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a b s t r a c t 

We formulate the minimum spanning tree problem with resource allocation (MSTRA) in two ways, as dis- 

crete and continuous optimization problems (d-MSTRA/c-MSTRA), prove these to be N P-hard, and present 

algorithms to solve these problems to optimality. We reformulate d-MSTRA as the knapsack constrained 

minimum spanning tree problem , and solve this problem using a previously published branch-and-bound 

algorithm. By applying a ‘peg test’, the size of d-MSTRA is (significantly) reduced. To solve c-MSTRA, we 

introduce the concept of f - f ractional solution , and prove that an optimal solution can be found within 

this class of solutions. Based on this fact, as well as conditions for ‘pruning’ subproblems, we develop an 

enumerative algorithm to solve c-MSTRA to optimality. We implement these algorithms in ANSI C pro- 

gramming language and, through extensive numerical tests, evaluate the performance of the developed 

codes on various types of instances. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

Numerous applications have been published on the minimum

panning tree problem (MST) [1,2] on an undirected graph [3] ,

here each edge is associated with a non-negative distance . Here,

distance’ may be cost, time, toll or penalty of each edge in spe-

ific applications. In this article we are concerned with a variation

f this problem, where each edge may have different ‘modes’ as-

ociated with different pair of distance and ‘cost’. Or, we may have

dges which can be ‘strengthened’ by increasing the amount of re-

ources added to these edges. For example, in a city transportation

etwork, we may take a bus or a train to go from one train sta-

ion to the other, each with respective fare and traveling time. Or,

hile driving a car we may put more fuel to run faster. We for-

ulate such a combination of the MST and the resource allocation

roblem (RA) [4] as discrete/continuous combinatorial optimization

roblems, prove these to be NP-hard, develop both of approximate

nd exact algorithms to solve these problems, and conduct a se-

ies of numerical experiments to evaluate the performance of the

eveloped algorithms. 

To describe the problem, let G = (V, E) be a connected undi-

ected graph, where V is a finite set of vertices and E ⊆ V × V is

he set of edges. By n and m we denote the numbers of nodes and
∗ Corresponding author. 
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dges, i.e., n = | V | and m = | E| . Associated with each edge e ∈ E is

 cost function c e (·) , which relates r e , the amount of resource al-

ocated to e , to the cost of this edge. Given a fixed amount R of

otal resources, our problem is to find a spanning tree of G and a

esource allocation on that tree, such that the total cost incurred is

inimized over all possible solutions. We formulate this as a dis-

rete, as well as a continuous, optimization problem. 

In discrete optimization framework, edges can be either one of

normal’ or ‘priority’ modes, and the resource requirement and cost

f each edge take different values depending on the mode of that

dge. If edge e is in normal mode, the amount of resource required

s r 0 e , with the corresponding cost c 0 e , while in priority mode these

re r 1 e and c 1 e , respectively. These are related through a binary func-

ion c(·) as 

 

0 
e = c e (r 0 e ) , c 1 e = c e (r 1 e ) (1)

nd, we assume 

 

0 
e ≥ c 1 e , r 0 e ≤ r 1 e , ∀ e ∈ E . (2)

hat is, in priority mode cost is smaller than in normal mode with

n expense of increased resource allocation at that edge. 

Let T denote the set of all the spanning trees in G , and by T ∈ T 
e mean a spanning tree as well as the set of edges constitut-

ng T . Resource allocation over T is represented by a binary vec-

or r = (r e ) e ∈ T with r e ∈ { r 0 e , r 
1 
e } , ∀ e ∈ T . Then the problem is for-

ulated as the following ‘discrete’ minimum spanning tree problem

ith resource allocation 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

http://dx.doi.org/10.1016/j.orp.2015.12.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/orp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2015.12.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:seiji@nda.ac.jp
mailto:yamada.144b@gmail.com\penalty -\@M 
http://dx.doi.org/10.1016/j.orp.2015.12.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 S. Kataoka, T. Yamada / Operations Research Perspectives 3 (2016) 5–13 

Fig. 1. Graph G = (V, E) for the proof of NP -hardness of c-MSTRA. 
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T ∈ T . (14) 
d-MSTRA : 

minimize z(T , r) := 

∑ 

e ∈ T 
c e (r e ) (3)

subject to 

∑ 

e ∈ T 
r e ≤ R , (4)

r e ∈ { r 0 e , r 
1 
e } , ∀ e ∈ T , (5)

T ∈ T . (6)

Alternatively, the problem may be formulated as a continuous

optimization problem. Here, the cost c e of edge e ∈ E is a non-

increasing function of r e defined on the continuous interval [ r 0 e , r 
1 
e ]

as c e = c e (r e ) . Specifically, we assume this to be linear 

c e (r e ) := s e − θe r e , (7)

and put c 0 e := c e (r 0 e ) and c 1 e := c e (r 1 e ) for simplicity. From (2) , we

have θe ≥ 0 . Thus, the ‘continuous’ minimum spanning tree problem

with resource allocation is as follows. 

c-MSTRA : 

minimize z(T , r) = 

∑ 

e ∈ T 
c e (r e ) (8)

subject to 

∑ 

e ∈ T 
r e ≤ R , (9)

r 0 e ≤ r e ≤ r 1 e , ∀ e ∈ T , (10)

T ∈ T . (11)

To prove N P - hardness of these problems, we first note that the

standard 0–1 knapsack problem 

KP : 

maximize 

n ∑ 

j=1 

p j x j 

subject to 

n ∑ 

j=1 

w j x j ≤ R , ∀ x j ∈ { 0 , 1 } , 

is N P -hard. 

Theorem 1. d-MSTRA and c-MSTRA are both N P -hard. 

Proof ( N P -Hardness of d-MSTRA) . Corresponding to the knap-

sack problem let G = (V, E) be with V = { v 0 , v 1 , . . . , v n } and E =
{ (v 0 , v 1 ) , . . . , (v n −1 , v n ) } . For each edge e = (v j−1 , v j ) ∈ E we set

r 0 e = 0 , c 0 e = p j , and r 1 e = w j , c 
1 
e = 0 . Then, d-MSTRA is identical to

KP, and thus N P -hard. 

