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a b s t r a c t

Many combinatorial optimization problems (COPs) encountered in real-world logistics, transportation,
production, healthcare, financial, telecommunication, and computing applications are NP-hard in nature.
These real-life COPs are frequently characterized by their large-scale sizes and the need for obtaining
high-quality solutions in short computing times, thus requiring the use ofmetaheuristic algorithms.Meta-
heuristics benefit from different random-search and parallelization paradigms, but they frequently as-
sume that the problem inputs, the underlying objective function, and the set of optimization constraints
are deterministic. However, uncertainty is all around us, which often makes deterministic models over-
simplified versions of real-life systems. After completing an extensive review of related work, this paper
describes a general methodology that allows for extending metaheuristics through simulation to solve
stochastic COPs. ‘Simheuristics’ allow modelers for dealing with real-life uncertainty in a natural way by
integrating simulation (in any of its variants) into ametaheuristic-driven framework. These optimization-
driven algorithms rely on the fact that efficient metaheuristics already exist for the deterministic version
of the corresponding COP. Simheuristics also facilitate the introduction of risk and/or reliability analysis
criteria during the assessment of alternative high-quality solutions to stochastic COPs. Several examples
of applications in different fields illustrate the potential of the proposed methodology.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

We live in big cities with multimodal transportation systems,
travel around the world using a complex network of intercon-
nected airports, buy products online that are delivered to our doors
from different parts of the planet, make use of highly expensive e-
health systems, keep in touch with our friends and colleagues us-
ing Internet-based services, and our lives are tied to fluctuations
in global financial markets. The world is becoming more complex
all the time, and most of the systems around us are quite ineffi-
cient – in terms of both monetary and environmental costs – due
to the lack of tools to improve their design, reliability, and daily
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operations. Most of the decision-making issues associated with
the aforementioned systems can be modeled as NP-hard combi-
natorial optimization problems (COPs) with uncertain (stochastic)
conditions. Metaheuristic approaches allow for generating ‘high-
quality’ solutions to these kinds of problems in relatively short
computing times. Historically, they have been mostly applied to
simplified scenarios where real-life uncertainty (i.e., stochastic or
random behavior) is usually not taken into account. There is, how-
ever, an increasing trend for considering randomness into COPs as
a way of describing new real problems in which part of the infor-
mation is not known in advance. This tendency can be observed in
[1,2], who provide a review ofmany traditional COPswith stochas-
tic characteristics. The analyzed problems include stochastic
routing, stochastic scheduling, and stochastic reservations. Hem-
melmayr et al. [3] studied inventory routing problems considering
stochastic product usage. A complete survey on the use of meta-
heuristics to solve a wide class of stochastic COPs can be found
in [4],where the authors have classified the reviewedmethods into
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twomain categories based on the way the objective function is es-
timated: (i) ad hoc approximation and (ii) simulation.

Simulation techniques allow for modeling and artificially re-
producing complex systems in a natural way [5,6]. Details can
thus be incorporated into these models with no mathematical so-
phistication and the computational time typically stays manage-
able. However, complex models may require long development
times and difficult verification and validation processes. More-
over, simulation is not an optimization tool on its own. Therefore,
simulation experiments need to be designed in order to gain an
understanding of the model’s behavior with respect to both deci-
sion and probability spaces. Modern design of experiments [7] can
be a first step in such a study, helping to identify promising areas in
the solution space or performing sensitivity analysis. Nevertheless,
large COPs require the use ofmetaheuristics to conduct an efficient
search. This paper extends previous work in combining simulation
with metaheuristics by proposing a new class of optimization al-
gorithms called ‘simheuristics’. These algorithms integrate simula-
tion (in any of its variants) into a metaheuristic-driven framework
to solve complex stochastic COPs.

The mixture of metaheuristics with other methodologies is be-
coming very popular in Operations Research as a good proce-
dure to tackle difficult combinatorial optimization problems [8].
While Bianchi et al. [4] presented earlier examples, Glover et al. [9,
10] and April et al. [11] popularized the combination of simula-
tion andmetaheuristics by developing anddescribing the commer-
cial optimization software OptQuest, which is currently integrated
into several commercial simulation packages [12]. In order tomake
OptQuest generic and compatible with any simulation model, the
authors proposed a ‘‘black box’’ approach – for both continuous
and discrete optimization problems – in which the solution proce-
dure is clearly separated from the system. This approach is mainly
oriented to optimizing a simulation model of the system, i.e., a
discrete-event or Monte Carlo simulation model is generated for
a given system and then OptQuest is used to optimize the control
parameters of the system [13,14]. However, as discussed in [15],
some approaches do not work well out-of-the-box. Instead, they
need to be adapted to the specific characteristics of the problem.
In those cases, closed software solutions like OptQuest might not
be the most efficient ones.

In this paper,wediscuss differentways of combining simulation
with metaheuristics and how problem-specific information can be
used to enhance the solution method. Our simheuristic approach
has two distinctive characteristics:

1. It promotes a closer integration between optimization and sim-
ulation. In particular, the evaluation of solutions is performed
not only by simulation, but also by problem-specific analyti-
cal expressions. Hence, it mixes simulation and ad hoc approxi-
mations, although generic metamodels are avoided – while the
simple nature of these models is appealing for optimization
purposes, they do not accurately represent the real underlying
system.

2. The feedback of simulation can be used not only to evaluate
solutions, but also to refine the analytical part, so that the latter
is able to generate and/or evaluate more realistic solutions.

