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a b s t r a c t

Important features to be included in queueing-theoretic models of the call center operation are multiple
servers, impatient customers, time-varying arrival process, and operator’s after-call work (ACW). We
propose a fluid approximation technique for the queueing model with these features by extending the
analysis of a similar model without ACW recently developed by Liu andWhitt (2012). Ourmodel assumes
that the service for each quantum of fluid consists of a sequence of two stages, the first stage for the
conversation with a customer and the second stage for the ACW. When the duration of each stage has
exponential, hyperexponential or hypo-exponential distribution, we derive the time-dependent behavior
of the content of fluid in each stage of service as well as that in the waiting room. Numerical examples
are shown to illustrate the system performance for the cases in which the input rate and/or the number
of servers vary in sinusoidal fashion as well as in adaptive ways and in stationary cases.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Queueing models have been widely used to model the per-
formance of call centers with impatient customers [1–4], which
means that customers in the waiting line may leave before getting
service. The multiserver queue M/M/s with impatient customers
is called Erlang-A model, ‘‘A’’ for ‘‘abandonment’’, in contrast with
the well-known Erlang-Bmodel (M/M/s/s) and the Erlang-C model
(M/M/swith only patient customers).

Through themeasurements at real call centers, however,we ob-
serve that operators usually spend sizable amount of time to com-
plete additional work after finishing conversation with customers.
For example, they enter customer profiles and summary of conver-
sation into the customermanagement database after conversation.
Such extra work of operators is called the after-call work (ACW).
Cleveland and Harne [5, Section 8] describe:

The ACW is the work that is necessitated by and immediately
follows an inbound transaction. Often includes entering data,
filling out forms and making outbound calls necessary to
complete the transaction. The agent is unavailable to receive
another inbound call while in this mode.

∗ Corresponding author. Tel.: +81 29 853 5414; fax: +81 29 853 7291.
E-mail address: takagi@sk.tsukuba.ac.jp (H. Takagi).
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0/).
The ACW is also called ‘‘post call activity’’ [6–8], ‘‘wrap-up times’’
[1], ‘‘after-hung-up times’’ [9], and ‘‘postservice activity’’ [10,11].
Harris and Phillips [6] mention:

The post call activity is a phase in which the operator may fill
out dockets, make supplementary phone calls or perform other
clerical activities before pressing a key to indicate that he/she
is able to accept another call from the queue (if such a call is
present).

Takagi and Taguchi [12] study a two-dimensional birth-and-
death process for theM/M/K /J queuewithACW,whereK , the num-
ber of servers, represents the total number of operators working in
the call center and J , the maximum number of customers accom-
modated in the system, stands for the number of incoming tele-
phone lines. Unlike usual queueing models, we do not necessarily
assume that J ≥ K , because servers may beworking on ACWwhile
some customers are present in the waiting room. Phung-Duc and
Kawanishi [13] present amatrix-geometric analysis for a queueing
model with retrial arrivals of blocked and abandoned customers.
All models in these pieces of work assume the steady state of the
system.

Another realistic feature of call center operation is that the
call input process is time-varying. However, the exact stochastic
analysis of a queueing model with multiple servers with generally
distributed service times and/or time-varying arrival process is
not easy. The fluid approximation technique has been exploited to
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Fig. 1. System model and state variables in the underloaded state.
Fig. 2. System model and state variables in the overloaded state.
deal with such models traditionally [14]. More recently, the fluid
approximation is applied to stationary multiserver queues with
impatient customers [15,16] aswell as thosewith the time-varying
input rate and number of servers [17–19].

In this paper, we present the fluid approximation for a multi-
server queueing model with impatient customers, two stages of
service time (representing the conversation and ACW in a call cen-
ter), and time-varying input rate and number of servers. Our ap-
proach is an extension of the method for the Mt/GI/st + GI model
originally developed by Liu andWhitt [20,19] (they later extended
the analysis to networks of fluid queues [21,22]). In this notation,
‘‘Mt ’’ means a Poisson arrival process with time-varying arrival
rate, the first ‘‘GI’’ an independent, generally distributed service
time, ‘‘st ’’ a time-varying number of servers, and ‘‘+GI’’ a general
abandonment-time distribution.

We show that the system state alternates between the under-
loaded interval inwhich there are idle servers and the overloaded in-
terval in which arriving fluid quanta must wait for service because
all servers are busy. We study the dynamics of the fluid content in
service in both underloaded and overloaded states. We also study
the dynamics of the fluid content in thewaiting roomand thewait-
ing time of a fluid quantum that arrives in the overloaded state. Our
analysis is applied to several illustrative cases with time-varying
input rate and number of servers. If the number of servers is deter-
mined adaptively to cope with only the load of conversation, the
system is always overloaded but it remains stable. If the number
of servers is determined adaptively in accordance with the load of
both conversation and ACW, the system is always underloaded.

To the best of the authors’ knowledge, this paper is the first
work inwhich the fluid approximation is applied to theMt/GI/st +
GI model with two stages of service time as a model of the call
center operation with ACW. This paper is partly based on the
Master Thesis of the first author [23] submitted to the Graduate
School of Systems, Information and Engineering of the University
of Tsukuba, Japan.

2. Fluid model of call center operation with after-call work

In this section, we introduce a fluid model of the call center
operation with ACW by extending the model and analysis by Liu
and Whitt [19,16].

2.1. Definition of the system model

We consider a fluid queueing system with multiple servers
where incoming calls in a call center are modeled by quanta of
fluid. We assume that the service time a server, representing an
operator, spends on each fluid quantum consists of a sequence of
two stages, called ‘‘service 1’’ for the conversation with a customer
and ‘‘service 2’’ for ACW, each having independent duration.
We assume that the same server continues to provide service 2
immediately after service 1 for each fluid quantum. Let there be
s(t) servers in the system at time t ≥ 0. The staffing function s(t) is
given exogenously or adaptively somehow depending on the input
rate of fluid. At any time, each server is either in service or being
idle such that si(t) servers are engaged in service i (i = 1, 2), where
s(t) ≥ s1(t) + s2(t).

The input of fluid quantum directly enters service 1 if there is
a server available; this state is called underloaded. Otherwise, the
input flows into the ‘‘waiting room’’ for service 1; this state is called
overloaded. No waiting room is needed for service 2 because the
same server takes care of the ACW for the fluid quantum that he
has just given service 1. The server who has finished service 2 can
start service 1 for another fluid quantum if any in thewaiting room,
or he becomes idle otherwise. The fluid quanta leave the system
either by completing service 2 or by abandonment while being in
the waiting room. The fluid quanta never leave the system during
services 1 and 2. For a system with time-varying staffing function,
we assume that the time variation in the total number of servers
is solely turned to the time variation in the number of servers
assigned to service 1. We also assume that the number of servers
assigned to each service never goes below the level of fluid content
in that service at any moment so that no fluid quanta are forced
out of the system once they have entered service. This model is
schematically depicted alongwith relevant state variables in Figs. 1
and 2 for the underloaded and overloaded states, respectively. The
state variables are introduced in the following subsection.

