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a b s t r a c t

In this article, we describe simulation-based decision support techniques for evaluation of operational
plans within effects-based planning. Using a decision support tool, developers of operational plans are
able to evaluate thousands of alternative plans against possible courses of events and decide which of
these plans are capable of achieving a desired end state. The objective of this study is to examine the
potential of a decision support system that helps operational analysts understand the consequences of
numerous alternative plans through simulation and evaluation. Operational plans are described in the
effects-based approach to operations concept as a set of actions and effects. For each action, we examine
several different alternative ways to perform the action. We use a representation where a plan consists of
several actions that should be performed. Each action may be performed in one of several different alter-
nativeways. Together these action alternativesmake up all possible plan instances,which are represented
as a tree of action alternatives that may be searched for themost effective sequence of alternative actions.
As a test case, we use an expeditionary operation with a plan of 43 actions and several alternatives for
these actions, as well as a scenario of 40 group actors. Decision support for planners is provided by several
methods that analyze the impact of a plan on the 40 actors, e.g., by visualizing time series of plan perfor-
mance. Detailed decision support for finding the most influential actions of a plan is presented by using
sensitivity analysis and regression tree analysis. Finally, a decision maker may use the tool to determine
the boundaries of an operation that itmust notmove beyondwithout risk of drastic failure. The significant
contribution of this study is the presentation of an integrated approach for evaluation of operational plans.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In this article, we describe the development of a simulation-
based decision support using an event-based simulation thatmod-
els military operational plans according to effects-based planning
(EBP). The developedmethods can be used in an incremental man-
ner to test plans as they are developed step-by-step and new activ-
ities are added. This is the problem faced by planners of operations
planning. To support the planners we develop a simulation-based
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decision support system within the effects-based approach to op-
erations (EBAO). Chandrasekaran [1,2] suggests that in situations
with high degree of uncertainty, the aim of simulation-based de-
cision support systems should not be to find optimal options but
rather options that are robust, i.e., less sensitive to uncertainties.
In such cases, it is impossible or highly improbable to build models
that give an exact prediction of outcomes for running different op-
tions. Themain reason for this observation is that themodelermust
make many assumptions and guesses during the development of
the models in order to keep the size and complexity of models
reasonable. In such cases, the models should support the decision-
makers, e.g., military planners, to explore different options based
on their sensitiveness to uncertainties. Bankes [3] refers to these
types of models as exploratorymodels (EM). An EM is amodel that
displays the behavior of a real system given certain assumptions,
and by running several such models, the planner can explore the
significance of those assumptions. According to Bankes [3] there
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are three different types of EM:Data-Driven EM,Model-Driven EM,
and Question-Driven EM. The models presented in this work are
Question-Driven EM, and the decision maker’s aim is to investi-
gate alternative plans and highlight consequences of different op-
erational courses of action.

How planners model a phenomenon depends on the purpose
of the model and the questions that they want to answer. Because
our simulation system aims to support decision-making within an
effects-based approach to operations [4,5], the modeling is based
on the concepts of EBAO as a set of effects and actions that together
will lead to a desired military end state. The EBAO concepts will be
explained in Section 2. Using a decision-support tool, a decision-
maker is able to test a number of feasible plans against possible
courses of events and decide which of those plans is capable of
achieving such a desiredmilitary end state. The objective is to eval-
uate plans against a large set of actors and understand their con-
sequences by simulating the events and producing outcomes that
result from making alternative decisions with respect to those ac-
tions. Each plan consists of many actions, many of which can be
performed in a number of alternative ways. Providing information
for probable consequences of the choice of different options by the
decision-makers is known as Option Awareness (OA) [6]. Pfaff [6]
states that OA augments situational awareness by illuminating the
components of the decision space via exploration of different op-
tions using, e.g., simulation models. We model the plan and eval-
uate alternative plan instances based on how well they are able to
drive the entire state of a simulation model that simulates a large
set of actors towards a predetermined military end state. These
plan instances are evaluated based on their performance and are
clustered into subsets in which all plan instances have both com-
mon characteristics and outcomes. The idea is that these clusters,
if they contain plan instances of good performance, present a ro-
bust set of alternative plans that can be used for minor dynamic
re-planning whenever necessary. However, an important issue to
consider in deploying these models is that they are only represen-
tations of the real world, and a gap will always exist between the
model and the reality it represents. The size of this gap depends
on a number of errors that are primarily caused by various as-
sumptions with respect to the real world, e.g., if critical informa-
tion ismissing or inaccessible. Consequently, running thesemodels
using computer simulation will result in uncertain outcomes. A
good example of such situations is military planning with a signifi-
cant amount of uncertainties. We try to manage this issue by using
stochastic models where uncertainty is large and using a Monte
Carlo approach within the simulation where each instance is sim-
ulated 20 times.

