
rent node:

(domain(xy,1), dy1, ¢} ;) = ({0},2,2)
Cf,zj) = ({O}?373)
ij,l) = ({1}1473)

Assume that our TP algorithm would detect an inconsistency at the
time point 4 and job 1 is involved in the latter inconsistency, i.e. 4
€ cp;. As d;“i“ =4, the part of the explanation containing job 1 is
as follows:

[1<siIAllsi <4l Allx1,1 ==0] A[x12==0]

If the global domain of s; equals {2, ...,
explanation as

(domain(xlwz), d]vz,

(domain(x; 3), dy 3,

6}, we can strengthen the

[[1 < sq] is globally true,
[x1.1 == 0] A [[x1,2, == 0]
[X1.1 == 0l A [s1 <4l

= [[x1,1 ==0]]
= 4 €cps,

F21=C31

Thus, we can use the following stronger explanation for the com-
pulsory part of job 1:

[s1 <4l A l[%1,1 == 0]

Motivated by the above example, assume that job i is part of
the job set Jexp involved in the explanation (37) w.r.t. time point
t. Moreover, let Ib8(s;) be its global lower bound. We can possibly

strengthen the explanation (37) by strengthening the part of the
explanation integrating job i € Jexp.
This can done in two steps:
Firstly, if t — d{“i“ +1 < Ib8(s;), omit [[t —
Set d™in :— min{dM", t — IbS(s;) + 1}.
Secondly, we determine the set B} consisting of the modes m
M; which fulfill:

dmin 1 <]

dim > d™" (45)
Lort D cnn > ¢f (46)
Jejexp\

Now, we can substitute

A [X.m == 01

m:meM; and ub(x?, )=0
by
A [xim ==0]

m:meM;\B;

Because of the evaluation of d™" and cM™ in (32) and (33) and
because of (45) and (46) it holds that

M;\B; < {m : m e M; and ub(x;,) = 0}

Thus, the part of the explanation (37) integrating job i is possibly
stronger. Finally, we update cm‘“ T mm{cl"m .. m e B;}. After the
latter update, we continue w1th the next non- processed job.

5. Computational experiments

The three CP models from Section 3 were solved on the Vi-
enna Scientific Cluster (VSC). Thereby, the cluster nodes integrate
a X86-64 architecture running under Red Hat/Linux with two six-
core Intel Westmere X5650 processors of 2,66GHz and with 24GB
RAM. For the solution of the models from Section 3.1, we used the
G12 Constraint Programming Platform [9] 2.0.0 provided by the
NICTA research team [22]. Thereby, we formulated the models in
Zinc and solved them by the LCG-plugin g12_£dx. For the imple-
mentation of the constraint handler cumulativemm and the for-
mulation and solution of the SCIP-models of Section 3.2, we used
SCIP 3.1.0 in combination with the programming languages C/C++.
We set the parameters in SCIP such that feasibility is detected fast
(with SCIP_PARAMEMPHASIS_FEASIBILITY). Furthermore, we
impose a memory limit of 2GB RAM for instances with less than
100 jobs and of 3GB for the 100-job instances.

The three CP-models are denoted by the following abbrevia-
tions:

G12 The model from Section 3.1 formulated in Zinc.

SCIPopt The SCIP-model of Section 3.2 integrating the existing
optcumulative-constraint.

SCIP The SCIP-model of Section 3.2
cumulativemm-constraint.

integrating our

Moreover, for every model we distinguish two solution ap-
proaches which differ in the generation of the initial domains:

Max The initial domains of the starting time variables are eval-
uated by forward (backward) recursion based on the trivial
upper bound Tpax = Yie d;"a", where dj.“a" is the maximal
mode duration of job j.

Best The initial domains are generated based on twelve dif-
ferent upper bounds Ty,...,T;; where T; equals the best
known upper bound from the literature and T, =T_; +
4, Vl=2,..., 12. A model is run on the processor [=
1,...,12 with initial domains based on T;. Hence, in this
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case we apply a parallel approach which applies twelve pro-
cessors. In the end, we take the best results w.r.t. all twelve
processors.

