Kataoka, Seiji; Yamada, Takeo

Article

Algorithms for the minimum spanning tree problem with resource allocation

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

This Version is available at:
http://hdl.handle.net/10419/178266

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

http://creativecommons.org/licenses/by-nc-nd/4.0/
Algorithms for the minimum spanning tree problem with resource allocation

Seiji Kataokaa, Takeo Yamada

Department of Computer Science, National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan

\textbf{A R T I C L E I N F O}

Article history:
Received 22 September 2014
Revised 9 December 2015
Accepted 30 December 2015
Available online 13 January 2016

Keywords:
Minimum spanning tree problem
Resource allocation
Trade-off analysis
Branch-and-bound method

\textbf{A B S T R A C T}

We formulate the minimum spanning tree problem with resource allocation (MSTRA) in two ways, as discrete and continuous optimization problems (d-MSTRA/c-MSTRA), prove these to be NP-hard, and present algorithms to solve these problems to optimality. We reformulate d-MSTRA as the knapsack constrained minimum spanning tree problem, and solve this problem using a previously published branch-and-bound algorithm. By applying a 'peg test,' the size of d-MSTRA is (significantly) reduced. To solve c-MSTRA, we introduce the concept of f-fractional solution, and prove that an optimal solution can be found within this class of solutions. Based on this fact, as well as conditions for 'pruning' subproblems, we develop an enumerative algorithm to solve c-MSTRA to optimality. We implement these algorithms in ANSI C programming language and, through extensive numerical tests, evaluate the performance of the developed codes on various types of instances.

\textcopyright 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Numerous applications have been published on the minimum spanning tree problem (MST) [1,2] on an undirected graph [3], where each edge is associated with a non-negative distance. Here, 'distance' may be cost, time, toll or penalty of each edge in specific applications. In this article we are concerned with a variation of this problem, where each edge may have different 'modes' associated with different pair of distance and 'cost'. Or, we may have edges which can be 'strengthened' by increasing the amount of resources added to these edges. For example, in a city transportation network, we may take a bus or a train to go from one train station to the other, each with respective fare and traveling time. Or, while driving a car we may put more fuel to run faster. We formulate such a combination of the MST and the resource allocation problem (RA) [4] as discrete/continuous combinatorial optimization problems, prove these to be NP-hard, develop both of approximate and exact algorithms to solve these problems, and conduct a series of numerical experiments to evaluate the performance of the developed algorithms.

To describe the problem, let $G = (V, E)$ be a connected undirected graph, where V is a finite set of vertices and $E \subseteq V \times V$ is the set of edges. By n and m we denote the numbers of nodes and edges, i.e., $n = |V|$ and $m = |E|$. Associated with each edge $e \in E$ is a cost function $c_e(\cdot)$, which relates r_e, the amount of resource allocated to e, to the cost of this edge. Given a fixed amount R of total resources, our problem is to find a spanning tree of G and a resource allocation on that tree, such that the total cost incurred is minimized over all possible solutions. We formulate this as a discrete, as well as a continuous, optimization problem.

In discrete optimization framework, edges can be either one of 'normal' or 'priority' modes, and the resource requirement and cost of each edge take different values depending on the mode of that edge. If edge e is in normal mode, the amount of resource required is r_e^0, with the corresponding cost c_e^0, while in priority mode these are r_e^1 and c_e^1, respectively. These are related through a binary function $c(\cdot)$ as

$$c_e^2 = c_e(r_e^2), \quad c_e^1 = c_e(r_e^1)$$

and, we assume

$$c_e^2 \geq c_e^1, \quad r_e^2 \leq r_e^1, \quad \forall e \in E.$$ \hspace{1cm} (1)

That is, in priority mode cost is smaller than in normal mode with an expense of increased resource allocation at that edge.

Let T denote the set of all the spanning trees in G, and by $t \in T$ we mean a spanning tree as well as the set of edges constituting T. Resource allocation over T is represented by a binary vector $r = (r_e)_{e \in T}$ with $r_e \in \{0, 1\}$, $\forall e \in T$. Then the problem is formulated as the following 'discrete' minimum spanning tree problem with resource allocation.
The problems formulated above may be regarded as a sort of trade-off analysis of spanning trees with respect to two criteria, the amount of resource consumed \(r(T) = \sum_{e \in T} r_e \) and the cost \(c(T) = \sum_{e \in T} c_e \) of the tree, provided that \(r_e \) and \(c_e \) are a priori given constants. Hassin and Levin [5] gave a polynomial time approximation scheme, and Yamada et al. [6] gave a branch-and-bound algorithm for such a problem. Trade-off analysis in general is quite standard in scheduling [7–9] and resource allocation [4] problems. If \(r(T) \) is regarded as a second objective function, rather than a constraint, we have a multi-objective minimum spanning tree problem [10,11]. An important feature that distinguishes \(d- \) and \(c- \) MSTRAs from the previous researches is the fact that the coefficient \(c_e \) is a function of \(r_e \), thus it can be enhanced by allocating larger amount of resources. To our knowledge, trade-off analysis in this framework is new in this paper.

In Section 2, we discuss \(d- \) MSTRA: how this can be reduced to the knapsack constrained minimum spanning tree problem (KCMST) [6], see also [12], and how computation can be speeded up by reducing the size of the problem. Sections 3 and 4 explore \(c- \) MSTRA and develop solution algorithm to solve this problem to optimality. Finally, in Section 5 a series of numerical experiments are done, both for \(d- \) and \(c- \) MSTRAs, to examine the behavior of the developed algorithms. Throughout theoretical development in these sections, KCMST plays a key role. Thus, KCMST and its solution algorithm are briefly reviewed in the Appendix for readers' convenience.

