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We formulate the minimum spanning tree problem with resource allocation (MSTRA) in two ways, as dis-
crete and continuous optimization problems (d-MSTRA/c-MSTRA), prove these to be A'P-hard, and present
algorithms to solve these problems to optimality. We reformulate d-MSTRA as the knapsack constrained
minimum spanning tree problem, and solve this problem using a previously published branch-and-bound
algorithm. By applying a ‘peg test’, the size of d-MSTRA is (significantly) reduced. To solve c-MSTRA, we
introduce the concept of f-fractional solution, and prove that an optimal solution can be found within
this class of solutions. Based on this fact, as well as conditions for ‘pruning’ subproblems, we develop an
enumerative algorithm to solve c-MSTRA to optimality. We implement these algorithms in ANSI C pro-
gramming language and, through extensive numerical tests, evaluate the performance of the developed
codes on various types of instances.

© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Numerous applications have been published on the minimum
spanning tree problem (MST) [1,2] on an undirected graph [3],
where each edge is associated with a non-negative distance. Here,
‘distance’ may be cost, time, toll or penalty of each edge in spe-
cific applications. In this article we are concerned with a variation
of this problem, where each edge may have different ‘modes’ as-
sociated with different pair of distance and ‘cost’. Or, we may have
edges which can be ‘strengthened’ by increasing the amount of re-
sources added to these edges. For example, in a city transportation
network, we may take a bus or a train to go from one train sta-
tion to the other, each with respective fare and traveling time. Or,
while driving a car we may put more fuel to run faster. We for-
mulate such a combination of the MST and the resource allocation
problem (RA) [4] as discrete/continuous combinatorial optimization
problems, prove these to be NP-hard, develop both of approximate
and exact algorithms to solve these problems, and conduct a se-
ries of numerical experiments to evaluate the performance of the
developed algorithms.

To describe the problem, let G= (V,E) be a connected undi-
rected graph, where V is a finite set of vertices and E CV x V is
the set of edges. By n and m we denote the numbers of nodes and
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edges, i.e.,, n = |V| and m = |E|. Associated with each edge e € E is
a cost function ce(-), which relates r,, the amount of resource al-
located to e, to the cost of this edge. Given a fixed amount R of
total resources, our problem is to find a spanning tree of G and a
resource allocation on that tree, such that the total cost incurred is
minimized over all possible solutions. We formulate this as a dis-
crete, as well as a continuous, optimization problem.

In discrete optimization framework, edges can be either one of
‘normal’ or ‘priority’ modes, and the resource requirement and cost
of each edge take different values depending on the mode of that
edge. If edge e is in normal mode, the amount of resource required
is r9, with the corresponding cost ¢, while in priority mode these
are r! and ¢/, respectively. These are related through a binary func-
tion c(-) as

A =c(®), c=c@h) (1

and, we assume

cezcn re=r, Veek (2)

That is, in priority mode cost is smaller than in normal mode with
an expense of increased resource allocation at that edge.

Let 7 denote the set of all the spanning trees in G, and by T € T
we mean a spanning tree as well as the set of edges constitut-
ing T. Resource allocation over T is represented by a binary vec-
tor 1 = (re)ecr With 1o € {r?,rl}, Ve € T. Then the problem is for-
mulated as the following ‘discrete’ minimum spanning tree problem
with resource allocation

2214-7160/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Graph G = (V. E) for the proof of AP-hardness of c-MSTRA.

d-MSTRA:
minimize z(T, 1) := Y ce(re) 3)
eeT
subject to ) "re <R, (4)
ecT
re e {r0,rl}, VeeT, (5)
TeT. (6)

Alternatively, the problem may be formulated as a continuous
optimization problem. Here, the cost c, of edge e € E is a non-
increasing function of r, defined on the continuous interval [r?, r}]
as ce = ce(re). Specifically, we assume this to be linear

Ce(Te) :=Se — OeTe, (7)

and put ¢ :=c.(r?) and ¢! :=c.(r}) for simplicity. From (2), we
have 6, > 0. Thus, the ‘continuous’ minimum spanning tree problem
with resource allocation is as follows.

c-MSTRA:
minimizez(T, 1) = ZCe(fe) (8)
ecT
subject to ) "re <R, (9)
ecT
<r.<rl, VeeT, (10)
TeT. (11)

To prove N'P-hardness of these problems, we first note that the
standard 0-1 knapsack problem
KP:
n
maximize ) px;
j=1

n
subject to ijxj <R Vx;e{0,1},
=

is N'P-hard.
Theorem 1. d-MSTRA and c-MSTRA are both N'P -hard.

Proof ( AP-Hardness of d-MSTRA). Corresponding to the knap-
sack problem let G= (V,E) be with V ={vg,vq,...,vn} and E =
{(vo.v1), ..., (Wn_1,vn)}. For each edge e= (vj_y,v;) € E we set
12 =0,c = pj, and r} =w;,c! =0. Then, d-MSTRA is identical to
KP, and thus N'P-hard.