The simheuristics described in this paper focus on the resolution
of (discrete) combinatorial optimization problems with stochas-
tic components. These stochastic components can either be lo-
cated in the objective function or in the set of constraints. During
the optimization process, our approach benefits from already ex-
isting metaheuristics for deterministic versions of COPs. As illus-
trated in Section 3, our simheuristics approach has been able to
provide state-of-the-art solutions for combinatorial optimization
problems in different application fields including vehicle routing,
scheduling, manufacturing, system availability, and healthcare. As
Fig. 1. Overview schema of the simulation–optimization approach.

discussed later, the combination ofmetaheuristics with simulation
also promotes the use of risk-analysis criteria during the evaluation
of alternative solutions to stochastic COPs. Finally, and following
the criticism of Sörensen [16] regarding certain lack of innovative-
ness in the field of metaheuristics, this paper also aims at ‘open-
ing’ a new research line in this field by extending metaheuristics
so they can solve – through their integration with different simu-
lation techniques – a new set of problems characterized by real-life
uncertainty.

The paper is structured as follows: Section 2 proposes a clas-
sification of simulation–optimization methods and contextual-
izes simheuristics inside this classification. Section 3 reviews
recent applications of simulation–optimization approaches to dif-
ferent fields, including: manufacturing and production, logistics
and supply chain management, and healthcare. This review gives
context to Section 4, which describes the main ideas behind the
simheuristic algorithmswe propose by integrating simulation into
a metaheuristic-driven framework. Section 5 discusses further de-
sign issues yet to be fully explored. Section 6 provides examples
of applications to different industries, including: production, lo-
gistics, and Internet computing. Finally, Section 7 summarizes the
main conclusions of this work and gives insight about future re-
search lines in simheuristics.

2. Simheuristics as a simulation–optimization methodology

Hybrid simulation–optimization (Sim–Opt) techniques and
methods have been used for some decades; the first ranking-and-
selection and stochastic-approximation methods were proposed
in the 50s. However, the field has flourished in the last fifteen
years or so, fertilized in large part by the increase in computational
power, the development of advanced optimization methods (such
as hybrid metaheuristics) and the emergence and dissemination
of simulation software. Fig. 1 illustrates the previously introduced
Sim–Opt approach, in which both techniques interact to find near-
optimal solutions to complex or stochastic optimization problems.

Essentially, Sim–Opt methods have been developed by the
simulation and optimization communities independently from
each other, resulting in two intersecting approaches [17]: the
simulation community developed the ‘‘simulation–optimization’’
(SO) approach – focused in the optimization of simulation mod-
els –, while the optimization community developed ‘‘hybrid
simulation–analytic’’ (HSA) models/modeling [18]. This general
classification is depicted in Fig. 2.
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Fig. 2. Classification of Sim–Opt approaches.
Source: Adapted from [17].
Regarding SO, Swisher et al. [19] define it as a ‘‘structured ap-
proach to determine optimal input parameter values, where opti-
mal is measured by a function of output variables – steady-state
or transient – associated with a simulation model’’. Thus, the opti-
mization procedure uses the outputs from the simulation model,
which evaluates the performance of a given solution. That solu-
tion consists of a series of decisions, which are inputs to the sim-
ulation model. On the basis of this evaluation, and on the basis of
the past evaluations, the optimization procedure decides upon a
new set of input values. Therefore, the simulation model acts as
an evaluation function (EF) of the optimization procedure [20]. Al-
ternatively, several sets of input values (each being a solution to
the problem) may be simulated in order to construct a surrogate
model (or metamodel) (Surrogate Model Construction, SMC) that
can then be solved using classical optimization techniques instead
of simulation [21]. The solution of the metamodel is then consid-
ered as an approximate solution to the original problem. Several
works in the literature discuss both EF and SMC methods [22–24].
The commercial optimization module OptQuest [9,25] combines
both these approaches. In this software, the EF component con-
sists of a combination of two metaheuristics (scatter search and
tabu search) whereas the SMC component uses a neural network.

As far as HAS concerns, according to Shanthikumar and Sar-
gent [18] an HSAmodel is ‘‘a mathematical model which combines
identifiable simulation and analytic models’’, whereas HSA mod-
eling ‘‘consists of building independent analytic and simulation
models of the total system, developing their solution procedures,
and using their solution procedures together for problem solving’’.
An example of an HSA model is any stochastic program with sam-
pled scenarios (obtained via Monte Carlo simulation). Therefore,
in HSA simulation is not typically used to evaluate the quality or
feasibility of solutions, but to enhance either the analytical model
(AME) or to generate a part of the solution (SG). In AME, simulation
is used to refine the parameters of a problem-specific analytical
model. This analyticalmodel enhancement strategy tends to be less
simulation-intensive than EF, since the optimization component is
not dependent on simulation to validate its moves. In fact, as we
move from left to right in Fig. 2, the dependence of optimization
on simulation tends to decrease given that more problem-specific
information is incorporated in the method.

It is interesting to notice that, when looking at the hierarchical
structure between simulation and optimization in Fig. 2, we can
differentiate between approaches that are more optimization-
driven andmore simulation-driven. In the former, the optimization
algorithm is the ‘driving’ agent and simulation acts as an ‘auxiliary’
agent, being called whenever appropriate by the optimization
agent (simulation-based optimization). In the latter, simulation
acts as the driving agent to reproduce the behavior of a random
system and then optimization is being called from time-to-time in
order to find optimal (or near-optimal) values of some simulation
parameters (optimization-based simulation). Finally, as shown in
Fig. 2, simheuristic algorithms constitute a special case of Sim–Opt
approaches that typically are optimization-driven, but can either
be classified as EF (SO) or as AME (HSA) depending on their specific
implementation.

3. A review on sim–opt applications

In order to show some of the potential application fields
of simheuristics as a particular type of Sim–Opt methodology,
this section reviews recent applications of different Sim–Opt ap-
proaches (both based on exact and approximated optimization
methods) to different fields. The application fields include: manu-
facturing and production, logistics and supply chain management,
and healthcare.