2. Solution algorithm for d-MSTRA with problem reduction

In this section we show that d-MSTRA can be reformulated as a KCMST on a 'doubly edged graph'. Furthermore, by applying the 'peg test' the problem is substantially reduced in size. The reduced problem can be solved by SOLVE_KCMST routine [6] much faster than solving the unreduced problem directly.

2.1. d-MSTRA as KCMST

We introduce \(\bar{G} = (\bar{V}, \bar{E}) \) as the graph which is obtained from \(G \) by doubling each edge \(e \in E \) into edges \(e^0 \) and \(e^1 \), corresponding to normal and priority modes, respectively. Thus, these edges are incident to the identical pair of nodes as \(e \in E \), and the resource allocation and cost at \(e^0 \) (\(e^1 \), resp.) are \(r^0_e \) and \(c^0_e \) (\(r^1_e \) and \(c^1_e \), resp.). We have \(\bar{V} = V \) and \(|\bar{E}| = 2|E| \). These graphs are illustrated in Fig. 2 for a planar example. Here we employ the following simplification notation for edges and trees in graph \(\bar{G} \). Superscripts in the edges of \(\bar{E} \) are usually omitted, unless otherwise needed. Therefore, by \(e \in E \) we mean either \(e^0 \) or \(e^1 \), and \(e_j \) may refer to either \(e^0_j \) or \(e^1_j \). \(T \) denotes the set of all the spanning trees in \(\bar{G} \). Thus, d-MSTRA can be rewritten as the following KCMST:

\[
\text{minimize } z(T) = \sum_{e \in T} c_e \tag{12}
\]

subject to \(\sum_{e \in T} r_e \leq R \), \(T \subseteq \bar{T} \). \tag{13}
2.2. Peg test for d-MSTRA

Making use of SOLVE_KCMST [6] to solve KCMST, we can solve d-MSTRA, at least to some extent. However, by reducing the problem size through some preprocessing procedures, we may expect to solve larger instances more quickly. We show here a ‘peg test’ [13] for this purpose.

We employ the following notations for simplicity’s sake: P is equivalently used to denote KCMST, and overbars in \bar{V}, \bar{E}, etc. are abbreviated, although we are concerned with $\bar{G} = (\bar{V}, \bar{E})$ throughout this subsection. In the process of SOLVE_KCMST we obtain a (Lagrangian) lower bound \bar{z}, a (local search) upper bound \bar{z}, and the optimal Lagrangian multiplier λ^\dagger_1 (see Appendix and [6]). Let gap := $\bar{z} - \bar{z}$.

For an arbitrary edge $f \in E$, by $P(f = 1)$ we denote the subproblem of P with a constraint $f \in T$ added, i.e.,

$$P(f = 1):$$

minimize $\sum_{e \in T} c_e$

subject to $\sum_{e \in T} r_e \leq R,$

$$f \in T, \quad T \subset T^\dagger.$$

Furthermore, $z(f = 1)$ denotes a lower bound to this subproblem, and $P(f = 0)$ and $z(f = 0)$ are defined analogously with respect to an additional constraint $f \notin T$. Then, the following peg test theorem is obvious.

Proposition 1. Let T^\dagger denote an optimal solution to P. Then,

(i) $z(f = 1) > \bar{z}$ implies $f \notin T^\dagger$, and

(ii) $z(f = 0) > \bar{z}$ implies $f \in T^\dagger$.

In case of (i) or (ii), respectively, f is said to be fixed-out or fixed-in. Fixed-out edges can never be included in any optimal solution, while those fixed-in must be included in any optimal solution of P. Then, eliminating these fixed edges we obtain a problem of reduced size.

To obtain a lower bound $z(f = 1)$ for $f \in E$, we make use of λ^\dagger_1 obtained previously, and introduce the relaxation of $P(f = 1)$ as follows.

$$\text{LP}(\lambda^\dagger_1; f = 1):$$

minimize $\sum_{e \in T} c_e + \lambda^\dagger_1(\sum_{e \in T} r_e - R)$

subject to $f \in T, \quad T \subset T^\dagger.$

Similarly, $\text{LP}(\lambda^\dagger_1; f = 0)$ is defined, and we obtain a lower bound $\bar{z}(f = 0)$. These are minimum spanning tree problems (with an additional constraint $f \in T$ or $f \notin T$), and can be solved easily as $\text{LP}(\lambda)$. However, to compute $\bar{z}(f = 1)$ and $\bar{z}(f = 0)$ quickly for all $f \in E$, we propose the following approach.

Let T^\dagger_1 be the optimal solution to the Lagrangian relaxation $\text{LP}(\lambda^\dagger_1)$ (see Appendix). Then, we have $\bar{z} = \sum_{e \in T^\dagger_1} c_e - \lambda^\dagger R$, where for $e \in E$ we define $c_e^\dagger := c_e + \lambda^\dagger r_e$.

Optimal solutions to $\text{LP}(\lambda^\dagger_1; f = 1)$ and $\text{LP}(\lambda^\dagger_1; f = 0)$ can be obtained by modifying T^\dagger as follows. For an arbitrary tree edge f in T^\dagger_1, by eliminating f from T^\dagger_1 the set of nodes are partitioned into two disjoint subsets, say V_1 and $V_2 (V_1 = V \cup V_4, \ V_1 \cap V_2 = \emptyset)$, which are connected to each of the incident nodes of f through T^\dagger_1, respectively. By $\text{Cut}(T^\dagger_1, f)$, we denote the set of edges ranging over V_1 and V_2. If we replace f with an edge $e \in \text{Cut}(T^\dagger_1, f) \setminus \{f\}$, we obtain another tree $T^\dagger_1 - f + e$ with cost $\bar{z}(T^\dagger_1 - f + e) = \bar{z} + c_e^\dagger - c_f^\dagger$.