2.2. Definition of state variables and their relations

We assume that the fluid quanta arrive at service 1 according to
a deterministic processwith time-varying rateλ(t), t ≥ 0.We de-
note by F(x) and f (x) the distribution function and the probability
density function (pdf), respectively, for the abandonment time of
each fluid quantum in the waiting room. Also, we denote by Gi(x)
and gi(x) the distribution and density functions, respectively, for
the service time of each fluid quantum in service i (i = 1, 2). Thus
we have

F(x) :=

 x

0
f (u)du, Gi(x) :=

 u

0
gi(u)du x ≥ 0, i = 1, 2.

Furthermore, let F(x) and Gi(x) be their complimentary distribu-
tion functions (CDF’s) defined by

F(x) := 1 − F(x), Gi(x) := 1 − Gi(x) x ≥ 0, i = 1, 2.

These functions are assumed to be given in the model.
At time t(≥0), we denote by Q (t, x) the fluid content that has

been waiting for the time units less than or equal to x in the
waiting room. Similarly, we denote by Bi(t, x) the fluid content in
service that has been in service i for the time units less than or
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Fig. 3. Alternation of underloaded and overloaded intervals.
equal to x (i = 1, 2). Furthermore, let q(t, x) and bi(t, x) be their
corresponding density functions as

Q (t, x) =

 x

0
q(t, u)du, Bi(t, x) =

 x

0
bi(t, u)du

x ≥ 0, i = 1, 2. (1)

Then the fluid content in the waiting room and that in service i at
time t are respectively given by

Q (t) := Q (t, ∞), Bi(t) := Bi(t, ∞) i = 1, 2. (2)

Let us definew(t) as the largest waiting time for the fluid in the
waiting room:

w(t) := inf {y ≥ 0 : q(t, x) = 0 for all x > y} t ≥ 0.

If we assume that fluid quanta enter service in the order of arrival,
i.e., according to the first-come first-served (FCFS) discipline, w(t)
is the waiting time of a fluid quantum that enters service at time t .
Since

q(t, x) = 0 x > w(t),

w(t) is called the boundary waiting time by Liu and Whitt [19].
The above-defined density functions for the fluid content satisfy

the following fundamental evolution equations [19, Assumption 6]:

q(t + y, x + y) = q(t, x)
F(x + y)

F(x)
0 ≤ x < w(t) − y, (3)

bi(t + y, x + y) = bi(t, x)
Gi(x + y)

Gi(x)
x ≥ 0, i = 1, 2. (4)

Eq. (3) simply says that the fluid quanta present in the waiting
room at time t that have not abandoned for x time units and do not
do so for y more time units remain there at time t + y. Similarly,
Eq. (4) says that the fluid quanta in service i at time t that have not
completed service for x time units and do not do so for ymore time
units remain in service i at time t + y (i = 1, 2).

We define the instantaneous ending rates, i.e., the hazard-rate
functions, for the abandonment time and the service times by

hF (x) :=
f (x)

F(x)
, hGi(x) :=

gi(x)

Gi(x)
x ≥ 0, i = 1, 2.

Then the rate α(t) of fluid that abandons at time t and the
output rate σi(t) of fluid that service i is completed at time t are
respectively given by

α(t) =


∞

0
q(t, x)hF (x)dx =

 w(t)

0
q(t, x)hF (x)dx

0 ≤ w(t) ≤ t, (5)

σi(t) =


∞

0
bi(t, x)hGi(x)dx t ≥ 0, i = 1, 2. (6)

2.3. Alternation of underloaded and overloaded intervals

We assume that the system state, started at time t0, alternates
between the underloaded and overloaded intervals. Let us denote
by {t2n; n = 0, 1, 2, . . .} a sequence of epochs at which under-
loaded intervals are started, and denote by {t2n+1; n = 0, 1, 2, . . .}
a sequence of epochs at which overloaded intervals are started
such that

[t2n, t2n+1] : underloaded interval;
[t2n+1, t2n+2] : overloaded interval n = 0, 1, 2, . . . .

See Fig. 3 for the alternation of underloaded and overloaded inter-
vals.

The system is said to be in the underloaded state if a fluid
quantum that arrives enters service 1 immediately because there
are more servers than the total fluid content in the system.
Therefore, if the system is underloaded at time t ∈ [t2n, t2n+1], we
have

Q (t) = 0, s(t) > B1(t) + B2(t) t ∈ [t2n, t2n+1]. (7)

The underloaded interval [t2n, t2n+1] ends when the total fluid
content in services 1 and 2 becomes equal to the total number of
servers for the first time after t2n. Thus the termination epoch t2n+1
of the underloaded interval is determined by the condition

t2n+1 = inf{t ≥ t2n : s(t) = B1(t) + B2(t)} n = 0, 1, 2, . . . . (8)

The system is said to be in the overloaded state if a fluid quantum
that arrives cannot enter service 1 because there are no servers
available. Therefore, if the system is overloaded at time t ∈

[t2n+1, t2n+2], we have

Q (t) > 0, s(t) = B1(t) + B2(t) t ∈ [t2n+1, t2n+2]. (9)

The overloaded interval [t2n+1, t2n+2] ends when the fluid content
in the waiting room vanishes. Thus the termination epoch t2n+2 of
the overloaded interval is determined by the condition

t2n+2 = inf{t ≥ t2n+1 : Q (t) = 0} n = 0, 1, 2, . . . . (10)

2.4. Fluid in service in the underloaded state

Let us first study the fluid content in service i (i = 1, 2) at time
t when the system is in the underloaded interval. For the simplic-
ity of notation, we assume in this subsection that the underloaded
interval of our concern is started at time 0 without loss of gener-
ality. For service 1, from Eq. (4) with i = 1, we can derive the fol-
lowing transport partial differential equation for b1(t, x) (Liu and
Whitt [19, online version, Appendix B]):

∂b1(t, x)
∂t

+
∂b1(t, x)

∂x
= −hG1(x)b1(t, x) (11)

with initial condition b1(0, x) and the boundary condition

b1(t, 0) = λ(t) t ≥ 0, (12)

which is the rate of fluid going into service 1. Then the solution is
given by (Liu and Whitt [19, Proposition 2]):

b1(t, x) = G1(x)λ(t − x)1{x≤t} +
G1(x)

G1(x − t)
b1(0, x − t)1{x>t}, (13)

where 1E is the indicator function for event E defined by

1E :=


1 if E is true,
0 otherwise.

See Fig. 4 for the two cases x ≤ t and x > t of contribution to
b1(t, x). If x ≤ t , the new arrival of fluid quantawith rate λ(t−x) at
time t−x that stay longer than x timeunits contributes to b1(t, x). If
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(a) x ≤ t . (b) x > t .

Fig. 4. Two cases for calculating b1(t, x) at time t in the underloaded state.
x > t , the fluid content b1(0, x− t) at time 0 that stays longer than
x time units contributes to b1(t, x). From Eq. (13) we can derive

B1(t) =

 t

0
G1(x)λ(t − x)dx +


∞

0

G1(x + t)

G1(x)
b1(0, x)dx. (14)

From Eqs. (6) and (13), the output rate from service 1 is given by

σ1(t) =

 t

0
g1(x)λ(t − x)dx +


∞

0

g1(x + t)

G1(x)
b1(0, x)dx.