3.1. Sim–Opt applications in manufacturing & production

In the scientific literature it is possible to find multiple exam-
ples of Sim–Opt applications to the manufacturing and production
field. Dengiz et al. [26] propose a tabu search algorithm, in con-
junction with a simulation model of a just-in-time system, to find
the optimum number of kanbans that meet production demands.
Altiparmak et al. [27] propose a hybridmethodology to find a near-
optimal buffer size configuration for the asynchronous assembly
system. Their methodology combines an artificial neural network
model with simulated annealing. The former model is used to de-
velop a filter-out metamodel that helps to overcome the fact that
running simulations is extremely time consuming. Byrne and Hos-
sain [28] apply a recursive optimization–simulation approach to a
production planning problem in a job shop system. A recursive op-
timization–simulation approach consists in alternating between a
simulation and anoptimizationmodel,where neither is the leading
agent. The purpose of simulation is computing adjusted production
capacities – which take into account the waiting times in the sys-
tem – and refining them in the analytical model. Some improve-
ments on the recursive optimization–simulation approach, related
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to product clustering, simulation length, and inventory level obser-
vation, are proposed in [29]. Can et al. [30] present a comparative
study of different algorithms for optimizing the stochastic buffer-
allocation problem. Their experimental results show that it is pos-
sible to enhance the performance of these algorithms by allowing
the formation of infeasible solutions and the incorporation of linear
penalty functions during the search process. Hubscher–Younger
et al. [15] use MATLAB to optimize a chemical batch production
process by means of their integrated approach, which combines
continuous-time, discrete-event, and state-transition systems. In
[31], the authors face scheduling problems in complex assembly
lines. In particular, they consider the problem often referred to as a
multi-mode, resource-constrained,multi-project scheduling prob-
lem with activity splitting. To solve this problem, they propose a
simulation-based heuristic decentralized algorithm based on self-
organization. Laroque et al. [32] present a hybrid approach of
simulation and metaheuristics for an innovative, fast converg-
ing procedure aimed at optimizing the parameters associated
to a simulation model. Their approach uses a combination
of particle swarm optimization and genetic algorithms as an
automatic experimental design in a distributed simulation envi-
ronment. These authors use a simple material flow simulation
problem to evaluate the solution given by the combined procedure.
Almeder and Hartl [33] deal with a scheduling problem related
to a real-world production process in the metal-working indus-
try, which can be described as an offline stochastic flexible flow-
shop problemwith limited buffers. The authors propose a variable
neighborhood search approach in which the objective function is
evaluated either by Monte Carlo simulation or by a detailed
discrete-event simulation. Lin and Huang [34] address the issue
of automated material handling systems in a semiconductor fab-
rication plant. The stochastic and complex manufacturing process
is represented by a simulation model, which is optimized using a
particle swarm optimization metaheuristic. The algorithm is en-
hanced by the use of optimal computing budget allocation, which
reduces the number of required simulations. Finally, Gansterer et
al. [35] present a Sim–Opt framework for hierarchical production
planning. The framework is used to identify good settings for three
planning parameters, namely planned lead times, safety stock, and
lot sizes. Within a discrete-event simulation that mimics the pro-
duction system, they use a mathematical optimization model for
replicating the decision problem. This analytical model is solved to
optimality using a standard optimization engine. The authors de-
vise a variable neighborhood search procedure that embodies the
OptQuest routine for local search purposes, showing better results
than five other approaches.

3.2. Sim–Opt applications in logistics & supply chain management

Inside the logistics and supply chain management arena, Sub-
ramanian et al. [36] combine mathematical programming and
discrete-event simulation to assess the uncertainty and control the
risk when managing a pipeline. The simulation component is the
driving agent, which calls optimization when needed. Truong and
Azadivar [37] embed an SG method in an EF approach to solve a
supply chain design problem. Their genetic algorithm (EF compo-
nent) focuses on main qualitative decisions and each chromosome
is decoded by an analytic model followed by simulation (SG com-
ponent). Subramaniam and Gosavi [38] present an SO approach
aimed at solving a stochastic material-dispatching system in a re-
tailer network. The problem they consider is one of determining
the optimal number of trucks and quantities to be dispatched in
such a system. They develop a model that accommodates several
real-life considerations, and also discuss how it can be optimized.
The authors use two optimization techniques, simulated annealing
and neuro-response surfaces, to tackle the problem of dispatching
material between a single warehouse and several retailers in an
SO scheme. Jung et al. [39] approach a supply chain management
problem under demand uncertainty. The authors have devised an
optimization-based simulation framework, similar to that of [36],
but where refinements are performed to the analytic model. The
latter is thus solved using a rolling horizon within the simulation
model. This procedure is repeated multiple times, performing (ev-
ery n iterations) the appropriate refinements to the safety stock
levels in order to accommodate the uncertainty of demand. Jung et
al. [40] extend this study to multi-stage supply chains, while em-
ploying a Sim–Opt approach in gathering information about the
supply chain. Ekren and Heragu [41] discuss how to optimize a
single-item, two-echelon inventory system where the items can
be stored in several stocking locations. They perform a simulation
based on two policies and five scenarios using the OptQuest tool
and commercial simulation software. The goal is to minimize the
total inventory, backorders, and transshipments costs, based on
the replenishment and transshipment quantities. In their study,
they find that the stocking location having cheaper transporta-
tion cost has a clearing house role in the transportation problem.
Also, they conclude that when the capacity increases until a cer-
tain amount of the transshipment capacity value, the optimum
cost decreases drastically. Almeder et al. [42] apply a recursive
optimization–simulation approach to a stochastic supply chain
planning problem. The results of multiple simulation runs are ag-
gregated by quantiles, which enable consideration of different risk
levels. Eskandari et al. [43] study the issue of channel coordina-
tion for a supply chain consisting of one supplier and two retail-
ers facing stochastic demand that is sensitive to both sales effort
and retail price. The authors develop a decision support tool using
SO for supply chain coordination with revenue sharing or buyback
contract. The SO decision support tool is then used to find the op-
timum or near-optimum set of decision variables in the cases of
centralized supply chains or coordinated supply chains using con-
tracts. The authors conclude that, unlike traditional mathematical
techniques that are subject to rather restricting assumptions, the
use of simulation modeling and optimization allows for address-
ing realistic scenarios. Alizadeh et al. [44] consider the problem of
inventory models with deteriorating items, stochastic lead times,
and Poisson demands. Their goal is to minimize the long-run total
expected costs of the system when shortage is allowed, and they
use OptQuest in their solving process.