Then, by cut optimality property [3] of $T^\dagger_1 - f + e$, $\text{LP}(\lambda^\dagger_1; f = 0)$ is solved by finding an edge e, and replacing it with f, such that c_e^\dagger is minimized over $\text{Cut}(T^\dagger_1, f) \setminus \{f\}$. Thus, with the minimum of this margin defined as

$$\Delta(T^\dagger_1, f) := \min\{c_e^\dagger \mid e \in \text{Cut}(T^\dagger_1, f), \ e \neq f\} - c_f^\dagger,$$

we obtain the following optimal objective value to $\text{LP}(\lambda^\dagger_1; f = 0)$

$$\bar{z}(f = 0) = \bar{z} + \Delta(T^\dagger_1, f).$$

In case of $f \notin T^\dagger_1$, adding f to T^\dagger_1 produces an elementary cycle $\text{Cycle}(T^\dagger_1, f)$ with $\text{Cycle}(T^\dagger_1, f) \setminus \{f\} \subset T^\dagger_1$. Then, replacing $f \notin T^\dagger_1$ with an edge $e \in \text{Cycle}(T^\dagger_1, f) \setminus \{f\}$, we obtain another tree with cost $\bar{z}(T^\dagger_1 - f + e) = \bar{z} + c_e^\dagger - c_f^\dagger$, and due to cycle optimality property [3] of $T^\dagger_1 - f + e$, $\text{LP}(\lambda^\dagger_1; f = 1)$ is solved by finding an edge e such that c_e^\dagger is maximized over $\text{Cycle}(T^\dagger_1, f) \setminus \{f\}$. We define

$$\Theta(T^\dagger_1, f) := c_e^\dagger - \max\{c_e^\dagger \mid e \in \text{Cycle}(T^\dagger_1, f), \ e \neq f\},$$

and obtain the following optimal value to $\text{LP}(\lambda^\dagger_1; f = 1)$

$$\bar{z}(f = 1) = \bar{z} + \Theta(T^\dagger_1, f).$$

To sum up, we have the following peg test theorem for problem P.

Theorem 2. Let T^\dagger be an optimal solution of P. Then,

(i) $f \in T^\dagger$ and $\Delta(T^\dagger_1, f) > \bar{z} - \bar{z}$ implies $f \in T^\dagger$ (f is fixed-out), and

(ii) $f \notin T^\dagger$ and $\Theta(T^\dagger_1, f) > \bar{z} - \bar{z}$ implies $f \notin T^\dagger$ (f is fixed-in).

3. A Characterization of Optimality for c-MSTRA

We now turn to c-MSTRA. For a spanning tree T of G, $r = (r_e)_{e \in E}$ is said to be a resource allocation vector over T. A pair of a spanning tree T and such a vector r over T is a feasible solution of c-MSTRA if constraints (9)-(10) are all satisfied. A feasible solution (T^*, r^*) is optimal if $z(T^*, r^*) \leq z(T, r)$ for any feasible solution (T, r) of c-MSTRA. We introduce the following.
Definition 1. For edge \(f \in E \), a feasible \((T, r)\) is said to be an \(f \)-fractional solution if there exists a feasible \(r_e \in \{r_0^f, 1\} \), \(\forall e \in T \) (\(e \neq f \)).

In \(f \)-fractional solution only \(r_f \) can take intermediate value in \([r_0^f, 1]\), with all other tree edges either fixed-low (i.e., \(r_e = r_0^f \)) or fixed-high (\(r_e = r_0^f \)). To avoid excessive complication due to ties, we assume that \(\theta_e/s \) are distinct each other for all \(e \in E \), i.e.,

\[\theta_e \neq \theta_f \quad \text{for all} e \neq f \in E. \]

Then, we have the following characterization of optimality of c-MSTRA.

Theorem 3. There exists an optimal solution \((T^*, r^*)\) of c-MSTRA that is \(f \)-fractional for some \(f \in E \). Furthermore, tree edges other than \(f \) are either fixed-low or fixed-high depending on \(\theta_e < \theta_f \) or \(\theta_e > \theta_f \), respectively, i.e.,

\[
r_e^* = \begin{cases} r_0^f, & \text{if } \theta_e > \theta_f, \\ r_0^f, & \text{if } \theta_e < \theta_f. \end{cases}
\]

Proof. Let \((T^*, r^*)\) be an optimal solution of c-MSTRA. We note that for an arbitrary pair of edges \(e \) and \(e' \) in \(T^* \) with \(\theta_e < \theta_{e'} \), one of these is extremal, i.e., \(r_e = r_0^f \) or \(r_{e'} = r_0^f \), since otherwise by modifying these to \(r_e \rightarrow r_0^f + \epsilon \) and \(r_{e'} \rightarrow r_0^f - \epsilon \) for sufficiently small \(\epsilon > 0 \), the objective value would be improved by \(\epsilon (\theta_e - \theta_{e'}) \). Thus, if there exist more than one fractional edges, say \(e \) and \(e' \) in \(T^* \), we must have \(\theta_e = \theta_{e'} \). In this case, let \(\delta := \min \{r_0^f - r_0^f, r_0^f - r_0^f, r_0^f - r_0^f\} \), and modify the solution to \(r_e \rightarrow r_0^f + \delta \) and \(r_{e'} \rightarrow r_0^f - \delta \). By doing this, the number of fractional edges is decreased at least by one, and repeating this we will obtain an optimal solution with at most one fractional edge. If no fractional edge remains, we pick up \(f := \arg\max_{e \in T} \{\theta_e | \text{is fixed-low}\} \) as a degenerate fractional edge. Thus, we have an optimal \(f \)-fractional solution for some \(f \in T^* \).