In total, we compare six different solution approaches to the
state-of-the-art exact approach (Branch-and-Cut) for the MRCPSP
(MMBAC) of Zhu et al. [37]. In addition, the average deviation from
the critical path lower bound is compared to the one obtained by
the best metaheuristic for this problem (VANP14) [35].

The test instances are from the PSPLIB (Kolisch and Sprecher
[18]) and from the instance sets MMLIB and MMLIB+ generated by
Peteghem and Vanhoucke [35] (see also [36]). In total, we consider
instances with 20, 30, 50 and 100 jobs, whereas we abort the solu-
tion process after a time limit of 180 s, 360 s, 5400 s and 7200 s,
respectively. To assure a fair comparison to the approach of Zhu
et al. [37], we used time limits which are approx. 10% of their time
limits for the 20- and 30-job instances. The factor 10 is based on
the values of our processor and their processor (Intel Westmere
X5650 with 2,66GHz and Xeon with 1.80 Ghz from 2004, respec-
tively) in the Passmark CPU benchmark [25]. Moreover, we also
use the comparison factor of approx. 0.68 based on the clock rates
of both CPUs for further experiments. This leads to time limits of
1200 s and 2400 s.

We compare the different approaches based on the following
measurements:

#feas Number of instances where a feasible solution could be
found within the given time limit.

#opt Number of instances solved to optimality within the
given time limit.

#best Number of solutions whose makespan equals or im-
proves the best known makespan from the literature.

tor The average solution time for all instances (we take the
minimal solution time of all processors for one instance in
the parallel approach).

Gopt(%) The average optimality gap for the instances where a
feasible solution was found (we take the optimality gap of
the processor which found the best makespan in the parallel
approach).

Gepin(%) The average gap to the lower bound given by the length
of the critical path for the instances where a feasible so-
lution was found (again we take the optimality gap of the
processor which found the best makespan in the parallel ap-
proach).

I, Number of instances where we could improve the best
known lower bound.

I, Number of instances where we could improve the best
known makespan from the literature.

Note that for the 20-job instances we do not integrate the
columns corresponding to Ii, and Iy, as all of these instances
had been solved to optimality before. The same holds for the 30-
job instances but here for a different reason. We did not have ac-
cess to the detailed lower and upper bounds of Zhu et al. [37] for
every instance but only to the accumulated results presented in
their paper. In case of the remaining instance sets the best known
makespans are reported on the website www.mmlib.eu.? The
latter were evaluated by Peteghem and Vanhoucke [35], Geiger
[10] and other authors who have not published their results in a
scientific journal, yet. The best known lower bounds for these in-
stances are given by the length of the critical path in the prece-
dence network as to our knowledge up to now no tighter lower
bounds have been computed in the literature, yet.

2 Qur evaluations concerning the best known upper bounds are based on the
state of this website on the 28.09.2016.

Table 1
Results on the 20-job instances.
#feas #opt #best teot Gopt(%)

Time limits of 180 s
G12Max 554 547 548 1173 012
G12Best 554 551 553 52 0.05
SCIPMax 554 529 534 1233 16
SCIPBest 554 538 551 9.06  0.87
SCIPoptMax 554 489 497 2572 527
SCIPoptBest 554 496 524 2229 463
Time limits of 1200 s
G12Max 554 552 554 2058  0.05
G12Best 554 554 554 1039 0.0
SCIPMax 554 547 550 3396 032
SCIPBest 554 552 554 2274 0.07
SCIPoptMax 554 504 519 13037  3.16
SCIPoptBest 554 512 543 113.66  2.85
MMBAC 554 554 554 3206 0
VANP14 554 - - - 0.32

Note that optimality gaps for the G12 approaches are calculated
w.r.t. the lower bounds computed by the best SCIP approach. This
is due to the fact that we did not find a way to receive these values
from the G12 framework. Therefore, we also omit the results con-
cerning the lower bound improvements for the G12 approaches.