3.3. Sim–Opt applications in healthcare

Due to the social and economic relevance of modern healthcare
systems, this section offers a review of recent approaches in
healthcare services that could be easily substituted by simheuristic
algorithms. In [45], the authors propose an approach that combines
simulation with a genetic algorithm metaheuristic and a goal
programming model. A similar approach is also employed in
[46] to solve a multi-objective optimization problem related to a
cancer treatment center facility. Although not described in detail,
in [47] an algorithm integrating Monte Carlo simulation with
simulated annealing is used to optimize patient arrival schedules
in a multiple operating room surgical suite. Similarly, Iser et
al. [48] propose a simple algorithm, also combining heuristics
with Monte Carlo simulation, in order to obtain ‘good’ solutions
for the problem of minimizing the expected cost of surgery
scheduling, which include costs due to operating room overtime,
as well as costs due to post-surgery (recovering) nurse-hours. Also
related to the scheduling of patients for elective surgeries under
stochastic usage of operating room capacity, Stanciu et al. [49]
propose a relatively simple algorithm combining a heuristic with
Monte Carlo simulation to determine the reservation of a fixed
capacity across multiple customer classes. Arnaut [50] transforms
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the problem ofmaximizing the utilization of operating roomswith
random processing and setup times into a stochastic job-shop
problem with parallel machines and sequence-dependent setup
times, and then uses a commercial simulator in combination with
OptQuest to solve the associated stochastic scheduling problem.
Rico et al. [51] study the best nurse allocation policy to manage
patient overflow during a pandemic influenza outbreak. Their
approach combines a commercial simulator with OptQuest in
order to analyze different configurations regarding the number
of nurses needed for healthcare delivery. Kasaie and Kelton [52]
propose an approach combining agent-based simulation with
response-surface optimization to solve a resource allocation
problem in the control of epidemics. Silva and Pinto [53] develop
a hybrid methodology to analyze the performance of a medical
emergency system. They first create a discrete-event simulation
model of the emergency system, and then use OptQuest to analyze
different scenarios and find the best parameters for the simulation
model. In their work, Weng et al. [54] combine a simulation
model with OptQuest in order to optimize the allocation of human
resources in a hospital emergency department. Finally, Kuo et
al. [55,56] model the emergency department in a hospital using a
commercial simulator, and then use simulated annealing to obtain
‘good’ estimates for the parameters associatedwith the probability
distributions in their simulation model.

4. Basic logic behind simheuristics

As previously mentioned, real-world sized instances of COPs
are typically approached by metaheuristics. Likewise, real-life
stochastic COPs can be naturally addressed by a combination of
metaheuristics and simulation techniques (in any of its variants).
In this context, a simheuristic algorithm is a particular Sim–Opt
approach oriented to efficiently tackle a COP instance that typically
contains stochastic components. These stochastic components can
either be located in the objective function (e.g., random customers’
demands, randomprocessing times, etc.) or in the set of constraints
(e.g., customers’ demands that must be satisfied with a given
probability, deadlines that must be met with a given probability,
etc.). In particular, our simheuristic approach is aimed at solving
combinatorial optimization problems of the form:

Min f (s) = E [C (s)] or, alternatively,
Max f (s) = E [B (s)] .

(1)

Subject to:

P (qi(s) ≥ li) ≥ ki ∀i = 1, 2, . . . , n (2)
hj (s) ≤ rj ∀j = 1, 2, . . . ,m (3)

s ∈ S (4)

where:

• S represents a discrete space of possible solutions s to the
optimization problem.

• C(s) represents a stochastic cost function (alternatively, B(s)
represents a stochastic profit or income function)

• E[C(s)] represents a probabilisticmeasure of interest associated
with the cost function (e.g., the expected value of C(s))

• Eqs. (2) represent probabilistic constraints related to the
problem (e.g., the probability that the service quality q(s)
reaches a given threshold l is above a user-defined value k)

• Eqs. (3) represent typical deterministic constraints in combina-
torial optimization problems.

The use of metaheuristics inside the SO arena had already been de-
scribed by Olafsson [57], who highlights the importance of cov-
ering the gap between the solutions of practical problems and
their theoretical analysis—traditionally carried out by exact pro-
cedures. We extend the study of simheuristics to the full spec-
trum of Sim–Opt approaches, which include not only SO, but also
HSA. Notice that simheuristics can also be applied to determinis-
tic problems,whose complexity requires the use of simulation, and
even to continuous-space problems. However, our focus in this pa-
per is on stochastic COPs since they appear frequently in real-life
decision-making processes. Some examples of simheuristic appli-
cation to different fields can be found in the Sim–Opt literature.
Thus, for instance, Juan et al. [58] and Gonzalez et al. [59] com-
binedMonte Carlo simulationwith routingmetaheuristics in order
to solve, respectively, the vehicle routing problem with stochastic
demands and the arc routing problem with stochastic demands;
Juan et al. [60] combinedMonte Carlo simulationwith a scheduling
metaheuristic in order to solve the permutation flow-shop prob-
lemwith stochastic processing times; and Juan et al. [61] combined
Monte Carlo simulation with a routing metaheuristic in order to
solve the inventory routing problemwith stock-outs and stochastic
demands. Also, as illustrated in [62], discrete-event simulation can
be used in combination with a metaheuristic to solve other COPs
with probabilistic constraints where the random behavior is con-
ditioned by the time factor.