( N P -hardness of c-MSTRA) Given the knapsack problem above,

let G = (V, E) be a graph with V = { v 0 , v 1 , . . . , v n , t} and E =
{ e 1 , e ′ 1 , e 2 , e ′ 2 , . . . , e n , e ′ n , f } . Here, e j and e ′ 

j 
both connect v j−1 and

v j , and f = (v n , t) (see Fig. 1 ). The resource and cost are r 0 (e j ) =
r 1 (e j ) = w j and c 0 (e j ) = c 1 (e j ) = M − p j for e j , r 

0 (e ′ 
j 
) = r 1 (e ′ 

j 
) = 0

and c 0 (e ′ 
j 
) = c 1 (e ′ 

j 
) = M for e ′ 

j 
, and r 0 

f 
= 0 , r 1 

f 
= R , c 0 

f 
= c 1 

f 
= 0 for

f , where M is a constant satisfying M > max 1 ≤ j≤n p j . For a solu-

tion (T , r) of c-MSTRA on this graph, we introduce a 0–1 variable

x j such that x j = 1 if e j ∈ T and x j = 0 otherwise ( j = 1 , 2 , . . . , n ).
ote that x j = 0 implies e ′ 
j 
∈ T . Then, this particular c-MSTRA can

e rewritten as 

inimize 

n ∑ 

j=1 

(M − p j ) x j 

ubject to 

n ∑ 

j=1 

w j x j ≤ R , ∀ x j ∈ { 0 , 1 } . 

his is equivalent to KP, and thus c-MSTRA is N P -hard. �

The problems formulated above may be regarded as a sort of

rade-off analysis of spanning trees with respect to two criteria, the

mount of resource consumed r(T ) = 

∑ 

e ∈ T r e and the cost c(T ) =
 

e ∈ T c e of the tree, provided that r e and c e are a priori given con-

tants. Hassin and Levin [5] gave a polynomial time approximation

cheme, and Yamada et al. [6] gave a branch-and-bound algorithm

or such a problem. Trade-off analysis in general is quite standard

n scheduling [7–9] and resource allocation [4] problems. If r(T ) is

egarded as a second objective function, rather than a constraint,

e have a multi-objective minimum spanning tree problem [10,11] .

n important feature that distinguishes d- and c-MSTRAs from the

revious researches is the fact that the coefficient c e is a function

f r e , thus it can be enhanced by allocating larger amount of re-

ources. To our knowledge, trade-off analysis in this framework is

ew in this paper. 

In Section 2 , we discuss d-MSTRA: how this can be reduced to

he knapsack constrained minimum spanning tree problem (KCMST

6] , see also [12] ), and how computation can be speeded up by re-

ucing the size of the problem. Sections 3 and 4 explore c-MSTRA

nd develop solution algorithm to solve this problem to optimality.

inally, in Section 5 a series of numerical experiments are done,

oth for d- and c-MSTRAs, to examine the behavior of the de-

eloped algorithms. Throughout theoretical development in these

ections, KCMST plays a key role. Thus, KCMST and its solution al-

orithm are briefly reviewed in the Appendix for readers’ conve-

ience. 

. Solution algorithm for d-MSTRA with problem reduction 

In this section we show that d-MSTRA can be reformulated as

 KCMST on a ‘doubly edged graph’. Furthermore, by applying the

peg test’ the problem is substantially reduced in size. The reduced

roblem can be solved by SOLVE_KCMST routine [6] much faster

han solving the unreduced problem directly. 

.1. d-MSTRA as KCMST 

We introduce Ḡ = ( ̄V , Ē ) as the graph which is obtained from G

y doubling each edge e ∈ E into edges e 0 and e 1 ∈ Ē , correspond-

ng to normal and priority modes, respectively. Thus, these edges

re incident to the identical pair of nodes as e ∈ E, and the re-

ource allocation and cost at e 0 ( e 1 , resp.) are r 0 e and c 0 e ( r 1 e and c 1 e ,

esp.). We have V̄ = V and | ̄E | = 2m . These graphs are illustrated

n Fig. 2 for a planar example. Here we employ the following sim-

lified notation for edges and trees in graph Ḡ . Superscripts in the

dges of Ē are usually omitted, unless otherwise needed. Therefore,

y e ∈ E we mean either e 0 or e 1 , and c e may refer to either c 0 e or

 

1 
e . T denotes the set of all the spanning trees in Ḡ . Thus, d-MSTRA

an be rewritten as the following 

CMST : 

inimize z(T ) := 

∑ 

e ∈ T 
c e (12)

ubject to 

∑ 

e ∈ T 
r e ≤ R , (13)
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Fig. 2. Graphs G and its duplicate Ḡ . 
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.2. Peg test for d-MSTRA 

Making use of SOLVE_KCMST [6] to solve KCMST, we can solve

-MSTRA, at least to some extent. However, by reducing the prob-

em size through some preprocessing procedures, we may expect

o solve larger instances more quickly. We show here a ‘peg test’

13] for this purpose. 

We employ the following notations for simplicity’s sake: P is

quivalently used to denote KCMST, and overbars in V̄ , Ē , etc. are

bbreviated, although we are concerned with Ḡ = ( ̄V , Ē ) through-

ut this subsection. In the process of SOLVE_KCMST we obtain a

Lagrangian) lower bound z , a (local search) upper bound z̄ , and

he optimal Lagrangian multiplier λ† (see Appendix and [6] ). Let 

ap := z̄ − z . (15) 

or an arbitrary edge f ∈ E, by P ( f = 1) we denote the subproblem

f P with a constraint f ∈ T added, i.e., 

 ( f = 1) : 

inimize 
∑ 

e ∈ T 
c e 

ubject to 

∑ 

e ∈ T 
r e ≤ R , 

f ∈ T , T ∈ T . 

Furthermore, z ( f = 1) denotes a lower bound to this subprob-

em, and P ( f = 0) and z ( f = 0) are defined analogously with re-

pect to an additional constraint f / ∈ T . Then, the following peg test

heorem is obvious. 

roposition 1. Let T � denote an optimal solution to P. Then, 

(i) z ( f = 1) > z̄ implies f / ∈ T � , and 

ii) z ( f = 0) > z̄ implies f ∈ T � . 

In case of (i) or (ii), respectively, f is said to be fixed-out or

xed-in . Fixed-out edges can never be included in any optimal so-

ution, while those fixed-in must be included in any optimal solu-

ion of P. Then, eliminating these fixed edges we obtain a problem

f reduced size. 

To obtain a lower bound z ( f = 1) for f ∈ E, we make use of
† obtained previously, and introduce the relaxation of P ( f = 1) as

ollows. 

