
Hurley, William J.; Brimberg, Jack

Article

A note on the sensitivity of the strategic asset allocation
problem

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Hurley, William J.; Brimberg, Jack (2015) : A note on the sensitivity of the strategic
asset allocation problem, Operations Research Perspectives, ISSN 2214-7160, Elsevier, Amsterdam,
Vol. 2, pp. 133-136,
https://doi.org/10.1016/j.orp.2015.06.003

This Version is available at:
https://hdl.handle.net/10419/178257

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2015.06.003%0A
https://hdl.handle.net/10419/178257
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Operations Research Perspectives 2 (2015) 133–136
Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

A note on the sensitivity of the strategic asset allocation problem
W.J. Hurley ∗, Jack Brimberg
Department of Mathematics and Computer Science, Royal Military College of Canada, Canada

a r t i c l e i n f o

Article history:
Available online 2 July 2015

Keywords:
Portfolio optimization
Sensitivity
Matrix condition

a b s t r a c t

The Markowitz mean–variance portfolio optimization problem is a quadratic programming problem
whose first-order conditions require the solution of a linear system. It is well known that the optimal
portfolio weights are sensitive to parameter estimates, particularly the mean return vector. This has
generally been attributed to the interaction of estimation error and optimization. In this paper we present
some examples that suggest the linear system produced by the first-order conditions is ill-conditioned
and it is this property that gives rise to the sensitivity of the optimal weights.

Crown Copyright© 2015 Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Themean–variance portfolio optimization problemdates to the
pioneeringwork ofMarkowitz [1]. It iswell known that the optimal
portfolio weights are sensitive to the parameter input, particularly
the mean return vector. See, for the example, the work of Best
and Grauer [2], Broadie [3], Chopra [4], Chopra and Ziemba [5],
Frankfurter et al. [6], andMichaud [7]. This sensitivity has generally
been attributed to the tendency for optimization to magnify the
effects of estimation error. For this reason,Michaud [7] has referred
to ‘‘portfolio optimization’’ as ‘‘error maximization’’.

There is now a vast literature on how to deal with the prob-
lem. As might be expected, the literature focuses on improved
estimation procedures andmodel variations. Efforts to improve pa-
rameter estimation procedures include the work of Jobson and Ko-
rkie [8] and Jorion [9,10] on shrinkage estimators and Ledoit and
Wolf [11] on reducing the error in the estimation of the covariance
matrix. A host of researchers look at robust portfolio optimization
(see, for example, Goldfarb and Iyengar [12], Garlappi et al. [13],
and Lu [14]). Different formulations of the problem also include
the work of Black and Litterman [15], Konno and Yamazaki [16],
Simaan [17], and more recently, Jangannathan and Ma [18] and
DeMiguel et al. [19]. It is important to clarify what financial theo-
rists mean when they refer to robust portfolio optimization. In the
general sense, robust optimization implies finding solutions that
can be modified later in an effective manner once actual condi-
tions are known. However, with portfolio management, the input
parameters are consistently changing, and robustness in this set-
ting refers to finding solutions that are insensitive to these changes.
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That is, portfolio formation strategies are sought that are relatively
immune to variations in input values. Here, we offer no solution to
the problem. Rather, we make a simple but important point. It is
not always true that optimization magnifies estimation error and
we show this using the basic Economic Order Quantity Model. The
implication is that there has to be a deeper explanation of why
portfolio weights are so sensitive to estimation error. In our view,
this explanation has to dowith the underlying structure of themodel.
We argue that the first-order conditions of theMarkowitz portfolio
optimization model result in a linear system that is ill-conditioned
and it is this poor conditioning that leads to the extreme sensitivity of
the portfolio weights.

This observation has a number of important implications. First,
it is very unlikely that improved estimation techniques will solve
the problem. DeMiguel et al. [20] took an exhaustive look at how
existing improved estimation procedures and different models
stacked up against a naive 1/n portfolio (a portfolio with funds di-
vided equally among n assets). They found that none of these of-
fered any significant performance improvement based on standard
measures (including the Sharpe ratio and certainty-equivalent re-
turn). This is consistent with our observation on conditioning that
we are not likely to find a magic bullet to solve the problem.