Table 1 shows the results for our models and the state-of-the-
art exact approach of Zhu et al. [37] (MMBAC) on the 554 feasible
20-job instances from the PSPLIB. For these instances MMBAC out-
performs all of our approaches for the small time limits as they
can solve all feasible instances to optimality. The same holds for
the single core approaches (G12Max, SCIPMax and SCIPoptMax)
when applying the larger time limit. Nevertheless, G12Max is
highly competitive to the approach of Zhu et al. [37] in this sce-
nario. The parallel approach G12Best outperforms the state-of-
the-art exact approach from the literature for the larger time lim-
its. We can also solve all feasible instances to optimality, but
MMBAC is two times slower, when taking into account the clock
rates of both processors.

Furthermore, the SCIP-approaches using our cumulativemm-
constraint significantly outperform the SCIP-approaches integrat-
ing the existing optcumulative-constraint. With SCIPBest we
can solve 40 more instances to optimality in an approximately five
times lower average solution time ty; compared to SCIPoptBest
for the larger time limits. Moreover, SCIPBest is competitive to
MMBAC and G12Best in this scenario. Note that within a time
limit of approximately 3806 s the approach SCIPBest can solve
all 554 instances to optimality. The average solution time is 28.47 s
in the latter case.

Furthermore, for the large time limit, the G12 approaches and
the approach SCIPBest produce a better optimality gap than the
best metaheuristic presented by Peteghem and Vanhoucke [35].2

Table 2shows the results for the 552 feasible 30-job instances
from the PSPLIB. Again, considering the small time limits MMBAC
outperforms all of our approaches. However, we can already solve
9 more instances to optimality than MMBAC with the single-core
approach G12Max for the larger time limits. Moreover, in this sit-
uation G12Max is approx. 1.23 times faster than MMBAC, again tak-
ing into account the clock rates of both processors. Furthermore,
the parallel approach G12Best significantly outperforms MMBAC
both regarding average solution times and solution quality in this
scenario. Again, SCIPBest (SCIPMax) is considerably better than
SCIPoptBest (SCIPoptMax). We can solve 36 (44) more in-

3 Note that in this case, we can feasibly make this comparison as Peteghem and
Vanhoucke [35] use the gap of their best makespan w.r.t. the known optimal solu-
tion of an instance for these instances.
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Table 2
Results on the 30-job instances.
#feas #opt #best teot Gopt(%)  Gepip(%)
Time limits of 360 s
G12Max 552 466 480 91.2 4.16 14.32
G12Best 552 495 514 58.86 3.01 12.96
SCIPMax 552 486 492 53.06 4.72 14.11
SCIPBest 552 494 507 46.0 3.87 13.39
SCIPoptMax 552 440 451 8464 10.82 15.60
SCIPoptBest 552 454 473 72.69 8.86 14.10
Time limits of 2400 s
G12Max 552 515 521 212.44 2.59 12.93
G12Best 552 521 537 180.50 1.97 12.50
SCIPMax 552 500 508 259.71 337 13.32
SCIPBest 552 504 517 232.95 2.96 12.97
SCIPoptMax 552 456 470 452.46 8.15 14.94
SCIPoptBest 552 468 480 401.74 7.29 13.79
MMBAC 552 506 529 393.13 - -
VANP14 552 - - - - 13.66
Table 3
Results on the 50-job instances from MMLIB.
#feas #opt #best trot Gopt(%) Gepin(%) Tuw Iip
SCIPMax 540 405 415 1409.69  17.73 (17.86)  34.96 (34.21) 14 276
SCIPBest 540 420 440 1252.25 9.86 (9.88) 26.08 (26.01) 18 280
G12Max 532 363 377 195236 11.21 27.61 19 -
G12Best 539 367 413 1861.9 8.87 25.34 20 -
VANP14 540 - - - - 23.79 - -
Table 4
Results on the 100-job instances from MMLIB.
#feas #opt #best Lot Gopt(%) Gepin(%) Iwp Iy
SCIPMax 518 312 322 3127.93  341.33 (146.09)  378.03 (154.19) 18 213
SCIPBest 535 338 348 274031 33.71 (2713) 45.58 (32.20) 23 217
G12Max 219 150 154 5963.62 21.35 25.71 6 -
G12Best 404 245 260 5255.9 16.91 21.29 10 -
VANP14 540 - - - - 24.02 (21.51) - -

stances to optimality and are ~ 42% (43%) faster when using time
limits of 2400 s.