Our simheuristic approach assumes that, in scenarios with
moderate uncertainty (variance), high-quality solutions for the
determinist version of a COP are also likely to be high-quality
solutions for its corresponding stochastic version—of course, this
does not imply that the best solution for the determinist COP has to
be the best solution for the stochastic version. Notice that, in most
practical applications, this assumption seems to be reasonable.
Also, notice that in scenarios with extreme uncertainty levels,
individual outcomes can be extremely diverse and, therefore,
optimization techniques should not be implemented in those
cases. This ‘relationship assumption’ allows us to generate several
‘promising’ solutions for the stochastic COP through the generation
of a number of high-quality solutions for the deterministic COP. As
depicted in Fig. 3, given a stochastic COP instance, its deterministic
counterpart is considered. This can be done, for instance, by
replacing all random variables by their expected values, which
is clearly optimistic. Then, a metaheuristic-driven algorithm is
run in order to perform an efficient search inside the solution
space associated with the deterministic COP. This iterative search
process aims at finding a set of high-quality feasible solutions
for the deterministic COP. During the iterative searching process,
the algorithm has to assess or estimate the quality (or feasibility)
of each of these ‘promising’ solutions when they are considered
as solutions of the stochastic COP instance. One natural way to
do this is by taking advantage of the capabilities that simulation
methods offer tomanage randomness. Of course, other approaches
can also be used instead of simulation, e.g. dynamic programming,
fuzzy logic, etc. However, under the presence of historical data
on stochastic behavior, simulation allows for developing both
accurate and flexible models. Specifically, randomness can be
modeled throughout a best-fit probability distribution – either
theoretical or empirical – without having to assume a Normal or
Exponential behavior as other methods do. It should be noted that
during the interactive searching process only ‘promising’ solutions
(i.e., those that perform well in the optimistic, deterministic
case) are sent to the simulation component. Moreover, for each
promising solution, just a reduced number of replications are
run since only rough estimates are necessary at this stage. This
strategy allows for controlling the computational effort employed
by simulation during the interactive searching process, thus
leaving enough time to the metaheuristic to perform an intensive
search of the solution space. The estimated values provided by the
simulation can then be used to keep a ranked list of elite solutions
for the stochastic problem. They can also provide feedback to
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Fig. 3. General scheme of simheuristics for solving stochastic COPs.
the metaheuristic so that it intensifies exploration of promising
searching areas. Once the computational time assigned to the
iterative searching process has expired, more accurate estimates
can be obtained for a reduced set of elite solutions by employing
simulations with a larger number of replicas. These new estimates
can then be used to re-rank the solutions.

A remarkable fact is that these final simulations can also be used
to obtain additional information on the probability distribution
of the quality of each solution. This complementary information
can then be used to introduce risk/reliability analysis criteria in
the decision-making process. In effect, since the objective function
is stochastic, a decision maker might not only be interested in
obtaining the solution that optimizes its expected value, but he/she
might be also interested in analyzing the probability distribution of
the values generated by several alternative solutions with similar
expected values. As shown in Fig. 4, a risk-averse decision maker
might choose a solution with a lower variability or risk (e.g., Sol2)
over a more risky solution with a slightly better expected value
(e.g., Sol1, which could go as higher as 60 cost units). Precisely,
this risk analysis capability is one of the major advantages that
simheuristics (and other similar approaches) can offer in a natural
way due to the ability of metaheuristics to generate a plethora
of high-quality alternative solutions and also due to the ability of
simulation to provide a random sampling of observations for each
proposed solution.

In summary, simulation allows for extending existing and
highly efficient metaheuristics – initially designed to cope with
deterministic problems – so they can also be employed in solving
stochastic COPs. This is the case in [63], where the authors discuss
how the iterated local search metaheuristic can be naturally
extended by combining it with simulation.

Obviously, one major drawback of every approach combining
metaheuristics with simulation is that the results are not expected
to be optimal. Nevertheless, real-life problems are frequently NP-
hard and stochastic. Therefore, simheuristics constitute a quite
interesting alternative for many practical purposes since they
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Fig. 4. Introducing risk-analysis criteria in the assessment of alternative solutions.

represent relatively simple and flexible methods that are able
to provide ‘high-quality’ solutions to complex real-life problems
in reasonable computing times. The motivation for combining
metaheuristics with simulation in general, and simheuristics in
particular, is that it is often preferable to obtain an approximate
solution to an accurate model of the real system rather than the
optimal solution to an oversimplified model. Finally, the fully
integrated and relatively simple design of simheuristic algorithms
allows them to be extremely flexible, therefore promoting their
integration with biased-randomized searching strategies [64] as
well as with computing parallelization strategies [65].

5. Further design considerations

Other designs of simheuristics are possible. For instance, the
simulation length may vary during the optimization process ac-
cording to a statistical test that compares pairs of solutions. If dif-
ferences are significant, the simulation process can terminate ear-
lier (with less or shorter replications). In addition, the number of
replications in each simulation may increase along with the meta-
heuristic procedure, as new promising solutions become less fre-
quent, so that it keeps some diversification in the beginning but
converges with increasing confidence. The trade-off between di-
versification and intensification has to be adjusted when shift-
ing from a deterministic problem to its stochastic version. Indeed,
since the selection of solutions involves some uncertainty, there
will be cases where a worse solution is selected, even for high
confidence levels. This introduces an additional diversification el-
ement so increasing intensification may be advisable. One way to
tune this diversification–intensification trade-off, as Figueira and
Almada-Lobo [17] noted, is by changing the search scheme with
respect to the alternation in the solution and realization (or proba-
bility) spaces. As previously discussed, one realization for each so-
lution (1R1S) allows obtaining a greater diversification of solutions.
Other schemes, such as different realizations for each solution
(DR1S) and common realizations for each solution (CR1S)may pro-
vide a better convergence to the detriment of diversification. CR1S
is indeed a stream of research, widely known as sample path opti-
mization [66] or sample average approximation [67], which advo-
cates the importance of improving the convergence of SOmethods
by converting the problem into its deterministic version.