Finally, if \(\theta_e > \theta_f \) and \(r_e < r_0^f \), we obtain an improved solution by changing these to \(r_0^f \rightarrow r_0^f + \epsilon \) and \(r_{e'} \rightarrow r_0^f - \epsilon \). For optimal \((T^*, r^*)\) this is impossible, and thus the former part of (21) is proved. The latter is proved analogously. □

4. An exact algorithm for c-MSTRA

4.1. Initial feasible solution and an upper bound

We note that c-MSTRA is feasible if only if d-MSTRA is feasible. Indeed, any feasible solution of d-MSTRA is itself feasible to c-MSTRA. On the other hand, if \((T, r)\) is feasible to c-MSTRA, we obtain a feasible solution of d-MSTRA by rounding off all the fractional elements to the corresponding lower bounds, i.e.,

\[r_e \in \{r_0^f, 1\} \Rightarrow r_e \in \{r_0^f, 0\}. \]

Then, our strategy to solve c-MSTRA starts with the optimal solution \((T^D, r^D)\) of d-MSTRA as obtained in Section 2. This solution is feasible to c-MSTRA, but in d-MSTRA the amount of resources actually consumed in optimality is usually smaller than \(R \). Let the residual amount of resource be

\[R_{res} := R - \sum_{e \in T^D} r^D_e. \]

We note the following.

Proposition 2. In \((T^D, r^D)\), if \(e \in T^D \) is fixed-low, i.e., \(r_0^e = r_0^e \), we have

\[0 \leq R_{res} < r_0^e - r_0^e. \]

Proof. From (4), \(0 \leq R_{res} \) is obvious. If \(R_{res} \geq r_0^e - r_0^e \), we can increase the value of \(r_e \) from \(r_0^e = r_0^e \) to \(r_0^e \) and obtain an improved solution to d-MSTRA. This violates the optimality of \((T^D, r^D)\), and thus Proposition 2 is proved. □

This means that the residual \(R_{res} \) can be put in full to any edge \(e \in T^D \) if \(e \) is fixed-low, without violating the resource limit of \(e \). This gives an improved initial feasible solution to c-MSTRA. Particularly, we pick up \(f := \arg\max_{e \in T^D} \{\theta_e | \text{is fixed-low}\} \), and denote the solution of c-MSTRA obtained this way as \((T^*, r^*)\) with the corresponding upper bound \(\bar{z} := z(T^*, r^*). \)

4.2. Decomposition

We decompose c-MSTRA into \(m \) subproblems and examine these, one by one, for better solutions. For each \(f \in E \), let \(F_f \) denote the set of all the \(f \)-fractional solutions of c-MSTRA, and we introduce subproblem \(P_f^r \):

\[
\text{minimize } (T, r) = \sum_{e \in T} c_e(r_e)
\]

subject to \((T, r) \in F_f\),

\[\sum_{e \in T} r_e \leq R. \]

By Theorem 3, an optimal solution of c-MSTRA can be obtained as a solution of one of these \(m \) subproblems, and to solve \(P_f^r \) we introduce the following auxiliary graph \(G_f \).

Definition 2. Graph \(G_f \) is obtained from \(G \) by contraction of edge \(f \), i.e., by eliminating \(f \) and identifying two incident nodes of \(f \). Furthermore, \(e \neq f \) is associated with the following values,

\[
(t_e, c_e) = \begin{cases} (r_0^f, c_f^f), & \text{if } \theta_e > \theta_f, \\ (r_0^f, c_f^f), & \text{if } \theta_e < \theta_f. \end{cases}
\]

We note that, due to Theorem 3, if \((T, r)\) is an optimal \(f \)-fractional solution of \(P_f^r \) with resource \(r_f \) allocated to edge \(f \), the non-fractional part \(T \setminus \{f\} \) needs to be an optimal solution of KCMST on graph \(G_f \) with total amount of resource \(R - r_f \). We write this problem \(K(G_f, R - r_f) \), and \(z_k^f(G_f, R - r_f) \) denotes the optimal objective value of this problem. Then, since the cost for \(f \) is \(c_f(r_f) \) and the optimal objective value from \(G_f \) is \(z_k^f(G_f, R - r_f) \), the objective value for \(P_f^r \) is

\[
z_k^f(r_f) := c_f(r_f) + z_k^f(G_f, R - r_f). \]

We also note that \(c_f(r_f) \) is a linear, non-increasing function, and \(z_k^f(G_f, R - r_f) \) is a non-decreasing step function of \(r_f \in [r_0^f, r_0^f] \) as depicted in Fig. 3, and thus \(P_f^r \) is equivalent to finding the optimal allocation of resources between \(f \) and \(G_f \), i.e., solving the following.

\[P_f^r \] :

\[
\text{minimize } z_k^f(r_f)
\]

subject to \(r_0^f \leq r_f \leq r_0^f \).

4.3. Exact algorithm

We start with an incumbent solution \((T^*, r^*)\) of c-MSTRA and the corresponding upper bound \(\bar{z} := z(T^*, r^*) \) of c-MSTRA. This is usually the initial feasible solution obtained earlier, and thus \((T^*, r^*) := (T^*, r^*) \) and \(\bar{z} := \bar{z} \).

Now, we investigate \(P_f \) one by one for all \(f \in E \). First of all, if for a lower bound \(\frac{e}{G_f}(G_f, R - r_0^f) \) of \(K(G_f, R - r_0^f) \)

\[
c_f(r_0^f) + \frac{e}{G_f}(G_f, R - r_0^f) \geq \bar{z} \tag{26}
\]
we can terminate P_f, since in this case $z_f^*(r_f) \geq \bar{z}^f$ for all $r_f \in [r^0_f, r^1_f]$, and no better solutions than the incumbent can be expected in this subproblem.

If (26) is not met, we consider a general case of resource allocation $(r_f, R - r_f)$ with $r_f \in [r^0_f, r^1_f]$ allocated to the fractional edge f and the remaining $R - r_f$ to graph G_f. We start with $r_f = r^2_f$, and repeat the following process until $r_f > r^1_f$.