Actors and actions are modeled in a scenario used by the
Swedish Armed Forces in their Combined Joint Staff Exercises and
multinational ‘‘Viking’’ exercises. The actions of the plan are simu-
lated together with all actors, their reactions, and possible follow-
on interactions. Because the actions may have several different
alternatives with which they can be carried out, these alternatives
together span an action tree. In this searchable tree, each level in
the tree corresponds to an action, and each node in the tree repre-
sents an alternative for that action. As the action tree is searched,
each node is evaluated using the simulator and the results found
are stored. In using the search to guide the tasks of the simulator,
we allow the simulator to operate in a manner that achieves maxi-
mum information value gain. In an experiment,we simulate 10000
plans out of 2.164 × 1023 possible plans (that arise from all possi-
ble combinations of action alternatives). Simulated plans that are
similar in both their structures and in their consequences are clus-
tered together. These plans make up a robust set of similar plans
that constitute ready alternatives should dynamic re-planning that
adds new actions or new alternatives to existing actions become
necessary as the situation evolves.

Decision support is achieved through a series of statistical anal-
yses, information fusion, machine learning, and information visu-
alization techniques. For example, we develop methods for effects
and end-state time series visualization for easy overview of the
time development of several alternative plans as action-by-action
progress is executed.

We develop information fusion explanation functions for
simulation-based decision support for evaluation of military plans
in expeditionary operations. Primarily, this methodology high-
lights the dangerous options in an operational plan that moves the
state of away from the end-state, leaving the decision-maker free
to focus his attention on the set of remaining actions. By systemat-
ically varying one action at a time and keeping all the other actions
unchanged in a series of simulations, we are able to perform a sen-
sitivity analysis for each action in the plan based on the change in
evaluation score of the plan. This sensitivity analysis displays the
relative level of importance ofmaking the correct selection of alter-
natives for each action. Using the explanation function, a decision-
maker can be informed as to which actions of the plan are crucial
to its success.

In addition to the planning process before the execution of a
plan, we may have re-planning (see Appendix) during execution if
the plan goes astray.Wedifferentiate betweenminor andmajor re-
planning, where minor re-planning is when only a few existing ac-
tions need adjustment andmajor re-planning is when the decision
maker needs to restart the planning process from scratch. To dif-
ferentiate betweenminor re-planning and situations in whichma-
jor re-planning becomes necessary to avoid drastic negative conse-
quences of plans that begin to deviate substantially from the initial
planning, we adopt indicators as warning bells. An indicator rep-
resents the boundary between two clusters beyond which drastic
changes can occur. We determine the boundaries using simulated
data from alternative plan instances beyondwhich drastic changes
can occur. We provide decision support during execution of a plan
by calculating the distance from the plan to the closest boundary in
a step-by-step manner as the actions are executed. By visualizing
the change in distance during simulation execution a commander
can observe whether the operation is approaching a boundary be-
yond which outcomes may be uncertain. If minor re-planning is
not sufficient to avoid approaching a boundary, major re-planning
must take place that may include developing entirely new actions.

This article describes a five-year research effort performed at
the SwedishDefence Research Agency 2008–2012 based on the de-
velopment of simulation-based decision support for evaluation of
operational plans constructed by experts.

The goal of the article is, after first describing the planning ap-
proach and the type of situations we might be encountering (‘‘the
Bogaland scenario’’), to thoroughly describe the components of a
simulator designed to find which plans, synthesized from a set of
modeled actions could best solve the problems in Bogaland. In Sec-
tion 2, we describe the effects-based planning approach. Section 3
presents an overviewof the Bogaland scenario used for experimen-
tation. Section 4 describes a simulation control approach in which
a decision-maker steers the computational focus of the simula-
tor. Section 5 subsequently model actors and actions, and a sim-
ulation methodology is developed in Section 6. A decision support
methodology is presented in Section 7, and the simulation results
are analyzed in Section 8. Finally, Section 9 provides a discussion
of the approach, and Section 10 presents the conclusions.