For service 2, by similar manipulation of Eq. (4) with i = 2, we
get the partial differential equation for b2(t, x):

∂b2(t, x)
∂t

+
∂b2(t, x)

∂x
= −hG2(x)b2(t, x) (15)

with initial condition b2(0, x) and the boundary condition
b2(t, 0) = σ1(t) t ≥ 0. (16)
Then we can derive

b2(t, x) = G2(x)σ1(t − x)1{x≤t} +
G2(x)

G2(x − t)
b2(0, x − t)1{x>t},

B2(t) =

 t

0
G2(x)σ1(t − x)dx +


∞

0

G2(x + t)

G2(x)
b2(0, x)dx,

σ2(t) =

 t

0
g2(x)σ1(t − x)dx +


∞

0

g2(x + t)

G2(x)
b2(0, x)dx. (17)

During the underloaded interval, there are s(t)−B1(t)−B2(t) > 0
idle servers.

2.5. Fluid in service and in the waiting room in the overloaded state

Wenext consider the fluid content present in the systemat time
t when it is in the overloaded interval. Again we assume in this
subsection that the overloaded interval of our concern is started at
time 0 without loss of generality. From Eq. (4), the fluid content in
service i (i = 1, 2) is governed by

b1(t, x) = G1(x)b1(t − x, 0)1{x≤t}

+
G1(x)

G1(x − t)
b1(0, x − t)1{x>t}, (18)

b2(t, x) = G2(x)b2(t − x, 0)1{x≤t}

+
G2(x)

G2(x − t)
b2(0, x − t)1{x>t}. (19)

In these equations, while b1(0, x) and b2(0, x) are given as initial
conditions, we must know the boundary conditions b1(t, 0) and
b2(t, 0). This can be done in principle by extending the method of
Liu and Whitt [19, Section 6.2] for the solution to the fixed-point
equation for our Mt/GI/st + GI model as follows. Since the input
rate to service 2 equals the output rate of service 1, we have

b2(t, 0) = σ1(t) =

 t

0
g1(x)b1(t − x, 0)dx

+


∞

0

g1(x + t)

G1(x)
b1(0, x)dx. (20)
In the overloaded state, the fluid entrance rate into service 1 is the
sum of the rate at which the number of servers is increased and the
output rate of service 2. Thus we have

b1(t, 0) = s′(t) + σ2(t) = s′(t) +

 t

0
g2(x)b2(t − x, 0)dx

+


∞

0

g2(x + t)

G2(x)
b2(0, x)dx. (21)

Eqs. (20) and (21) provide the set of simultaneous integral
equations for the functions b1(t, 0) and b2(t, 0) given s′(t) and the
initial conditions b1(0, x) and b2(0, x).

During the overloaded interval, all servers are busy, each being
engaged either in service 1 or in service 2, so that the fluid content
in service i equals the number of servers for service i:

Bi(t) = si(t) i = 1, 2; s(t) = s1(t) + s2(t). (22)

There are no idle servers in the overloaded interval.
Let us derive the equations governing the number si(t) of

servers in service i (i = 1, 2). The fluid quantum whose service
1 is finished at time t enters service 2 immediately with rate σ1(t).
At this moment, the number of servers in service 1 decreases with
rate σ1(t) and the number of servers in service 2 increaseswith the
same rate. The fluid quantum whose service 2 is finished at time t
leaves the system with rate σ2(t). The server then turns to service
1 immediately. At this moment, the number of servers in service
2 decreases with rate σ2(t) and the number of servers in service 1
increases with the same rate. Since the time variation in the total
number of servers is assumed to occur in service 1, we have the
following set of ordinary differential equations for {s1(t), s2(t)}:
ds1(t)
dt

= −σ1(t) + σ2(t) + s′(t),

ds2(t)
dt

= σ1(t) − σ2(t). (23)

Recall our assumption that the number of servers for service i
never goes below the level of fluid content in service i (i = 1, 2).
These conditions are expressed as

s1(t) + s′(t)∆t + σ2(t)∆t − σ1(t)∆t ≥ B1(t) − σ1(t)∆t
and s2(t) + σ1(t)∆t − σ2(t)∆t ≥ B2(t) − σ2(t)∆t,

where the left-hand side of each equation shows the number of
servers while the right-hand side shows the fluid content at time
t+∆t . The second inequality is always satisfied as σ1(t) ≥ 0. From
the first inequality, a sufficient condition for the feasibility is given
by [19, online version, Appendix G.2]

b1(t, 0) = s′(t) + σ2(t) ≥ 0. (24)

Therefore, we impose the condition in Eq. (24) for the set of
equations in Eq. (23).

We next consider the fluid content in the waiting room during
the overloaded interval. From Eq. (3), we can derive the partial
differential equation for q(t, x):

∂q(t, x)
∂t

+
∂q(t, x)

∂x
= −hF (x)q(t, x) 0 ≤ x ≤ w(t) (25)
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with initial condition q(0, x) and the boundary condition

q(t, 0) = λ(t) t ≥ 0. (26)

Then the density function of the fluid content in the waiting room
is given by

q(t, x) = F(x)λ(t − x)1{x≤min{w(t),t}}

+
F(x)

F(x − t)
q(0, x − t)1{t<x≤w(t)}. (27)

This expression has the following meaning; see Fig. 4 for a similar
situation in the underloaded state. For x ≤ t , q(t, x)dx = F(x)λ(t−
x)dx is the quantity of fluid quanta that arrive during [t−x−dx, t−
x] and do not abandon for x time units. For x > t , q(t, x)dx =

[F(x)/F(x − t)]q(0, x − t)dx is the fluid content in the waiting
room at time t which comes from the fluid content q(0, x− t)dx at
time 0 that does not abandon for x time units. From Eq. (27) we can
derive

Q (t) =

 min{w(t),t}

0
F(x)λ(t − x)dx

+ 1{w(t)>t}

 w(t)−t

0

F(x + t)

F(x)
q(0, x)dx.

2.6. Waiting time of a fluid quantum in the overloaded state

Let us now derive the differential equation for the boundary
waiting time w(t) by following Liu and Whitt [19, online version,
Appendix D.1]. To do so, for 0 ≤ w(t) ≤ t , we note

Q (t) =

 w(t)

0
λ(t − x)F(x)dx =

 t

t−w(t)
λ(x)F(t − x)dx. (28)

Differentiating the rightmost side of this equation with respect to
t , we get

dQ (t)
dt

= λ(t)F(0) − λ[t − w(t)]F [w(t)][1 − w′(t)]

−

 t

t−w(t)
λ(x)f (t − x)dx

= λ(t) − q[t, w(t)][1 − w′(t)] − α(t), (29)

where, from Eq. (5) we have used

α(t) =

 w(t)

0
q(t, x)hF (x)dx =

 w(t)

0
λ(t − x)f (x)dx

=

 t

t−w(t)
λ(x)f (t − x)dx. (30)

On the other hand, the fluid content in the waiting room varies as

dQ (t)
dt

= λ(t) − α(t) − b1(t, 0). (31)

Comparing Eqs. (29) and (31), we obtain the relation

b1(t, 0) = q[t, w(t)][1 − w′(t)],

which leads to the first-order nonlinear differential equation for
w(t):

dw(t)
dt

= 1 −
b1(t, 0)

λ[t − w(t)]F [w(t)]
t ≥ 0 (32)

with initial condition w(0) = 0, where b1(t, 0) is given as the
solution to the set of Eqs. (20) and (21).
In addition, Liu andWhitt [19, Section 7.3] consider the potential
waiting time v(t). This is defined as the virtual waiting time of an
arriving fluid quantum at time t which elects never to abandon.
Since thewaiting time of the fluid quantum that is entering service
1 at time t is w(t), then this quantum must have entered the
waiting room w(t) time units ago. This implies that the potential
waiting time at t − w(t) is w(t). It follows that

v[t − w(t)] = w(t) or v(t) = w[t + v(t)]. (33)

Then the differential equation for v(t) is given by

dv(t)
dt

=
λ(t)F [v(t)]

b1[t + v(t), 0]
− 1 t ≥ 0 (34)

with initial condition v(0) = 0.