LP (λ† ; f = 1) : 

inimize 
∑ 

e ∈ T 
c e + λ† ( 

∑ 

e ∈ T 
r e − R ) 

ubject to f ∈ T , T ∈ T . 

imilarly, LP (λ† ; f = 0) is defined, and we obtain a lower bound

 ( f = 0) . These are minimum spanning tree problems (with an

dditional constraint f ∈ T or f / ∈ T ), and can be solved easily as
P (λ) . However, to compute z ( f = 1) and z ( f = 0) quickly for all

f ∈ E, we propose the following approach. 

Let T † be the optimal solution to the Lagrangian relaxation

P (λ† ) (see Appendix ). Then, we have z = 

∑ 

e ∈ T † c 
† 
e − λ† R , where for

 ∈ E we define 

 

† 
e := c e + λ† r e . (16) 

ptimal solutions to LP (λ† ; f = 1) and LP (λ† ; f = 0) can be ob-

ained by modifying T † as follows. For an arbitrary tree edge f

n T † , by eliminating f from T † the set of nodes are partitioned

nto two disjoint subsets, say V 1 and V 2 ( V = V 1 ∪ V 2 , V 1 ∩ V 2 = 08 ),

hich are connected to each of the incident nodes of f through T † ,

espectively. By Cut (T † , f ) , we denote the set of edges ranging over

 1 and V 2 . If we replace f with an edge e ∈ Cut (T † , f ) \ { f } , we

btain another tree T † − f + e with cost z(T † − f + e ) = z + c 
† 
e − c 

† 

f 
.

hen, by cut optimality property [3] of T † − f + e , LP (λ† ; f = 0) is

olved by finding an edge e , and replacing it with f , such that c 
† 
e 

s minimized over Cut (T † , f ) \ { f } . Thus, with the minimum of this

argin defined as 

(T † , f ) := min { † c 
e 
| e ∈ Cut (T † , f ) , e � = f } − c † 

f 
, (17)

e obtain the following optimal objective value to LP (λ† ; f = 0) 

 ( f = 0) = z + �(T † , f ) . (18)

In case of f / ∈ T † , adding f to T † produces an elementary cy-

le Cycle (T † , f ) with Cycle (T † , f ) \ { f } ⊂ T † . Then, replacing f / ∈ T † 

ith an edge e ∈ Cycle (T † , f ) \ { f } , we obtain another tree with

ost z(T † + f − e ) = z + c 
† 

f 
− c 

† 
e , and due to cycle optimality property

3] of T † + f − e , LP (λ† ; f = 1) is solved by finding an edge e such

hat c 
† 
e is maximized over Cycle (T † , f ) \ { f } . We define 

(T † , f ) := c † 
f 
− max { † c 

e 
| e ∈ Cycle (T † , f ) , e � = f } , (19)

nd obtain the following optimal value to LP (λ† ; f = 1) 

 ( f = 1) = z + �(T † , f ) . (20)

To sum up, we have the following peg test theorem for problem

. 

heorem 2. Let T � be an optimal solution of P. Then, 

i) f ∈ T † and �(T † , f ) > z̄ − z implies f ∈ T � ( f is fixed-in), and 

ii) f / ∈ T † and �(T † , f ) > z̄ − z implies f / ∈ T � ( f is fixed-out). 

. A Characterization of Optimality for c-MSTRA 

We now turn to c-MSTRA. For a spanning tree T of G , r =
(r e ) e ∈ T is said to be a resource allocation vector over T . A pair of

 spanning tree T and such a vector r over T is a feasible solution

f c-MSTRA if constraints (9) –(10) are all satisfied. A feasible solu-

ion (T � , r � ) is optimal if z(T � , r � ) ≤ z(T , r) for any feasible solution

(T , r) of c-MSTRA. We introduce the following. 



8 S. Kataoka, T. Yamada / Operations Research Perspectives 3 (2016) 5–13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

t

 

e  

T  

t  

t  

r

4

 

t  

n  

i

P

m

s

B  

a  

i

D  

 

F

 

 

f  

t  

K  

t  

o  

a  

j

z  

 

a  

a  

m  

l

P

m

s

4

 

t  

i  

 

f

c  
Definition 1. For edge f ∈ E, a feasible (T , r) is said to be an f -

fractional solution if f ∈ T and all edges of T other than f are ex-

tremal , i.e., r e ∈ { r 0 e , r 
1 
e } , ∀ e ∈ T ( e � = f ). 

In f -fractional solution only r f can take intermediate value in

[ r 0 
f 
, r 1 

f 
] , with all other tree edges either fixed-low (i.e., r e = r 0 e ), or

fixed-high ( r e = r 1 e ). To avoid excessive complication due to ties, we

assume that θe ’s are distinct each other for all e ∈ E, i.e., 

θe � = θe ′ for all e � = e ′ in E . 

Then, we have the following characterization of optimality of c-

MSTRA. 

Theorem 3. There exists an optimal solution (T � , r � ) of c-MSTRA

that is f -fractional for some f ∈ E . Furthermore, tree edges other

than f are either fixed-low or fixed-high depending on θe < θ f or

θe > θ f , respectively, i.e., 

r � e = 

{
r 1 e , if θe > θ f , 

r 0 e , if θe < θ f . 
(21)

Proof. Let (T � , r � ) be an optimal solution of c-MSTRA. We note

that for an arbitrary pair of edges e and e ′ in T � with θe > θe ′ ,
either one of these is extremal, i.e., r � e = r 1 e or r � 

e ′ = r 0 
e ′ , since oth-

erwise by modifying these to r � e → r � e + ε and r � 
e ′ → r � 

e ′ − ε for suf-

ficiently small ε > 0 , the objective value would be improved by

ε(θe − θe ′ ) . Thus, if there exist more than one fractional edges,

say e and e ′ in T � , we must have θe = θe ′ . In this case, let δ :=
min { r 1 e − r � e , r 

� 
e ′ − r 0 

e ′ } , and modify the solution to r � e → r � e + δ and

r � 
e ′ → r � 

e ′ − δ. By doing this, the number of fractional edges is de-

creased at least by one, and repeating this we will obtain an opti-

mal solution with at most one fractional edge. If no fractional edge

remains, we pick up f := arg max e ∈ T � { θe | e isfixed-low } as a degener-

ate fractional edge. Thus, we have an optimal f -fractional solution

for some f ∈ T � . 