In this article, we usemany concepts that characterize the stud-
ied field. Instead of introducing and exemplifying these concepts
where they first appear in the text, we have collected them all in
the Appendix.

2. Effects-based planning

The modeling is based on EBAO and the concepts used within
it, i.e., plan, action, effect, end state, etc. The EBAO is a military ap-
proach to management and implementation of efforts at the oper-
ational level. According to the United States Joint Forces Command
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Fig. 1. Effects-based planning, including sub-processes End State Analysis
(ESA), Effects Development (ED), Action Development and Resource Management
(ADRM), Synchronization and Plan Refinement (SPR), and Red Green Teaming (RG).

(USJFCOM), EBAO are ‘‘operations that are planned, executed, as-
sessed, and adapted based on a holistic understanding of the op-
erational environment in order to influence or change system
behavior or capabilities using the integrated application of selected
instruments of power to achieve directed policy aims’’ [7].

Within the framework of EBAO, EBP is a method for developing
objectives and effects to be achieved through a series of synchro-
nized actions within a military operational plan and that are con-
ceptually developed starting top-down from a desired end state.
The methodology in EBP is iterative in nature, and the develop-
ment of the plan is constructed step-by-step and tested as it grad-
ually emerges. To provide decision support for this planning work,
we developmethods that can be used iteratively during successive
modeling of different elements of the plan and testing via simula-
tion and evaluation against a scenario with operator models that
react to the execution of plan elements. It is thus possible to mea-
sure the change in state of all the actors relative to the desired end
state.

A control theory model of EBP [8] is shown in Fig. 1. As input,
we use the required situation Rs, which is compared with the cur-
rent situation Cs received from the assessment. The first process is
an end state analysis (ESA) followed by effects development (ED).
Initially, if there is no operation, the military end state defines the
goal of the operation. Later, when a campaign assessment is carried
out, the comparison between Rs and Cs may require further anal-
ysis in ESA. The output from ED is the required effects Re, which
is compared with the current effect Ce, and is also received from
assessment.

In terms of this model, the focus of simulation-based decision
support is primarily on effects development (ED).

For the Allied CommandOperations Comprehensive Operations
Planning Directive (COPD) [9], we focus the simulation-based de-
cision support for generation and testing of alternatives at the
Joint Force Command (JFC) Operational Concept Development (JFC
Phase 4a). This approach does not exclude the use of thesemethods
at an earlier strategic level.

The similar concept of comprehensive approach (CA) has re-
cently received additional focus. This approach differs to a certain
extent and is allowed to do so between nations and organizations
such that we actually address several comprehensive approaches.
However, these approaches all have a commongoal of coordinating
own and friendly forces and allies in a conflict area, both military
and civilian, in combined and joint efforts intended to reach a sta-
ble peaceful situation. The BritishMoD has formulated CA as ‘‘Com-
monly understood principles and collaborative processes that enhance
the likelihood of favourable and enduring outcomes within a particu-
lar situation’’ [10]. NATO describes CA as ‘‘an orchestration of com-
munication of all activities in a country, coming to a well defined and
well understood end state’’ [11]. More specifically, the idea is that
all actors should work in a coordinated manner with a common
agreed end state as the final goal in the political,military, economic,
social, infrastructure, and information (PMESII) situations viewed as
an overall system within a country.

3. The Bogaland scenario

Wemake use of the same scenario that has regularly been used
by the Swedish Armed Forces in the Combined Joint Staff and
Fig. 2. The Bogaland test scenario.

‘‘Viking’’ Exercises. The scenario is composed of several fictitious
countries, two of which have been described in-depth, i.e., Xland
and Bogaland. Background histories offer explanations to why and
how sentiments, stances, identities, loyalties, economic dependen-
cies, and inequalities have evolved over time, occasionally result-
ing in shifts of power. Phenomena that are commonly found in
conflict areas and post-conflict areas have been embedded in sce-
nario contexts that make the origins of the phenomena plausible
(see Fig. 2).