2.7. Stationary model

We show the results for the stationary fluid model of the
currentmodel, which is again an extension of the analysis byWhitt
[16, Section 3]. In this case we assume that

λ(t) ≡ λ, si(t) ≡ si t ≥ 0, i = 1, 2

and that the distribution functions F(x), G1(x), and G2(x) are given.
We first consider the case in which both services 1 and 2 are

underloaded. In this case, for service 1 we have the density of fluid
content given by

b1(x) = λG1(x) x ≥ 0,

in particular, b1(0) = λ. Thus we get the total fluid content in
service 1:

B1 =


∞

0
b1(x)dx = λ


∞

0
G1(x)dx = λE[G1].

Then the rate of fluid at which service 1 is completed equals the
input rate:

σ1 =


∞

0
b1(x)hG1(x)dx = λ


∞

0
g1(x)dx = λ.

Similarly, for service 2 we have the density of fluid content
given by

b2(x) = σ1G2(x) x ≥ 0,

in particular, b2(0) = σ1 = λ. Thus we get the total fluid content
in service 2:

B2 =


∞

0
b2(x)dx = σ1


∞

0
G2(x)dx = σ1E[G2] = λE[G2].

Then the rate of fluid at which service 2 is completed also equals
the input rate:

σ2 =


∞

0
b2(x)hG2(x)dx = σ1


∞

0
g2(x)dx = σ1 = λ.

This case occurs if Bi < si (i = 1, 2), or

λ < min


s1
E[G1]

,
s2

E[G2]


.

We next consider the overloaded case for service 1. Due to the
abandonment of fluid in the waiting room, there is certainly a
stationary state in the overloaded case for service 1. There is no
stationary state in the overloaded case for service 2.

In this case, the density of the fluid content in the waiting room
is given by

q(x) = λF(x)1{x≤w} x ≥ 0,
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in particular, q(0) = λ. We determine w later by Eq. (37). Then the
total fluid content in the waiting room is given by

Q =


∞

0
q(x)dx = λ

 w

0
F(x)dx.

The rate of fluid that abandons in the waiting room is given by

α =


∞

0
q(x)hF (x)dx = λ

 w

0
f (x)dx = λF(w). (35)

Considering the stationary case in Eq. (31), we get the balance
relation

λ = α + b1(0). (36)

We can find b1(0) as follows. Since b1(x) = b1(0)G1(x) for x ≥ 0,
we get

B1 = b1(0)


∞

0
G1(x)dx = b1(0)E[G1].

It follows from the overloaded condition B1 = s1 that

b1(0) =
s1

E[G1]
.

Substituting this result into Eqs. (35) and (36), we obtain the
equation to solve for w:

F(w) =
s1

λE[G1]
. (37)

The rate of fluid that service 1 is completed is given by

σ1 =


∞

0
b1(x)hG1(x)dx = b1(0)


∞

0
g1(x)dx = b1(0) =

s1
E[G1]

.

Then the rate of abandonment is given by

α = λF(w) = λ

1 − F(w)


= λ −

s1
E[G1]

.

Note that service 2 must be underloaded because there is no
waiting room for service 2. In this case, we again have b2(x) =

σ1G2(x) for x ≥ 0, which leads to

σ2 = σ1 = b1(0); B2 = σ1E[G2] = b1(0)E[G2] =
s1E[G2]

E[G1]
.

This case occurs if α > 0, or

λ >
s1

E[G1]
.

3. System with exponentially distributed conversation and
ACW times

We study a special system with exponentially distributed
conversation and ACW times for more explicit analysis. For such
a system, we assume

Gi(x) = 1 − e−µix x ≥ 0, i = 1, 2, (38)

which means that the associated hazard-rate functions are con-
stant: hGi(x) = µi (i = 1, 2). Then the mean conversation time
is 1/µ1 and the mean ACW time is 1/µ2. The solution in this
case is straightforward as we show below for the underloaded in-
terval [t2n, t2n+1] and the overloaded interval [t2n+1, t2n+2], n =

0, 1, 2, . . . , defined in Section 2.3.
3.1. Solution for the underloaded state

Let us consider the underloaded state at time t ∈ [t2n, t2n+1].
From Eq. (13), we have

b1(t, x)

=


G1(x)λ(t − x) 0 ≤ x ≤ t − t2n,

G1(x)

G1(x − t + t2n)
b1(t2n, x − t + t2n) x > t − t2n

=


e−µ1xλ(t − x) 0 ≤ x ≤ t − t2n,
e−µ1(t−t2n)b1(t2n, x − t + t2n) x > t − t2n.

In particular, we can confirm Eq. (12). Therefore, or from Eq. (14),
we obtain the fluid content B1(t) in service 1 at time t as

B1(t) =

 t−t2n

0
G1(x)λ(t − x)dx

+


∞

0

G1(x + t − t2n)

G1(x)
b1(t2n, x)dx

=

 t−t2n

0
λ(t − x)e−µ1xdx + e−µ1(t−t2n)B1(t2n). (39)

The output rate of service 1 is simply given by

σ1(t) =


∞

0
b1(t, x)hG1(x)dx = µ1


∞

0
b1(t, x)dx

= µ1B1(t). (40)

Similarly, from Eq. (17), we have

b2(t, x)

=


G2(x)σ1(t − x) 0 ≤ x ≤ t − t2n,

G2(x)

G2(x − t + t2n)
b2(t2n, x − t + t2n) x > t − t2n

=


µ1e−µ2xB1(t − x) 0 ≤ x ≤ t − t2n,
e−µ2(t−t2n)b2(t2n, x − t + t2n) x > t − t2n.

Thus we obtain the fluid content B2(t) in service 2 at time t as

B2(t) =

 t−t2n

0
σ1(t − x)e−µ2xdx

+ e−µ2(t−t2n)


∞

t−t2n
b2(t2n, x − t + t2n)dx

= µ1

 t−t2n

0
B1(t − x)e−µ2xdx + e−µ2(t−t2n)B2(t2n). (41)

The output rate of service 2 is given by

σ2(t) = µ2B2(t). (42)

We note a great merit of exponentially distributed conversation
and ACW times that we can obtain Bi(t) in Eqs. (39) and (41) and
then σi(t) in Eqs. (40) and (42) without finding bi(t, x), i = 1, 2.