As the Branch-and-Cut approach of Zhu et al. [37] is based on a
MIP formulation of the MRCPSP, it is highly dependent of a starting
solution with a small makespan to reduce the number of binary
variables. They use starting solutions computed by a problem spe-
cific heuristic whose makespan on average only deviates by 2.18%
from the best known makespans of the PSPLIB. An advantage of
our SCIP- and G12 approaches is that they still produce competi-
tive results with the relatively high upper bound Tmyax as input.

Moreover, the input upper bounds leading to the best results in
the parallel approach G12Best deviate on average by 19.69% and
22.14% from the best known upper bounds from the literature for
the 20- and 30-job instances, respectively.

Furthermore, for this instance set, all of our solution approaches
except SCIPopt exhibit a better gap to the critical path lower
bound than the best metaheuristic presented by Peteghem and
Vanhoucke [35] for the larger time limits.*

Now, we present our results for new instances with 50 and 100
jobs generated by Peteghem and Vanhoucke [35]. To our knowl-
edge, these have not been solved exactly before.

Tables 3 and 4 contain the results for the runs with the 540
feasible 50-job and 540 feasible 100-job instances from the MMLIB,
respectively. For these instance sets, the approaches integrating the

4 However, one should always keep in mind that this metaheuristic is signifi-
cantly faster in practice than our exact approach.

best SCIP model significantly outperform the approaches integrat-
ing the G12-model.

The G12 approaches only produce better average optimality
gaps and gaps w.r.t. to the critical path lower bound, also if the
average value is computed w.r.t. to the instances where both the
SCIP and the respective G12 approaches, can compute a feasible
solution. This can be observed when regarding the values in brack-
ets near the gap measurements in the SCIP approaches.”

The performance difference of the G12 approaches compared
to our best SCIP approaches for the 20- and 30-job instances and
the 50- and 100-job instances can be explained in the following
way. In the G12 formulation, we use variables as indices of pa-
rameter vectors as a concept to model the mode assignment. The
G12 solver internally transforms these constructs to a number of
element-constraints (see Section 3.1). In this context, |J| - (1 +
[R| + |N|) new variables d/, C:ﬁ, and ¢, and constraints (see (12),
(11) and (13)) have to be introduced. In general, the BaB algorithm
has to consider all of these additional variables and constraints in
the course of its internal branching, constraint propagation and CA
mechanisms. One can see that this solver-internal transformation
still works in an efficient way for the 20- and 30-job instances.
However, for the 50- and 100-job instances the additional intro-
duction of new variables and constraints leads to a great loss of
efficiency of the overall procedure. In the SCIP formulation, we do
not need a transformation of the original model. More precisely,

5 Note that the value in brackets for VAN14 corresponds to the gap w.r.t. the
instances where the approach SCIPBest can find a feasible solution.
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we tackle the mode assignment by binary variables and the inter-
nal handling of cumulativemm. Obviously, this leads to a signifi-
cantly more efficient behavior of the overall solution procedure for
the 50- and 100-job instances.

A hint to the observation that our best SCIP algorithms
(SCIPMax and SCIPBest) should work in a more effective
way than the respective G12 algorithms was already given in
Section 4.2. A reason why we cannot observe the latter for the
20- and 30-job instances can also be the additional overhead of
the SCIP implementation. The SCIP internal algorithm captures a
wide variety of additional techniques, e.g. specialized MIP con-
cepts, which only have a small contribution to the overall solution
procedure for our special problem. This overhead does not occur
in the G12 algorithm. Hence, this additional computational effort
can lead to the weaker performance of our best SCIP algorithms
compared to the G12 algorithms for the 20- and 30-job instances.
For the 50- and 100-job instances the impact of this overhead is
of lesser extent and the above assumption about the more efficient
behavior of our best SCIP approaches is computationally supported.