(NMP-hardness of c-MSTRA) Given the knapsack problem above,
let G=(V,E) be a graph with V ={vg,vq,..., Up,t} and E =
{e1.e].ex. €}, ... en €, f}. Here, e; and e;. both connect v;_; and
v;, and f = (v, t) (see Fig. 1 ). The resource and cost are ro(ej) =
r{(ej) =w; and ®(e;) =cl(e;) = M — p; for e;, ro(e;.) =rl (e;.) =0
and co(eg) =c! (¢}) =M for ¢/, and er =0, r} =R, c? = c} =0 for
f, where M is a constant satisfying M > max;_;.,p;. For a solu-
tion (T,r) of c-MSTRA on this graph, we introduce a 0-1 variable
x;j such that x; =1 if e; e T and x; =0 otherwise (j=1,2,...,n).

Note that x; = 0 implies e;. e T. Then, this particular c-MSTRA can
be rewritten as

n
minimize Y " (M — p;)x;
=

n
subject to ) "wjx; <R, Vx;e{0,1}.
j=1
This is equivalent to KP, and thus c-MSTRA is NP-hard. O

The problems formulated above may be regarded as a sort of
trade-off analysis of spanning trees with respect to two criteria, the
amount of resource consumed r(T) =), ;e and the cost c(T) =
Y et Ce Of the tree, provided that r. and c. are a priori given con-
stants. Hassin and Levin [5] gave a polynomial time approximation
scheme, and Yamada et al. [6] gave a branch-and-bound algorithm
for such a problem. Trade-off analysis in general is quite standard
in scheduling [7-9] and resource allocation [4] problems. If r(T) is
regarded as a second objective function, rather than a constraint,
we have a multi-objective minimum spanning tree problem [10,11].
An important feature that distinguishes d- and c-MSTRAs from the
previous researches is the fact that the coefficient c, is a function
of re, thus it can be enhanced by allocating larger amount of re-
sources. To our knowledge, trade-off analysis in this framework is
new in this paper.

In Section 2, we discuss d-MSTRA: how this can be reduced to
the knapsack constrained minimum spanning tree problem (KCMST
[6], see also [12]), and how computation can be speeded up by re-
ducing the size of the problem. Sections 3 and 4 explore c-MSTRA
and develop solution algorithm to solve this problem to optimality.
Finally, in Section 5 a series of numerical experiments are done,
both for d- and c-MSTRAs, to examine the behavior of the de-
veloped algorithms. Throughout theoretical development in these
sections, KCMST plays a key role. Thus, KCMST and its solution al-
gorithm are briefly reviewed in the Appendix for readers’ conve-
nience.

2. Solution algorithm for d-MSTRA with problem reduction

In this section we show that d-MSTRA can be reformulated as
a KCMST on a ‘doubly edged graph’. Furthermore, by applying the
‘peg test’ the problem is substantially reduced in size. The reduced
problem can be solved by SOLVE_KCMST routine [6] much faster
than solving the unreduced problem directly.

2.1. d-MSTRA as KCMST

We introduce G = (V,E) as the graph which is obtained from G
by doubling each edge e ¢ E into edges e and e! € E, correspond-
ing to normal and priority modes, respectively. Thus, these edges
are incident to the identical pair of nodes as e € E, and the re-
source allocation and cost at e (e!, resp.) are 0 and ¢? (r} and ¢},
resp.). We have V =V and |E| = 2m. These graphs are illustrated
in Fig. 2 for a planar example. Here we employ the following sim-
plified notation for edges and trees in graph G. Superscripts in the
edges of E are usually omitted, unless otherwise needed. Therefore,
by e € E we mean either €9 or e!, and c, may refer to either c? or
cl. T denotes the set of all the spanning trees in G. Thus, d-MSTRA
can be rewritten as the following

KCMST:
minimize z(T) := ) " ce (12)
ecT
subject to Zre <R, (13)
ecT
TeT. (14)
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(a)G = (V, E).

Fig. 2. Graphs G and its duplicate G.

2.2. Peg test for d-MSTRA

Making use of SOLVE_KCMST [6] to solve KCMST, we can solve
d-MSTRA, at least to some extent. However, by reducing the prob-
lem size through some preprocessing procedures, we may expect
to solve larger instances more quickly. We show here a ‘peg test’
[13] for this purpose.

We employ the following notations for simplicity’s sake: P is
equivalently used to denote KCMST, and overbars in V, E, etc. are
abbreviated, although we are concerned with G = (V,E) through-
out this subsection. In the process of SOLVE_KCMST we obtain a
(Lagrangian) lower bound z, a (local search) upper bound Zz, and
the optimal Lagrangian multiplier AT (see Appendix and [6]). Let

gap:=z—2z (15)

For an arbitrary edge f € E, by P(f = 1) we denote the subproblem
of P with a constraint f € T added, i.e.,

P(f=1):

minimize Z Ce
ecT

subject to Zre <R,

ecT

feT, TeT.

Furthermore, z(f = 1) denotes a lower bound to this subprob-
lem, and P(f =0) and z(f = 0) are defined analogously with re-
spect to an additional constraint f ¢ T. Then, the following peg test
theorem is obvious.

Proposition 1. Let T* denote an optimal solution to P. Then,

(i) z(f=1) > Z implies f ¢ T*, and
(i) z(f=0) >z implies f e T*.

In case of (i) or (ii), respectively, f is said to be fixed-out or
fixed-in. Fixed-out edges can never be included in any optimal so-
lution, while those fixed-in must be included in any optimal solu-
tion of P. Then, eliminating these fixed edges we obtain a problem
of reduced size.

To obtain a lower bound z(f =1) for f €E, we make use of
AT obtained previously, and introduce the relaxation of P(f = 1) as
follows.