The initial values Bi(t2n), i = 1, 2, for the underloaded
interval [t2n, t2n+1] are given from the solution for the preceding
overloaded interval [t2n−1, t2n] as

B1(t2n) = s(t2n) − B2(t2n),
B2(t2n) = e−(µ1+µ2)(t2n−t2n−1)B2(t2n−1)

+ µ1e−(µ1+µ2)t2n

 t2n

t2n−1

e(µ1+µ2)us(u)du

from Eq. (47) in the sequel. The termination epoch t2n+1 of the
underloaded interval [t2n, t2n+1] is found by the condition in
Eq. (8).
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3.2. Solution for the overloaded state

Let us consider the overloaded state at time t ∈ [t2n+1, t2n+2].
The output rate of fluid at which service i is completed at time t is
obtained from Eqs. (6) and (22) as

σi(t) =


∞

0
bi(t, x)hGi(x)dx = µi


∞

0
bi(t, x)dx

= µiBi(t) = µisi(t) i = 1, 2. (43)

Substituting Eq. (43) into Eq. (23), we have the following set of
simultaneous linear differential equations for {B1(t), B2(t)}:

dB1(t)
dt

= −µ1B1(t) + µ2B2(t) + s′(t), (44)

dB2(t)
dt

= µ1B1(t) − µ2B2(t). (45)

Using s(t) = B1(t) + B2(t), we get the first-order differential
equation for B2(t):

dB2(t)
dt

= µ1s(t) − (µ1 + µ2)B2(t) t2n+1 ≤ t ≤ t2n+2, (46)

whose solution is given by

B2(t) = e−(µ1+µ2)(t−t2n+1)B2(t2n+1)

+ µ1e−(µ1+µ2)t
 t

t2n+1

e(µ1+µ2)us(u)du, (47)

with the initial condition B2(t2n+1) from the fluid content B2(t) at
the end of the preceding underloaded interval [t2n, t2n+1]. We then
get B1(t) = s(t) − B2(t).

In the differential equation (32) for w(t), we have noted that
b1(t, 0) should be given as the solution to the fixed-point equations
(20) and (21) in general. However, it can be obtained easily in
the present case in which both conversation and ACW times are
exponentially distributed. Since service 1 is started by the servers
who have completed service 2 as well as by the servers who are
added to the system, we have the relation

b1(t, 0) = µ2B2(t) + s′(t), (48)

which is assumed to be nonnegative from the feasibility condition
in Eq. (24). Substituting Eq. (48) into Eq. (32),we get the differential
equation for w(t):

dw(t)
dt

= 1 −
µ2B2(t) + s′(t)

λ[t − w(t)]F [w(t)]
t2n+1 ≤ t ≤ t2n+2 (49)

with initial condition w(t2n+1) = 0. Substituting Eq. (48) into
Eq. (34), we get the differential equation for v(t):

dv(t)
dt

=
λ(t)F [v(t)]

µ2B2[t + v(t)] + s′[t + v(t)]
− 1

t2n+1 ≤ t ≤ t2n+2 (50)

with initial condition v(t2n+1) = 0, which is consistent with
w(t2n+1) = 0.

Once w(t) is obtained, we get the fluid content Q (t) in the
waiting room at time t by Eq. (28). The abandonment rate α(t)
is calculated by Eq. (30). The termination epoch t2n+2 of the
overloaded interval [t2n+1, t2n+2] is determined by the condition
in Eq. (10), or equivalently

t2n+2 = inf{t ≥ t2n+1 : w(t) = 0}. (51)
4. Numerical examples for systems with exponentially dis-
tributed abandonment time

The nonlinear differential equations (49) for w(t) and (50) for
v(t) are to be solved numerically when the function F(t) is given.
Therefore, a simple form for F(t) does not help much for analytical
solution. Nevertheless, we show some numerical examples for
systems with the exponentially distributed conversation and ACW
times and the exponentially distributed abandonment time. Thus
we assume Eq. (38) for the service times along with

F(x) = 1 − e−θx, f (x) = θe−θx x ≥ 0,
where θ is the constant hazard rate of the abandonment time, and
1/θ is the mean abandonment time. Green et al. [18] mention that
it often suffices to workwith an exponentially distributed time-to-
abandon approximation as it was empirically justified.

In this case, the rate α(t) of fluid that abandons at time t is
proportional to the amount Q (t) of the fluid in the waiting room
during overloaded intervals. Indeed, from Eqs. (28) and (30), we
have

α(t) =

 w(t)

0
λ(t − x)f (x)dx = θ

 w(t)

0
λ(t − x)e−θxdx

= θ

 w(t)

0
λ(t − x)F(x)dx = θQ (t),

which is reasonable as θ is the rate at which each quantum of fluid
in the waiting room abandons.

In all the numerical examples in this section, we specifically
assume that

G1(x) = 1 − e−5x/4, G2(x) = 1 − e−5x,

F(x) = 1 − e−2x x ≥ 0
which means that µ1 =

5
4 , µ2 = 5 (meaning that the total mean

service time is 1/µ1 + 1/µ2 = 1), and θ = 2 in the above
formulation. If the unit of time is 1 h, themean conversation time is
48min, themean ACW time is 12min, and themean abandonment
time is 30 min.

4.1. Sinusoidal input rate and constant number of servers

In the first example, we consider a system in which the input
rate changes as a sinusoidal function of time t while the total
number of servers is kept constant:

λ(t) = 100[1 + 0.6 sin(t)], s(t) = 100 t ≥ 0. (52)
Green et al. [18] mention that the dynamic behavior of the
demand function (for call centers) is reasonably characterized by
a sinusoidal function. The input rate function λ(t) in Eq. (52) is
used as a base example by Liu andWhitt [19, Section 2]. According
to them, by making the mean input rate coincide with the fixed
number of servers, we ensure that the system will alternate
between underloaded and overloaded states.

The result of numerical analysis is shown in Table 1 and Fig. 5.
Table 1 shows a sequence of epochs at which the state changes
from underloaded to overloaded and vice versa. Fig. 5(a) shows
the sinusoidal arrival rate λ(t) given above. Fig. 5(b) plots the fluid
content Bi(t) in service i (i = 1, 2) (dashed line for i = 1 and
dashed-and-dotted line for i = 2) as well as B(t) = B1(t) + B2(t)
(solid line) at time t . We observe that B1(t) = 80 and that B2(t) =

20 if the system is overloaded at time t . The ratio B1(t)/B2(t) = 4
coincideswith the ratio ofmean service times (1/µ1)/(1/µ2) = 4.
We also plot the fluid content Q (t) in the waiting room and the
total fluid content in the system B(t) + Q (t) with superposed
input rate λ(t) in Figs. 5(c) and (d), respectively. We observe that
B(t) + Q (t) lags in time behind λ(t). The boundary and potential
waiting times are shown in Fig. 5(e). The fluid entrance rate b1(t, 0)
into service 1 is shown in Fig. 5(f).
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Table 1
Epochs of state change in the system with sinusoidal input rate λ(t) = 100[1 + 0.6 sin(t)] and constant number of servers s(t) = 100.

t0 t1 t2 t3 t4 t5 t6 t7 t8

0 1.12283 3.60165 6.99994 9.88785 13.28309 16.17103 19.56628 22.45422
(a) Input rate λ(t). (b) Fluid in service Bi(t) and B(t).

(c) Waiting fluid Q (t). (d) Total fluid B(t) + Q (t).

(e) Boundary waiting time w(t) (thick) and potential waiting
time v(t) (thin).

(f) Fluid entrance rate into service b1(t, 0).

