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a b s t r a c t 

In our paper, we analyze new exact approaches for the multi-mode resource-constrained project schedul- 

ing (MRCPSP) problem with the aim of makespan minimization. For the single-mode RCPSP (SRCPSP) re- 

cent exact algorithms combine a Branch and Bound algorithm with principles from Constraint Program- 

ming (CP) and Boolean Satisfiability Solving (SAT). We extend the above principles for the solution of 

MRCPSP instances. This generalization is on the one hand achieved on the modeling level. We propose 

three CP-based formulations of the MRCPSP for the G12 CP platform and the optimization framework 

SCIP which both provide solution techniques combining CP and SAT principles. For one of the latter we 

implemented a new global constraint for SCIP, which generalizes the domain propagation and explanation 

generation principles for renewable resources in the context of multi-mode jobs. Our constraint applies 

the above principles in a more general way than the existing global constraint in SCIP. We compare our 

approaches with the state-of-the-art exact algorithm from the literature on MRCPSP instances with 20 

and 30 jobs. Our computational experiments show that we can outperform the latter approach on these 

instances. Furthermore, we are the first to close (find the optimal solution and prove its optimality for) 

628 open instances with 50 and 100 jobs from the literature. In addition, we improve the best known 

lower bound of 2815 instances and the best known upper bound of 151 instances. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The multi-mode resource-constrained project scheduling prob-

em (MRCPSP) is a generalization of the single-mode RCPSP (SR-

PSP) where an additional mode-assignment step has to be con-

idered. The aim is to find the best mode-assignment for a number

f jobs subject to nonrenewable resource constraints such that the

ptimal schedule for the resulting SRCPSP (if existing) optimizes a

pecific objective function. 

For the SRCPSP recent exact algorithms combine a Branch and

ound (BaB) algorithm with principles from Constraint Program-

ing (CP) and Boolean Satisfiability Solving (SAT) (see [5] , [15] and

30] ). The idea of the CP-SAT algorithms is to combine the domain

ropagation processed through global constraints (Apt [3] ) with

he Conflict Analysis (CA) techniques of a SAT solver (Marques-
∗ Corresponding author. 
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ilva and Sakallah [19] ). Therefore, the different propagators of the

lobal constraints generate explanations, i.e. clauses consisting of

oolean literals, for their domain updates and the detected incon-

istencies. The latter explanations are transfered to a SAT solving

echanism. The SAT mechanism constructs a conflict graph based

n the explanations of the domain propagators and can possibly

educe nogoods and backjumps via CA. 

Roughly speaking, nogoods are valid clauses for a SAT model,

ike e.g. cutting planes in Mixed-Integer Programming (MIP), which

ossibly prune branches of the BaB-tree. Backjumps are backtrack-

ng moves which lead from the actual node a to a preceding node

 whereas d(a ) − d(p) > 1 holds for the depth levels d ( a ) and d ( p )

n the BaB tree. Moreover, the branching strategy of the underly-

ng BaB-algorithm uses conflict statistics of the literals forming the

xplanations. In general, the algorithms branch on the variables

nd values based on the number of conflicts the respective literals

ere involved in (Moskewicz et al. [21] ). For a more detailed in-

roduction to the principles of CP and SAT solving and the possible
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1 Note that, it can happen that no feasible schedule for the resulting SRCPSP ex- 

ists, if mode m has been chosen for job j and c 
ρ

> C 
ρ
r . 
combination of the both to one exact solution algorithm, we refer

to Schutt et al. [31] , Schutt [27] and Achterberg [1,2] . 

The lazy clause generation approach (LCG), a CP-SAT hybrid in-

troduced by Ohrimenko et al. [23] and extended by Schutt et al.

[28] , is up-to-date the best exact approach for the SRCPSP with

standard precedence relations and the aim of makespan minimiza-

tion. Furthermore, LCG was also applied to variants of the SR-

CPSP with more general constraints and with objective functions

differing from makespan minimization. Schutt et al. [31] success-

fully solve the SRCPSP with generalized precedence relations by

LCG. They outperform the state-of-the-art exact approaches for

this problem and also on average report better results compared

to state-of-the-art heuristics. Moreover, Schutt et al. [29] outper-

form the state-of-the-art exact algorithm for the SRCPSP with dis-

counted cash flows, again by generalizing LCG to this problem. One

can conclude, that LCG is a robust approach for variants of the

SRCPSP. 

The aim of this paper is to provide a generalization of the CP-

SAT hybrids for the SRCPSP to the MRCPSP. Exact approaches for

the MRCPSP have been summarized and tested by Hartmann and

Drexl [12] , whereas they conclude that the approach of Sprecher

and Drexl [32] is the exact method of choice. The most recent ex-

act algorithm of Zhu et al. [37] outperforms the latter approach.

They implemented a Branch-and-Cut procedure with a preprocess-

ing and a heuristic step to generate good upper bounds as an in-

put for their algorithm. A recent survey on heuristic approaches

for the MRCPSP and a detailed experimental evaluation is given by

Peteghem and Vanhoucke [35] . Their computational experiments

show that the scatter search procedure of Peteghem and Van-

houcke [34] produces the best results. In this context, it is also im-

portant to mention the approach of Coelho and Vanhoucke [8] as

they combine SAT solving techniques with a metaheuristic for the

SRCPSP to solve the MRCPSP. 

Our contribution is an extension of recent exact approaches

combining CP and SAT techniques which are efficient for the SR-

CPSP to the MRCPSP, more precisely the MRCPSP with standard

precedence relations. This extension can be partly achieved on

the modeling level. We propose three CP models for the MRCPSP

which can be formulated in optimization frameworks that inte-

grate an exact solution approach combining CP, SAT and MIP tech-

niques. Moreover, for one modeling formulation we implemented

a new global constraint cumulativemm specially tailored to re-

newable resources in the context of multi-mode jobs. Note that

we already successfully generalized and applied recent CP-SAT ap-

proaches to the MRCPSP with generalized precedence relations in

[26] . The paper at hand can be seen as a predecessor of the latter

paper. 

In the remainder of the paper, we proceed as follows. In

Section 2 , we describe the MRCPSP and its computational com-

plexity. Section 3 introduces three problem formulations in

optimization frameworks which support the solution by a BaB

algorithm integrating CP, SAT and MIP techniques. In Section 4 ,

we describe the principles of our new global constraint

cumulativemm . Section 5 discusses the results of our computa-

tional experiments and draws a comparison to the state-of-the-art

exact approach of Zhu et al. [37] . The paper ends with a conclusion

derived from the obtained results. 

2. Problem description and complexity 

The MRCPSP is a generalization of the SRCPSP, where every job

j ∈ J = { 0 , . . . , n + 1 } can be processed in different modes k ∈ M j ⊆
N . The jobs 0 and n + 1 are dummy jobs representing the start

and the end of the complete project, i.e. in the beginning every

job with no predecessor and every job with no successor is con-
ected to the dummy job 0 and n + 1 in the precedence network,

espectively. Moreover, the jobs can not be preempted. 

Moreover, a set of nonrenewable (renewable) resources

(R ) ⊆ N with a maximal capacity of C νr , r ∈ N ( C 
ρ
r , r ∈ R ) is given.

very job’s integer duration d j, k ≥ 0, nonrenewable (renewable) re-

ource consumption c ν
j,k,r 

, r ∈ N( c 
ρ
j,k,r 

, r ∈ R ) is dependent on the

elected mode k ∈ M j . 

Nonrenewable resources r ∈ N like e.g. a project budget or en-

rgy are available for the complete planning horizon. Once job j is

rocessed in mode k , C νr − c ν
j,k,r 

units of the nonrenewable resource

 ∈ N are still available for the remaining jobs. Moreover, a con-

tant amount C 
ρ
r of a renewable resource r ∈ R like e.g. a number

f machines or workers is available at every point in time. 