LP(AT; f=1):
minimize Z Co + AT(Z fe —R)
eeT eeT

subject to f € T, TeT.

Similarly, LP(AT; f = 0) is defined, and we obtain a lower bound
z(f = 0). These are minimum spanning tree problems (with an
additional constraint fe T or f ¢ T), and can be solved easily as

LP(A). However, to compute z(f =1) and z(f = 0) quickly for all
f € E, we propose the following approach.

Let TT be the optimal solution to the Lagrangian relaxation
LP(AT) (see Appendix). Then, we have z =Y, ;+ ¢l — ATR, where for
e € E we define

b= co+ ATre. (16)

Optimal solutions to LP(AT; f =1) and LP(AT; f =0) can be ob-
tained by modifying TT as follows. For an arbitrary tree edge f
in TT, by eliminating f from T' the set of nodes are partitioned
into two disjoint subsets, say V; and V, (V =V, UV, Vi NV, =08),
which are connected to each of the incident nodes of f through TT,
respectively. By Cut(TT, f), we denote the set of edges ranging over
Vi and V,. If we replace f with an edge e e Cut(TT, f) \ {f}, we

obtain another tree TT — f + e with cost z(TT — f+e) =z + ¢} — c}.

Then, by cut optimality property [3] of TT — f +e, LP(AT; f=0) is
solved by finding an edge e, and replacing it with f, such that CZ
is minimized over Cut(TT, f) \ {f}. Thus, with the minimum of this
margin defined as

A(TT, f) = min{% leccut(h. f).e # f) - cl. (17)

we obtain the following optimal objective value to LP(AT; f = 0)
z(f=0)=z+ A(TT, f). (18)
In case of f ¢ TT, adding f to TT produces an elementary cy-
cle Cycle(TT, f) with Cycle(TT, f)\ {f} c TT. Then, replacing f ¢ TT
with an edge e e Cycle(TT, f) \ {f}, we obtain another tree with
cost z(TT + f—e) =z + C} - CZ, and due to cycle optimality property

[3] of TT + f —e, LP(AT; f = 1) is solved by finding an edge e such
that CZ is maximized over Cycle(TT, f) \ {f}. We define

(T, f) == c} - max{(j;‘ | e € Cycle(TT, f), e # f}, (19)
and obtain the following optimal value to LP(AT; f=1)
z2(f=1)=z+06(T" f). (20)

To sum up, we have the following peg test theorem for problem
P.

Theorem 2. Let T* be an optimal solution of P. Then,

(i) feTVand A(TT, f) > Z—z implies f € T* ( f is fixed-in), and
(i) f¢TT and O(TT, f) > 2 — z implies f ¢ T* ( f is fixed-out).

3. A Characterization of Optimality for c-MSTRA

We now turn to c-MSTRA. For a spanning tree T of G, r=
(re)ecr 1s said to be a resource allocation vector over T. A pair of
a spanning tree T and such a vector r over T is a feasible solution
of c-MSTRA if constraints (9)-(10) are all satisfied. A feasible solu-
tion (T*,r*) is optimal if z(T*,r*) < z(T, r) for any feasible solution
(T, r) of c-MSTRA. We introduce the following.
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Definition 1. For edge f c¢E, a feasible (T,r) is said to be an f-
fractional solution if f €T and all edges of T other than f are ex-
tremal, i.e., re € {19, 11}, Ve e T (e # f).

In f-fractional solution only ry can take intermediate value in
[r2, r}], with all other tree edges either fixed-low (i.e., re = 19), or

fixed-high (re = r}). To avoid excessive complication due to ties, we
assume that 6,'s are distinct each other for all e € E, i.e.,

6. + 0, for alle + e'inE.

Then, we have the following characterization of optimality of c-
MSTRA.

Theorem 3. There exists an optimal solution (T*,r*) of c-MSTRA
that is f-fractional for some f e E . Furthermore, tree edges other
than f are either fixed-low or fixed-high depending on €. <0y or
0e > Oy , respectively, i.e.,

(1L i 6e > 6y,
Tg, if-9e<0f.

s =
Proof. Let (T*,r*) be an optimal solution of c-MSTRA. We note
that for an arbitrary pair of edges e and e’ in T* with 6, > 6./,
either one of these is extremal, ie., 1z =1} or 3, =19, since oth-
erwise by modifying these to r; — r; +€ and 7, — 1}, — € for suf-
ficiently small € > 0, the objective value would be improved by
€(6e —0,). Thus, if there exist more than one fractional edges,
say e and ¢ in T*, we must have 6, = 6,. In this case, let § :=
min{r —r¢, 1%, — 13}, and modify the solution to r; — r; + 8 and
[ W 8. By doing this, the number of fractional edges is de-
creased at least by one, and repeating this we will obtain an opti-
mal solution with at most one fractional edge. If no fractional edge
remains, we pick up f := argmaX,.7+{0¢|eisfixed-low} as a degener-
ate fractional edge. Thus, we have an optimal f-fractional solution
for some f e T*.