Fig. 5. Performance of the system with sinusoidal input rate λ(t) = 100[1 + 0.6 sin(t)] and constant number of servers s(t) = 100.
4.2. Constant input rate and sinusoidal number of servers

In the second example, we consider a system inwhich the input
rate is constant while the total number of servers changes in time:

λ(t) = 100, s(t) = 100[1 + 0.6 sin(t)] t ≥ 0,

where the non-integer number of servers is thought of as
approximation.

The result of numerical analysis is shown in Table 2 and Fig. 6.
Table 2 shows a sequence of epochs at which the state changes
from underloaded to overloaded and vice versa. Fig. 6(a) shows
the sinusoidal number of servers s(t) given above. Fig. 6(b) plots
the fluid content Bi(t) in service i (i = 1, 2) as well as B(t) =
B1(t) + B2(t) at time t with superposed s(t). We observe that
B(t) = s(t) if the system is overloaded at time t . We also plot the
fluid content Q (t) in the waiting room and the total fluid content
B(t) + Q (t) in Figs. 6(c) and (d), respectively. The boundary and
potential waiting times are shown in Fig. 6(e). The fluid entrance
rate b1(t, 0) into service 1 is shown in Fig. 6(f), which is always
positive so that the sufficient condition for feasibility in Eq. (24) is
satisfied.

4.3. Identical sinusoidal input rate and number of servers

In the third example, we consider a system in which the input
rate and the total number of servers change as identical sinusoidal
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Table 2
Epochs of state change in the system with constant input rate λ(t) = 100 and sinusoidal number of servers s(t) = 100[1 + 0.6 sin(t)].

t0 t1 t2 t3 t4 t5 t6 t7

0 3.17519 6.03265 9.42802 12.31596 15.71120 18.59914 21.99439
(a) Number of servers s(t). (b) Fluid in service Bi(t) and B(t).

(c) Waiting fluid Q (t). (d) Total fluid B(t) + Q (t).

(e) Boundary waiting time w(t) (thick) and potential waiting
time v(t) (thin).

(f) Fluid entrance rate into service b1(t, 0).

Fig. 6. Performance of the system with constant input rate λ(t) = 100 and sinusoidal number of servers s(t) = 100[1 + 0.6 sin(t)].
functions in time:

s(t) =


1
µ1

+
1
µ2


λ(t) = 100[1 + 0.6 sin(t)] t ≥ 0.

One might expect good performance because the exactly
necessary and sufficient number of servers are provided with the
input rate at each instant. However, this is not the case as the result
of numerical analysis is shown in Table 3 and Fig. 7. Table 3 shows a
sequence of epochs at which the state changes from underloaded
to overloaded and vice versa. Fig. 7(a) shows λ(t) = s(t) given
above. Fig. 7(b) plots the fluid content Bi(t) in service i (i = 1, 2)
as well as B(t) = B1(t) + B2(t) at time t . Fig. 7(c) displays the
fluid content Q (t) in the waiting room, which is rather significant
in the overloaded state. The reason is that there is a time delay
because each arrival of the fluid quantum remains in the system
for the duration of its service time. Therefore, the fluid content in
the system lags in time behind the input rate.

4.4. Partially adaptive number of servers

A method of incorporating the time lag in the fluid content
behind the input was suggested by Eick et al. [24,25] in terms of
the infinite-servermodel in order to determine the proper number
of servers adaptively depending on the past input rate. In the
Mt/GI/∞ systemwith a time-varying Poisson arrival process with
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Table 3
Epochs of state change in the system with identical sinusoidal arrival process and number of servers λ(t) = s(t) = 100[1 + 0.6 sin(t)].

t0 t1 t2 t3 t4 t5 t6 t7 t8

0 2.35592 5.14545 8.54114 11.42908 14.82432 17.71226 21.10751 23.98545
(a) Identical λ(t) and s(t). (b) Fluid in service Bi(t) and B(t).

(c) Waiting fluid Q (t). (d) Total fluid B(t) + Q (t).

(e) Boundary waiting time w(t) (thick) and potential waiting
time v(t) (thin).

(f) Fluid entrance rate into service b1(t, 0).

Fig. 7. Performance of the system with identical sinusoidal input rate and number of servers λ(t) = s(t) = 100[1 + 0.6 sin(t)].
rate λ(t), the number of customers present in the system (= the
number of busy servers) at time t has a Poisson distribution with
mean t

0
G(x)λ(t − x)dx,

where G(x) is the CDF of the service time. The integrand accounts
for those arrivals during [t − x, t − x+ dx] that have service times
longer than x time units collected over the interval [0, t] of x. This
form also appears in the transient version of Little’s law for non-
stationary queueing systems by Bertsimas and Mourtzinou [26].
In our fourth example, we examine the performance of the
system in which the number of servers is determined adaptively
to cope with the load of service 1 only. As before, let us assume the
sinusoidal input rate λ(t) given in Eq. (52). We then provide the
following number of servers:

s(t) =

 t

0
G1(x)λ(t − x)dx =

 t

0
λ(t − x)e−µ1xdx

= 80 −
80
41


29e−

5
4 t + 12 cos t − 15 sin t


=

λ(t)
µ1

−
16
41


145e−

5
4 t + 60 cos t + 48 sin t


.
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(a) λ(t) and partially adaptive s(t). (b) Fluid in service Bi(t) and B(t).

(c) Waiting fluid Q (t). (d) Total fluid B(t) + Q (t).

(e) Boundary waiting time w(t) (thick) and potential waiting time
v(t) (thin).

(f) Fluid entrance rate into service b1(t, 0).

Fig. 8. Performance of the system with sinusoidal input rate λ(t) = 100[1 + 0.6 sin(t)] and partially adaptive number of servers.
In this case, the system is always overloaded. Thus we obtain

B2(t) = s2(t) = µ1e−(µ1+µ2)t
 t

0
e(µ1+µ2)us(u)du

= 16 +
4

26281


23821e−

25
4 t

− 92945e−
5
4 t

− 36000 cos t + 32700 sin t


,

B1(t) = s1(t) = s(t) − s2(t)

= 64 −
4

26281


23821e−

25
4 t

+ 278835e−
5
4 t

+ 117840 cos t − 159600 sin t


,

b1(t, 0) = µ2s2(t) + s′(t)

= 80 +
20
641


581e−

25
4 t

+ 60 cos t + 1548 sin t


.

The result of this analysis is shown in Fig. 8. Fig. 8(a) shows that
s(t) lags behind λ(t) as intended. Fig. 8(b) plots the fluid content
Bi(t) in service i (i = 1, 2) as well as B(t) = B1(t) + B2(t),
where Bi(t) = si(t) (i = 1, 2) and B(t) = s(t), at time t because
the system is overloaded. Fig. 8(c) plots the fluid content Q (t) in
the waiting room which never vanishes but it does not grow to
infinity. Therefore the system is stable, which occurs becausemore
customers abandon as more customers wait. The peak values of
Q (t) in Fig. 8(c) and those ofwaiting timesw(t) and v(t) in Fig. 8(e)
are much less than the corresponding values in Figs. 7(c) and (e),
respectively, for the system with non-adaptive number of servers.