Furthermore, a job j ∈ J cannot end after a job from its succes-

or set S j has started, i.e. in our paper we only consider standard

recedence relations. As objective, we consider makespan mini-

ization. 

The solution of the MRCPSP can be divided into two steps. The

rst step consists of finding a feasible mode-assignment w.r.t. the

onrenewable resource capacities. The knapsack problem is poly-

omially reducible to the latter problem, i.e. already the mode-

ssignment step is NP -complete for | N | ≥ 2 (Kolisch and Drexl

17] ). The second step consists of finding an optimal schedule for

 SRCPSP instance, i.e. of finding a schedule which minimizes the

akespan and respects the precedence constraints and the re-

ewable resource capacities for a given mode-assignment. 1 Note,

hat the SRCPSP with the objective of makespan minimization is

trongly NP -complete (Blazewicz et al. [6] ). 

In total, one has to find a feasible mode-assignment at which

he minimal makespan of the resulting SRCPSP is not larger than

he minimal makespan detected for any other feasible mode-

ssignment. 

As a preprocessing step one can remove redundant nonrenew-

ble resources, inefficient and non-executable modes (see [32] and

11] ). Furthermore, lower and upper bounds lb ( s j ) and ub ( s j ) can be

educed for the starting times s j by applying forward (backward)

ecursion [7] . This approach is based on longest path calculations

n the precedence network where the arc weights correspond to

he minimal mode durations of every job j ∈ J w.r.t. the remain-

ng modes. For the evaluation of ub ( s j ), an upper bound T on the

akespan is needed. T can be given by a problem specific heuristic

r T max defined in Section 4 . 

. CP-models for the MRCPSP 

There are two solution frameworks which provide a solution al-

orithm consisting of a combination of CP, SAT and MIP techniques.

The first is the Constraint Integer Programming framework SCIP,

eveloped by Achterberg [2] and maintained and extended by

embers of the Zuse Institute in Berlin. SCIP provides a general

aB algorithm for optimization and allows the user to implement

lugins, e.g. special branching strategies, primal heuristics and con-

traint handlers (i.e. global constraints). Moreover, default plug-

ns exist to use SCIP as a stand-alone CP or MIP solver. Further-

ore, when the formulated model only consists of default con-

traint handlers provided by SCIP, the solution algorithm integrates

echniques from CP, SAT Solving and MIP. 

The second framework is the G12 Constraint Programming Plat-

orm [9] provided by the NICTA research team [22] . The user

an formulate a problem in the modeling language Zinc [20] and

hoose between different solution algorithms. Thereby, LCG can

lso be chosen for the solution of a model. With the G12 Con-
j,m,r 
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traint Programming Platform [9] the user is not that flexible as

ith SCIP but he can solve his model with the state-of-the-art ex-

ct algorithm for different variants of the SRCPSP. 

In the following, we present three CP-models for the MR-

PSP in the above optimization frameworks. Section 3.1 contains

ne model which can be used within the Zinc-modeling lan-

uage and Section 3.2 describes two models which can be im-

lemented within SCIP. We also implemented a new constraint

andler cumulativemm for SCIP, which we apply for a model in

ection 3.2 . The principles of the latter are described in Section 4 . 

.1. Formulation for the Zinc-modeling language 

For the modeling of the starting time of job i and the mode

ssignment of job i , we use the integer variables s i and x j , respec-

ively. With the latter variables and the notation of Section 2 , the

RCPSP can be formulated as follows in the CP-modeling language

inc: 

min s n +1 (1) 

.t. s i + d i,x i ≤ s j , ∀ j ∈ S i , ∀ i ∈ J (2) 

∑ 

i ∈ J 
c νi,x i ,r ≤ C νr , ∀ r ∈ N (3) 

cumulative (s , d , c r , C 
ρ
r ) , ∀ r ∈ R (4) 

s j ∈ 

{
lb(s j ) , . . . , ub(s j ) 

}
, ∀ j ∈ J (5) 

x j ∈ M j , ∀ j ∈ J (6) 

here 

 = [ s j : j ∈ J] (7) 

 = [ d j,x j : j ∈ J] (8) 

 

r = [ c 
ρ
j,x j ,r 

: j ∈ J] (9) 

he dummy job n + 1 represents the end of the project. It can

nly be processed in mode 1 and d n +1 , 1 , c ν
n +1 , 1 ,r 

, c 
ρ
n +1 , 1 ,r 

= 0 , ∀ r ∈
 ∪ N. Moreover, every non-dummy job which has no non-dummy

uccessor is connected to the dummy job n + 1 in the precedence

etwork. Thus, minimising the makespan is equal to minimising

 n +1 . 

(2) are multi-mode precedence constraints. With (3) and (4) ,

e assure that the available capacities of the nonrenewable and

enewable resources are not exceeded. Hereby, in (4) we use the

cheduling specific global constraint cumulative (Baptiste et al.

4] ). To apply this constraint for the MRCPSP, we define the vari-

ble vectors s , d and c r in (7) –(9) . 

In the above formulation, variables appear in the indices of

arameters, like e.g. in d i,x i . This modeling technique can only

e applied if the respective solver supports the global element -

onstraint introduced by Hentenryck and Carillon [33] . 

In general, the element -constraint has the following form: 

lement (y, x , z) (10) 

10) guarantees, that the y th element of the variable (or parameter)

ector x equals the variable z , i.e. x y = z. Clearly, if x has n entries,

t must hold that y ≤ n − 1 if zero is the first index. Propagation

lgorithms captured by the element -constraint can infer domain

pdates for the variable z in case of domain updates of y or of the

ntries x i of x and vice versa. 

In the case of our model, the terms d i,x i and c 
ρ
i,x i ,r 

are internally

ransformed to new variables d ′ 
i 
, c 

′ ρ
i,r 

and c ′ ν
i,r 

by posting the follow-

ng constraints: 

lement (x i , [ d i,k : k ∈ M i ] , d 
′ 
i ) , ∀ i ∈ J (11) 
lement (x i , [ c 
ρ
i,k,r 

: k ∈ M i ] , c 
′ ρ
i,r 

) , ∀ i ∈ J, ∀ r ∈ R (12) 

lement (x i , [ c 
ν
i,k,r : k ∈ M i ] , c 

′ ν
i,r ) , ∀ i ∈ J, ∀ r ∈ N (13) 

hus, in our application, after a transformation of the respective

olver only the variables d ′ 
i 

and c 
′ ρ
i,r 

are used in the cumulative -
onstraint. 

.2. Formulations for SCIP 

SCIP provides the optcumulative -constraint introduced by

einz et al. [14] to model renewable resource constraints in the

ontext of multi-mode jobs. However, to apply the above con-

traint for the MRCPSP, we have to introduce integer starting time

ariables s i, k for every job i and mode k and the binary vari-

bles x i, k for the mode assignment of job i . Note, that the mode-

ssignment is modeled by binary variables as SCIP does not sup-

ort the element ( . . . ) -constraint. 