Finally, if 0 > 6, and r; <r}, we obtain an improved solu-
tion by changing these to r; — r; +€ and r} — r} — €. For opti-
mal (T*,r*) this is impossible, and thus the former part of (21) is
proved. The latter is proved analogously. O

(21)

4. An exact algorithm for c-MSTRA
4.1. Initial feasible solution and an upper bound

We note that c-MSTRA is feasible if and only if d-MSTRA is
feasible. Indeed, any feasible solution of d-MSTRA is itself fea-
sible to c-MSTRA. On the other hand, if (T,r) is feasible to c-
MSTRA, we obtain a feasible solution of d-MSTRA by rounding off
all the fractional elements to the corresponding lower bounds, i.e.,
ree (19,1]) = e < 1.

Then, our strategy to solve c-MSTRA starts with the optimal so-
lution (TP, rP) of d-MSTRA as obtained in Section 2. This solution
is feasible to c-MSTRA, but in d-MSTRA the amount of resources
actually consumed in optimality is usually smaller than R. Let the
residual amount of resource be

D
Ries :=R— ) T. (22)
eeTP

We note the following.

Proposition 2. In (TP, rP) , if e e TP is fixed-low, ie., 12 =19, we
have

0 < Rpes <1} =10, (23)

Proof. From (4), 0 < Rres is obvious. If Rees >} — 19, we can in-
crease the value of r, from r? =10 to r} and obtain an improved

solution to d-MSTRA. This violates the optimality of (T2, rP), and
thus Proposition 2 is proved. O

This means that the residual Res can be put in full to any edge
e of TP if e is fixed-low, without violating the resource limit of e.
This gives an improved initial feasible solution to c-MSTRA. Par-
ticularly, we pick up f := argmax,_ro{6|eisfixed-low}, and denote
the solution of c-MSTRA obtained this way as (T€, r¢) with the cor-
responding upper bound z€ := z(T€, r©).

4.2. Decomposition

We decompose c-MSTRA into m subproblems and examine
these, one by one, for better solutions. For each f cE, let F; de-
note the set of all the f-fractional solutions of c-MSTRA, and we
introduce subproblem
Pf:

minimizez(T,r) = Zce(re)

ecT

subject to (T, r) € Fy,

Zre <R

eeT

By Theorem 3, an optimal solution of c-MSTRA can be obtained
as a solution of one of these m subproblems, and to solve P; we
introduce the following auxiliary graph Gy.

Definition 2. Graph Gy is obtained from G by contraction of edge
f, i.e., by eliminating f and identifying two incident nodes of f.
Furthermore, edge e # f is associated with the following values,

(1l cd), if 6. > 6y,
(12.¢2), if O < 6.

We note that, due to Theorem 3, if (T,r) is an optimal f-
fractional solution of Py with resource r; allocated to edge f,
the non-fractional part T \ {f} needs to be an optimal solution of
KCMST on graph Gy with total amount of resource R —ry. We write
this problem K(Gy, R —ry), and zg (G, R — 1) denotes the optimal
objective value of this problem. Then, since the cost for f is c;(ry)
and the optimal objective value from Gy is zy(Gy, R —ry), the ob-
jective value for Py is
z}(rf) = cp(ry) + 2 (Gy, R—1y). (25)

We also note that c;(ry) is a linear, non-increasing function,
and zx(Gy, R —ry) is a non-decreasing step function of r; € [r2, r}]
as depicted in Fig. 3, and thus Py is equivalent to finding the opti-
mal allocation of resources between f and Gy, i.e., solving the fol-
lowing.

/ .
Pf.
minimize z}(rf)

(Te. Ce) = { (24)

subject to r? <rp< r}.
4.3. Exact algorithm

We start with an incumbent solution (T?,r%) of c-MSTRA and
the corresponding upper bound Zz° :=z(T% %) of c-MSTRA. This
is usually the initial feasible solution obtained earlier, and thus
(T%, 1%) := (T, r¢) and Z* := Z.

Now, we investigate Py one by one for all f < E. First of all, if
for a lower bound z, (G, R - r?) of K(G,R— r?)

cf(rp) +zx (G, R—13) = Z° (26)
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holds, we can terminate Py, since in this case z}(rf) > 7% for all
Iy e [r9, r}], and no better solutions than the incumbent can be ex-
pected in this subproblem.

If (26) is not met, we consider a general case of resource allo-
cation (rg, R—ry) with ry e [r?, r}] allocated to the fractional edge
f and the remaining R —r; to graph Gy. We start with r; = 19, and
repeat the following process until ry > r}.

We solve K(Gy,R—rp) and obtain an optimal solution
Tz (Gg,R—ry) and the optimal zg (Gy, R —ry). Correspondingly, we
obtain an optimal resource allocation vector rg(Gs,R—r1f). Note
that the actual amount of resources consumed in Gy is the sum
of re over T¢ (G, R —r1y), so the residual

fri=R— Y T (27)
eeTy (Gg.R—ry)

can be put on the fractional f.

We see that rp<T7; Tg(Gp,R— r’f) =T¢(Gs,R—Tf) and
Zx (Gy, R — r’f) =75 (Gy, R —7y) for all r} € [ry, Fy], since throughout
this interval Tg(Gy, R—7f) remains optimal. Furthermore, the
pair of f and Tg(Gy R—7f), together with resource allocation
rf.7sl i= (Fp, 1i(Gf,R—Ty)), gives an f-fractional solution of
c-MSTRA. This is hereafter denoted as (T, r[f, rr]).