In total, we can solve approx. 78% of the 50-job instances and
63% of the 100-job instances to optimality within the given time
limits. Moreover, we improved the best known makespans of 18
instances with 50 jobs and 23 instances with 100 jobs. Further-
more, we can improve the lower bounds for approx. 52% of the
50-job instances from MMLIB on average by approx. 28%. For 40%
of the 100-job instances from MMLIB tighter lower bounds could
be computed. These are on average approx. 23% better than the
best known lower bounds. Furthermore, the input upper bounds
leading to the best results in the parallel approach SCIPBest are
on average 37.41% and 131.20% higher than best known makespans
for the 50- and 100-job instances, respectively. This is again an in-
dication that our approaches can also produce good results with
relatively high upper bounds as input.

Note that in case of the 50-job instances, we found out that at
least 65% of the heuristic solutions given by Peteghem and Van-
houcke [35] correspond to an optimal solution. For the 100-job in-
stances, this holds for at least 47%. Furthermore, the gap to the
critical path lower bound computed by the approach SCIPBest is
competitive compared to the metaheuristic VANP14 for the 50-job
instances. However, for the 100-job instances our SCIP approaches
reach their limits w.r.t. producing high quality upper bounds in to-
tal for all instances.

To test the influence of the five different project parameters
based on which the new data sets of MMLIB were generated (see
[35] and [36]), i.e. the order strength (OS), and the renewable
and nonrenewable resource strength and resource factor (RSP(V)
and RFP(")), on the performance of our best solution approaches
SCIPBest (measured by the optimality gap), we conducted a
multiple linear regression analysis similar to Peteghem and Van-
houcke [35] for the 50- and 100-job instances of MMLIB. For the
50-job instances, the parameters —0.188, —0.561 and 0.379 are sig-
nificant coefficients (confidence level of 1%) for OS, RSP and RF?
in the multiple linear regression model, respectively. Moreover, the
constant 0.168 is also significant. The coefficient of determination
R? is approx. 0.66. Thus, for these instance, we can observe that
with an increasing number of precedence relations, the perfor-
mance of the approach SCIPBest increases. This can be explained
by the fact that the size of solution space tendentially decreases
with an increasing number of precedence relations. Furthermore,
the less scarce the renewable resources become, the better is the
performance of SCIPBest. Finally, one can observe, that the per-
formance of SCIPBest decreases when the average resource con-
sumption of the multi-mode jobs is increased. For the 100-job in-
stances only the coefficients —17.61 and 11.60 are significant for
RSP and RF”, respectively. Tables 5 and 6 show the results for the

Table 5
50 jobs: The results for parameter groups corresponding
to significant coefficients.

#opt  #best i Gopt(%)

1489.39 14.18

0S=0.25 132 142

0S=0.5 142 145 1200.68 10.70
0S=0.75 146 153 1066.67 471
RS” =0.25 85 93 2927.24 27.99
RS =0.5 155 167 828.96 1.60
RS =0.75 180 180 0.54 0

RF? =05 262 268 208.68 0.38
RF =1 158 172 2295.81 19.94

Table 6

100 jobs: The results for parameter groups corresponding
to significant coefficients.

#opt #best teot Gopt(%)
RS =0.25 40 43 553449  875.72
RS” =0.5 122 127 2385.39 5.88
RS’ =0.75 176 178 1383.83 0.11
RF? = 0.5 220 223 1383.83 423
RFF =1 118 125 4096.78  583.59

different parameter groups which correspond to significant coeffi-
cients for the 50- and 100-job instances, respectively.