The work of Ledoit and Wolf [11] is particularly interesting.
They consider only the covariance matrix. They offer the equiva-
lent of a Stein estimator (i.e. a shrinkage estimator) for the covari-
ancematrix and show that it has nice consistency properties as the
dimension of the problem (both in the dimension of the covari-
ance matrix and the dimension of the data set used to estimate it)
gets large. Their estimator performs reasonablywell and the condi-
tion of the covariance matrix falls dramatically for problems with
a large number of assets and a large dataset. However, there are
problems of interest where there is no guarantee that the dimen-
sion of the covariance matrix will be high. We have in mind the
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Strategic Asset Allocation Problem (SAAP) where only a handful of
global asset classes is considered. An example is the problem con-
sidered by Black and Litterman [15].

2. It is not just optimization magnifying estimation error

Among others,Michaud [7] has argued that the sensitivity of the
portfolio optimization problem is due to optimization magnifying
estimation error. But this cannot be the complete explanation.
After all there are many examples of optimization problems
where slight errors in the parameter input are not magnified by
optimization. For instance consider the Economic Order Quantity
model used for inventory decisions. This model argues that the
order size that minimizes transaction costs is

x∗
=

√
kD (1)

where x∗ is the order size, k is a parameter that depends on the
costs of holding and processing inventory, and D is the demand
rate for the inventory over the period under consideration. Now
suppose a small error ε is madewhenD is estimated. Thenwe have
that

x∗(ε) =


kD(1 + ε) (2)

and the relative error is

x∗(ε) − x∗

x∗
=

√
kD(1 + ε) −

√
kD

√
kD

≃ ε/2. (3)

Thus, a 10% error in the estimation of demand, leads to approxi-
mately a 5% change in the recommended inventory level. The im-
plication is that an explanation of solution sensitivity must appeal
to the underlying structure of the problem.

3. The sensitivity of the SAA portfolio

Here is an example which demonstrates the sensitivity of the
SAAP. Suppose an investor is considering a portfolio of three funds:
LargeCap Equity; Foreign; and Bond. The investor estimates that
expected returns for these are:

Asset Return
LargeCap 0.1213
Foreign 0.1548
Bond 0.0923

(4)

and the covariance matrix is

LargeCap Foreign Bond
LargeCap 0.02528 0.02098 0.00411
Foreign 0.02098 0.05452 0.00085
Bond 0.00411 0.00085 0.00487.

(5)

Let the random return of asset i, ri, be normally distributed with
mean r i and variance σ 2

i . Let the covariance of the returns on assets
i and j be cij. Suppose the investor is considering a portfolio where
a proportion, xi, of his total investment will go into asset i. The
expected return on the portfolio is

rp = r1x1 + r2x2 + r3x3 (6)

and, for convenience, we define the risk measure to be 1/2 the
variance of the portfolio return:

Φ(x1, x2, x3) =
1
2
Var(rp) (7)

=
1
2
xTΩx (8)

=
1
2
[σ 2

1 x
2
1 + σ 2

2 x
2
2 + σ 2

3 x
2
3 + 2c12x1x2 (9)

+2c13x1x3 + 2c23x2x3]
where rp = r1x1 + r2x2 + r3x3 is the uncertain portfolio return,
Ω is the covariance matrix, and x = (x1, x2, x3)T is a vector of
portfolio weights. This investor wishes tominimize the variance of
his portfolio return subject to it producing amean return r0. Hence
he will solve the following SAAP:

min Φ(x1, x2, x3)
s.t. r1x1 + r2x2 + r3x3 = r0

x1 + x2 + x3 = 1.
(10)

The first-order necessary conditions require a solution of a linear
system:

σ 2
1 c12 c13 −r1 −1

c12 σ 2
2 c23 −r2 −1

c13 c23 σ 2
3 −r3 −1

r1 r2 r3 0 0
1 1 1 0 0



x1
x2
x3
λr
λx

 =


0
0
0
r0
1

 (11)

whereλr andλx are Lagrangemultipliers. Thematrix of this system
is called the augmented covariance matrix and we represent it with
Ω+.

The solution of the system with r0 = 0.135 and the parameter
input described in (4) and (5) is:

x1 = 0.195, x2 = 0.593, x3 = 0.212. (12)

Suppose now the expected return on the LargeCap asset class is
changed from 12.13% to 13.34%, a change of 10%. Then the new
portfolio weights are

x1 = 0.503, x2 = 0.352, x3 = 0.145. (13)

Note that the LargeCap weight, x1, increases by 160%; the other
two change by an average of 36%. So a small change in a single
input parameter can give rise to substantial changes in the optimal
portfolio weights.