At this stage if

cf(r})+z,*((Gf,R—Ff) > 7', (28)

we can terminate Py, as in (26). On the other hand, if
z}(ff) <Z, (29)

(T, 1[f, Fr]) is better than the incumbent solution. Thus, we
update the incumbent and the corresponding upper bound as
(T%, 1%) < (T, 1[f.7f]) and Z* < z:(Fp).

Finally, we increase ry beyond 7; to move to the next interval
of the step function zy (Gs, R —ry) by putting ry < ¢ + € for suf-
ficiently small € > 0, and repeat the above process all over again.
However, in case of z}(ff) > 7z, ry can be increased more, because
of the following. Let

rti=Fr+ (25 (F) - 2)/0y. (30)

Then, we have z;(r;) =2 for all rje (i 1], since zp(r}) =
cf(r}) +23 (G R~ r}) and z;(Gp. R - r’f) is a non-decreasing func-
tion of r’f (see Fig. 4). Thus, ry can be increased to max{r}’, Tr+eh

To sum up, our algorithm is as follows.
Algorithm SOLVE_MSTRA

1. Solve d-MSTRA and obtain an optimal (T?, rP) to this
discrete optimization problem.
2. Make use of the residual resource to improve (T°, r”) and
obtain a feasible solution (T¢, %) to c-MSTRA. This and
Z% .= z(TC, r©) serve as an initial incumbent.
3. Foreachf € E do:
3-1. If ¢r (1) + 24 (G, R—17) > 2, go to next f (Terminate
Pr).
3-2. Let 1y := r and do:
3-2-1. If iy > 1 go to next f (Py finished).
3-2-2. Solve K(Gf, R — rf) and obtain an optimal solution
Tz (Gy, R—ry) with the optimal value zg (Gg, R—1y)
and 7y defined by (27).
3-2-3. If cf(rfl) + z§(Gf,R —
(Terminate Py).
3-2-4. If z} (i) < Z", update the incumbent as (T*, %) «
(T, rlf, 7] and Z° < 27 (7y).
3-2-5. Increment 1y to 1 < max{rf+, Ty + €} for
sufficiently small € > 0, and go to 3-2-1.
4. Outputincumbents (T, r%) and Z* as optimal to c-MSTRA
and stop.

fr) > Z% go to next f

5. Numerical experiments

We have implemented the algorithms to solve both of d- and
c-MSTRAs in ANSI C language to optimality, using a DELL Precision
T7500 (CPU: Intel Xeon X5680(3.33 GHz) x 2, RAM: 96 GB) with
RedHat Enterprise Linux v5.5 and Intel C++ compiler.

5.1. Design of experiments

We prepare planar and complete graphs to represent sparsely
and densely edged graphs, respectively. All computations were car-
ried out on instances with edge data generated randomly on these
graphs of various sizes. By P, m we denote a planar graph with n
nodes and m edges. For example, graph G of Fig. 2 is actually a pla-
nar Py 11. Ky nn—1),2 (usually denoted as Ky) is the complete graph
with n nodes and n(n —1)/2 edges.

Resource requirements at each edge are distributed uniformly
random over the integer interval [1, L], where L is an experimental
parameter which takes either 102, 103 or 10%. More precisely, for
each e € E we pick up two integers & and &, at random in [1, L],
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(a) UNCOR. (b) WEAK. (c) STRONG.
Fig. 5. Correlation types of instances.
Table 1
d-MSTRA experiments: UNCOR (L = 10%, o = 0.4).

Graph z z %fix0  %fix1 #unfix z* CPU

Pi00.260 201385 201768 764 150 444 201565  0.02

Pyoos60 37676.5 377111 782 145 81.6 376888  0.48

Paoo,1120 76098.8 76122.8 79.6 15.5 110.1 76105.6 0.93

Ps00,1680 1134895 1135052 804 16.2 113.0 113495.3 3.22

Pyoo2240 154108.5 1541241 805 163 1446 154113.8  7.86

Pi000,2800 190701.2 190715.1 80.7 16.4 162.4 190704.1 12.29

Ka0,780 1134.8 11453 96.7 1.7 25.0 1140.6 0.02

Kso3160 1282.8 1286.8  98.4 1.0 35.8 12848 017

Ki20,7140 1339.0 1341.7 99.0 0.7 48.0 1339.9 0.46

Ki60.12 720 1373.4 1375.1 99.4 0.5 53.8 1373.9 1.12

K200,19 900 1368.9 1369.7 994 0.5 414 13690  4.07

Table 2
d-MSTRA experiments: Correlation compared (L = 10°, o = 0.4).
Graph UNCOR WEAK STRONG
Gap %unfix ~ CPU Gap %unfix CPU  Gap %unfix ~ CPU

Pi00260 383 854 002 266 1133 008 2344 6469 1.93
Paoo,560 34.6 7.29 0.48 12.8 511 0.25 366.6 73.71 61.04
Ps00.1120 240 492 093 185 6.71 1.30 961.1 87.54 109.47
Psoo,1650 157 336 322 125 523 525 15054  99.99 173438
Pgo0,2240 156 323 7.86 10.7 4.26 4.23 2206.8 94.83 1675.32
Pi1000,2800 13.9 2.90 12.29 10.0 3.99 6.50 2763.9 100.00 -
Ka0.780 10.5 1.60 0.02 5.7 0.72 0.01 1.1 0.38 0.01
Kso:3160 40 057 017 29 027 008 0.5 0.18 2.53
Ki207140 2.7 0.34 0.46 2.9 0.14 0.20 0.8 0.25 26.99
Kigo.12720 17 021 1.12 15 009 022 0.8 0.27 191.80
K200,19 900 08 010 407 24 013 225 0.8 026  1703.53

-No instances solved within 1800 s.

and put 19 := min{&, £/} and r! := max{&., £,}. Two more integers
c® and ¢! are related to r0 and ! as follows representing uncorre-
lated, weakly correlated and strongly correlated cases, respectively,
ie.,

(a) UNCOR: For each e e E we pick up ¢ and ¢} at random from
[1,L].