We solve $K(G_f, R - r_f)$ and obtain an optimal solution $T^k_f(G_f, R - r_f)$ and the optimal $z^k_f(G_f, R - r_f)$. Correspondingly, we obtain an optimal resource allocation vector $r^k_f(G_f, R - r_f)$. Note that the actual amount of resources consumed in G_f is the sum of r^k_e over $T^k_e(G_f, R - r_f)$, so the residual

$$\bar{r}_f := R - \sum_{e \in T^k_e(G_f, R - r_f)} r^k_e$$

(27)

can be put on the fractional f.

We see that $r_f \leq \bar{r}_f$, $T^k_e(G_f, R - r^k_f) \supseteq T^k_e(G_f, R - \bar{r}_f)$ and $z^k_e(G_f, R - r^k_f) \supseteq z^k_e(G_f, R - \bar{r}_f)$ for all $r^k_f \in [r^0_f, \bar{r}_f]$, since throughout this interval $T^k_e(G_f, R - \bar{r}_f)$ remains optimal. Furthermore, the pair of f and $T^k_f(G_f, R - \bar{r}_f)$, together with resource allocation $r(f, \bar{r}_f) := (\bar{r}_f, r^k_f(G_f, R - \bar{r}_f))$, gives an f-fractional solution of c-MSTRA. This is hereafter denoted as $(T^f, r[f, \bar{r}_f])$.

At this stage if

$$c_f(r^k_f) + z^k_e(G_f, R - \bar{r}_f) \geq \bar{z}^f,$$

(28)

we can terminate P_f, as in (26). On the other hand, if

$$z_f^*(\bar{r}_f) < \bar{z}^f,$$

(29)

$(T^f, r[f, \bar{r}_f])$ is better than the incumbent solution. Thus, we update the incumbent and the corresponding upper bound as $(T^f, r) \leftarrow (T^f, r[f, \bar{r}_f])$ and $\bar{z} \leftarrow z_f^*(\bar{r}_f)$.

Finally, we increase r_f beyond \bar{r}_f to move to the next interval of the step function $z_f^*(G_f, R - r_f)$ by putting $r_f \leftarrow \bar{r}_f + \epsilon$ for sufficiently small $\epsilon > 0$, and repeat the above process all over again. However, in case of $z_f^*(\bar{r}_f) > \bar{z}^f$, r_f can be increased more, because of the following. Let

$$r^1_f := \bar{r}_f + (z_f^*(\bar{r}_f) - \bar{z}^f)/\theta_f.$$

(30)

Then, we have $z_f^*(r^1_f) \geq \bar{z}^f$ for all $r_f \in [\bar{r}_f, r^1_f]$, since $z_f^*(r^1_f) = c_f(r^1_f) + z^k_e(G_f, R - r^1_f)$ and $z^k_e(G_f, R - r^1_f)$ is a non-decreasing function of r^1_f (see Fig. 4). Thus, r_f can be increased to $\max\{r^0_f, \bar{r}_f + \epsilon\}$.

To sum up, our algorithm is as follows. Algorithm \textbf{SOLVE-MSTRA}

1. Solve d-MSTRA and obtain an optimal (T^D, r^D) to this discrete optimization problem.
2. Make use of the residual resource to improve (T^D, r^D) and obtain a feasible solution (T^r, r^r) to c-MSTRA. This and $\bar{z}^f := z(T^r, r^r)$ serve as an initial incumbent.
3. For each $f \in E$ do:
 3-1. If $c_f(r^1_f) + z^k_e(G_f, R - r^1_f) \geq \bar{z}^f$, go to next f (Terminate P_f).
 3-2. Let $r_f := r^1_f$ and do:
 3-2-1. If $r_f > r^1_f$ go to next f (P_f finished).
 3-2-2. Solve $K(G_f, R - r_f)$ and obtain an optimal solution $T^k_f(G_f, R - r_f)$ with the optimal value $z^k_f(G_f, R - r_f)$ and \bar{r}_f defined by (27).
 3-2-3. If $c_f(r^k_f) + z^k_e(G_f, R - \bar{r}_f) \geq \bar{z}^f$, go to next f
 3-2-4. If $z^k_e(G_f, R - \bar{r}_f) < \bar{z}^f$, update the incumbent as $(T^r, r^r) \leftarrow (T^f, r[f, \bar{r}_f])$ and $\bar{z} \leftarrow z^k_e(G_f, R - \bar{r}_f)$.
 3-2-5. Increment r_f to $\bar{r}_f \leftarrow \max\{r^0_f, \bar{r}_f + \epsilon\}$ for sufficiently small $\epsilon > 0$, and go to 3-2-1.
4. Output incumbents (T^r, r^r) and \bar{z}^f as optimal to c-MSTRA and stop.

5. Numerical experiments

We have implemented the algorithms to solve both of d- and c-MSTRAs in ANSI C language to optimality, using a DELL Precision T7500 (CPU: Intel Xenon X5680/3.33 GHz) × 2, RAM: 96 GB) with RedHat Enterprise Linux v5.5 and Intel C++ compiler.

5.1. Design of experiments

We prepare planar and complete graphs to represent sparsely and densely edged graphs, respectively. All computations were carried out on instances with edge data generated randomly on these graphs of various sizes. By $P_{n,m}$ we denote a planar graph with n nodes and m edges. For example, graph G of Fig. 2 is actually a planar $P_{9,11}$. $K_{n,m}$ (usually denoted as K_n) is the complete graph with n nodes and $n(n - 1)/2$ edges.