With the latter variables and the notation of Section 2 ,

he MRCPSP can be formulated as follows in SCIP with the

ptcumulative -constraint: 

min s n +1 , 1 (14) 

s.t. 
∑ 

k ∈ M i 

x i,k = 1 , ∀ i ∈ J (15) 

s i,k + d i,k · x i,k ≤ s j,l , 

∀ j ∈ S i , ∀ i ∈ J, ∀ k ∈ M i , ∀ l ∈ M j (16) 

∑ 

i ∈ J 

∑ 

k ∈ M i 

c νi,k,r · x i,k ≤ C νr , ∀ r ∈ N (17) 

optcumulative ( ̄s , ̄x , ̄d , ̄c r , C 
ρ
r ) , ∀ r ∈ R (18) 

s j,k ∈ 

{
lb(s j,k ) , . . . , ub(s j,k ) 

}
, ∀ j ∈ J, ∀ k ∈ M j (19) 

x j,k ∈ { 0 , 1 } , ∀ j ∈ J, ∀ k ∈ M j (20) 

here 

¯
 = s 0 ◦ · · · ◦ s n +1 , where s i k = s i,k , ∀ k ∈ M i , ∀ i ∈ J (21)

¯
 = x 

0 ◦ · · · ◦ x 

n +1 , where x 

i 
k = x i,k , ∀ k ∈ M i , ∀ i ∈ J (22)

¯
 = d 

0 ◦ · · · ◦ d 

n +1 , where d 

i 
k = d i,k , ∀ k ∈ M i , ∀ i ∈ J (23)

¯
 

r = c 0 ,r ◦ · · · ◦ c n +1 ,r , where c i,r 
k 

= c 
ρ
i,k,r 

, ∀ k ∈ M i , ∀ i ∈ J, ∀ r ∈ R 

(24) 

gain, we minimize the starting time s n +1 , 1 of the dummy job n +
 , which can only be processed in mode 1. With (15), (16) and (17) ,

e formulate the uniqueness of the mode-assignments, the multi-

ode precedence constraints and the nonrenewable resource con-

traints, respectively. (18) guarantees that the maximal capacities

f the renewable resources are not exceeded. To guarantee a cor-

ect input for optcumulative we have to use the variable vec-

ors s̄ and x̄ and the parameter vectors d̄ and c̄ r which are given

n (21) –(24) . In this context, the operator ◦ is defined as the con-

atenation of two vectors, whereas the vector c = a ◦ b is obtained

y appending the elements of b coordinate-wise to a . 

The above SCIP-formulation has two major disadvantages.

irstly, we have to introduce starting time variables for every job-

ode combination ( i, k ), i ∈ J , k ∈ M i . 

The second disadvantage has to do with the implementation

f the optcumulative -constraint [14] . The domain propaga-

ion step and the inconsistency check for a variable s i, m 

in the

ptcumulative -constraint only considers variables s j, k , j � = i for

hich x j,k = 1 in the recent node of the BaB-tree. However, also
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variables s j, k , j � = i , where the mode-assignment has not been done

yet, can be considered for the domain propagation and the incon-

sistency check of a variable s i, m 

. 

To overcome the above disadvantages, we aimed at implement-

ing a new global constraint cumulativemm for SCIP to be able to

apply a more general form of domain propagation and explanation

generation for renewable resources in the context of multi-mode

jobs where we only have to introduce starting time variables s j for

every job j ∈ J . The principles of the cumulativemm -constraint are

outlined in Section 4 . 

With our new constraint and again binary variables x i, k for the

mode-assigment, we formulate the MRCPSP as follows in SCIP: 

min s n +1 (25)

s.t. 
∑ 

k ∈ M i 

x i,k = 1 , ∀ i ∈ J (26)

s i + 

∑ 

k ∈ M i 

d i,k · x i,k ≤ s j , ∀ j ∈ S i , ∀ i ∈ J (27)

∑ 

i ∈ J 

∑ 

k ∈ M i 

c νi,k,r · x i,k ≤ C νr , ∀ r ∈ N (28)

cumulativemm (s , ̄x , ̄d , ̄c r , C 
ρ
r ) , ∀ r ∈ R (29)

s j ∈ 

{
lb(s j ) , . . . , ub(s j ) 

}
, ∀ j ∈ J, ∀ k ∈ M j (30)

x j,k ∈ { 0 , 1 } , ∀ j ∈ J, ∀ k ∈ M j (31)

4. Principles of the cumulativemm -constraint 

With our cumulativemm -constraint, one can model renewable

resource constraints for multi-mode jobs. The main ingredients of

the cumulativemm -constraint are a feasibility check, constraint

propagation and explanation generation (see Sections 4.1 and 4.2 )

for a certain resource r ∈ R . 

Our constraint enforces feasibility w.r.t. the renewable resource

r ∈ R : 
∑ 

j∈ J, m ∈ M j : t−d j,m +1 ≤ s j ≤ t ∧ x j,m =1 

c j,m,r ≤ C 
ρ
r , ∀ t ∈ { 1 , · · · , T } 

The other constraints in the SCIP-model of the MRCPSP are mod-

eled by SCIP-intern constraints and can therefore be handled by

the SCIP-intern solution principles. 

The constraint propagation procedure consists of a redundancy

check and a domain reduction step. We firstly check the multi-

mode data for redundancy in the current node of the BaB tree. In

concrete, if we assume the maximal mode duration, the maximal

resource consumption and the maximal processing interval for ev-

ery job j ∈ J in the current node and the underlying schedule is

feasible w.r.t. the renewable resource r ∈ R , we can locally remove

our constraint from the solution procedure. This is due to the fact,

that in the above case, it cannot be violated anymore in the suc-

ceeding branches of the BaB tree. 

The domain reduction step is mainly based on the calculation

of a minimal problem instance (MPI) [13] in every processed node

of the BaB tree, i.e. the transformation of the multi-mode data to a

single-mode representative. Therefore, we calculate a minimal pro-

cessing version MP V j,r = ( domain (s j ) ; d min 
j 

; c min 
j,r 

) for every job j ∈ J

and renewable resource r ∈ R as follows: 

d min 
j = min 

k ∈ M j 

{
d j,k : ub(x j,k ) > 0 

}
(32)

c min 
j,r = min 

k ∈ M j 

{
c 
ρ
j,k,r 

: ub(x j,k ) > 0 

}
(33)

In (32) and (33) , we calculate the minimal duration and resource

consumption of resource r ∈ R w.r.t. the modes which have not
een excluded ( ub ( x j, k > 0) in the recent node of the BaB tree.

ith the MPI at hand, we can apply standard constraint propaga-

ion algorithms for renewable resources like e.g. timetable prop-

gation (TP) and edge finding [4] . Our current implementation of

he cumulativemm -constraint only integrates TP. TP is based on

he evaluation and reasoning on the so-called compulsory parts cp j 
f the jobs j ∈ J (Schutt et al. [28] ): 

f lb(s j ) + d min 
j > ub(s j ) : 

cp j = 

{
ub(s j ) , . . . , lb(s j ) + d min 

j − 1 

}
(34)

lse cp j = ∅ 
f cp j � = ∅ , job j is surely processed at all timepoints t ∈ cp j . 

xample 4.1 TP for multi-mode jobs. Assume that in the course

f the BaB-algorithm of SCIP and after the redundancy check, our

onstraint propagation procedure has the following input: 

( domain (s 1 ) , domain (x 1 , 1 ) , d 1 , 1 , c 
ρ
1 , 1 , 1 

) = ({ 3 , 4 , 5 } , { 0 , 1 } , 2 , 1) 

( domain (s 1 ) , domain (x 1 , 2 ) , d 1 , 2 , c 
ρ
1 , 2 , 1 

) = ({ 3 , 4 , 5 } , { 0 , 1 } , 3 , 2) 

( domain (s 2 ) , domain (x 2 , 1 ) , d 2 , 1 , c 
ρ
2 , 1 , 1 

) = ({ 2 , 3 , 4 } , { 1 } , 3 , 2) 

he maximal capacity of the renewable resource 1, C 
ρ
1 

= 2 . We can

ee that job 2 is processed in mode 1, as x 2 , 1 = 1 . Thus, d min 
2 

= 3

nd c min 
2 , 1 

= 2 . Moreover, job 2 is surely processed at the time point

, as its compulsory part cp 2 = { 4 } . Next, we consider job 1 with

 

min 
1 

= 2 and c min 
1 , 1 

= 1 . cp 1 = ∅ but we can deduce a domain up-

ate. As lb(s 1 ) + d min 
1 

= 3 + 2 ≥ 4 , starting job 1 at its lower bound

ould lead to a resource conflict at the time point 4. The TP al-

orithm will find the largest time point t 1 − 1 = 4 such that the

apacity is violated ( 2 + 1 > 2 ). After that lb ( s 1 ) would be updated

o t 1 = 5 which equals ub ( s 1 ) and a new compulsory part of job 1

p 1 = { 5 , 6 } is evaluated. 