The aforementioned designs can be classified as evaluation
function techniques since that is themain purpose of simulation in
the methodology. Nevertheless, simheuristics can also be applied
in the context of analytical model enhancement methods, which
are less simulation-intensive. An example is the work reported in
[68], which is described in the next section.
6. Potential and actual applications in different fields

6.1. Production planning and scheduling

In [60] the authors analyze the permutation flow-shop problem
with stochastic times, a generalization of the well-known permu-
tation flow-shop problem (NP-hard) in which the processing time
of each job i in each machine j is a random variable Pij following
a positive probability distribution. Since uncertainty is present in
most real-life processes and systems, considering randomprocess-
ing times represents a more realistic scenario than simply consid-
ering deterministic times. As a result, unforeseen circumstances
can lead to sudden changes in the processing time of certain jobs
in certain machines, which is likely to have noticeable effects on
the predicted makespan, i.e., the total completion time of all jobs.
One natural goal when dealing with this stochastic COP is to deter-
mine a sequence of jobs that minimizes the expectedmakespan. In
the articles byDodin [69], Honkomp et al. [70], Gourgand et al. [71],
andBaker andAltheimer [72], simulation–optimization techniques
had been used to get results for the stochastic version of the prob-
lem. In most of these articles, however, assumptions were made
about the probability distributions employed to model processing
times, e.g., Normal or Exponential, or about the restricted size of
the instances being analyzed. In a real-life scenario, the specific
distributions to be used will have to be fitted from historical data
(observations) leading to empirical distributions. To overcome
these restrictive assumptions, Juan et al. [60] propose a simheuris-
tic algorithm. The main idea behind their approach is to transform
the initial stochastic instance into its corresponding deterministic
instance – by considering average, instead of random, processing
times – and then solve the determinist instance using an efficient
metaheuristic. Since any solution s for the deterministic instance
will be also a feasible solution for the stochastic version, they
use Monte Carlo simulation to obtain estimates for the expected
makespan associated with s. Simulation is used here to determine
which solution, among the best-found deterministic ones, shows a
lower expectedmakespanwhen considering stochastic times. This
strategy assumes that a strong correlation exists between high-
quality solutions for the deterministic version of the problem and
high-quality solutions for the stochastic version. However, not nec-
essarily the best-found solution for the deterministic version will
become the best-found solution for the stochastic version since the
resulting makespan of the former might be quite sensitive to vari-
ations in the processing times. Specific sensitivity analysis could
be used here to measure how robust this assumption is [73]. Also,
as the authors discuss, the information provided by the simula-
tion can be employed to perform a survival analysis of alterna-
tive solutions with similar expected makespan. This way, proba-
bilities of completing the jobs before a given deadline can be com-
pared among different solutions (Fig. 5). In this specific case, the
first solution exhibits a higher probability of meeting a deadline
not greater than 4000 s. However, for greater values, the second
solution should perform better. Current studies are extended to
the problem of mid-term scheduling of production under relaxed
constraints, e.g., with algorithms that allow for changing the fac-
tory capabilities and capacities for the future. Such an approach
leads to so-called ‘changing steady-state’ systems that show a high
complexity with respect to the high number and diversity of re-
lationships. Discrete-event simulation seems a good candidate to
approach this kind of problems in combination withmetaheuristic
algorithms [74].

Another example of simheuristics in production planning is
presented by Figueira et al. [68]. The authors approach the
production planning and scheduling of an integrated pulp and
paper mill, subject to process variability and disturbances. The
former can be modeled by probability distributions. The latter,
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Fig. 5. Using cumulative density functions to compare alternative solutions.

however, needs a distribution for the time between failures
and another for the time to repair. This behavior cannot be
easily modeled by stochastic programming approaches. Monte
Carlo simulation also fails to provide the necessary detail.
Therefore, a discrete-event simulation model is developed for
mimicking the execution of production plans while considering
both process variability and disturbances. The deterministic
problem is formulated as a mixed integer programming model,
which comprises a combinatorial part (related to the sequence of
paper campaigns) and a continuous part (regarding the production
rates and quantities). Since it is an NP-hard problem, a variable
neighborhood searchmetaheuristic is applied to the combinatorial
part, while the linear continuous optimization is left to an exact
solver, which decodes every (integer) partial solution considered
by the metaheuristic. Uncertainty is then reproduced using
discrete-event simulation, which is integrated in themetaheuristic
framework. However, the algorithm does not call simulation to
evaluate solutions since that would require a huge computational
effort. Furthermore, given that each solution is decoded by an
exact method, using simulation as an evaluation function would
only give feedback with respect to the integer representation
(sequencing of campaigns). Therefore, simulation is used to refine
particular parameters of the analytical model, so that the resulting
plans can be more robust.

6.2. Transportation and logistics

The first example in this section refers to the vehicle routing
problem with stochastic demands, another NP-hard problem in
which a set of customers with random demandsmust be served by
a fleet of homogeneous vehicles departing froma depot. Obviously,
there are some tangible costs associated with the distribution of
these resources from the depot to the customers. In particular, it
is usual for the model to explicitly consider costs due to moving
a vehicle from one node – customer or depot – to another. These
costs are often related to the total distance traveled, but they can
also include other factors such as number of vehicles employed,
service times for each customer, etc. The classical goal consists of
determining the optimal solution (set of routes) that minimizes
those tangible costs subject to the following constraints: (i) all
routes begin and end at the depot; (ii) each vehicle has amaximum
load capacity, which is considered to be the same for all vehicles;
(iii) all (stochastic) customers’ demands must be satisfied; (iv)
each customer is supplied by a single vehicle; and (v) a vehicle
cannot stop twice at the same customer without incurring in a
penalty cost. The random behavior of customers’ demands could
cause an expected feasible solution to become infeasible if the
final demand of any route exceeds the actual vehicle capacity. This
situation is referred to as ‘route failure’, andwhen it happens some
corrective actions must be introduced to obtain a new feasible
solution. Thus, for example, after a route failure the associated
vehiclemight be forced to return to the depot in order to reload and
resume the distribution at the last visited customer. As discussed
in [58], one possible methodology to deal with this problem is to
design reliable solutions, i.e., solutions with a low probability of
suffering route failures. This is basically attained by constructing
routes inwhich the associated expected demandwill be somewhat
lower than the vehicle capacity. Particularly, the idea is to keep
a certain amount of vehicle capacity surplus (safety stock) while
designing the routes, so that if final routes’ demands exceed their
expected values up to a certain limit, they can be satisfied without
incurring in a route failure. Using safety stocks not only contributes
to reducing variable costs due to route failures but, related to that,
it also increases the reliability or robustness of the planned routes,
i.e., as safety stock levels increase, the probability of suffering a
route failure diminishes. Notice, however, that employing safety
stocks also increases fixed costs associated with an initial routing
design, since more vehicles and more routes are needed when
larger buffers are considered. Therefore, when minimizing the
total expected cost, a tradeoff exists between fixed costs and
expected variable costs. Thus, the challenge relies on the selection
of the appropriate buffer size. Given a stochastic instance, Juan et
al. [58] consider different levels of this buffer size and then solve
the resulting scenarios. This is performed by employing Monte
Carlo simulation, which allows for estimating the variable costs
associated with each candidate solution. Thus, among themultiple
solutions generated for each scenario, the ones with lowest total
expected costs are stored as the best-found result associated
with the corresponding safety-stock levels. Once the execution
of the different scenarios ends, the corresponding solutions are
compared to each other and the onewith the lowest total expected
costs is selected as the best-found routing plan. A parallel version
of this algorithm can be found in Juan et al. [75].