Resource requirements at each edge are distributed uniformly random over the integer interval $[1, l]$, where L is an experimental parameter which takes either 10^2, 10^3 or 10^4. More precisely, for each $e \in E$ we pick up two integers ξ_e and ζ_e at random in $[1, L]$, respectively.
Thus, source Fig. necessary

<table>
<thead>
<tr>
<th>Graph</th>
<th>UNCOR</th>
<th>WEAK</th>
<th>STRONG</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{00,260}$</td>
<td>20.1385</td>
<td>20.1768</td>
<td>76.4</td>
</tr>
<tr>
<td>$P_{00,560}$</td>
<td>37.6765</td>
<td>37.7111</td>
<td>78.2</td>
</tr>
<tr>
<td>$P_{00,1510}$</td>
<td>76.0988</td>
<td>76.1228</td>
<td>79.6</td>
</tr>
<tr>
<td>$P_{00,560}$</td>
<td>113.4895</td>
<td>113.5052</td>
<td>80.4</td>
</tr>
<tr>
<td>$P_{00,2240}$</td>
<td>154.1085</td>
<td>154.1241</td>
<td>80.5</td>
</tr>
<tr>
<td>$P_{00,2600}$</td>
<td>190.7012</td>
<td>190.7151</td>
<td>80.7</td>
</tr>
<tr>
<td>$K_{80,780}$</td>
<td>113.48</td>
<td>1145.3</td>
<td>96.7</td>
</tr>
<tr>
<td>$K_{80,1690}$</td>
<td>1282.8</td>
<td>1286.8</td>
<td>98.4</td>
</tr>
<tr>
<td>$K_{120,740}$</td>
<td>1339.0</td>
<td>1341.7</td>
<td>99.0</td>
</tr>
<tr>
<td>$K_{500,720}$</td>
<td>1373.4</td>
<td>1375.1</td>
<td>99.4</td>
</tr>
<tr>
<td>$K_{500,1000}$</td>
<td>1368.9</td>
<td>1369.7</td>
<td>99.4</td>
</tr>
</tbody>
</table>

Table 1

d-MSTRA experiments: UNCOR ($L = 10^3, \alpha = 0.4$).

Table 2

d-MSTRA experiments: Correlation compared ($L = 10^3, \alpha = 0.4$).

and put $r^0_e := \min(\xi_e, \xi'_e)$ and $r^1_e := \max(\xi_e, \xi'_e)$. Two more integers c^0_e and c^1_e are related to r^0_e and r^1_e as follows representing uncorrelated, weakly correlated and strongly correlated cases, respectively, i.e.,

(a) UNCOR: For each $e \in E$ we pick up c^0_e and c^1_e at random from $[1, L]$.
(b) WEAK: We put $c^0_e = 0.8r^0_e + [n_e^2/5]$ ($k = 0, 1$).
(c) STRONG: We put $c^0_e = 0.8r^0_e + 0.1L + [n_e^2/100]$ ($k = 0, 1$).

Here n_e^2 ($k = 0, 1$) are distributed uniformly random over $[1, L]$, independent of each other, as well as from other random variables. In all cases, c^0_e and c^1_e are rounded to the nearest integers, and if necessary these are swapped such that $c^0_e \geq c^1_e$ is always satisfied. Fig. 5 plots $(r^0_e - r^0_e, c^0_e - c^1_e)$ for $P_{00,260}$.

We note that if tree edges are picked up randomly, expected resource requirement for a spanning tree is $E\{\sum_{e \in T} r_e\} = L(n - 1)/2$. Thus, we set the total amount of resource at $R = L\alpha$, where α is another parameter that takes either 0.2, 0.4 or 0.6 in our experiments.

5.2. Result of experiments: d-MSTRA

Tables 1 and 2 give the results of experiment for d-MSTRA. Table 1 is the case of UNCOR with $L = 10^3$ and $\alpha = 0.4$, and Table 2 compares the effect of correlation. Here each row represents the average over 10 randomly generated instances, and the columns stand for the following:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>Lower bound by Lagrangian relaxation.</td>
</tr>
<tr>
<td>\bar{z}</td>
<td>Upper bound improved through local search.</td>
</tr>
<tr>
<td>%fix0 (%fix1)</td>
<td>Percentage of edges fixed out (in, resp.) by peg test.</td>
</tr>
<tr>
<td>#unfix (%unfix)</td>
<td>Number (Percentage, resp.) of edges left unfixed.</td>
</tr>
<tr>
<td>z^*</td>
<td>Optimal objective value.</td>
</tr>
<tr>
<td>CPU</td>
<td>CPU time in seconds to obtain optimal solution.</td>
</tr>
</tbody>
</table>
We were able to solve all the instances of Table 1 within a few CPU seconds. From this table we observe the following.

- For the cases tested, we usually have approximate solutions with the objective value close to the lower bounds. For complete graphs optimal solution is often obtained by the heuristic methods, without calling SOLVE KCMST, especially for large n.

Findings from Table 2 include:

- In UNCOR and WEAK cases, gap $(\tilde{z} - z)$ decreases with the size of instances. As a consequence, the peg test works effectively to fix many edges either in or out. The ratio ($\%$unfix) of the unfixed edges to the total number of (normal and priority) edges $(2m)$ is less than 12%, while this is less than 2% in complete graphs. In these cases, the reduced problem is solved within a few seconds.

- However, in planar graphs with strong correlation, gap increases rapidly with the problem size, and the peg test is less effective in such a case.

5.3. Result of experiments: c-MSTRA

Tables 3–5 give the result of experiments for each correlation type with $L = 10^3$ and $\alpha = 0.4$, each row again as average over 10 randomly generated instances. The columns stand for the following.

\begin{itemize}
 \item z^*: Optimal objective value of c-MSTRA,
 \item $\#P_j$: Number of subproblems (P_j's) not terminated either by (26) or (28) at $r_j = r_j^+$,
 \item $\%$term: Percentage of subproblems terminated $(100 \cdot (m - \#P_j)/m)$,
 \item $\#K$: Total number of KCMSTs solved in solving c-MSTRA,
 \item CPU: CPU time in seconds to obtain an optimal solution of c-MSTRA, including the CPU time to solve d-MSTRA.
\end{itemize}

From these tables we observe the following.