In Xland, demographic change constitutes a threat to the privi-
legedmajority group and puts severe pressure on the government.
The country has a constitution that does not give the fast growing
minority group the same rights as the dwindling majority group.
Irregular groups originating from the minority group have taken
control of the rural regions of the country.

In Bogaland, which is a newly industrialized country, a civil
war broke out ten years ago when discontent within the minor-
ity ethnic-religious group reached notably high levels. The root
cause was increasing social stratification caused bywhatmembers
of the minority group perceived as unjust distribution of revenues
from a natural resource located in an area populated by the mi-
nority group. The civil war put an end to the exploitation of the
resource, in this case oil, and revenues dropped to rather low lev-
els. The country was split into two regions, roughly along ethnic
lines, with each region forming its own government. A post-war
economy evolved over the next decade, and several irregulars and
insurgents are now challenging the incumbent presidents.

The incumbent presidents have signed a peace-agreement,
and an international force known as BFOR is present to support
the implementation of the agreement. Irregular groups (i.e., non-
government combat groups) in Bogaland seek to preserve or in-
crease their influence by undermining the efforts of BFOR, the
governments or competing irregulars. Two of the neighboring
countries have much at stake in the conflict because of economic
interests and shared identitieswith partieswithin Bogaland. Actors
within these neighboring countries support irregulars in Bogaland.

4. Simulation control

The planning process that we analyze corresponds to selecting
a sequence of actions from sets of alternatives. Most actions con-
tain between two and eight alternative methods of execution and
one alternative is chosen for each action. Thus, a chosen sequence
of alternative actions constitutes a plan for attempting to reach a
peaceful end-state in Bogaland. The number of possible plans can
theoretically grow extremely large because each combination of
alternative actions for the different actions will constitute a sep-
arate plan. In our planning problem which finds some of the best
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plans to solve the problems in Bogaland by simulation, we have
designed 43 actions and a total of 109 alternatives for these ac-
tions. This theoretically constitutes 2.164 × 1023 possible plans if
all possible combinations are counted. Of course, in practice, many
of these plans can be ruled out because they start out with a se-
quence of action alternatives that lead to early failure, i.e., status
quo or even moving away from the end-state we try to reach.

The simulator is free to choose how to sequentially combine
action alternatives to plans to evaluate in its search for the best
plans, an incremental process which is further described in Sec-
tion 6. However, it is also possible to give the simulator instruc-
tions on how to select the combinations of action alternatives it
should prefer during simulation. In this way, it is possible to guide
the simulator to plans, among all possible plans, that meet the
decision-makers requirements. There are three complimentary ap-
proaches to managing the simulator’s efforts towards plans with
actions that:
• are executed within a specified geographical area,
• are executed within a specified timeframe, or
• may lie outside the specified area and timeframe if they strongly

influence actions within the area and timeframe [12,13], as
described by a cross-impact matrix (CIM) [14,15].

The first two approaches direct the focus of the simulation on
actions that are spatiotemporally limited to a preferred frame.

The third approach uses the CIM. It is a matrix set up for all ac-
tions that specifies how much the actions counteract or support
each other during execution due to resource conflict or the extent
to which one action lays the foundation for another, etc. With this
technique, all phenomena are placed against each other in a ma-
trix, and their constrained probabilities are calculated, i.e., what is
the probability of a particular phenomenon given that another has
just occurred? SinceGordon andHayward’s original article in 1968,
research in the area of cross-impact analysis has developed in sev-
eral directions, and the two main themes are statistical and quali-
tative. The statistical line begins with Gordon and Hayward [14].
Under this approach, Turoff [16] presented an alternate cross-
impact analysis based on the impact one event has on a different
event. Dalkey [17] derived the requirement for a CIM to be consis-
tent, and Duperrin and Godet [18] developed a newmethod based
on cross-impact analysis to improve the decision-making process.
Recently, Bañuls and Turoff [19] extended the original method of
Turoff to allow the user to work in an incremental manner and
set an own stopping point when analyzing a scenario. Addition-
ally, Bañuls et al. [20] extended the methodology to collaborative
group scenario generation. In this article, we follow the qualitative
line of research. Within this framework, Jeong and Kim [21] devel-
oped a qualitative cross-impactmodel built on fuzzy relationships.
The method allows definition of the impact in linguistic terms or
directly with fuzzy relationships. Asan et al. [22] also proposed a
fuzzy methodology for cross-impact analysis and used four dif-
ferent analysis methods in parallel to each research question fol-
lowed by comparison of the results. Parashar et al. [23] use a fuzzy
cross-impact simulation in which the interaction in a studied sys-
tem is represented by a CIM with linguistic terms. The methodol-
ogy is used to visualize the dynamic development of the system in
question. Among other developments, Enzer [24] combined cross-
impact analysis with the Delphi methodology [25], Helmer [26]
studied non-commutative problems, and Amara [27] studied the
impact between events in which the sequential order of events is
crucial. Bloom [28] went one step further and developed a time-
dependent cross-impact model.