(b) WEAK: We put ck = 0.87% + [n¥/5] (k=0,1).

(c) STRONG: We put ck = 0.8rk +0.1L + [n¥/100] (k =0, 1).

Here n¥ (k =0, 1) are distributed uniformly random over [1, L], in-
dependent of each other, as well as from other random variables.
In all cases, ¢ and c! are rounded to the nearest integers, and if
necessary these are swapped such that ¢ > ¢} is always satisfied.
Fig. 5 plots (1l —19,¢% — cl) for Pygg260-

We note that if tree edges are picked up randomly, expected re-
source requirement for a spanning tree is E{} ,.rre} =L(n—1)/2.
Thus, we set the total amount of resource at R = Lnw, where « is

another parameter that takes either 0.2, 0.4 or 0.6 in our experi-
ments.

5.2. Result of experiments: d-MSTRA

Tables 1 and 2 give the results of experiment for d-MSTRA.
Table 1 is the case of UNCOR with L=10% and o =04, and
Table 2 compares the effect of correlation. Here each row repre-
sents the average over 10 randomly generated instances, and the
columns stand for the following.

Lower bound by Lagrangian relaxation.

Upper bound improved through local search.
Percentage of edges fixed out (in, resp.) by peg
test.

#unfix Number (Percentage, resp.) of edges left unfixed.
(%unfix)

z* Optimal objective value.

CPU CPU time in seconds to obtain optimal solution.
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(b) COMPLETE.

Fig. 6. Objective value z* of c-MSTRA as a function of n.

We were able to solve all the instances of Table 1 within a few

CPU seconds. From this table we observe the following.

For the cases tested, we usually have approximate solutions
with the objective value close to the lower bounds. For com-
plete graphs optimal solution is often obtained by the heuristic
methods, without calling SOLVE_KCMST, especially for large n.

Findings from Table 2 include:

In UNCOR and WEAK cases, gap (=z—z) decreases with the
size of instances. As a consequence, the peg test works effec-
tively to fix many edges either in or out. The ratio (%unfix) of
the unfixed edges to the total number of (normal and prior-
ity) edges (2 m) is less than 12%, while this is less than 2% in
complete graphs. In these cases, the reduced problem is solved
within a few seconds.

However, in planar graphs with STRONG correlation, gap in-
creases rapidly with the problem size, and the peg test is less
effective in such a case.

5.3. Result of experiments: c-MSTRA

Tables 3-5 give the result of experiments for each correlation

type with L = 10> and « = 0.4, each row again as average over 10
randomly generated instances. The columns stand for the follow-

ing.

z* Optimal objective value of c-MSTRA,

#Pf Number of subproblems (Py’s) not terminated
either by (26) or (28) at ry = r?,

%term Percentage of subproblems terminated
(100 - (m — #Ps)/m),

#K Total number of KCMSTs solved in solving
c-MSTRA,

CPU CPU time in seconds to obtain an optimal

solution of c-MSTRA, including the CPU time to
solve d-MSTRA.

From these tables we observe the following.

Irrespective to the size or the correlation type of instance, more
than 85% of subproblems are terminated by (26) without solv-
ing KCMST. This ratio is often more than 90% in planar graphs,
and more than 98% in complete graphs. In complete graphs,
the number of remaining Py’s is much smaller than in planar

Table 3

c-MSTRA experiments: UNCOR (L = 10°, & = 0.4, R = aLn).
Graph z #Py %term  #K CPU
Pi00,260 20140.74 253 903 74.8 2.23
Py00,560 3767831 372 934 130.7 26.40
Paoo,1120 76099.86 46,5 95.8 188.7 180.53
Ps00,1680 113490.15 63.0 963 294.9 752.40
Ps00.2240 154109.80 733  96.7 366.6  1929.40
Kao.750 1136.40 155  98.0 29.7 0.39
Ks0.3160 128395 214 993 388 5.84
Ki20.7140 1339.21 211 99.7 33.8 27.89
Ki60,12720 137343 247 998 343 99.79
K200,19 900 136859 30.0 99.8 35.2 304.63

Table 4

c-MSTRA experiments: WEAK (L = 10°, & = 0.4).
Graph z* #Py %term  #K CPU
Pi00.260 2505443 278 893 79.8 1.73
Py00,560 45487.58 340 939 121.0 13.89
Pago.1120 9161293 444  96.0 182.8 134.22
Ps00,1680 137051.04 557 96.7 291.2 636.71
Ps00,2240 183928.86 64.0 97.1 308.6  1039.86
Ka0780 2628.55 45 994 7.0 0.12
Ks0.3160 3696.54 2.1 99.9 4.2 2.56
Ki207140 4688.30 23 999 3.8 14.81
Ki60,12 720 5320.90 1.8 999 33 49.83
K200.19 900 6033.00 14 999 3.7 133.22