4.5. Perfectly adaptive number of servers

In the fifth example, we examine the performance of the system
in which the number of servers is determined adaptively to cope
with the load of both services 1 and 2. The pdf of service i is given
by

gi(x) = µie−µix x ≥ 0, i = 1, 2.
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(a) λ(t) and perfectly adaptive s(t). (b) Fluid in service Bi(t) and B(t).

Fig. 9. Performance of the system with sinusoidal input rate λ(t) = 100[1 + 0.6 sin(t)] and the perfectly adaptive number of servers.
If these services are assumed to be independent of each other
and µ1 ≠ µ2, their sum has the density function given by the
convolution

g(x) =

 x

0
g1(t)g2(x − t)dt =

µ1µ2

µ1 − µ2


e−µ2x − e−µ1x


x ≥ 0

and the corresponding CDF given by

G(x) =


∞

x
g(t)dt =

µ1e−µ2x − µ2e−µ1x

µ1 − µ2
x ≥ 0.

For the sinusoidal input rate in Eq. (52), we provide the following
number of servers:

s(t) =

 t

0
G(x)λ(t − x)dx

= 100 +
10

1599


943e−5t

− 12064e−
5
4 t

− 4869 cos t + 5625 sin t


=


1
µ1

+
1
µ2


λ(t) −

10
1599


− 943e−5t

+ 12064e−
5
4 t + 4869 cos t + 3969 sin t


.

This is exactly the number of servers whichmakes it possible to
accept all input without queueing. Therefore, the system is always
underloaded. Thus we have

B1(t) =

 t

0
λ(t − x)e−µ1xdx =

 t

0
λ(t − x)e−

5
4 xdx

= 80 −
80
41


29e−

5
4 t + 12 cos t − 15 sin t


,

B2(t) = µ1

 t

0
B1(t − x)e−µ2xdx =

5
4

 t

0
B1(t − x)e−5xdx

= 20 +
10

1599


943e−5t

− 3016e−
5
4 t

− 1125 cos t + 945 sin t


,

which leads to

B1(t) + B2(t) = s(t).

The result of this analysis is shown in Fig. 9. Fig. 9(a) again
shows that s(t) lags behind λ(t). Comparing with Fig. 8(a), we
observe that manymore servers are needed in order to achieve the
underloaded system all the time. Fig. 9(b) plots the fluid content
Bi(t) in service i (i = 1, 2) as well as B(t) = B1(t) + B2(t). There
is more fluid in service in the present system than in the partially
adaptive system shown in Fig. 8(b).
4.6. Constant input rate and constant number of servers

Finally we consider the stationary model of Section 2.7 with

λ(t) = λ, si(t) = si t ≥ 0, i = 1, 2,

where we assume that

µ1s1 ≤ µ2s2.

Then the system is underloaded if λ ≤ µ1s1, and it is overloaded if
λ > µ1s1.

We then have the following stationary performance:

B1 =


λ/µ1 λ ≤ µ1s1,
s1 λ > µ1s1

; B2 =


λ/µ2 λ ≤ µ1s1,
(µ1s1)/µ2 λ > µ1s1

α = θQ =


0 λ ≤ µ1s1,
λ − µ1s1 λ > µ1s1

;

b1(0) = σ1 = σ2 =


λ λ ≤ µ1s1,
µ1s1 λ > µ1s1

w =

0 λ ≤ µ1s1,
1
θ
log

λ

µ1s1
λ > µ1s1.

5. System with non-exponentially distributed conversation
and ACW times

As an example of applying our method to the Mt/GI/st +

GI model of a call center with non-exponentially distributed
conversation and ACW times, let us consider a system in which
the duration of service 1 for conversation has a hyperexponential
distribution (denoted by H2) and the duration of ACW has a hypo-
exponential distribution (denoted by E2). Then this systemmay be
denoted byMt/(H2+E2)/st +GI, where themeanings of ‘‘Mt ’’, ‘‘st ’’,
and ‘‘+GI’’ are given in Section 1.

We assume that the conversation time has a two-phase
hyperexponential distribution whose pdf and CDF are given by

g1(x) = pg11(x) + qg12(x); G1(x) = pG11(x) + qG12(x),
x ≥ 0, p + q = 1,

where

g1j(x) = µ1je−µ1jx; G1j(x) = e−µ1jx x ≥ 0, j = 1, 2

and

E[G1] =
p

µ11
+

q
µ12

; E[{G1}
2
] =

2p
µ2

11
+

2q
µ2

12
;

C2
G1 =

Var[G1]

(E[G1])2
≥ 1.
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Fig. 10. Hyperexponentially distributed conversation time.

Fig. 11. Hypo-exponentially distributed ACW time.

We assume that the ACW time has a two-phase hypo-exponential
distribution whose pdf is given by

g2(x) =

 x

0
g21(t)g22(x − t)dt x ≥ 0,

where

g2j(x) = µ2je−µ2jx; G2j(x) = e−µ2jx x ≥ 0, j = 1, 2

and

E[G2] =
1

µ21
+

1
µ22

; Var[G2] =
1

µ2
21

+
1

µ2
22

;

C2
G2 =

Var[G2]

(E[G2])2
≤ 1.

5.1. Solution for the underloaded state

The duration of the conversation time has either pdf g11(x)with
probability p (phase 1) or pdf g12(x) with probability q (phase 2)
as shown in Fig. 10. Therefore, during the underloaded interval
t ∈ [t2n, t2n+1], the density for the fluid content in each phase
satisfies the equation

b11(t, x) =


pe−µ11xλ(t − x) 0 ≤ x ≤ t − t2n,
e−µ11(t−t2n)b11(t2n, x − t + t2n) x > t − t2n

and

b12(t, x) =


qe−µ12xλ(t − x) 0 ≤ x ≤ t − t2n,
e−µ12(t−t2n)b12(t2n, x − t + t2n) x > t − t2n.

In particular, we have

b11(t, 0) = pλ(t); b12(t, 0) = qλ(t).

It follows that the fluid content in each phase is given by

B11(t) = p
 t−t2n

0
λ(t − x)e−µ11xdx + e−µ11(t−t2n)B11(t2n),

B12(t) = q
 t−t2n

0
λ(t − x)e−µ12xdx + e−µ12(t−t2n)B12(t2n),

where the initial values B11(t2n) and B12(t2n) are given from the
fluid contents B11(t) and B12(t), respectively, at the end of the
preceding overloaded interval [t2n−1, t2n].

The amount of fluid content during the conversation time is
then given by

B1(t) = B11(t) + B12(t) t ∈ [t2n, t2n+1].
Since the output rate of each phase is given by

σ1j(t) = µ1jB1j(t) t ∈ [t2n, t2n+1], j = 1, 2,

we get the output rate of the conversation

σ1(t) = σ11(t) + σ12(t)
= µ11B11(t) + µ12B12(t) t ∈ [t2n, t2n+1].

The duration of theACWtime consists of phase 1with pdf g21(x)
serially followed by phase 2 with pdf g22(x) as shown in Fig. 11.
Therefore, during the underloaded interval t ∈ [t2n, t2n+1], the
density for the fluid content in phase 1 satisfies the equation

b21(t, x) =


e−µ21xσ1(t − x) 0 ≤ x ≤ t − t2n,
e−µ21(t−t2n)b21(t2n, x − t + t2n) x > t − t2n,

which leads to the fluid content

B21(t) = µ11

 t−t2n

0
e−µ21xB11(t − x)dx

+ µ12

 t−t2n

0
e−µ21xB12(t − x)dx

+ e−µ21(t−t2n)B21(t2n),

where the initial value B21(t2n) is given from the fluid content
B21(t) at the end of the preceding overloaded interval [t2n−1, t2n].
The output rate of phase 1 is given by

σ21(t) = µ21B21(t).