In this article,we combine the idea ofmultiple alternatives from
morphological analysis [29] and the methodology of a qualitative
cross-impact analysis to analyze an operational plan. Because we
study our own operational plan in which we make decisions, we
will notmodel different alternative outcomes of a particular action
but instead examine the alternative specific ways of implement-
ing the action within the operational plan. We combine this ap-
proach with the idea of a qualitative analysis of a CIM in which we
take into account how all of the alternatives between two different
plan elements affect each other. Because our use of this method is
qualitative, it is not a question of conditional probabilities between
different outcomes but the impact (whether positive or negative)
between the different plan elements. We use a scale of integers
from −9 to +9, which provides sufficient ability to describe the
strength of influences among all plan elements. These impacts are
used in a clustering process [30] to find sets of actions that influ-
ence each other, i.e., the blue and red action groups in the lower
left of Fig. 3.

Shown in Fig. 3 is the graphical user interface where we make
each of these three (spatial, temporal and CIM connections) selec-
tions as a preferred area of interest in a map, a timeframe in a
Gantt chart, and an action group in a chart with actions grouped
according to influences given to other actions and received from
other actions in the CIM. Each of these three types of selections
gives each action a weight between 0.0 and 1.0. The spatial and
temporal weight for each action is calculated as the overlap be-
tween the selected focus area/timeframe and the corresponding
items for each action. The final weight for an action, which will be
used for its importance in the simulation, is the product of these
three weights. The simulator will be focused to find plans relative
to these weights. In Fig. 3, six action alternatives out of the twelve
zoomed got highest priority. In the simulation there are 43 actions
with 109 alternatives altogether, but we have zoomed in on the
figure for clarity.

5. Modeling actors and actions

In this work, we employ an actor modeling approach targeted
towardsmodeling of aggregate entities of human groups and orga-
nizations, i.e., civilians, armed forces, etc., inmilitary conflict zones.
The modeling approach uses a combination of Bayesian networks
and rule-based methods that operate on state variables that have
been selected to represent the characteristic properties of aggre-
gate entities representing groups and organizations. Specifically,

• State variables are used to represent the actor’s knowledge or
beliefs about itself, other actors, and the environment,

• Bayesian networks are used to model the behavior and action
selection mechanism of the actor,

• Rules are used to model actions and their effects on the actor’s
state variables.

5.1. State variables

State variables are used in this work to represent the actor’s
knowledge and beliefs about itself, other actors, and the environ-
ment. We have separated the state variables into sets representing
an actor’s internal state and its relationships to others. Note that
in our modeling approach, all actors that are known to the actor in
question (including reference to itself) are represented using sepa-
rate sets of the abovementioned state variables. The purpose of the
state variables is to provide a common knowledge representation
that can be used in developing behaviors and actions as described
below. The state variables presented in this sectionwere identified
using subject matter experts and chosen to represent a wide range
of characteristics among groups and organizations in military con-
flict zones. For instance the actor BFOR has a set of state variables
that represent its physical capabilities, such as weapon power, and
state variables that represent its mental capabilities such as group
feeling. There is also a set of variables that define its relationship to
other actors, e.g., it is friendly towards the civilian population and
the local government, but it is suspicious towards irregular groups.



40 J. Schubert et al. / Operations Research Perspectives 2 (2015) 36–56
Fig. 3. Simulation control tab of theGUI:Upper left: Each action alternative has an area inwhich it is executed in Bogaland (blue filled rectangles). Selection of the geographical
focus area is performed with a red rectangle. Upper right: Similarly, selection of focus timeframe (purple). Lower left: Selection of connected actions that are closely tied in
the CIM. One group can be selected (here, purple or red) Lower right: Fused (product) weights for the action alternatives that give their importance in the simulation. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Internal state variables (parameters).