Another simheuristic approach has been used by Goodson et
al. [76] to generate dynamic solutions for theMulti-vehicle Routing
Problemwith Stochastic Demand and Duration Limits. Yet another
example in the transportation and logistics arena is due to Juan
et al. [61], who deal with the inventory routing problem with
stochastic demands (also an NP-hard problem). This can be seen
as an extension of the well-known capacitated vehicle routing
problem composed of a set of retail centers plus the depot. Each
retail center owns an inventory, which is managed by the central
depot. For each retail center, the inventory level at the end of
a period depends on the initial stock level and also on the end-
clients’ demands during that period. These end-clients’ demands
are stochastic in nature, and they can be modeled through
theoretical or empirical probability distributions. Therefore, at the
end of each period there might be some costs associated with
inventory holding and inventory stock-outs. These costs might be
incorporated into the decision-making process and added to the
distribution or routing costs. At the end of each period, inventory
levels are registered by the retail center and updated in the central
depot, so that a new routing strategy is defined for the new period
taking into account the new data. Under these conditions, one
possible goal is to minimize total expected costs (distribution plus
inventory-related costs) in each single-period scenario. In order
to solve this problem, Juan et al. [61] propose a hybrid approach
which also combines simulation with an efficient vehicle-routing
metaheuristic. The algorithm initially makes use of Monte Carlo
simulation to estimate the expected inventory costs associated
with each retail center-policy combination. Next, it employs a



70 A.A. Juan et al. / Operations Research Perspectives 2 (2015) 62–72
fast routing heuristic to compute the total costs – inventory plus
routing – associated with several refill strategies. The best of
these strategies is then utilized as an initial base solution in
a multi-start randomized metaheuristic. After randomly sorting
the retail centers, this heuristic iteratively improves the base
solution by trying different refill policies for each retail center and
selecting the one with the lowest total costs. After performing a
set of computational tests, the authors show that their ‘integrated’
methodology outperforms the traditional sequential approach,
in which each individual inventory level is optimized first and
then the resulting vehicle routing problem is solved. Notice that
their simulation–optimization approach can consider personalized
refill policies for each customer, which contributes to significantly
reducing the total costs over other approaches using standard refill
policies.

An interesting recent approach has been announced by Dross
and Rabe [77]. The problem initiated from a large, international
trading company with over 100 warehouses in different countries
and with an inventory of around 150,000 items on permanent
stock. The company operates a large, complex and heterogeneous
logistics network. The network is structured as a multi-echelon
network with central, regional and local warehouses. Within the
logistics network, there are certain warehouses that can perform
value-added services, for example cutting, drilling or milling. In
recent years, the company has developed specialized reporting
systems to manage their logistics network. The process data and
the stock data are gathered by the operational systems and are
regularly transferred into a Data Warehouse (DWH). Based on
the DWH, the company has developed different Performance
Measurement Systems (PMS). PMS unite different Performance
Measures that relate to each other in a hierarchical form and
usually culminate in one Key Performance Indicator (KPI). The
company also developed a dedicated KPI Monitoring System
(KPIMS) for each KPI, to ensure constant improvement of the
logistics network regarding the KPIs. Each KPIMS constantly
monitors one KPI and sends an individually composed KPI Alert
to a responsible manager, if the KPI leaves certain predefined
corridors. A KPI Alert generally consists of two parts: A list of facts
that caused the KPI to deteriorate and a set of possible actions
that could be performed by the addressed manager in order to
improve the KPI. In this setup a problem arises from the fact that
the different KPIMS are not connected to each other and each
KPI Alert is sent to the managers of the company, independently.
This leads to a situation, where the suggested actions of a KPIMS
could improve its own KPI while deteriorating one or more other
KPIs. Furthermore, from the perspective of the receiving manager,
the resulting counter-intuitive and counter-productive suggested
actions could be very disappointing. E.g., the logistics manager
could receive a report, which tells him to lower the stock of a
specific item, because this would improve his ‘‘Stock Productivity’’.
He performs the suggested action and therefore receives another
report from another KPIMS, which tells him to raise the stock,
because this would probably improve his ‘‘Deliveries On Time In
Full’’. As a consequence, the manager would probably reject the
suggested actions and just act according to his or her personal
opinion or not react at all. Therefore, the company is looking
for a solution to optimize their logistics network in a constant,
multi-objective manner, i.e. to find those actions that optimize
the network considering all monitored KPIs. Essentially, the goal
is an interdependence analysis, which can be used to improve the
understanding of the interconnectedness of the different KPIs and,
most importantly, generate good integrated action suggestions
that improve the logistics network. Unfortunately, the complexity
of the network inhibits to reduce the problem to one of the
traditional combinatorial problems with stochastic parameters,
such as for example the Inventory Routing Problemwith Stochastic
Demands (IRPSD) [65]. The tailoring of a specializedmeta-heuristic
is prevented, because the structure of each Performance Indicator
System is too complex to inject it effectively into a meta-heuristic.
Therefore, Discrete Event Simulation (DES) is applied to measure
the KPIs for different scenarios of actions and their combinations.
The measurement of the KPIs is possible because the output data
of the DES model is aggregated and analyzed in the same way as
the original real-world data using DWH technology. Comparing
the KPIs with their respective predefined corridors enables the
system to evaluate if an action was expedient or not. The number
of possible actions is very high and a simple permutation of
the actions is thus not feasible. An intelligent mechanism is
mandatory to drive the simulation experiments towards applicable
solutions. A research project is running on the implementation of a
simheuristic approach modeling an agent which executes actions
on the DES model and receives rewards (KPI measurements)
in order to learn which actions were expedient. This approach
uses machine learning algorithms to explore the solution space,
also taking into account knowledge from previous learning in
comparable situations.