4. The origin of the sensitivity

Consider the linear system

Ax = b (14)

where A is an n×nmatrix, and x and b are n×1 vectors.We assume
that A is nonsingular. One definition of the norm of the matrix A is

∥A∥ = max
x≠0

∥Ax∥
∥x∥

(15)

where

∥x∥ =


x21 + x22 + · · · + x2n (16)

is the usual vector norm. It is easy to show that the definition (15)
is equivalent to

∥A∥ = max
∥x∥=1

∥Ax∥ . (17)

The condition of A, κ(A), is defined as

κ(A) = ∥A∥ ×
A−1

 . (18)

Suppose the matrix is perturbed from A to A + δA. This leads to
the perturbed solution x + δx so that

(A + δA) (x + δx) = b. (19)

Hence we have two systems

(A + δA) (x + δx) = b (20)
Ax = b. (21)
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Expanding the first gives

Ax + Aδx + δAx + δAδx = b (22)

and substituting the second results in

Aδx + δAx + δAδx = 0, (23)

which may be rewritten as

δx = −A−1 (δAx + δAδx) = −A−1δA(x + δx). (24)

We can now take the norm of both sides:

∥δx∥ =
−A−1δA(x + δx)


= |−1|

A−1δA(x + δx)


=
A−1δA(x + δx)

 . (25)

For any square matrices B1 and B2, and any vector y ≠ 0, we have

∥B1y∥ =
∥B1y∥
∥y∥

· ∥y∥ ≤ ∥B1∥ ∥y∥ (26)

assuming the product B1y is defined. Analogously, we get

∥B1B2y∥ ≤ ∥B1∥ ∥B2y∥ ≤ ∥B1∥ ∥B2∥ ∥y∥ (27)

again assuming the product B1B2y is defined. Applying (27) to the
right-hand side of (25) givesA−1δA(x + δx)

 ≤
A−1δA

 ∥x + δx∥

≤
A−1

 ∥δA∥ ∥x + δx∥ (28)

and therefore

∥δx∥ ≤
A−1

 ∥δA∥ ∥x + δx∥ . (29)

Dividing both sides by ∥x + δx∥ gives

∥δx∥
∥x + δx∥

≤
A−1

 ∥δA∥ . (30)

Finally, we can multiply the right-hand side by ∥A∥ / ∥A∥ to get

∥δx∥
∥x + δx∥

≤ κ(A)
∥δA∥

∥A∥
. (31)

That is, the relative error in the solution vector is bounded above
by the condition of Amultiplied by the relative error in the matrix
A. Moreover, it can be shown that this inequality is tight (see [21]).
That is, there exists a δA such that (31) holds with equality.

Now consider calculating the condition of the system in (11)
using the input from (4) and (5). To get thematrix norms, we could
solve two separate optimizations, but it just as easy to set up the
optimization

max ∥Ω+u∥ +
Ω−1

+
v


s.t. ∥u∥ = 1
∥v∥ = 1.

(32)

Note that this program is separable in u and v. Denoting the
optimal solution u∗ and v∗, we have that

∥Ω+∥ =
Ω+u∗

 = 1.768, (33)Ω−1
+

 =
Ω−1

+
v∗

 = 95.182, (34)

and, therefore, the condition of Ω+ is

κ(Ω+) = ∥Ω+∥
Ω−1

+

 = 168.3. (35)

Suppose there is a 1% relative error inΩ+, that is, ∥δΩ+∥ / ∥Ω+∥ =

0.01. Then the relative error in the solution can be as high as
∥δx∥ / ∥x + δx∥ = 168.3 × 0.01 = 1.683, or over 150%! And this
is true even before we start to talk about the nature of the estima-
tion error. Thus the portfolio problem can be poorly conditioned,
Fig. 1. The effects of changing the largecap return from 12.13% (original portfolio)
to 13.34% (new portfolio).

and at least for some instances of the problem, small parameter es-
timation errors will lead to large changes in the optimal portfolio
weights.

One way to interpret this ill-conditioning is to examine
the optimization problem geometrically. The solution (portfolio
weights) occurs where the hyperspace generated by the linear
equality constraints is tangent to a contour of portfolio risk, which
is an ellipse. It turns out that level sets of this quadratic function
are extremely flat at these tangent points. What this means is
that slight changes in the slope of the hyperspace or level sets of
the objective function (i.e. slight changes in the expected return
vector or the covariance matrix) can lead to significant changes in
portfolio composition.