Note, that the principles of our constraint propagation proce-

ure are standard techniques. These are applied in a similar way

n CP solvers like e.g. JaCop [16] which provide the cumulative -
onstraint supporting variable durations and resource consump-

ions for every job. 

The idea of integrating explanation generation, i.e. of processing

easons for the deduced domain reductions or inconsistencies to a

AT solving mechanism is rather new. To our knowledge, there are

nly two optimization frameworks integrating this feature, i.e. SCIP

nd the G12 Constraint Programming Platform [9] . Schutt [27] de-

cribes principles for explanation generation in the context of jobs

aving variable durations and resource consumptions. These expla-

ation generation techniques are integrated in the cumulative -
onstraint provided by the G12 Constraint Programming Platform

9] . In our cumulativemm -constraint, we explain the reasons for

he domain reductions or inconsistencies in a different way. In the

ext two sections we introduce our strategy for explanation gener-

tion and compare it to the strategy of Schutt [27] . 

.1. Explanations for timetable propagation with multi-mode jobs 

In order to integrate our constraint into the SCIP-intern CA

echanism, we have to provide functions for the cumulativemm -
onstraint which derive explanations for the inconsistencies or do-

ain updates detected by the TP algorithm. These explanations can

e seen as clauses consisting of boolean literals of the form: 

[[ s j ≤ t]] , [[ s j ≥ t]] : t = 0 , . . . , T − 1) 
}

nd 

[[ x j,k == 0]] , [[ x j,k == 1]] 
}
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ssume now, the TP algorithm found an inconsistency because of

he jobs having their compulsory parts cp j (see (34) ) at time t κ and

ause a resource violation: 
∑ 

j: t κ∈ cp j 

c min 
j,r > C 

ρ
r 

Then, our constraint handler derives the following explanation:

∧ 

j: t κ∈ cp j 

EX P j �⇒ false (35) 

35) can be divided into the subexplanations EXP j for every job

articipating in the conflict: 

EX P j = [[ t κ − d min 
j + 1 ≤ s j ]] ∧ [[ s j ≤ t κ ]] 

∧ 

∧ 

m : m ∈ M j and ub(x j,m )=0 

[[ x j,m 

== 0]] (36) 

XP j is correct as in a situation, where the variables s j and x j, m 

ave bounds as in (36) , the compulsory parts cp j of the involved

obs would again include the timepoint t κ and this would again

ead to a resource violation. Note, that d min 
j 

and c min 
j,r 

are calculated

y (32) and (33) , respectively. 

In addition to explanations for inconsistencies, our constraint

andler also processes explanations for domain updates deduced

y our TP algorithm to the SCIP-intern CA mechanism. SCIP stores

nformation about the time the bound changes took place through

 so-called bound change index (BCI) and about the constraints

hich processed the domain updates. In the course of the BaB-

lgorithm, the SCIP-intern CA can ask our constraint handler for

n explanation of the new lower bound lb ∗( s i ) of job i at the BCI b ,

f it was deduced by the cumulativemm -constraint. 

Therefore, we introduce the timepoint t = lb ∗(s i ) − 1 . Jobs j ∈
 \ { i } with compulsory parts cp b 

j 
where t ∈ cp b 

j 
such that: 

 

min ,b 
i,r 

+ 

∑ 

j � = i : t∈ cp j 

c min ,b 
j,r 

> C 
ρ
r 

ere responsible for the bound change at the BCI b . Additionally

he lower bound lb ( s i ) of job i has to exceed a certain value for the

omain update. The complete explanation consists of two clauses

 i and f , where e i contains the minimal lower bound of s i and f

he compulsory parts cp b 
j 

of jobs j � = i with t ∈ cp b 
j 
. e i is given as

ollows: 

e i = [[ t − d min,b 
i 

+ 1 ≤ s i ]] ∧ 

∧ 

m : m ∈ M i and ub(x b 
i,m 

)=0 

[[ x i,m 

== 0]]

he clause f is as follows: 

f = 

∧ 

j : j � = i and t∈ cp b 
j 

EX P j 

here EXP j is given through a small variation of (36) . We replace

 κ by t , d min 
j 

by d min ,b 
j 

and ub ( x j, m 

) by ub b ( x j, m 

). Thus, we evaluate

he latter values for the given BCI b . The complete explanation for

he bound change lb ( s i ) → lb ∗( s i ) is given through: 

 i ∧ f �⇒ [ [ lb ∗(s i ) ≤ s i ]] (37)

he argument for the correctness of the above explanation is

he same as in the inconsistency case. Note, that the explanation

37) depends on the BCI b . 

In our TP algorithm we process the bound changes in a point-

ise manner, i.e. we guarantee that lb ∗(s i ) − lb(s i ) ≤ d min,b 
j 

. With

his, we want to imitate the pointwise explanations proposed by

chutt et al. [28] . The explanations for the upper bound changes

re processed in a symmetric way. 
SCIP generates a conflict graph based on the explanations of

ur constraint handler and the explanation generators of the other

onstraints and can possibly deduce nogoods and backjumps for

he following branches in the BaB algorithm. If a constraint propa-

ation algorithm leads to many domain reductions, CA can be very

fficient for the complete solution procedure. An example for the

A process, i.e. for nogood generation on a conflict graph can be

ound in Schutt et al. [31] . 

The following example illustrates a possible outcome of our ex-

lanation generation procedure. 

xample 4.2. Firstly, we extend Example 4.1 by another job with

wo modes and the following input: 

( domain (s 3 ) , domain (x 3 , 1 ) , d 3 , 1 , c 
ρ
3 , 1 , 1 

) = ({ 5 } , { 1 } , 2 , 2) 

ote, that there is a resource conflict at time point t κ = 6 , as 6 ∈
p 1 ∩ cp 3 and c 

ρ
3 , 1 , 1 

(= 2) + c min 
1 , 1 

(= 1) > 2 . The explanation for this

nconsistency is as follows: 

([[5 ≤ s 1 ]] ∧ [[ s 1 ≤ 6]]) ∧ ([[5 ≤ s 3 ]] ∧ [[ s 3 ≤ 6]] ∧ [[ x 3 , 2 == 0]]) 

�⇒ false (38) 

ote, that job 3 is processed in mode 1 and for job 1 it holds, that

b ( x 1, k ) > 0, ∀ k ∈ M 1 . After the initialization of the SCIP-intern CA,

CIP asks our constraint handler for the reason of the lower bound

hange of s 1 from 3 to 5 from Example 4.1 , i.e. an explanation for

he literal [[5 ≤ s 1 ]]. 

Our constraint handler gives the following explanation: 

[3 ≤ s 1 ]] ∧ ([[3 ≤ s 2 ]] ∧ [[ s 2 ≤ 4]] ∧ [[ x 2 , 2 == 0]]) �⇒ [[5 ≤ s 1 ]] 

(39) 

very boolean literal from (38) and (39) is added as a new node

o the SCIP-intern conflict graph. Moreover, an arc is constructed

rom every boolean literal of the left-hand side of the explanation

o the boolean literal on the right-hand side. 