- Irrespective to the size or the correlation type of instance, more than 85% of subproblems are terminated by (26) without solving KCMST. This ratio is often more than 90% in planar graphs, and more than 98% in complete graphs. In complete graphs, the number of remaining P_j's is much smaller than in planar graphs, as well as the number of KCMSTs solved at each instance. This is especially the case in WEAK and STRONG instances.

- Both in planar and complete graphs, the objective value z^* increases commensurately with n. Correlation between r_e and ϵ_e has little effect on z^* in planar case, while in the case of
Table 6: c-MSTRA: Sensitivity analysis on \(\alpha \) (UNCOR, \(\alpha = 0.4 \)).

<table>
<thead>
<tr>
<th>Graph</th>
<th>(L = 10^2)</th>
<th>(L = 10^3)</th>
<th>(L = 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(z^*)</td>
<td>CPU</td>
<td>(z^*)</td>
</tr>
<tr>
<td>P_00,260</td>
<td>2048.66</td>
<td>0.96</td>
<td>20 140.74</td>
</tr>
<tr>
<td>P_00,560</td>
<td>3839.79</td>
<td>6.49</td>
<td>37 678.31</td>
</tr>
<tr>
<td>P_00,1200</td>
<td>7752.10</td>
<td>41.28</td>
<td>76 099.86</td>
</tr>
<tr>
<td>P_00,1600</td>
<td>11 560.11</td>
<td>177.12</td>
<td>113 490.15</td>
</tr>
<tr>
<td>P_00,2240</td>
<td>15 689.80</td>
<td>387.66</td>
<td>154 109.80</td>
</tr>
<tr>
<td>K_00,750</td>
<td>130.97</td>
<td>0.19</td>
<td>1136.40</td>
</tr>
<tr>
<td>K_00,1500</td>
<td>164.90</td>
<td>3.74</td>
<td>1283.95</td>
</tr>
<tr>
<td>K_100,540</td>
<td>191.08</td>
<td>22.94</td>
<td>1339.21</td>
</tr>
<tr>
<td>K_100,1270</td>
<td>215.09</td>
<td>85.49</td>
<td>1373.43</td>
</tr>
<tr>
<td>K_200,990</td>
<td>238.45</td>
<td>2743.46</td>
<td>1368.59</td>
</tr>
</tbody>
</table>

Table 7: c-MSTRA: Sensitivity analysis on \(\alpha \) (UNCOR, \(L = 10^3 \), \(R = \alpha ln \)).

<table>
<thead>
<tr>
<th>Graph</th>
<th>(\alpha = 0.2)</th>
<th>(\alpha = 0.4)</th>
<th>(\alpha = 0.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(z^*)</td>
<td>CPU</td>
<td>(z^*)</td>
</tr>
<tr>
<td>P_00,260</td>
<td>39 628.31</td>
<td>1.47</td>
<td>20 140.74</td>
</tr>
<tr>
<td>P_00,560</td>
<td>76 023.37</td>
<td>22.21</td>
<td>37 678.31</td>
</tr>
<tr>
<td>P_00,1200</td>
<td>153 959.10</td>
<td>183.90</td>
<td>76 099.86</td>
</tr>
<tr>
<td>P_00,1600</td>
<td>229 814.34</td>
<td>746.04</td>
<td>113 490.15</td>
</tr>
<tr>
<td>P_00,2240</td>
<td>309 794.84</td>
<td>2784.88</td>
<td>154 109.80</td>
</tr>
<tr>
<td>K_00,750</td>
<td>3265.57</td>
<td>0.81</td>
<td>1136.40</td>
</tr>
<tr>
<td>K_00,1500</td>
<td>3727.89</td>
<td>13.58</td>
<td>1283.95</td>
</tr>
<tr>
<td>K_100,740</td>
<td>4169.93</td>
<td>61.84</td>
<td>1339.21</td>
</tr>
<tr>
<td>K_100,1270</td>
<td>4522.27</td>
<td>199.19</td>
<td>1373.43</td>
</tr>
<tr>
<td>K_200,990</td>
<td>4677.59</td>
<td>505.21</td>
<td>1368.59</td>
</tr>
</tbody>
</table>

6. Conclusion

In this article, we formulated the minimum spanning tree problem with resource allocation (d- and c-MSTRA), and gave algorithms to solve these problems to optimality. We proved these to be \(NP \)-hard.

We showed that d-MSTRA can be reformulated as a KCMST, which can be solved by the branch-and-bound algorithm. We presented previously [6]. Here, we gave a peg test to reduce the problem size of d-MSTRA, often significantly. Using this solution as an initial feasible solution to c-MSTRA, we also gave a solution algorithm for c-MSTRA. This is based on the concept of \(f \)-fractional solution. We proved that an optimal solution of c-MSTRA can be found within this class of solutions. Then, the problem was decomposed into a series of subproblems, and we gave an algorithm to examine these subproblems by solving KCMSTs for better \(f \)-fractional solutions. In actual computation, many subproblems were eliminated without solving KCMST at all.

We implemented these algorithms in ANSI C language and conducted numerical tests to evaluate the performance of these algorithms on various types of instances. Our algorithm solved instances of considerable size defined on planar as well as on complete graphs exactly. However, to solve larger instances with strong correlation between resource and cost data, more efficient algorithm is required to solve KCMST, since this plays a key role in the algorithm of Section 4.

Appendix. Knapsack constrained minimum spanning tree

Let \(G = (V, E) \) be a connected undirected graph with each edge \(e \in E \) associated with two numbers, \(c_e \) and weight \(w_e \), and given \(W > 0 \) we consider the following knapsack constrained minimum spanning tree problem.

KCMST:

\[
\text{minimize } z(T) := \sum_{e \in T} c_e
\quad \text{(A.1)}
\]

subject to \(\sum_{e \in T} w_e \leq W, \quad T \in \mathcal{T}. \) \quad \text{(A.2)}

The maximization version of this problem, as discussed in [6], is equivalent to this problem, since for an arbitrary real \(M \) and for any spanning tree \(T \) of \(G \) we have \(\sum_{e \in T} (M - c_e) = (n - 1)M - \sum_{e \in T} c_e \). In this Appendix, [6] is briefly outlined for readers’ convenience.