State variable Interpretation of state variable values
0 1 2 3

Weapon power A Less than 0.1 brigade 0.25 brigade 1 brigade 4 brigades
Living conditions B Suffering, scarce resources,

killed by others
Suffering, scarce resources Not suffering, limited resources Not suffering, abundant

resources
Stance C Submissive Defensive Defiant Violent
Sympathizers D No supporters Supported by marginal others Supported by the local majority Supported by the wider majority
Economy E <1000 times GNP/capita 1000–10000 times

GNP/capita
10000–100000 times
GNP/capita

>100 000 times GNP/capita

Stability F Quick reduction in group
size

Slow reduction in group size Slow increase in group size Quick increase in group size

Geographical
dominance

G At risk in the area Can move and talk freely Can impose restrictions on others Can dominate others

Infrastructure H Man-to-man,
word-of-mouth

Terrain vehicles, leaflets Trucks, cell-phones Complete, internet

Propaganda channels I Limited reach outside
primary group

Reaches local communities Reaches communities of similar
identity

Reaches all types of
communities

Social network J No ties Ties to uncommitted Ties to committed Ties to highly committed
Reputation K Despised Light-weight Recognized Highly regarded
Dissatisfaction L No grievance Wants to see responsibility

for grievance fail
Prepared to use violence in act of
revenge

Prepared to sacrifice life in act of
revenge

Group feeling M Power struggle Friction Harmony Cohesive
Ideological conviction N None Little Medium High
Goal orientation O None Preserving Advance Vision
The internal state variables, which originate from previous
work [31], are represented in this work by a vector I that contains
15 discrete state variables. The name, label (A − O), and a brief
(non-exhaustive) qualitative interpretation for each variable value
are presented in Table 1. The variables in the internal state vector
are limited to four integer values [0, . . . , 3]. For instance, an ac-
tor with regard to its ‘‘Reputation’’ can be either 0 (Despised), 1
(Light-weight), 2 (Recognized) or 3 (Highly regarded). We believe
that this design decision ensures that the modeling efforts remain
pragmatic and not excessively time-consuming. Additionally, such
limitation significantly reduces the complexity in terms of search
space when embedding actor models in real-time planning tools
such as the one presented in this article.

Similar to the internal state of an actor, the actor’s relationships
to others are encoded in a relationship state vector R, as illustrated
in Table 2. Each row in the table represents the relationship of this
actor towards another actor. Note that unlike I , which is fixed, the
number of variables in R varies with the number of other actors N
known to the actor. The reason is that not all actors are known to
each other either because of geographical proximity or the fact that
some actors intentionally strive to be unknown. The relationship
variables take on four integer values [0, . . . , 3] that are interpreted
as enemy, suspicious, neutral, and friendly, respectively.



J. Schubert et al. / Operations Research Perspectives 2 (2015) 36–56 41
Table 2
Relationship state variables.

State variable Interpretation of state variable values
0 1 2 3

Relationship1 R1 Enemy Suspicious Neutral Friendly
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Relationshipn RN Enemy Suspicious Neutral Friendly

Given the state variables described above, we introduce the
notation used in the remainder of this article. Another actor ai
known to the actor is represented by ωi = {Iij, Rin}, where j =

{A, B, . . . ,O} and n = {1, 2, . . . ,N}. In other words, Iij represents
actor ai’s internal state variable j, and Rin represents actor ai’s rela-
tionship to actor an. Given that the actor knows about N actors (in-
cluding itself), its complete knowledge space isΩ = {ω1, . . . , ωN}.

Let us also introduce the concept of roles that is used to gen-
eralize action and behavior modeling. The initiator role is assigned
to the actor that initiates an action, the target role is assigned to
the actor whose state variables are directly affected by the initia-
tor ’s action, and the bystander role is assigned to all other actors
other than the initiator and target that may be affected by the ac-
tion. Henceforth, when referring to the state variables of the initia-
tor, target, and bystander actors the subscripts i, t , and b are used,
respectively. For instance, ItA refers to the internal state variable A
of target actor at .