.2. Comparison to other explanation generation techniques and 

ossible improvements 

Schutt [27 , p.96] also introduces explanations for the
umulative -constraint where the durations and the resource
onsumptions of the jobs can be variables. In our G12-model of
ection 3 , we use this constraint with the duration vector d and
he resource consumption vector c 

ρ
r to model the resource con-

traint for the renewable resource r ∈ R . After the transformation
iven by (11) and (12) , the G12 solution approach will only use the

ariable vectors d 

′ and c 
′ ρ
r in the cumulative -constraint. These

re connected to the original durations and resource consumptions
y the element -constraint (see (11) and (12) ). With our notation,
he preliminary version of the explanations for a lower bound
pdate of s i to lb ∗( s i ) applied in the cumulative -constraint (see
27, p.96] ) are as follows (at the BCI b ): 

[[ lb ∗(s i ) − lb b (d ′ i ) ≤ s i ]] ∧ [[ lb b (d ′ i ) ≤ d ′ i ]] ∧ [[ lb b (c 
′ ρ
i,r 

) ≤ c 
′ ρ
i,r 

]] ∧ 
∧ 

j : j � = i and t∈ cp b 
j 

[[ lb ∗(s i ) − lb b (d ′ j ) ≤ s j ]] ∧ [[ s j ≤ lb ∗(s i ) − 1]] ∧ [[ lb b (d ′ j ) ≤ d ′ j ]] ∧ 

∧ 

j : j � = i and t∈ cp b 
j 

[[ lb b (c 
′ ρ
j,r 

) ≤ c 
′ ρ
j,r 

]] �⇒ [[ lb ∗(s i ) ≤ s i ]] (40) 

Schutt [27] notes, that these explanations can be strength-

ned by choosing different values q i and l i instead of lb b (d ′ 
i 
) and

b b (c 
′ ρ
i,r 

) , respectively. For example consider the case where the do-

ain of d ′ 
i 

is internally encoded as a range of consecutive val-

es but the set D i = { d i,m 

, m ∈ M i } consists of nonconsecutive val-

es and it holds that lb b (d ′ 
i 
) / ∈ D i . Then, by using q = min { d i,m 

:

 i,m 

≥ lb b (d ′ 
i 
) } , the explanation (40) can be strengthened. Schutt

27] specifies the values q i and l i which lead to the strongest

xplanations. 
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In our explanation for a domain update (see (37) ), we omit the

part where the resource consumptions of the involved jobs are ex-

plained as in (40) . This is due to the fact, that as soon as cer-

tain modes are excluded, we can reason about the minimal du-

ration d min 
j 

and the minimal resource consumption c min 
j,r 

. Thus we

do not have to introduce explanations for both durations and re-

source consumptions. This can be an advantage compared to the

explanations of Schutt [27] . 

Assume therefore, that we are in a situation in a node c of the

BaB tree where the input is the same for both algorithms, and both

algorithms already generated the explanations (37) and (40) , re-

spectively at node b with the same set of jobs J exp involved in both

explanations. Additionally, 

d min ,b 
j 

= lb b (d ′ j ) , ∀ j ∈ J exp (41)

c min ,b 
j,r 

= lb b (c 
′ ρ
j,r 

) , ∀ j ∈ J exp (42)

Moreover, the left hand side of (37) is true at node c and 

∃ k ∈ J exp : t b ∈ cp c k ∧ lb b 
(
c 
′ ρ
k,r 

)
> lb c 

(
c 
′ ρ
k,r 

)
(43)

whereat the first two lines of (40) are true. As (37) is true, our

algorithm will immediately deduce lb ∗( s i ) ≤ s i . 

Because of (43) , the G12-algorithm will not immediately deduce

the latter lower bound update. As the first two lines of (40) are

true and (41) and (42) hold, we can conclude that 

x j ∈ M 

b 
j = 

{
m : m ∈ M j and ub 

(
x b j,m 

)
> 0 

}
, ∀ j ∈ J exp (44)

and thus lb b (c 
′ ρ
k,r 

) ≤ c 
′ ρ
k,r 

, i.e. lb c (c 
′ ρ
k,r 

) can be updated to lb b (c 
′ ρ
k,r 

) .

Now, the complete left hand side of (40) is true and the G12-

algorithm will also deduce lb ∗( s i ) ≤ s i . 

The update of lb c ( x k ) outlined in (44) and the update of lb c (c 
′ ρ
k,r 

)

have to be processed by the element -constraints (11) and (12) in

the G12-algorithm before the explanation (40) leads to the update

of lb ∗( s i ). As this update happens immediately with our explana-

tion (37) , there are cases where our explanation generation strat-

egy can lead to time savings. 

Our explanations can also be strengthened. 

Example 4.3. Consider a job 1 with the following input at the cur-

rent node: 

( domain (x 1 , 1 ) , d 1 , 1 , c 
ρ
1 , 1 , 1 

) = ({ 0 } , 2 , 2) 

( domain (x 1 , 2 ) , d 1 , 2 , c 
ρ
1 , 2 , 1 

) = ({ 0 } , 3 , 3) 

( domain (x 1 , 3 ) , d 1 , 3 , c 
ρ
1 , 3 , 1 

) = ({ 1 } , 4 , 3) 

Assume that our TP algorithm would detect an inconsistency at the

time point 4 and job 1 is involved in the latter inconsistency, i.e. 4

∈ cp 1 . As d min 
1 

= 4 , the part of the explanation containing job 1 is

as follows: 

[[1 ≤ s 1 ]] ∧ [[ s 1 ≤ 4]] ∧ [[ x 1 , 1 == 0]] ∧ [[ x 1 , 2 == 0]] 

If the global domain of s 1 equals { 2 , . . . , 6 } , we can strengthen the

explanation as 

[[1 ≤ s 1 ]] is globally true , 

[[ x 1 , 1 == 0]] ∧ [[ x 1 , 2 == 0]] �⇒ [[ x 1 , 1 == 0]] , 

[[ x 1 , 1 == 0]] ∧ [[ s 1 ≤ 4]] �⇒ 4 ∈ cp 1 , 

c 
ρ
1 , 2 , 1 

= c 
ρ
1 , 3 , 1 

. 

Thus, we can use the following stronger explanation for the com-

pulsory part of job 1: 

[[ s 1 ≤ 4]] ∧ [[ x 1 , 1 == 0]] 

Motivated by the above example, assume that job i is part of

the job set J exp involved in the explanation (37) w.r.t. time point

t . Moreover, let lb g ( s ) be its global lower bound. We can possibly
i 
trengthen the explanation (37) by strengthening the part of the

xplanation integrating job i ∈ J exp . 

This can done in two steps: 

Firstly, if t − d min 
i 

+ 1 < lb g (s i ) , omit [[ t − d min 
i 

+ 1 ≤ s i ]] . 

Set d min 
i 

: ← min { d min 
i 

, t − lb g (s i ) + 1 } . 
Secondly, we determine the set B ∗

i 
consisting of the modes m ∈

 i which fulfill: 

 i,m 

≥ d min 
i (45)

 

ρ
i,m,r 

+ 

∑ 

j∈ J exp \ { i } 
c min 

j,r > C 
ρ
r (46)

ow, we can substitute 
∧ 

 : m ∈ M i and ub(x b 
i,m 

)=0 

[[ x i,m 

== 0]] 

y 
∧ 

 : m ∈ M i \ B ∗i 
[[ x i,m 

== 0]] 

ecause of the evaluation of d min 
i 

and c min 
i,r 

in (32) and (33) and

ecause of (45) and (46) it holds that 

 i \ B 

∗
i ⊆ { m : m ∈ M i and ub(x i,m 

) = 0 } 
hus, the part of the explanation (37) integrating job i is possibly

tronger. Finally, we update c min 
i,r 

: ← min { c ρ
i,m,r 

: m ∈ B ∗
i 
} . After the

atter update, we continue with the next non-processed job. 