6.3. Internet computing

Our next example is related to the field of Internet comput-
ing, and illustrates how discrete-event simulation can be also
combined with metaheuristics in order to check the feasibility of
probabilistic constraints. Internet computing systems can benefit
from the use of personal and non-dedicated computers, which are
currently employed in volunteer computing systems. Being non-
dedicated, these resources show random behavior regarding the
times they are online (available) and offline. Accordingly, their
availability levels are lower than those of traditionally employed
dedicated resources. Thus, in order to use non-dedicated resources
in cloud computing environments, it is necessary first to solve
the problem of how to attain high availability levels for the In-
ternet services deployed over them. Most approaches on how to
guarantee high service availability levels with non-dedicated re-
sources are based on the introduction of high degrees of redun-
dancy into the system. However, this praxis leads to an inefficient
usage of computational resources and, therefore, to higher opera-
tional costs. Accordingly, in [62], the authors propose a novel simu-
lation–optimization approach to generate cost-efficient configura-
tions of non-dedicated resources able to support Internet services
with a high availability level, i.e., they deal with the stochastic COP
of determining a minimum-cost configuration of non-dedicated
resources able to support a service while maintaining the service
availability level over a user-defined threshold. The main idea be-
hind their solution approach is to design a metaheuristic algo-
rithm that, starting from a feasible but costly solution, performs an
oriented local search trying to replace expensive resources with
cheaper ones, usually offering somewhat lower availability lev-
els. For each new configuration generated in this iterative process,
discrete-event simulation is employed, as suggested in [78], to es-
timate the new global availability of the service. This estimation is
then used to check if the new and less expensive configuration of-
fers an availability level higher than the one specified by the user.

Previously published proposals for availability-aware service
deployment required the use of restrictive assumptions, e.g., iden-
tical replicas of a service, series–parallel topologies, small-scale
scenarios, specific probability distributions, etc. All these unrealis-
tic assumptions are unnecessary in the new simheuristic approach.
According to the numerical experiments run by the authors, their
algorithm is able to quickly provide optimal solutions in small-size
scenarios, while it can also be used in more realistic scenarios to
generate good solutions in real time, thus improving the greedy
approaches typically used in Internet service deployment practices
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over contributory resources i.e., computing resources provided by
individual Internet users who are typically distributed around the
world. Of course, improving the greedy solution also causes proper
resource usage, i.e., more services could be supported by the same
number of resources or fewer resources could support the same
number of services.

7. Conclusions and future perspectives

Most of the combinatorial optimization problems that are found
in real-world applications have a stochastic nature. Since the vast
majority of the articles in the combinatorial optimization litera-
ture deal with deterministic scenarios, there is a need to consider
simulation–optimization approaches that allow researchers and
practitioners for solving realistic models including uncertainty.
Simheuristics contribute to fill this gap by extendingmetaheuristic
algorithms in a natural way, so they can also be applied in solving
combinatorial optimization problems with stochastic components
either in the objective function or in the set of constraints. How-
ever, the concept of simheuristics described in this paper differs
from the metaheuristics reported in the SO community [9,57]. In-
stead of using a pure black box approach, where evaluations are
performed only by simulation, simheuristics closely integrate op-
timization and simulation by incorporating problem-specific infor-
mation. Thus, analytical expressions complement the optimization
process and may be used to screen poor or infeasible solutions.
Since these analytical expressions are problem-specific, they ex-
ist prior to any simulation run. Therefore, they are not as depen-
dent on simulation as the metamodels used in the SO community.
Still, they can be enhanced with the simulation feedback. Finally,
by design they are able to provide different alternative solutions of
similar quality and promote the introduction of risk or reliability
analysis criteria when comparing these solutions, so the decision-
maker can choose the solution that best fits his/her utility function
according to these criteria. In order to control the computational
time invested in performing simulations, there are some critical is-
sues in the design of an efficient simheuristic algorithm. One issue
is the selection policy of promising solutions—the ones that will
be sent to the simulation component. Another issue is the number
of replications that must be run for each of these promising solu-
tions. During the stochastic searching process, simulations with a
relatively short number of replications should be sufficient to ob-
tain rough estimates of the solution value, so that a list of elite
solutions can be constructed. Once the stochastic searching pro-
cess is finished, simulations with more replications can be run in
order to obtain more accurate estimates for each of the elite solu-
tions. Alternatively, statistical selection methods can be incorpo-
rated to adjust the simulation length according to the difference
between solutions. Also, variance reduction techniques can be em-
ployed here.

So far, most simheuristic approaches have focused on evalua-
tion function and feasibility checking purposes, and they have em-
ployed eitherMonte Carlo or discrete-event simulation.We expect
other types of simulation, such as agent-based, to be increasingly
adopted in simheuristic frameworks. Since these simulation types
require more computational effort, analytical model enhancement
methods appear to be a good alternative in many situations, par-
ticularly when there is a linear analytical model for the problem.
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