Finally, Table 7 shows the results of the approaches integrating
our best SCIP-model for the renownedly more complex 1620 fea-
sible 50-job and 1620 feasible 100-job instances from the instance
set MMLIB+. As instances of MMLIB+ on average integrate more
nonrenewable and renewable resources than those of MMLIB, one
can assume that the performance of the G12 solution approaches is
even worse for these instances. Therefore, we only consider the ap-
proaches integrating our best SCIP model for these evaluations. For
this instance set 2318 lower bounds are on average improved by
approx. 51%. Furthermore, the input upper bounds leading to the
best results with SCIPBest deviate on average by 555.21% from
the best known makespans for MMLIB+.

Note that the value in brackets near G, for VANP14 corre-
sponds to the gap to the critical path lower bound for the instances
where SCIPBest can find a feasible solution.

A file with more detailed results for every examined instance
set is provided as supplementary data to this paper.

A disadvantage of our approaches is that not for every instance
of MMLIB100 and of MMLIB+ a feasible solution can be found.
This disadvantage can be overcome by running a heuristic (e.g.
the one of [35] with a limit of 5000 schedules) in the beginning
to obtain a feasible initial solution for every instance as input for
our solution approaches. Furthermore, in this context, the influ-
ence of scheduling specific primal heuristics integrated into the
SCIP framework on our solution approaches would be an interest-
ing future research topic.

6. Conclusion

In our paper, we introduced a generalization of the exact CP-
SAT approaches for the SRCPSP to the MRCPSP. This generalization
can on the one hand be achieved on the modeling level. We in-
troduced formulations of the MRCPSP in optimization frameworks
(G12 and SCIP) which integrate a BaB-algorithm in combination
with CP and SAT techniques. One formulation is usable via the
Zinc modeling language which supports the solution of models
by LCG, the state-of-the-art exact approach for variants of the SR-
CPSP. Moreover, we proposed two formulations for the optimiza-
tion framework SCIP. One of the latter is based on our new con-
straint handler called cumulativemm and the other one on the
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Table 7
Results on the MMLIB+ instances.
#feas #opt #best trot Gopt(%) Gepin(%) Lup I
SCIPMax 3169 596 670 4236.01 565.11 751.96 77 2308
SCIPBest 3175 670 777 6150.85  478.65  656.52 110 2318

VANP14 3240 - - -

- 92.76 (81.20) - -

existing optcumulative-constraint introduced by Heinz et al.
[14].

The computational experiments show that for the 20- and 30-
job instances at least one of our proposed approaches can outper-
form the state-of-the-art exact algorithm of Zhu et al. [37] for the
MRCPSP when the approaches are compared based on the clock
rates of the CPUs on which they are run. In this situation, our
parallel G12-algorithm is almost two times faster than their ap-
proach on the 20-job instances. Moreover, on the 30-job instances
already our single-core approach using a trivial upper bound as in-
put for the G12-algorithm can solve 9 more instances to optimal-
ity and is approx. 1.23 times faster. A clear advantage of our ap-
proaches is that they also produce competitive results when large
upper bounds are used as input. In contrast, the quality of the ap-
proach of Zhu et al. [37] is highly dependent on small UBs as input
to reduce the initial number of variables.

Moreover, the  SCIP-approaches  which apply our
cumulativemm-constraint are significantly better than the SCIP-
approaches integrating the existing optcumulative-constraint.
For the 20- and 30-job instances, we could solve 40 and 36 more
problem instances to optimality in approximately five and two
times smaller average solution times, respectively.

Finally, we are the first to exactly solve new MRCPSP instances
with 50 and 100 jobs from the literature [35]. On these instance
sets, our SCIP-approaches with cumulativemm significantly out-
perform the G12-approaches. In total, we close (find the optimal
solution and prove its optimality for) 628 open instances with 50-
and 100-jobs from the literature [35]. Moreover, we improve the
best known makespans reported Online [24] for 151 of these in-
stances. In addition, we improve the best known lower bound of
2815 instances on average by approx. 46%.
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