A.1. Lagrangian relaxation

For a fixed \(\lambda \geq 0 \), the Lagrangian relaxation problem

\[
\text{LR}(\lambda):
\]

\[
\text{minimize } \sum_{e \in T} (c_e + \lambda w_e) - \lambda W \quad \text{(A.3)}
\]

subject to \(T \in \mathcal{T} \)

is simply the minimum spanning tree (MST) problem, which is easily solved [1,2]. Let \(z(\lambda) \) denote the optimal objective value to this
problem. In addition, z^* denotes the optimal objective value of KCMSST, and T_{LS} is an optimal solution of LR(λ). Then, the following proposition holds.

Proposition A.1 ([14,13]).

(i) For an arbitrary $\lambda \geq 0$, $z(\lambda)$ gives a lower bound to KCMSST, i.e., $z(\lambda) \leq z^*$.

(ii) $z(\lambda)$ is a piece-wise linear and concave function of λ on $[0, \infty)$.

(iii) If $z(\lambda)$ is differentiable at λ,

$$z'(\lambda) = \sum_{e \in T_{LS}} w_e - W.$$

Thus, $z(\lambda)$ is unimodal at $\lambda \geq 0$. Then, by the standard bisection method the Lagrangian dual

DLR:

maximize $z(\lambda)$, subject to $\lambda \geq 0$

is solved, and we obtain an optimal λ^T and the corresponding 'best' lower bound $\bar{z}_{LS} := z(\lambda^T)$ to KCMSST.

At the same time, each time we compute $z(\lambda)$ at $\lambda > \lambda^T$, we have a feasible T_{LS} and thus an upper bound $z(T_{LS})$. The minimum of these obtained in the bisection process gives the Lagrangian upper bound \bar{z}_{LS}, and correspondingly the Lagrangian solution T_{LS}.

A.2. Local search

The Lagrangian solution obtained above may further be improved by heuristic algorithms, which is now standard in combinatorial optimization. Here we mention the 2-opt local search method, which starts with T_{LS} as an initial solution and repeats to improve the solution as far as possible.

For an arbitrary feasible spanning tree $T \in \mathcal{T}_r$, its neighborhood is defined as follows. For any non-tree edge $f \in E \setminus T$, $T \cup \{f\}$ includes a unique elementary cycle. Let Cycle(T,f) be the set of edges of this cycle. Then, replacing f with an arbitrary edge $e \in \text{Cycle}(T,f) \setminus \{f\}$ gives another spanning tree. This is denoted as $T + e - f$, and the neighborhood of T is defined as the set of feasible spanning trees obtained from T this way.

Let T_{LS} be the output of the standard 2-opt local search algorithm with respect to the above defined neighborhood. This is referred to as the local search solution, and the corresponding local search upper bound is denoted as $\bar{z}_{LS} := z(T_{LS})$.

A.3. SOLVE_KCMSST: A branch-and-bound algorithm

We start with the local search solution $T := T_{LS}$, and let this be written explicitly as $T \in \{e^1, e^2, \ldots, e^{n-1}\}$. From this we generate a series of subproblems in the following way. The ith subproblem is to find an optimal solution that includes $\{e^1, \ldots, e^{i-1}\}$, but does not include e^i ($i = 1, \ldots, n-1$). Clearly the KCMSST is solved if we have solved all these subproblems, and to accomplish this we repeat the same thing recursively with respect to each generated subproblem.

We consider a more general situation where we have a pair of disjoint edge sets I and X. A spanning tree T is said to be (I,X)-admissible if it includes all the edges of I, but does not include any of X, i.e., $I \subseteq T$, $T \cap X = \emptyset$. These are referred to as included and excluded edges, respectively. Then, the subproblem $P(I,X)$ is to find an optimal solution that is feasible and (I,X)-admissible.

We note that the upper and lower bounds introduced previously in Appendices A.1 and A.2 can be easily modified to account for (I,X)-admissibility. Let these be denoted as $z(I,X)$ and $\bar{z}(I,X)$ respectively, and $T_{LS}(I,X)$ is the 2-opt solution corresponding to $\bar{z}(I,X)$. In addition, T^* and \bar{z} represent the incumbent solution and the corresponding objective value, respectively. Initially these are $T^* := T_{LS}$ and $\bar{z} := \bar{z}_{LS}$.

We construct a recursive routine Solve_P(I,X) to solve subproblem $P(I,X)$ as follows. The input to this routine is the pair (I,X) of disjoint edge sets, and Solve_P(I,X) goes through the following steps.

1. If $P(I,X)$ is infeasible or $z(I,X) \geq \bar{z}$, we terminate subproblem $P(I,X)$.
2. If $P(I,X)$ is solved to optimality, we update, if necessary, the incumbent T^* and \bar{z}, and terminate the subproblem.
3. Otherwise, we find an (I,X)-admissible $T_{LS}(I,X)$ by the heuristic method of A.1–A.2. If necessary, we update the incumbent.
4. We make use of $T_{LS}(I,X)$ to divide the problem into a set of mutually disjoint sub-subproblems, and apply Solve_P(X) recursively to these sub-subproblems.

In this algorithm, if T_{LS} is written as $l \cup \{e^k+1, \ldots, e^{k-1}\}$ with $k := |I|$, the sub-subproblems are generated in (4) as $P(I_1, X)$, where $I_1 := l \cup \{e^k+1, \ldots, e^{k-1}\}$ and $X := X \cup \{e^k\}$ for $i = k + 1, \ldots, n - 1$. Then, by calling Solve_P(08, 08), KCMSST is solved.

References