5.2. Behavior modeling

Using the state variables, we introduce a behavior modeling
method. The behavior of an actor is in essence an action selection
strategy implemented as a function that uses the actor’s state vari-
ables Ω as input and generates the alternative α to execute as out-
put, as shown in (1). For instance, if actor A attacks actor B then
B might respond differently depending on its weapon power. If B
feels that it is inferior to A with regard to weapon power it is more
probable that it surrenders or retreats.

α = f (�) . (1)
In this work, a Bayesian network (BN) [32] approach is adapted

to model f using subject matter experts. We have chosen to use
BNs due to the following properties:
• Ability to graphically represent actor behavior using directed

acyclic graphs (DAGs), which ultimately improve the general
understanding of themodel both for the developer and the user
with regard to validity and reliability of the model,

• Ability to perform inference or select actions even in the pres-
ence of missing or uncertain information,

• Modularity and re-usability.

The Bayes rule defined in (2) represents the core of any Bayesian
modeling approach [32]. We have,

p (αn|�) =
p (αn) × p (�|αn)

M
m=1

p (αm) × p (�|αm)

. (2)

Using the Bayes rule, a probability value known as the poste-
rior is calculated for each action available to the actor. Typically,
the action with the maximum posterior is selected by the actor;
however, this is not always the case, as will be discussed below.

From the Bayes rule, it is clear that the posterior p(αn|Ω) of ac-
tion αn is calculated using the prior p(αn) and likelihood p(Ω|αn)
functions. The denominator or the evidence is a normalizing factor
that spans all actions M . In other words, using the Bayesian ap-
proach, it is ultimately the prior and likelihood functions that the
modeler manipulates or that the learning algorithm estimates to
represent desired actor behaviors. The problem with Bayes rule is
Fig. 4. Naïve Bayes classifier inwhich IiL is conditionally dependent on Rit . All other
state variables are assumed to be independent of each other.

that one rarely can find sufficient data tomodel the likelihood func-
tiondue to thehighdimensional state variable vectorΩ in our case.
In this case, the BNs come to the rescue by introducing conditional
independence between variables and hence simplifying the likeli-
hood estimation process.

At its simplest, a BN is identical to the naïve Bayes classifier in
which all variables in Ω are assumed to be conditionally indepen-
dent. Using this assumption, Bayes rule can be reduced to (3),

p (αn|�) =

p (αn) ×

K
k=1

p (Ωk|αn)

M
m=1

p (αm) ×

K
k=1

p (Ωk|αm)

, (3)

where K is the dimensionality of Ω . The DAG of an example naïve
Bayes classifier BN is presented in Fig. 4. As it is depicted in the
figure the value of an action is based on the value of internal state
variables and relationship state variables.

However, not all variables in Ω are conditionally independent
of each other. As an example, an actor ai’s dissatisfaction IiL with
another actor at is conditionally dependent on its perceived rela-
tionship Rit to at , Fig. 4. Links between any two variables in the
DAG indicate that a conditional dependency exists between them.
Many inference algorithms that are capable of calculating the prob-
abilities at arbitrary nodes in arbitrary structured BNs have been
discussed in the literature [33]. In this study, we chose to use the
algorithm presented in [34]. It is important to understand that the
time required to infer probabilities varies depending on the struc-
ture of the BN as well as the amount of evidence (or knowledge)
known prior to inference.

Using the probabilities inferred at the action node of the BN, it
is possible to select an action in several ways. The action selection
method that used is ultimately the modeler’s choice. This actor
model supports the following action selection methods:
• Maximum posterior (MAP),
• Random draw.

The MAP approach simply selects the action with the maxi-
mum posterior. The random draw approach selects an action by
randomly sampling the posterior values with respect to their pro-
portions.

5.3. Action modeling

While behavior modeling presents a method for selecting
proper actions for an actor based on the values of its state variables,
the action modeling explains how the state of an actor is changed
when an action is performed. Hence, actions are the means by
which an actor may alter its state Ω . An action is represented in
this work by a set of rules, each consisting of a condition (i.e., the
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if component) and a list of effects (i.e., the then component) such
that if the condition is true, then the list of effects will execute, ul-
timately resulting in state variable changes. However, if the condi-
tion is false, then none of the effects will execute.

In this work, subject matter experts have developed hundreds
of rules tomodel the following actions: attack, neutralize, negotiate,
support, protect, and nothing. In addition to the rules governing the
effects of actions, subject matter experts have developed global
rules to model certain phenomena, i.e., the Stockholm syndrome
and radicalization. Global rules are also used to introduce
constraints that filter out invalid or unwanted state variable values.