Finally, if θe > θ f and r � e < r 1 e , we obtain an improved solu-

tion by changing these to r � e → r � e + ε and r � 
f 

→ r � 
f 
− ε. For opti-

mal (T � , r � ) this is impossible, and thus the former part of (21) is

proved. The latter is proved analogously. �

4. An exact algorithm for c-MSTRA 

4.1. Initial feasible solution and an upper bound 

We note that c-MSTRA is feasible if and only if d-MSTRA is

feasible. Indeed, any feasible solution of d-MSTRA is itself fea-

sible to c-MSTRA. On the other hand, if (T , r) is feasible to c-

MSTRA, we obtain a feasible solution of d-MSTRA by rounding off

all the fractional elements to the corresponding lower bounds, i.e.,

r e ∈ (r 0 e , r 
1 
e ) ⇒ r e ← r 0 e . 

Then, our strategy to solve c-MSTRA starts with the optimal so-

lution (T D , r D ) of d-MSTRA as obtained in Section 2 . This solution

is feasible to c-MSTRA, but in d-MSTRA the amount of resources

actually consumed in optimality is usually smaller than R . Let the

residual amount of resource be 

R res := R −
∑ 

e ∈ T D 

D 
r 
e 
. (22)

We note the following. 

Proposition 2. In (T D , r D ) , if e ∈ T D is fixed-low, i.e., r D e = r 0 e , we

have 

0 ≤ R res < r 1 e − r 0 e . (23)

Proof. From (4) , 0 ≤ R res is obvious. If R res ≥ r 1 e − r 0 e , we can in-

crease the value of r e from r D e = r 0 e to r 1 e and obtain an improved
olution to d-MSTRA. This violates the optimality of (T D , r D ) , and

hus Proposition 2 is proved. �

This means that the residual R res can be put in full to any edge

 of T D if e is fixed-low, without violating the resource limit of e .

his gives an improved initial feasible solution to c-MSTRA. Par-

icularly, we pick up f := arg max e ∈ T D { θe | e isfixed-low } , and denote

he solution of c-MSTRA obtained this way as (T C , r C ) with the cor-

esponding upper bound z̄ C := z(T C , r C ) . 

.2. Decomposition 

We decompose c-MSTRA into m subproblems and examine

hese, one by one, for better solutions. For each f ∈ E, let F f de-

ote the set of all the f -fractional solutions of c-MSTRA, and we

ntroduce subproblem 

 f : 

inimize z(T , r) = 

∑ 

e ∈ T 
c e (r e ) 

ubject to (T , r) ∈ F f , 

∑ 

e ∈ T 
r e ≤ R . 

y Theorem 3 , an optimal solution of c-MSTRA can be obtained

s a solution of one of these m subproblems, and to solve P f we

ntroduce the following auxiliary graph G f . 

efinition 2. Graph G f is obtained from G by contraction of edge

f , i.e., by eliminating f and identifying two incident nodes of f .

urthermore, edge e � = f is associated with the following values, 

(r e , c e ) = 

{
(r 1 e , c 

1 
e ) , if θe > θ f , 

(r 0 e , c 
0 
e ) , if θe < θ f . 

(24)

We note that, due to Theorem 3 , if (T , r) is an optimal f -

ractional solution of P f with resource r f allocated to edge f ,

he non-fractional part T \ { f } needs to be an optimal solution of

CMST on graph G f with total amount of resource R − r f . We write

his problem K(G f , R − r f ) , and z � 
K 
(G f , R − r f ) denotes the optimal

bjective value of this problem. Then, since the cost for f is c f (r f )

nd the optimal objective value from G f is z � K (G f , R − r f ) , the ob-

ective value for P f is 

 

� 
f (r f ) := c f (r f ) + z � K (G f , R − r f ) . (25)

We also note that c f (r f ) is a linear, non-increasing function,

nd z � 
K 
(G f , R − r f ) is a non-decreasing step function of r f ∈ [ r 0 

f 
, r 1 

f 
]

s depicted in Fig. 3 , and thus P f is equivalent to finding the opti-

al allocation of resources between f and G f , i.e., solving the fol-

owing. 

 

′ 
f 
: 

inimize z � f (r f ) 

ubject to r 0 f ≤ r f ≤ r 1 f . 

.3. Exact algorithm 

We start with an incumbent solution (T 	 , r 	 ) of c-MSTRA and

he corresponding upper bound z̄ 	 := z(T 	 , r 	 ) of c-MSTRA. This

s usually the initial feasible solution obtained earlier, and thus

(T 	 , r 	 ) := (T C , r C ) and z̄ 	 := z̄ C . 

Now, we investigate P f one by one for all f ∈ E. First of all, if

or a lower bound z K (G f , R − r 0 
f 
) of K(G f , R − r 0 

f 
) 

 f (r 1 f ) + z K (G f , R − r 0 f ) ≥ z̄ 	 (26)
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Fig. 3. Function z � 
f 
(r f ) (bold) as a sum of c f (r f ) (dotted) and z � K (G f , R − r f ) (thin). 

Fig. 4. Larger step-sizes in increasing r. 

h  

r  

p

 

c  

 

r

 

T  

o  

t  

o

r

c

 

z  

t  

p  

r  

c

c  

w

z

 

u  

 

o  

fi  

H  

o

r  

T  

c  

t  

5

 

c  

T  

R

5

 

a  

r  

g  

n  

n  

w

 

r  

p  

e  
olds, we can terminate P f , since in this case z � 
f 
(r f ) ≥ z̄ 	 for all

 f ∈ [ r 0 
f 
, r 1 

f 
] , and no better solutions than the incumbent can be ex-

ected in this subproblem. 

If (26) is not met, we consider a general case of resource allo-

ation (r f , R − r f ) with r f ∈ [ r 0 
f 
, r 1 

f 
] allocated to the fractional edge

f and the remaining R − r f to graph G f . We start with r f = r 0 
f 
, and

epeat the following process until r f > r 1 
f 
. 

We solve K(G f , R − r f ) and obtain an optimal solution

 

� 
K 
(G f , R − r f ) and the optimal z � 

K 
(G f , R − r f ) . Correspondingly, we

btain an optimal resource allocation vector r � 
K 
(G f , R − r f ) . Note

hat the actual amount of resources consumed in G f is the sum

f r e over T � K (G f , R − r f ) , so the residual 

¯
 f := R −

∑ 

e ∈ T � 
K 
(G f ,R −r f ) 

r e (27) 

an be put on the fractional f . 