. Computational experiments 

The three CP models from Section 3 were solved on the Vi-

nna Scientific Cluster (VSC). Thereby, the cluster nodes integrate

 X86-64 architecture running under Red Hat/Linux with two six-

ore Intel Westmere X5650 processors of 2,66GHz and with 24GB

AM. For the solution of the models from Section 3.1 , we used the

12 Constraint Programming Platform [9] 2.0.0 provided by the

ICTA research team [22] . Thereby, we formulated the models in

inc and solved them by the LCG-plugin g12_fdx . For the imple-

entation of the constraint handler cumulativemm and the for-

ulation and solution of the SCIP-models of Section 3.2 , we used

CIP 3.1.0 in combination with the programming languages C/C++ .
e set the parameters in SCIP such that feasibility is detected fast

with SCIP_PARAMEMPHASIS_FEASIBILITY ). Furthermore, we

mpose a memory limit of 2GB RAM for instances with less than

00 jobs and of 3GB for the 100-job instances. 

The three CP-models are denoted by the following abbrevia-

ions: 

G12 The model from Section 3.1 formulated in Zinc. 

SCIPopt The SCIP-model of Section 3.2 integrating the existing

optcumulative -constraint. 

SCIP The SCIP-model of Section 3.2 integrating our

cumulativemm -constraint. 

Moreover, for every model we distinguish two solution ap-

roaches which differ in the generation of the initial domains: 

Max The initial domains of the starting time variables are eval-

uated by forward (backward) recursion based on the trivial

upper bound T max = 

∑ 

j∈ J d max 
j 

, where d max 
j 

is the maximal

mode duration of job j . 

Best The initial domains are generated based on twelve dif-

ferent upper bounds T 1 , . . . , T 12 where T 1 equals the best

known upper bound from the literature and T l = T l−1 +
4 , ∀ l = 2 , . . . , 12 . A model is run on the processor l =
1 , . . . , 12 with initial domains based on T . Hence, in this
l 
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Table 1 

Results on the 20-job instances. 

#feas #opt #best t tot G opt (%) 

Time limits of 180 s 

G12Max 554 547 548 11 .73 0 .12 

G12Best 554 551 553 5 .2 0 .05 

SCIPMax 554 529 534 12 .33 1 .6 

SCIPBest 554 538 551 9 .06 0 .87 

SCIPoptMax 554 489 497 25 .72 5 .27 

SCIPoptBest 554 496 524 22 .29 4 .63 

Time limits of 1200 s 

G12Max 554 552 554 20 .58 0 .05 

G12Best 554 554 554 10 .39 0 .0 

SCIPMax 554 547 550 33 .96 0 .32 

SCIPBest 554 552 554 22 .74 0 .07 

SCIPoptMax 554 504 519 130 .37 3 .16 

SCIPoptBest 554 512 543 113 .66 2 .85 

MMBAC 554 554 554 32 .06 0 

VANP14 554 – – – 0 .32 
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case we apply a parallel approach which applies twelve pro-

cessors. In the end, we take the best results w.r.t. all twelve

processors. 

In total, we compare six different solution approaches to the

tate-of-the-art exact approach (Branch-and-Cut) for the MRCPSP

 MMBAC ) of Zhu et al. [37] . In addition, the average deviation from

he critical path lower bound is compared to the one obtained by

he best metaheuristic for this problem ( VANP14 ) [35] . 

The test instances are from the PSPLIB (Kolisch and Sprecher

18] ) and from the instance sets MMLIB and MMLIB+ generated by

eteghem and Vanhoucke [35] (see also [36] ). In total, we consider

nstances with 20, 30, 50 and 100 jobs, whereas we abort the solu-

ion process after a time limit of 180 s, 360 s, 5400 s and 7200 s,

espectively. To assure a fair comparison to the approach of Zhu

t al. [37] , we used time limits which are approx. 10% of their time

imits for the 20- and 30-job instances. The factor 10 is based on

he values of our processor and their processor (Intel Westmere

5650 with 2,66GHz and Xeon with 1.80 Ghz from 2004, respec-

ively) in the Passmark CPU benchmark [25] . Moreover, we also

se the comparison factor of approx. 0.68 based on the clock rates

f both CPUs for further experiments. This leads to time limits of

200 s and 2400 s. 

We compare the different approaches based on the following

easurements: 

#feas Number of instances where a feasible solution could be

found within the given time limit. 

#opt Number of instances solved to optimality within the

given time limit. 

#best Number of solutions whose makespan equals or im-

proves the best known makespan from the literature. 

t tot The average solution time for all instances (we take the

minimal solution time of all processors for one instance in

the parallel approach). 

G opt (%) The average optimality gap for the instances where a

feasible solution was found (we take the optimality gap of

the processor which found the best makespan in the parallel

approach). 

G cplb (%) The average gap to the lower bound given by the length

of the critical path for the instances where a feasible so-

lution was found (again we take the optimality gap of the

processor which found the best makespan in the parallel ap-

proach). 

I lb Number of instances where we could improve the best

known lower bound. 

I ub Number of instances where we could improve the best

known makespan from the literature. 

Note that for the 20-job instances we do not integrate the

olumns corresponding to I lb and I ub as all of these instances

ad been solved to optimality before. The same holds for the 30-

ob instances but here for a different reason. We did not have ac-

ess to the detailed lower and upper bounds of Zhu et al. [37] for

very instance but only to the accumulated results presented in

heir paper. In case of the remaining instance sets the best known

akespans are reported on the website www.mmlib.eu . 2 The

atter were evaluated by Peteghem and Vanhoucke [35] , Geiger

10] and other authors who have not published their results in a

cientific journal, yet. The best known lower bounds for these in-

tances are given by the length of the critical path in the prece-

ence network as to our knowledge up to now no tighter lower

ounds have been computed in the literature, yet. 
2 Our evaluations concerning the best known upper bounds are based on the 

tate of this website on the 28.09.2016. 

V

t

Note that optimality gaps for the G12 approaches are calculated

.r.t. the lower bounds computed by the best SCIP approach. This

s due to the fact that we did not find a way to receive these values

rom the G12 framework. Therefore, we also omit the results con-

erning the lower bound improvements for the G12 approaches. 

Table 1 shows the results for our models and the state-of-the-

rt exact approach of Zhu et al. [37] ( MMBAC ) on the 554 feasible

0-job instances from the PSPLIB. For these instances MMBAC out-

erforms all of our approaches for the small time limits as they

an solve all feasible instances to optimality. The same holds for

he single core approaches ( G12Max , SCIPMax and SCIPoptMax )
hen applying the larger time limit. Nevertheless, G12Max is

ighly competitive to the approach of Zhu et al. [37] in this sce-

ario. The parallel approach G12Best outperforms the state-of-

he-art exact approach from the literature for the larger time lim-

ts. We can also solve all feasible instances to optimality, but

MBAC is two times slower, when taking into account the clock

ates of both processors. 

Furthermore, the SCIP-approaches using our cumulativemm -
onstraint significantly outperform the SCIP-approaches integrat- 

ng the existing optcumulative -constraint. With SCIPBest we

an solve 40 more instances to optimality in an approximately five

imes lower average solution time t tot compared to SCIPoptBest
or the larger time limits. Moreover, SCIPBest is competitive to

MBAC and G12Best in this scenario. Note that within a time

imit of approximately 3806 s the approach SCIPBest can solve

ll 554 instances to optimality. The average solution time is 28.47 s

n the latter case. 