Table 5

c-MSTRA experiments: STRONG (L = 10°, « = 0.4).
Graph z* #Py %term  #K CPU
Pi100.260 2825138 269 942 77.2 1.93
Py00,560 51495.78 323 966 114.3 61.04
Py00,1120 10368139 38.6 97.0 182.9 109.47
Ps00.1680 155091.17 49.7 972 298.7  1734.38
Ps00.2240 208458.69 61.7 99.8 3759  1675.32
Ka0.780 4659.00 1.7 999 3.1 0.11
Kso:3160 8821.20 1.2 999 1.8 2.53
K1207140 12991.80 1.2 999 1.9 26.99
Ki60,12 720 17128.10 1.1 99.9 13 191.80
K200,19 900 21278.00 1.6 999 23 1703.53

graphs, as well as the number of KCMSTs solved at each in-
stance. This is especially the case in WEAK and STRONG in-
stances.

« Both in planar and complete graphs, the objective value z* in-

creases commensurately with n. Correlation between r. and
ce has little effect on z* in planar case, while in the case of
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Table 6
c-MSTRA: Sensitivity analysis on L (UNCOR, « = 0.4).
Graph L=10? L=10° L=10*
z CPU z CPU z CPU
Pio0.260 2048.66 0.96 20140.74 2.23 201099.23 2.52
Py00,560 3839.79 6.49 37678.31 26.31 376127.38 28.44
Py00,1120 7752.10 41.28 76 099.86 183.86 759673.91 266.77
Ps00,1680 11560.11 17712 113490.15 767.69 1132909.67 1153.13
Ps00,2240 15689.80 387.66  154109.80 1946.32  1538421.63  2989.04
Kao,750 130.97 0.19 1136.40 0.40 11 189.40 0.47
Kso.3160 164.90 3.74 1283.95 5.86 12482.59 8.64
K120, 7140 191.08 2294 1339.21 29.33 12842.73 5211
Ki60,12 720 215.09 85.49 1373.43 104.86 13011.32 181.27
K200,19 900 23845 274346 1368.59 292.04 12783.14 1639.51
Table 7
c-MSTRA: Sensitivity analysis on o (UNCOR, L = 10°, R = aLn).
Graph a=02 a=04 oa=06
z CPU z CPU z CPU
Pioo,260 39628.31 1.47 20140.74 2.26 12517.86 0.20
Py00,560 76 023.37 22.21 3767831 26.91 23363.35 1.96
Py00,1120 153959.10 183.90 76 099.86 180.88  46975.47 2313
Ps00,1680 229814.34 740.04  113490.15 75633  69640.77 52.04
Ps00.2240 30979464 2784.88  154109.80  1922.89 94517.33 140.81
Ka0.780 3266.57 0.81 1136.40 0.40 646.43 0.07
Kso,3160 3727.89 13.58 1283.95 6.31 711.02 2.22
K1207140 4169.93 61.84 1339.21 29.56 722.35 14.05
Ki60,12 720 4522.27 199.19 1373.43 101.75 735.80  255.68
K200,19 900 4677.59 505.21 1368.59 309.51 74761 58491

complete graphs this makes the objective value increase more
rapidly with n (see Fig. 6 ).

+ CPU time to solve c-MSTRA increases rapidly with the prob-
lem size. Usually the time to solve d-MSTRA to obtain an initial
feasible solution of c-MSTRA is negligible, but in STRONG case
solving KCMST becomes hard, as observed in [6], which makes
both d- and c-MSTRAs even harder to solve.

Table 6 investigates the sensitivity of the range L of random in-
tegers on the optimal value z* and CPU time in UNCOR type in-
stances with « fixed at 0.4. Objective value increases commensu-
rately with L, and the increase of CPU time is mostly attributed to
the increase of the search space of z*.

Next, Table 7 gives the result of sensitivity analysis on the ca-
pacity parameter o, with UNCOR type and L = 10> fixed. Here the
objective value naturally decreases with increasing «. The case of
o = 0.2 appears to take longer CPU time than the cases of o > 0.4.

6. Conclusion

In this article, we formulated the minimum spanning tree prob-
lem with resource allocation (d- and c-MSTRAs), and gave algo-
rithms to solve these problems to optimality. We proved these to
be N'P-hard.

We showed that d-MSTRA can be reformulated as a KCMST,
which can be solved by the branch-and-bound algorithm we pre-
sented previously [6]. Here, we gave a peg test to reduce the prob-
lem size of d-MSTRA, often significantly. Using this solution as an
initial feasible solution to c-MSTRA, we also gave a solution algo-
rithm for c-MSTRA. This is based on the concept of f-fractional
solution. We proved that an optimal solution of c-MSTRA can be
found within this class of solutions. Then, the problem was de-
composed into a series of subproblems, and we gave an algo-
rithm to examine these subproblems by solving KCMSTs for better
f-fractional solutions. In actual computation, many subproblems
were eliminated without solving KCMST at all.

We implemented these algorithms in ANSI C language and con-
ducted numerical tests to evaluate the performance of these al-

gorithms on various types of instances. Our algorithm solved in-
stances of considerable size defined on planar as well as on com-
plete graphs exactly. However, to solve larger instances with strong
correlation between resource and cost data, more efficient algo-
rithm is required to solve KCMST, since this plays a key role in the
algorithm of Section 4.