We see that r f ≤ r̄ f , T � 
K 
(G f , R − r ′ 

f 
) ≡ T � 

K 
(G f , R − r̄ f ) and

 

� 
K 
(G f , R − r ′ 

f 
) ≡ z � 

K 
(G f , R − r̄ f ) for all r ′ 

f 
∈ [ r f , ̄r f ] , since throughout

his interval T � K (G f , R − r̄ f ) remains optimal. Furthermore, the

air of f and T � 
K 
(G f , R − r̄ f ) , together with resource allocation

[ f, ̄r f ] := ( ̄r f , r 
� 
K 
(G f , R − r̄ f )) , gives an f -fractional solution of

-MSTRA. This is hereafter denoted as (T f , r[ f, ̄r f ]) . 

At this stage if 

 f (r 1 f ) + z � K (G f , R − r̄ f ) ≥ z̄ 	 , (28)
e can terminate P f , as in (26) . On the other hand, if 

 

� 
f ( ̄r f ) < z̄ 	 , (29) 

(T f , r[ f, ̄r f ]) is better than the incumbent solution. Thus, we

pdate the incumbent and the corresponding upper bound as

(T 	 , r 	 ) ← (T f , r[ f, ̄r f ]) and z̄ 	 ← z � 
f 
( ̄r f ) . 

Finally, we increase r f beyond r̄ f to move to the next interval

f the step function z � 
K 
(G f , R − r f ) by putting r f ← r̄ f + ε for suf-

ciently small ε > 0 , and repeat the above process all over again.

owever, in case of z � 
f 
( ̄r f ) > z̄ 	 , r f can be increased more, because

f the following. Let 

 

+ 
f 

:= r̄ f + (z � f ( ̄r f ) − z̄ 	 ) /θ f . (30)

hen, we have z � 
f 
(r ′ 

f 
) ≥ z̄ 	 for all r ′ 

f 
∈ [ ̄r f , r 

+ 
f 

] , since z � 
f 
(r ′ 

f 
) =

 f (r ′ 
f 
) + z � 

K 
(G f , R − r ′ 

f 
) and z � 

K 
(G f , R − r ′ 

f 
) is a non-decreasing func-

ion of r ′ 
f 

(see Fig. 4 ). Thus, r f can be increased to max { r + 
f 
, ̄r f + ε} .

To sum up, our algorithm is as follows. 

Algorithm SOLVE_MSTRA 

. Numerical experiments 

We have implemented the algorithms to solve both of d- and

-MSTRAs in ANSI C language to optimality, using a DELL Precision

7500 (CPU: Intel Xeon X5680(3.33 GHz) × 2, RAM: 96 GB) with

edHat Enterprise Linux v5.5 and Intel C++ compiler. 

.1. Design of experiments 

We prepare planar and complete graphs to represent sparsely

nd densely edged graphs, respectively. All computations were car-

ied out on instances with edge data generated randomly on these

raphs of various sizes. By P n,m 

we denote a planar graph with n

odes and m edges. For example, graph G of Fig. 2 is actually a pla-

ar P 8 , 11 . K n,n (n −1) / 2 (usually denoted as K n ) is the complete graph

ith n nodes and n (n − 1) / 2 edges. 

Resource requirements at each edge are distributed uniformly

andom over the integer interval [1 , L ] , where L is an experimental

arameter which takes either 10 2 , 10 3 or 10 4 . More precisely, for

ach e ∈ E we pick up two integers ξe and ξ ′ 
e at random in [1 , L ] ,
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Fig. 5. Correlation types of instances. 

Table 1 

d-MSTRA experiments: UNCOR ( L = 10 3 , α = 0 . 4 ). 

Graph z z̄ %fix0 %fix1 #unfix z � CPU 

P 100 , 260 20 138 .5 20 176 .8 76 .4 15 .0 44 .4 20 156 .5 0 .02 

P 200 , 560 37 676 .5 37 711 .1 78 .2 14 .5 81 .6 37 688 .8 0 .48 

P 400 , 1120 76 098 .8 76 122 .8 79 .6 15 .5 110 .1 76 105 .6 0 .93 

P 600 , 1680 113 489 .5 113 505 .2 80 .4 16 .2 113 .0 113 495 .3 3 .22 

P 800 , 2240 154 108 .5 154 124 .1 80 .5 16 .3 144 .6 154 113 .8 7 .86 

P 10 0 0 , 280 0 190 701 .2 190 715 .1 80 .7 16 .4 162 .4 190 704 .1 12 .29 

K 40 , 780 1134 .8 1145 .3 96 .7 1 .7 25 .0 1140 .6 0 .02 

K 80 , 3160 1282 .8 1286 .8 98 .4 1 .0 35 .8 1284 .8 0 .17 

K 120 , 7140 1339 .0 1341 .7 99 .0 0 .7 48 .0 1339 .9 0 .46 

K 160 , 12 720 1373 .4 1375 .1 99 .4 0 .5 53 .8 1373 .9 1 .12 

K 20 0 , 19 90 0 1368 .9 1369 .7 99 .4 0 .5 41 .4 1369 .0 4 .07 

Table 2 

d-MSTRA experiments: Correlation compared ( L = 10 3 , α = 0 . 4 ). 

Graph UNCOR WEAK STRONG 

Gap %unfix CPU Gap %unfix CPU Gap %unfix CPU 

P 100 , 260 38 .3 8 .54 0 .02 26 .6 11 .33 0 .08 234 .4 64 .69 1 .93 

P 200 , 560 34 .6 7 .29 0 .48 12 .8 5 .11 0 .25 366 .6 73 .71 61 .04 

P 400 , 1120 24 .0 4 .92 0 .93 18 .5 6 .71 1 .30 961 .1 87 .54 109 .47 

P 600 , 1680 15 .7 3 .36 3 .22 12 .5 5 .23 5 .25 1505 .4 99 .99 1734 .38 

P 800 , 2240 15 .6 3 .23 7 .86 10 .7 4 .26 4 .23 2206 .8 94 .83 1675 .32 

P 10 0 0 , 280 0 13 .9 2 .90 12 .29 10 .0 3 .99 6 .50 2763 .9 100 .00 –

K 40 , 780 10 .5 1 .60 0 .02 5 .7 0 .72 0 .01 1 .1 0 .38 0 .01 

K 80 , 3160 4 .0 0 .57 0 .17 2 .9 0 .27 0 .08 0 .5 0 .18 2 .53 

K 120 , 7140 2 .7 0 .34 0 .46 2 .9 0 .14 0 .20 0 .8 0 .25 26 .99 

K 160 , 12 720 1 .7 0 .21 1 .12 1 .5 0 .09 0 .22 0 .8 0 .27 191 .80 

K 20 0 , 19 90 0 0 .8 0 .10 4 .07 2 .4 0 .13 2 .25 0 .8 0 .26 1703 .53 

–No instances solved within 1800 s. 
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and put r 0 e := min { ξe , ξ ′ 
e } and r 1 e := max { ξe , ξ ′ 

e } . Two more integers

c 0 e and c 1 e are related to r 0 e and r 1 e as follows representing uncorre-

lated, weakly correlated and strongly correlated cases, respectively,

i.e., 

a) UNCOR: For each e ∈ E we pick up c 0 e and c 1 e at random from

[1 , L ] . 