Furthermore, for the large time limit, the G12 approaches and

he approach SCIPBest produce a better optimality gap than the

est metaheuristic presented by Peteghem and Vanhoucke [35] . 3 

Table 2 shows the results for the 552 feasible 30-job instances

rom the PSPLIB. Again, considering the small time limits MMBAC
utperforms all of our approaches. However, we can already solve

 more instances to optimality than MMBAC with the single-core

pproach G12Max for the larger time limits. Moreover, in this sit-

ation G12Max is approx. 1.23 times faster than MMBAC , again tak-

ng into account the clock rates of both processors. Furthermore,

he parallel approach G12Best significantly outperforms MMBAC
oth regarding average solution times and solution quality in this

cenario. Again, SCIPBest ( SCIPMax ) is considerably better than

CIPoptBest ( SCIPoptMax ). We can solve 36 (44) more in-
3 Note that in this case, we can feasibly make this comparison as Peteghem and 

anhoucke [35] use the gap of their best makespan w.r.t. the known optimal solu- 

ion of an instance for these instances. 
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Table 2 

Results on the 30-job instances. 

#feas #opt #best t tot G opt (%) G cplb (%) 

Time limits of 360 s 

G12Max 552 466 480 91 .2 4 .16 14 .32 

G12Best 552 495 514 58 .86 3 .01 12 .96 

SCIPMax 552 486 492 53 .06 4 .72 14 .11 

SCIPBest 552 494 507 46 .0 3 .87 13 .39 

SCIPoptMax 552 440 451 84 .64 10 .82 15 .60 

SCIPoptBest 552 454 473 72 .69 8 .86 14 .10 

Time limits of 2400 s 

G12Max 552 515 521 212 .44 2 .59 12 .93 

G12Best 552 521 537 180 .50 1 .97 12 .50 

SCIPMax 552 500 508 259 .71 3 .37 13 .32 

SCIPBest 552 504 517 232 .95 2 .96 12 .97 

SCIPoptMax 552 456 470 452 .46 8 .15 14 .94 

SCIPoptBest 552 468 480 401 .74 7 .29 13 .79 

MMBAC 552 506 529 393 .13 – –

VANP14 552 – – – – 13 .66 

Table 3 

Results on the 50-job instances from MMLIB . 

#feas #opt #best t tot G opt (%) G cplb (%) I ub I lb 

SCIPMax 540 405 415 1409 .69 17 .73 (17.86) 34 .96 (34.21) 14 276 

SCIPBest 540 420 440 1252 .25 9 .86 (9.88) 26 .08 (26.01) 18 280 

G12Max 532 363 377 1952 .36 11 .21 27 .61 19 –

G12Best 539 367 413 1861 .9 8 .87 25 .34 20 –

VANP14 540 – – – – 23 .79 – –

Table 4 

Results on the 100-job instances from MMLIB . 

#feas #opt #best t tot G opt (%) G cplb (%) I ub I lb 

SCIPMax 518 312 322 3127 .93 341 .33 (146.09) 378 .03 (154.19) 18 213 

SCIPBest 535 338 348 2740 .31 33 .71 (27.13) 45 .58 (32.20) 23 217 

G12Max 219 150 154 5963 .62 21 .35 25 .71 6 –

G12Best 404 245 260 5255 .9 16 .91 21 .29 10 –

VANP14 540 – – – – 24 .02 (21.51) – –
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e  
stances to optimality and are ≈ 42% (43%) faster when using time

limits of 2400 s. 

As the Branch-and-Cut approach of Zhu et al. [37] is based on a

MIP formulation of the MRCPSP, it is highly dependent of a starting

solution with a small makespan to reduce the number of binary

variables. They use starting solutions computed by a problem spe-

cific heuristic whose makespan on average only deviates by 2.18%

from the best known makespans of the PSPLIB. An advantage of

our SCIP- and G12 approaches is that they still produce competi-

tive results with the relatively high upper bound T max as input. 

Moreover, the input upper bounds leading to the best results in

the parallel approach G12Best deviate on average by 19.69% and

22.14% from the best known upper bounds from the literature for

the 20- and 30-job instances, respectively. 

Furthermore, for this instance set, all of our solution approaches

except SCIPopt exhibit a better gap to the critical path lower

bound than the best metaheuristic presented by Peteghem and

Vanhoucke [35] for the larger time limits. 4 

Now, we present our results for new instances with 50 and 100

jobs generated by Peteghem and Vanhoucke [35] . To our knowl-

edge, these have not been solved exactly before. 

Tables 3 and 4 contain the results for the runs with the 540

feasible 50-job and 540 feasible 100-job instances from the MMLIB ,
respectively. For these instance sets, the approaches integrating the
4 However, one should always keep in mind that this metaheuristic is signifi- 

cantly faster in practice than our exact approach. 

n  

i

est SCIP model significantly outperform the approaches integrat-

ng the G12-model. 

The G12 approaches only produce better average optimality

aps and gaps w.r.t. to the critical path lower bound, also if the

verage value is computed w.r.t. to the instances where both the

CIP and the respective G12 approaches, can compute a feasible

olution. This can be observed when regarding the values in brack-

ts near the gap measurements in the SCIP approaches. 5 

The performance difference of the G12 approaches compared

o our best SCIP approaches for the 20- and 30-job instances and

he 50- and 100-job instances can be explained in the following

ay. In the G12 formulation, we use variables as indices of pa-

ameter vectors as a concept to model the mode assignment. The

12 solver internally transforms these constructs to a number of

lement -constraints (see Section 3.1 ). In this context, | J| · (1 +
 R | + | N| ) new variables d ′ 

i 
, c 

′ ρ
i,r 

and c ′ ν
i,r 

and constraints (see (12),

11) and (13) ) have to be introduced. In general, the BaB algorithm

as to consider all of these additional variables and constraints in

he course of its internal branching, constraint propagation and CA

echanisms. One can see that this solver-internal transformation

till works in an efficient way for the 20- and 30-job instances.

owever, for the 50- and 100-job instances the additional intro-

uction of new variables and constraints leads to a great loss of

fficiency of the overall procedure. In the SCIP formulation, we do

ot need a transformation of the original model. More precisely,
5 Note that the value in brackets for VAN14 corresponds to the gap w.r.t. the 

nstances where the approach SCIPBest can find a feasible solution. 
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Table 5 

50 jobs: The results for parameter groups corresponding 

to significant coefficients. 

#opt #best t tot G opt (%) 

OS = 0 . 25 132 142 1489 .39 14 .18 

OS = 0 . 5 142 145 1200 .68 10 .70 

OS = 0 . 75 146 153 1066 .67 4 .71 

RS ρ = 0 . 25 85 93 2927 .24 27 .99 

RS ρ = 0 . 5 155 167 828 .96 1 .60 

RS ρ = 0 . 75 180 180 0 .54 0 

RF ρ = 0 . 5 262 268 208 .68 0 .38 

RF ρ = 1 158 172 2295 .81 19 .94 

Table 6 

100 jobs: The results for parameter groups corresponding 

to significant coefficients. 

#opt #best t tot G opt (%) 

RS ρ = 0 . 25 40 43 5534 .49 875 .72 

RS ρ = 0 . 5 122 127 2385 .39 5 .88 

RS ρ = 0 . 75 176 178 1383 .83 0 .11 

RF ρ = 0 . 5 220 223 1383 .83 4 .23 

RF ρ = 1 118 125 4096 .78 583 .59 
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t  
e tackle the mode assignment by binary variables and the inter-

al handling of cumulativemm . Obviously, this leads to a signifi-

antly more efficient behavior of the overall solution procedure for

he 50- and 100-job instances. 