Appendix. Knapsack constrained minimum spanning tree

Let G = (V,E) be a connected undirected graph with each edge
e € E associated with two numbers, cost c, and weight we, and
given W > 0 we consider the following knapsack constrained mini-
mum spanning tree problem.

KCMST:
minimize z(T) := ) "ce (A1)
ecT
subject to ) " we < W, (A2)
eeT
TeT. (A3)

The maximization version of this problem, as discussed in [6],
is equivalent to this problem, since for an arbitrary real M and
for any spanning tree T of G we have Y ,.;(M —ce) = (n—1)M —
Y eer Ce- In this Appendix, [6] is briefly outlined for readers’ conve-
nience.

A.1. Lagrangian relaxation

For a fixed A > 0, the Lagrangian relaxation problem
LR(A):

minimize Z(ce + AW,) — AW

ecT

subject toT € T

is simply the minimum spanning tree (MST) problem, which is eas-
ily solved [1,2]. Let z(A) denote the optimal objective value to this
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problem. In addition, z* denotes the optimal objective value of
KCMST, and T, is an optimal solution of LR(A). Then, the follow-
ing proposition holds.

Proposition A1 ( [14,13] ).

(i) For an arbitrary L >0, z(A) gives a lower bound to KCMST, i.e.,
z(h) <z~
(ii) z(A) is a piece-wise linear and concave function of A on [0, co) .
(iii) If z(A) is differentiable at A ,

Z) =Y we-W.

ecTy

Thus, z(A) is unimodal at A > 0. Then, by the standard bisection
method the Lagrangian dual
DLR:

maximize z(A), subject to A >0

is solved, and we obtain an optimal AT and the corresponding ‘best’
lower bound z,, :=z(A") to KCMST.

At the same time, each time we compute z(1) at A > AT, we
have a feasible T) and thus an upper bound z(T; ). The minimum of
these obtained in the bisection process gives the Lagrangian upper
bound Z,, and correspondingly the Lagrangian solution T .

A.2. Local search

The Lagrangian solution obtained above may further be im-
proved by heuristic algorithms, which is now standard in combina-
torial optimization. Here we mention the 2-opt local search method,
which starts with Tj,¢ as an initial solution and repeats to improve
the solution as far as possible.

For an arbitrary feasible spanning tree T e T, its neighborhood
is defined as follows. For any non-tree edge fe E\T, TU{f} in-
cludes a unique elementary cycle. Let Cycle(T, f) be the set of
edges of this cycle. Then, replacing f with an arbitrary edge e
Cycle(T, f) \ {f} gives another spanning tree. This is denoted as
T + f —e, and the neighborhood of T is defined as the set of fea-
sible spanning trees obtained from T this way.

Let T;s be the output of the standard 2-opt local search algo-
rithm with respect to the above defined neighborhood. This is re-
ferred to as the local search solution, and the corresponding local
search upper bound is denoted as z;s := z(Ts).

A.3. SOLVE_KCMST: A branch-and-bound algorithm

We start with the local search solution T := Tjs, and let this be
written explicitly as T = {e!,e2, ..., e"1}. From this we generate a
series of subproblems in the following way. The ith subproblem is
to find an optimal solution that includes {e', ..., ei~1}, but does not
include ef(i=1,...,n—1). Clearly the KCMST is solved if we have
solved all these subproblems, and to accomplish this we repeat the
same thing recursively with respect to each generated subproblem.

We consider a more general situation where we have a pair of
disjoint edge sets I and X. A spanning tree T is said to be (I,X)-
admissible if it includes all the edges of I, but does not include any
of X, i.e, ICT, TNX = 08. These are referred to as included and

excluded edges, respectively. Then, the subproblem P(I, X) is to find
an optimal solution that is feasible and (I, X)-admissible.

We note that the upper and lower bounds introduced previ-
ously in Appendices A.1 and A.2 can be easily modified to account
for (I, X)-admissibility. Let these be denoted as z(I, X) and z(I, X)
respectively, and T;s(I,X) is the 2-opt solution corresponding to
Z(I,X). In addition, T% and z' represent the incumbent solution and
the corresponding objective value, respectively. Initially these are
T% :=Tis and z° := Zjs.

We construct a recursive routine Solve_P(I, X) to solve subprob-
lem P(I,X) as follows. The input to this routine is the pair (I, X)
of disjoint edge sets, and Solve_P(I, X) goes through the following
steps.

(1) If P(I,X) is infeasible or z(I,X) > z, we terminate subproblem
P X).

(2) If P(I,X) is solved to optimality, we update, if necessary, the
incumbent T% and z%, and terminate the subproblem.

(3) Otherwise, we find an (I, X)-admissible T;s(I, X) by the heuris-
tic method of A.1-A.2. If necessary, we update the incumbent.

(4) We make use of Tjs(I,X) to divide the problem into a set of
mutually disjoint sub-subproblems, and apply Solve_P(I, X) re-
cursively to these sub-subproblems.

In this algorithm, if Tjs is written as Ju{ek+!, ... en-1}
with k:=|I|, the sub-subproblems are generated in (4) as
P(I;, X;), where I; :=Tu {ekt1 . =1} and X := X U {e'} for i = k +
1,...,n—1. Then, by calling Solve_P(08, 08), KCMST is solved.
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