b) WEAK: We put c k e = 0 . 8 r k e + � ηk 
e / 5 � ( k = 0 , 1 ). 

c) STRONG: We put c k e = 0 . 8 r k e + 0 . 1 L + � ηk 
e / 100 � ( k = 0 , 1 ). 

Here ηk 
e ( k = 0 , 1 ) are distributed uniformly random over [1 , L ] , in-

dependent of each other, as well as from other random variables.

In all cases, c 0 e and c 1 e are rounded to the nearest integers, and if

necessary these are swapped such that c 0 e ≥ c 1 e is always satisfied.

Fig. 5 plots (r 1 e − r 0 e , c 
0 
e − c 1 e ) for P 100 , 260 . 

We note that if tree edges are picked up randomly, expected re-

source requirement for a spanning tree is E{ ∑ 

e ∈ T r e } = L (n − 1) / 2 .

Thus, we set the total amount of resource at R = Lnα, where α is
nother parameter that takes either 0.2, 0.4 or 0.6 in our experi-

ents. 

.2. Result of experiments: d-MSTRA 

Tables 1 and 2 give the results of experiment for d-MSTRA.

able 1 is the case of UNCOR with L = 10 3 and α = 0 . 4 , and

able 2 compares the effect of correlation. Here each row repre-

ents the average over 10 randomly generated instances, and the

olumns stand for the following. 

z : Lower bound by Lagrangian relaxation. 

z̄ : Upper bound improved through local search. 

%fix0 (%fix1) : Percentage of edges fixed out (in, resp.) by peg 

test. 

#unfix 

(%unfix) 

: Number (Percentage, resp.) of edges left unfixed. 

z � : Optimal objective value. 

CPU : CPU time in seconds to obtain optimal solution. 
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Fig. 6. Objective value z � of c-MSTRA as a function of n . 
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Table 3 

c-MSTRA experiments: UNCOR ( L = 10 3 , α = 0 . 4 , R = αLn ). 

Graph z � # P f %term #K CPU 

P 100 , 260 20 140 .74 25 .3 90 .3 74 .8 2 .23 

P 200 , 560 37 678 .31 37 .2 93 .4 130 .7 26 .40 

P 400 , 1120 76 099 .86 46 .5 95 .8 188 .7 180 .53 

P 600 , 1680 113 490 .15 63 .0 96 .3 294 .9 752 .40 

P 800 , 2240 154 109 .80 73 .3 96 .7 366 .6 1929 .40 

K 40 , 780 1136 .40 15 .5 98 .0 29 .7 0 .39 

K 80 , 3160 1283 .95 21 .4 99 .3 38 .8 5 .84 

K 120 , 7140 1339 .21 21 .1 99 .7 33 .8 27 .89 

K 160 , 12 720 1373 .43 24 .7 99 .8 34 .3 99 .79 

K 20 0 , 19 90 0 1368 .59 30 .0 99 .8 35 .2 304 .63 

Table 4 

c-MSTRA experiments: WEAK ( L = 10 3 , α = 0 . 4 ). 

Graph z � # P f %term #K CPU 

P 100 , 260 25 054 .43 27 .8 89 .3 79 .8 1 .73 

P 200 , 560 45 487 .58 34 .0 93 .9 121 .0 13 .89 

P 400 , 1120 91 612 .93 44 .4 96 .0 182 .8 134 .22 

P 600 , 1680 137 051 .04 55 .7 96 .7 291 .2 636 .71 

P 800 , 2240 183 928 .86 64 .0 97 .1 308 .6 1039 .86 

K 40 , 780 2628 .55 4 .5 99 .4 7 .0 0 .12 

K 80 , 3160 3696 .54 2 .1 99 .9 4 .2 2 .56 

K 120 , 7140 4688 .30 2 .3 99 .9 3 .8 14 .81 

K 160 , 12 720 5320 .90 1 .8 99 .9 3 .3 49 .83 

K 20 0 , 19 90 0 6033 .00 1 .4 99 .9 3 .7 133 .22 

Table 5 

c-MSTRA experiments: STRONG ( L = 10 3 , α = 0 . 4 ). 

Graph z � # P f %term #K CPU 

P 100 , 260 28 251 .38 26 .9 94 .2 77 .2 1 .93 

P 200 , 560 51 495 .78 32 .3 96 .6 114 .3 61 .04 

P 400 , 1120 103 681 .39 38 .6 97 .0 182 .9 109 .47 

P 600 , 1680 155 091 .17 49 .7 97 .2 298 .7 1734 .38 

P 800 , 2240 208 458 .69 61 .7 99 .8 375 .9 1675 .32 

K 40 , 780 4659 .00 1 .7 99 .9 3 .1 0 .11 

K 80 , 3160 8821 .20 1 .2 99 .9 1 .8 2 .53 

K 120 , 7140 12 991 .80 1 .2 99 .9 1 .9 26 .99 

K 160 , 12 720 17 128 .10 1 .1 99 .9 1 .3 191 .80 

K 20 0 , 19 90 0 21 278 .00 1 .6 99 .9 2 .3 1703 .53 

 

 

 

 

 

We were able to solve all the instances of Table 1 within a few

PU seconds. From this table we observe the following. 

• For the cases tested, we usually have approximate solutions

with the objective value close to the lower bounds. For com-

plete graphs optimal solution is often obtained by the heuristic

methods, without calling SOLVE_KCMST, especially for large n . 