For the example above, a picture is shown in Fig. 1. The expected
return constraint is shown in x1x2 space where it is tangent to the
level set of portfolio risk at the optimum (this point is labelled
‘‘Original Portfolio’’). Note that the level set (the curve) is very flat.
When the LargeCap expected return is changed by 10%, the slope
of the expected return constraint becomes steeper and is tangent
to a new level set of portfolio risk (labelled ‘‘New Portfolio’’). The
resulting changes in portfolio weights are significant.
The condition of the minimum variance portfolio problem

A number of recent approaches (see [18,19]) have argued
that the minimum variance portfolio has some nice performance
properties. Unfortunately finding a minimum variance portfolio in
the context of the SAAP is also ill-conditioned.

The minimum variance portfolio is found by solving

min Φ(x1, x2, x3)
s.t.


i

xi = 1. (36)

Clearly the linear system to be solved is again an augmented
covariance matrix. Let this augmented matrix be denoted ΩV .

To demonstrate the ill-conditioning of this problem, consider
the following example taken from [22]. There are six assets:
American Airlines (AMR), Bethlehem Steel (BS), General Electric
(GE), International Harvester (HR), Philip Morris (MO), and Union
Carbide (UK). The covariance matrix is

AMR BS GE HR MO UK
AMR 0.2060 0.0375 0.1077 0.0493 0.0208 0.0059
BS 0.0375 0.0790 0.0355 0.1028 0.0089 0.0406
GE 0.1077 0.0355 0.0867 0.0443 0.0194 0.0148
HR 0.0493 0.1028 0.0443 0.4435 0.0193 0.0274
MO 0.0208 0.0089 0.0194 0.0193 0.0083 −0.0015
UK 0.0059 0.0406 0.0148 0.0274 −0.0015 0.0392.

The expected returns are AMR(0.2032), BS(0.0531), GE(0.1501),
HR(0.1529), MO(0.1025), and UK(0.1210).
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For this problem, let the augmented matrix for the associated
SAAP be denoted by ΩM . The condition of this matrix is

κ(ΩM) = ∥ΩM∥
Ω−1

M

 = 2.500 × 53.820 = 134.5, (37)

and clearly, it is ill-conditioned.
The condition of the augmented covariance matrix associated

with finding the minimum variance portfolio is

κ(ΩV ) = ∥ΩV∥
Ω−1

V

 = 2.479 × 63.636 = 157.8 (38)

and this matrix is also poorly conditioned. In this regard, DeMiguel
et al. [19] have remarked

‘‘But even the performance of the minimum-variance portfolio
depends crucially on the quality of the estimated covariances,
and although the estimation error associated with the sample
covariances is smaller than that for sample mean returns, it can
still be substantial.’’ (p. 799)

Of course, this is really not surprising. If we go back to the geomet-
rical interpretation, the contours of the variance of the portfolio are
uncertain and near-linear and the portfolio weight-sum constraint
is fixed and linear. Again the two slopes are just about the same
over a large neighbourhood; so any small change in the variance
contour can lead to a large change in the resulting weights.

Ledoit and Wolf [11] offer significant evidence based on Monte
Carlo simulation that the condition of a covariance matrix will fall
as its dimension increases. We have mild evidence here that this
is the case. But obviously more analysis is required to support this
conclusion.

5. Conclusions

Despite the advances in portfolio optimization made since
Markowitz, particularly in the last fifteen years, we argue that
solution of the Strategic Asset Allocation Problem (a relatively
small number of asset classes) is quite sensitive to the input and
this sensitivity can be explained by the condition of the augmented
covariance matrix. What is more important, there does not appear
to be a direct way to get around this ill-conditioning. It remains
an open question whether larger portfolio problems suffer from
the same problem. The Stein-type estimator offered by Ledoit and
Wolf [11] appears to be the best bet to solve the problem. If this
larger problem can be solved, then one would simply aggregate
weights over asset classes to get the solution of a corresponding
Strategic Asset Allocation Problem.
What this analysis really brings into question is the practise of
an investment advisor asking a client to answer a series of ques-
tions to gauge the client’s risk tolerance. Presumably, the answers
to these questions will lead to the advisor putting the client into an
asset portfolio (i.e. the right combination of money market, bonds,
and stock classes) consistent with the client’s risk tolerance. Our
analysis suggests that there is no reliable science behind this prac-
tise.
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