A hint to the observation that our best SCIP algorithms

 SCIPMax and SCIPBest ) should work in a more effective

ay than the respective G12 algorithms was already given in

ection 4.2 . A reason why we cannot observe the latter for the

0- and 30-job instances can also be the additional overhead of

he SCIP implementation. The SCIP internal algorithm captures a

ide variety of additional techniques, e.g. specialized MIP con-

epts, which only have a small contribution to the overall solution

rocedure for our special problem. This overhead does not occur

n the G12 algorithm. Hence, this additional computational effort

an lead to the weaker performance of our best SCIP algorithms

ompared to the G12 algorithms for the 20- and 30-job instances.

or the 50- and 100-job instances the impact of this overhead is

f lesser extent and the above assumption about the more efficient

ehavior of our best SCIP approaches is computationally supported.

In total, we can solve approx. 78% of the 50-job instances and

3% of the 100-job instances to optimality within the given time

imits. Moreover, we improved the best known makespans of 18

nstances with 50 jobs and 23 instances with 100 jobs. Further-

ore, we can improve the lower bounds for approx. 52% of the

0-job instances from MMLIB on average by approx. 28%. For 40%

f the 100-job instances from MMLIB tighter lower bounds could

e computed. These are on average approx. 23% better than the

est known lower bounds. Furthermore, the input upper bounds

eading to the best results in the parallel approach SCIPBest are

n average 37.41% and 131.20% higher than best known makespans

or the 50- and 100-job instances, respectively. This is again an in-

ication that our approaches can also produce good results with

elatively high upper bounds as input. 

Note that in case of the 50-job instances, we found out that at

east 65% of the heuristic solutions given by Peteghem and Van-

oucke [35] correspond to an optimal solution. For the 100-job in-

tances, this holds for at least 47%. Furthermore, the gap to the

ritical path lower bound computed by the approach SCIPBest is
ompetitive compared to the metaheuristic VANP14 for the 50-job

nstances. However, for the 100-job instances our SCIP approaches

each their limits w.r.t. producing high quality upper bounds in to-

al for all instances. 

To test the influence of the five different project parameters

ased on which the new data sets of MMLIB were generated (see

35] and [36] ), i.e. the order strength (OS), and the renewable

nd nonrenewable resource strength and resource factor (RS ρ( ν) 

nd RF ρ( ν) ), on the performance of our best solution approaches

CIPBest (measured by the optimality gap), we conducted a

ultiple linear regression analysis similar to Peteghem and Van-

oucke [35] for the 50- and 100-job instances of MMLIB . For the

0-job instances, the parameters −0 . 188 , −0 . 561 and 0.379 are sig-

ificant coefficients (confidence level of 1%) for OS, RS ρ and RF ρ

n the multiple linear regression model, respectively. Moreover, the

onstant 0.168 is also significant. The coefficient of determination

 

2 is approx. 0.66. Thus, for these instance, we can observe that

ith an increasing number of precedence relations, the perfor-

ance of the approach SCIPBest increases. This can be explained

y the fact that the size of solution space tendentially decreases

ith an increasing number of precedence relations. Furthermore,

he less scarce the renewable resources become, the better is the

erformance of SCIPBest . Finally, one can observe, that the per-

ormance of SCIPBest decreases when the average resource con-

umption of the multi-mode jobs is increased. For the 100-job in-

tances only the coefficients −17 . 61 and 11.60 are significant for

S ρ and RF ρ , respectively. Tables 5 and 6 show the results for the
s  
ifferent parameter groups which correspond to significant coeffi-

ients for the 50- and 100-job instances, respectively. 

Finally, Table 7 shows the results of the approaches integrating

ur best SCIP-model for the renownedly more complex 1620 fea-

ible 50-job and 1620 feasible 100-job instances from the instance

et MMLIB+ . As instances of MMLIB+ on average integrate more

onrenewable and renewable resources than those of MMLIB , one

an assume that the performance of the G12 solution approaches is

ven worse for these instances. Therefore, we only consider the ap-

roaches integrating our best SCIP model for these evaluations. For

his instance set 2318 lower bounds are on average improved by

pprox. 51%. Furthermore, the input upper bounds leading to the

est results with SCIPBest deviate on average by 555.21% from

he best known makespans for MMLIB+ . 
Note that the value in brackets near G cplb for VANP14 corre-

ponds to the gap to the critical path lower bound for the instances

here SCIPBest can find a feasible solution. 

A file with more detailed results for every examined instance

et is provided as supplementary data to this paper. 

A disadvantage of our approaches is that not for every instance

f MMLIB100 and of MMLIB+ a feasible solution can be found.

his disadvantage can be overcome by running a heuristic (e.g.

he one of [35] with a limit of 50 0 0 schedules) in the beginning

o obtain a feasible initial solution for every instance as input for

ur solution approaches. Furthermore, in this context, the influ-

nce of scheduling specific primal heuristics integrated into the

CIP framework on our solution approaches would be an interest-

ng future research topic. 

. Conclusion 

In our paper, we introduced a generalization of the exact CP-

AT approaches for the SRCPSP to the MRCPSP. This generalization

an on the one hand be achieved on the modeling level. We in-

roduced formulations of the MRCPSP in optimization frameworks

G12 and SCIP) which integrate a BaB-algorithm in combination

ith CP and SAT techniques. One formulation is usable via the

inc modeling language which supports the solution of models

y LCG, the state-of-the-art exact approach for variants of the SR-

PSP. Moreover, we proposed two formulations for the optimiza-

ion framework SCIP. One of the latter is based on our new con-

traint handler called cumulativemm and the other one on the
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Table 7 

Results on the MMLIB+ instances. 

#feas #opt #best t tot G opt (%) G cplb (%) I ub I lb 

SCIPMax 3169 596 670 4236 .01 565 .11 751 .96 77 2308 

SCIPBest 3175 670 777 6150 .85 478 .65 656 .52 110 2318 

VANP14 3240 – – – – 92 .76 (81.20) – –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

[  

[  

 

 

 

[  

 

[  

 

 

 

 

existing optcumulative -constraint introduced by Heinz et al.

[14] . 

The computational experiments show that for the 20- and 30-

job instances at least one of our proposed approaches can outper-

form the state-of-the-art exact algorithm of Zhu et al. [37] for the

MRCPSP when the approaches are compared based on the clock

rates of the CPUs on which they are run. In this situation, our

parallel G12-algorithm is almost two times faster than their ap-

proach on the 20-job instances. Moreover, on the 30-job instances

already our single-core approach using a trivial upper bound as in-

put for the G12-algorithm can solve 9 more instances to optimal-

ity and is approx. 1.23 times faster. A clear advantage of our ap-

proaches is that they also produce competitive results when large

upper bounds are used as input. In contrast, the quality of the ap-

proach of Zhu et al. [37] is highly dependent on small UBs as input

to reduce the initial number of variables. 

Moreover, the SCIP-approaches which apply our

cumulativemm -constraint are significantly better than the SCIP-

approaches integrating the existing optcumulative -constraint.

For the 20- and 30-job instances, we could solve 40 and 36 more

problem instances to optimality in approximately five and two

times smaller average solution times, respectively. 

Finally, we are the first to exactly solve new MRCPSP instances

with 50 and 100 jobs from the literature [35] . On these instance

sets, our SCIP-approaches with cumulativemm significantly out-

perform the G12-approaches. In total, we close (find the optimal

solution and prove its optimality for) 628 open instances with 50-

and 100-jobs from the literature [35] . Moreover, we improve the

best known makespans reported Online [24] for 151 of these in-

stances. In addition, we improve the best known lower bound of

2815 instances on average by approx. 46%. 
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