Findings from Table 2 include: 

• In UNCOR and WEAK cases, gap ( = z̄ − z ) decreases with the

size of instances. As a consequence, the peg test works effec-

tively to fix many edges either in or out. The ratio (%unfix) of

the unfixed edges to the total number of (normal and prior-

ity) edges (2 m) is less than 12%, while this is less than 2% in

complete graphs. In these cases, the reduced problem is solved

within a few seconds. 

• However, in planar graphs with STRONG correlation, gap in-

creases rapidly with the problem size, and the peg test is less

effective in such a case. 

.3. Result of experiments: c-MSTRA 

Tables 3–5 give the result of experiments for each correlation

ype with L = 10 3 and α = 0 . 4 , each row again as average over 10

andomly generated instances. The columns stand for the follow-

ng. 

z � : Optimal objective value of c-MSTRA, 

# P f : Number of subproblems ( P f ’s) not terminated 

either by (26) or (28) at r f = r 0 
f 
, 

%term : Percentage of subproblems terminated 

( 100 · (m − # P f ) /m ), 

#K : Total number of KCMSTs solved in solving 

c-MSTRA, 

CPU : CPU time in seconds to obtain an optimal 

solution of c-MSTRA, including the CPU time to 

solve d-MSTRA. 

From these tables we observe the following. 

• Irrespective to the size or the correlation type of instance, more

than 85% of subproblems are terminated by (26) without solv-

ing KCMST. This ratio is often more than 90% in planar graphs,

and more than 98% in complete graphs. In complete graphs,

the number of remaining P f ’s is much smaller than in planar
graphs, as well as the number of KCMSTs solved at each in-

stance. This is especially the case in WEAK and STRONG in-

stances. 

• Both in planar and complete graphs, the objective value z � in-

creases commensurately with n . Correlation between r e and

c e has little effect on z � in planar case, while in the case of



12 S. Kataoka, T. Yamada / Operations Research Perspectives 3 (2016) 5–13 

Table 6 

c-MSTRA: Sensitivity analysis on L (UNCOR, α = 0 . 4 ). 

Graph L = 10 2 L = 10 3 L = 10 4 

z � CPU z � CPU z � CPU 

P 100 , 260 2048 .66 0 .96 20 140 .74 2 .23 201 099 .23 2 .52 

P 200 , 560 3839 .79 6 .49 37 678 .31 26 .31 376 127 .38 28 .44 

P 400 , 1120 7752 .10 41 .28 76 099 .86 183 .86 759 673 .91 266 .77 

P 600 , 1680 11 560 .11 177 .12 113 490 .15 767 .69 1 132 909 .67 1153 .13 

P 800 , 2240 15 689 .80 387 .66 154 109 .80 1946 .32 1 538 421 .63 2989 .04 

K 40 , 780 130 .97 0 .19 1136 .40 0 .40 11 189 .40 0 .47 

K 80 , 3160 164 .90 3 .74 1283 .95 5 .86 12 482 .59 8 .64 

K 120 , 7140 191 .08 22 .94 1339 .21 29 .33 12 842 .73 52 .11 

K 160 , 12 720 215 .09 85 .49 1373 .43 104 .86 13 011 .32 181 .27 

K 20 0 , 19 90 0 238 .45 2743 .46 1368 .59 292 .04 12 783 .14 1639 .51 

Table 7 

c-MSTRA: Sensitivity analysis on α (UNCOR, L = 10 3 , R = αLn ). 

Graph α = 0 . 2 α = 0 . 4 α = 0 . 6 

z � CPU z � CPU z � CPU 

P 100 , 260 39 628 .31 1 .47 20 140 .74 2 .26 12 517 .86 0 .20 

P 200 , 560 76 023 .37 22 .21 37 678 .31 26 .91 23 363 .35 1 .96 

P 400 , 1120 153 959 .10 183 .90 76 099 .86 180 .88 46 975 .47 23 .13 

P 600 , 1680 229 814 .34 740 .04 113 490 .15 756 .33 69 640 .77 52 .04 

P 800 , 2240 309 794 .64 2784 .88 154 109 .80 1922 .89 94 517 .33 140 .81 

K 40 , 780 3266 .57 0 .81 1136 .40 0 .40 646 .43 0 .07 

K 80 , 3160 3727 .89 13 .58 1283 .95 6 .31 711 .02 2 .22 

K 120 , 7140 4169 .93 61 .84 1339 .21 29 .56 722 .35 14 .05 

K 160 , 12 720 4522 .27 199 .19 1373 .43 101 .75 735 .80 255 .68 

K 20 0 , 19 90 0 4677 .59 505 .21 1368 .59 309 .51 747 .61 584 .91 
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complete graphs this makes the objective value increase more

rapidly with n (see Fig. 6 ). 

• CPU time to solve c-MSTRA increases rapidly with the prob-

lem size. Usually the time to solve d-MSTRA to obtain an initial

feasible solution of c-MSTRA is negligible, but in STRONG case

solving KCMST becomes hard, as observed in [6] , which makes

both d- and c-MSTRAs even harder to solve. 

Table 6 investigates the sensitivity of the range L of random in-

tegers on the optimal value z � and CPU time in UNCOR type in-

stances with α fixed at 0.4. Objective value increases commensu-

rately with L , and the increase of CPU time is mostly attributed to

the increase of the search space of z � . 

Next, Table 7 gives the result of sensitivity analysis on the ca-

pacity parameter α, with UNCOR type and L = 10 3 fixed. Here the

objective value naturally decreases with increasing α. The case of

α = 0 . 2 appears to take longer CPU time than the cases of α ≥ 0 . 4 .

6. Conclusion 

In this article, we formulated the minimum spanning tree prob-

lem with resource allocation (d- and c-MSTRAs), and gave algo-

rithms to solve these problems to optimality. We proved these to

be N P -hard. 

We showed that d-MSTRA can be reformulated as a KCMST,

which can be solved by the branch-and-bound algorithm we pre-

sented previously [6] . Here, we gave a peg test to reduce the prob-

lem size of d-MSTRA, often significantly. Using this solution as an

initial feasible solution to c-MSTRA, we also gave a solution algo-

rithm for c-MSTRA. This is based on the concept of f -fractional

solution. We proved that an optimal solution of c-MSTRA can be

found within this class of solutions. Then, the problem was de-

composed into a series of subproblems, and we gave an algo-

rithm to examine these subproblems by solving KCMSTs for better

f -fractional solutions. In actual computation, many subproblems

were eliminated without solving KCMST at all. 