The density for the fluid content in phase 2 satisfies the equation

b22(t, x) =


e−µ22xσ21(t − x) 0 ≤ x ≤ t − t2n
e−µ22(t−t2n)b22(t2n, x − t + t2n) x > t − t2n,

which leads to the fluid content

B22(t) = µ21

 t−t2n

0
e−µ22xB21(t − x)dx + e−µ22(t−t2n)B22(t2n),

where the initial value B22(t2n) is given from the fluid content
B22(t) at the end of the preceding overloaded interval [t2n−1, t2n].
The output rate of phase 2 is given by

σ22(t) = µ22B22(t).

The amount of fluid content during the ACW time is then given by

B2(t) = B21(t) + B22(t) t ∈ [t2n, t2n+1].

The total amount of fluid content during the underloaded interval
is then given by

B(t) = B1(t) + B2(t) t ∈ [t2n, t2n+1].

The termination epoch t2n+1 of the underloaded interval [t2n, t2n+1]

is determined by the condition in Eq. (8).

5.2. Solution for the overloaded state

During the overloaded interval t ∈ [t2n+1, t2n+2], the fluid con-
tent in each phase is governed by the following set of simultaneous
linear differential equations with constant coefficients:

dB11(t)
dt

= −µ11B11(t) + p[µ22B22(t) + s′(t)],

dB12(t)
dt

= −µ12B12(t) + q[µ22B22(t) + s′(t)],

dB21(t)
dt

= −µ21B21(t) + µ11B11(t) + µ12B12(t),

dB22(t)
dt

= −µ22B22(t) + µ21B21(t)
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Table 4
Epochs of state change in the Mt/(H2 + E2)/s/M system.

t0 t1 t2 t3 t4 t5 t6 t7 t8

0 1.15041 3.58694 7.00020 9.88379 13.28263 16.16700 19.56582 21.45019
(a) Hyperexponential distribution for the conversation time. (b) Hypo-exponential distribution for the ACW time.

(c) Fluid in service Bi(t) and B(t). (d) Waiting fluid Q (t).

(e) Total fluid B(t) + Q (t). (f) Boundary waiting time w(t) (thick) and potential waiting
time v(t) (thin).

(g) Fluid entrance rate into service b1(t, 0).

Fig. 12. Performance of the Mt/(H2 + E2)/s + Mmodel.
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with the feasibility condition

b1(t, 0) = µ22B22(t) + s′(t) ≥ 0.

The initial values B11(t2n+1), B12(t2n+1), B21(t2n+1), and B22(t2n+1)
are given from their corresponding values at the end of the pre-
ceding underloaded interval [t2n, t2n+1]. The solution can be eas-
ily obtained by the conventional method of Laplace transform for
solving a set of simultaneous linear differential equationswith con-
stant coefficients.

The differential equation for the boundary waiting time w(t) is
given by

dw(t)
dt

= 1 −
µ22B22(t) + s′(t)

λ[t − w(t)]F [w(t)]
t2n+1 ≤ t ≤ t2n+2

with initial condition w(t2n+1) = 0. The differential equation for
the potential waiting time v(t) is given by

dv(t)
dt

=
λ(t)F [v(t)]

µ22B22[t + v(t)] + s′[t + v(t)]
− 1 t2n+1 ≤ t ≤ t2n+2

with initial condition v(t2n+1) = 0.
Once w(t) is obtained, we get the fluid content Q (t) in the

waiting room and the abandonment rate α(t) by Eqs. (28) and
(30), respectively. The termination epoch t2n+2 of the overloaded
interval [t2n+1, t2n+2] is determined by the condition in Eq. (51).

5.3. Numerical example

Let us show the numerical results for an Mt/(H2 + E2)/s + M
system with the sinusoidal input rate function λ(t) and constant
number of servers s(t) given in Eq. (52). However we assume that
the service 1 has a hyperexponential distribution and that service
2 has a hypo-exponential distribution with parameters

µ11 =
5
3
, µ12 =

5
6
, µ21 = 20,

µ22 =
20
3

, p =
2
3
, q =

1
3

so that

g1(x) =
10
9

e−
5
3 x +

5
18

e−
5
6 x, E[G1] =

4
5
, C2

G1 =
5
4

> 1,

g2(x) = 10(e−
20
3 x

− e−20x), E[G2] =
1
5
, C2

G2 =
5
8

< 1.

We also assume the exponentially distributed abandonment time
with mean 1/θ = 0.5:

F(x) = 1 − e−2x x ≥ 0.

The result of numerical analysis is shown in Table 4 and Fig. 12.
Table 4 shows a sequence of epochs at which the state changes
from underloaded to overloaded and vice versa. These values are
only slightly different from those in Table 1 for the systemwith ex-
ponentially distributed conversation andACWtimeswith the same
means. Figs. 12(a) and (b) show the pdf’s of the hyperexponential
distribution for the conversation time and the hypo-exponential
distribution for theACWtime, respectively. Fig. 12(c) plots the fluid
content Bi(t) = Bi1(t) + Bi2(t) in service i(i = 1, 2) as well as
B(t) = B1(t) + B2(t) at time t . These curves are not much differ-
ent from the corresponding curves in Fig. 5(b). Other performance
measures are also shown in Figs. 12(c)–(g).

6. Concluding remarks

In this paper, we have studied the fluid approximation to the
Mt/GI/st + GI model with two stages of service, each being
independent and exponentially distributed, for the call center op-
eration. It is true that the same model can also be handled exactly
by the Mt/GI/st + GI model in [19] with a single stage of ser-
vice consisting of the sum of two exponentially distributed service
times. Then, however, one must solve a fixed-point equation for
the function b(t, 0), which is not straightforward as mentioned in
Section 6.2 of [19]. By our method of separating the service to ex-
ponentially distributed stages, we can do without bi(t, 0) to ob-
tain the fluid content Bi(t). This merit is already pointed out in
Section 2 of [19]. It is well-known that most distributions can be
approximated precisely enough by a Coxian distribution for which
the Laplace transform of pdf is written as a rational function in the
transform parameter. Therefore, we should be able to enjoy the
above-mentionedmerit by decomposing a non-exponential distri-
bution into the serial–parallel combination of exponential distri-
butions.

In the present case, the two stages of service correspond to the
conversation and ACW times in the real operation of call centers.
Therefore, we can know the number of operators engaged in the
conversation and the number of those in the ACW individually at
each moment. This is another merit that cannot be obtained if the
service times of the two stages are treated together.

We have shown an example in which the number of servers
is determined to cope with the load of only conversation time
(service 1). Then the system is always overloaded but it seems
to remain stable. On the other hand, if the number of servers is
determined to cope with the load of both conversation and ACW
times (services 1 and 2), the system is always underloaded. In this
case, we need much more servers than in the former example.
Therefore, the staffing rule in the former example may be useful
as efficient utilization of the resource (servers).
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