We implemented these algorithms in ANSI C language and con-

ducted numerical tests to evaluate the performance of these al-
orithms on various types of instances. Our algorithm solved in-

tances of considerable size defined on planar as well as on com-

lete graphs exactly. However, to solve larger instances with strong

orrelation between resource and cost data, more efficient algo-

ithm is required to solve KCMST, since this plays a key role in the

lgorithm of Section 4 . 

ppendix. Knapsack constrained minimum spanning tree 

Let G = (V, E) be a connected undirected graph with each edge

 ∈ E associated with two numbers, cost c e and weight w e , and

iven W > 0 we consider the following knapsack constrained mini-

um spanning tree problem . 

CMST : 

inimize z(T ) := 

∑ 

e ∈ T 
c e (A.1)

ubject to 

∑ 

e ∈ T 
w e ≤ W , (A.2)

T ∈ T . (A.3)

The maximization version of this problem, as discussed in [6] ,

s equivalent to this problem, since for an arbitrary real M and

or any spanning tree T of G we have 
∑ 

e ∈ T (M − c e ) = (n − 1) M −
 

e ∈ T c e . In this Appendix, [6] is briefly outlined for readers’ conve-

ience. 

.1. Lagrangian relaxation 

For a fixed λ ≥ 0 , the Lagrangian relaxation problem 

R (λ) : 

inimize 
∑ 

e ∈ T 
(c e + λw e ) − λW 

ubject to T ∈ T 

s simply the minimum spanning tree (MST) problem, which is eas-

ly solved [1,2] . Let z (λ) denote the optimal objective value to this
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roblem. In addition, z � denotes the optimal objective value of

CMST, and T λ is an optimal solution of LR (λ) . Then, the follow-

ng proposition holds. 

roposition A.1 ( [14,13] ) . 

(i) For an arbitrary λ ≥ 0 , z (λ) gives a lower bound to KCMST, i.e.,

z (λ) ≤ z � . 

ii) z (λ) is a piece-wise linear and concave function of λ on [0 , ∞ ) .

ii) If z (λ) is differentiable at λ , 

z ′ (λ) = 

∑ 

e ∈ T λ
w e − W . 

Thus, z (λ) is unimodal at λ ≥ 0 . Then, by the standard bisection

ethod the Lagrangian dual 

LR : 

aximize z (λ) , subject to λ ≥ 0 

s solved, and we obtain an optimal λ† and the corresponding ‘best’

ower bound z Lag := z (λ† ) to KCMST. 

At the same time, each time we compute z (λ) at λ > λ† , we

ave a feasible T λ and thus an upper bound z(T λ) . The minimum of

hese obtained in the bisection process gives the Lagrangian upper

ound z̄ Lag , and correspondingly the Lagrangian solution T Lag . 

.2. Local search 

The Lagrangian solution obtained above may further be im-

roved by heuristic algorithms, which is now standard in combina-

orial optimization. Here we mention the 2-opt local search method,

hich starts with T Lag as an initial solution and repeats to improve

he solution as far as possible. 

For an arbitrary feasible spanning tree T ∈ T , its neighborhood

s defined as follows. For any non-tree edge f ∈ E \ T , T ∪ { f } in-

ludes a unique elementary cycle. Let Cycle (T , f ) be the set of

dges of this cycle. Then, replacing f with an arbitrary edge e ∈
ycle (T , f ) \ { f } gives another spanning tree. This is denoted as

 + f − e , and the neighborhood of T is defined as the set of fea-

ible spanning trees obtained from T this way. 

Let T LS be the output of the standard 2-opt local search algo-

ithm with respect to the above defined neighborhood. This is re-

erred to as the local search solution , and the corresponding local

earch upper bound is denoted as z̄ LS := z(T LS ) . 

.3. SOLVE_KCMST: A branch-and-bound algorithm 

We start with the local search solution T := T LS , and let this be

ritten explicitly as T = { e 1 , e 2 , . . . , e n −1 } . From this we generate a

eries of subproblems in the following way. The i th subproblem is

o find an optimal solution that includes { e 1 , . . . , e i −1 } , but does not

nclude e i (i = 1 , . . . , n − 1) . Clearly the KCMST is solved if we have

olved all these subproblems, and to accomplish this we repeat the

ame thing recursively with respect to each generated subproblem.

We consider a more general situation where we have a pair of

isjoint edge sets I and X . A spanning tree T is said to be (I, X ) -

dmissible if it includes all the edges of I, but does not include any

f X , i.e., I ⊆ T , T ∩ X = 08 . These are referred to as included and
xcluded edges, respectively. Then, the subproblem P (I, X ) is to find

n optimal solution that is feasible and (I, X ) -admissible. 

We note that the upper and lower bounds introduced previ-

usly in Appendices A.1 and A.2 can be easily modified to account

or (I, X ) -admissibility. Let these be denoted as z (I, X ) and z̄ (I, X )

espectively, and T LS (I, X ) is the 2-opt solution corresponding to

¯ (I, X ) . In addition, T 	 and z 	 represent the incumbent solution and

he corresponding objective value, respectively. Initially these are

 

	 := T LS and z 	 := z̄ LS . 

We construct a recursive routine Solve_ P (I, X ) to solve subprob-

em P (I, X ) as follows. The input to this routine is the pair (I, X )

f disjoint edge sets, and Solve_ P (I, X ) goes through the following

teps. 

1) If P (I, X ) is infeasible or z (I, X ) ≥ z 	 , we terminate subproblem

P (I, X ) . 

2) If P (I, X ) is solved to optimality, we update , if necessary, the

incumbent T 	 and z 	 , and terminate the subproblem. 

3) Otherwise, we find an (I, X ) -admissible T LS (I, X ) by the heuris-

tic method of A .1 –A .2 . If necessary, we update the incumbent. 

4) We make use of T LS (I, X ) to divide the problem into a set of

mutually disjoint sub-subproblems, and apply Solve_ P (I, X ) re-

cursively to these sub-subproblems. 

In this algorithm, if T LS is written as I ∪ { e k +1 , . . . , e n −1 }
ith k := | I| , the sub-subproblems are generated in (4) as

 (I i , X i ) , where I i := I ∪ { e k +1 , . . . , e i −1 } and X := X ∪ { e i } for i = k +
 , . . . , n − 1 . Then, by calling Solve_ P (08 , 08) , KCMST is solved. 
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