The conditions (if components) of the rules are described using
Boolean expressions. The effects (then components) of the rules are
described using a function notation in which set, inc, and dec func-
tions are used to set increment and decrement specific state vari-
able values. For instance, set(ItA, 1) assigns the value 1 to the target
actor’s internal state variable A. Similarly, inc(ItA, 1) and dec(ItA, 1)
increases and reduces the same value by 1, respectively.

6. Simulation methodology

The simulation contains the plan that is to be evaluated, the en-
vironmental data, and models of participating actors and their ini-
tial states, including a probability distribution for different actions
that they are capable of carrying out. In this context, a plan is de-
fined as a set of actions executed (sequentially or in parallel) by a
military force intended to lead to a desired end state. Furthermore,
the simulation scenario contains an event list that consists of ac-
tions derived from the other actors’ agendas and spontaneous/
natural events. This list is dynamic and changes during the course
of the simulation.

To describe the simulation process, we define the system state
Sn as the combination of all actors’ state variables and all envi-
ronment parameters. Next, consider action An, which transforms
system state Sn−1 according to Sn = f (Sn−1, An) in the time in-
terval [tn−1, tn]. The implementation of An is rarely instantaneous;
instead, it is an interaction between our own actions, other ac-
tors’ agendas and response operations, and other external events.
Hence, our function f (Sn−1, An) is designed as an event-driven sim-
ulationmodel tomanage the complex interactions in a transparent
manner. The events in this case are launching of actions (our own
or any other actors’), an actor’s observations of initiated actions,
and occurrence of an external event.

Furthermore, the outcome of An can vary depending on the cir-
cumstances (e.g., the operation may even fail), which can be ad-
dressed bymaking the simulation stochastic in which the outcome
of an action depends on a number of random variables drawn ac-
cording to selected distributions. The disadvantage of this model
is that we can obtain a per se reasonable but rather unlikely out-
come, which would mean that we might needlessly throw out a
mostly good plan. To avoid this outcome, we use Monte Carlo sim-
ulations, thereby obtaining a frequency function of the entire out-
come space.

A consequence of implementing the function f (Sn−1, An) as an
event-driven stochastic simulationmodel is that although the state
variables are absolute values at the beginning, after a completed
action, they will be represented by statistical distributions. Hence,
we can choose to represent the initial states by statistical distri-
butions as well. Similarly, the external events can be listed with
typical probabilities for the actual operational theater, season, etc.

We know that the goal of the simulation is to execute different
plans and identify those plans that result in system states that are
closest to our end state, i.e., has the shortest distance to the end
state. Given the approach discussed above, the distance to the end
state will be stochastic. Hence, by calculating the distance value in
eachMonte Carlo loop,we create the distribution of this distance in
the form of a histogram, which approximates the frequency func-
tion. This means that the A∗-algorithm (described in the next sec-
Fig. 5. Monte Carlo algorithm.

tion) must evaluate not only a single distance value but also the
importance of the spread in the given situation. A large spread
around a small average value indicates that we are on track, but
that this path is unstable and could easily lead to failure.

Our Monte Carlo simulation is therefore structured as shown in
Fig. 5.

During the actual time interval [tn−1, tn], our action An is ini-
tiated. Probable external events are chosen in the same way and
placed in the event list according to their given distributions. The
action An is observed by the other actors immediately or eventually
via an information channel. Directly, or after a period of analysis
(which may be biased or colored by the information channel), the
respective actor’s state is changed, which can lead to a new set of
probabilities in the action repertoire. An action from each actor’s
action repertoire is randomly chosen and placed in the event list.
As the simulation proceeds and actions/events in the event list are
executed, new actions/events are added in the list (as the result
of observations and reactions) until the end of the time interval is
reached. Finally, a summary of the results for the state variables is
created. These state variables are representedwith histograms and
serve as an approximation for the respective output distribution.

6.1. A∗-search

The purpose of our simulation system is to search for a sequence
of actions that best suits the decision-maker’s desired end state.
However, we also want the simulation to be capable of suggesting
an alternative solution at anymoment in time. Hence, such a simu-
lation system can neither be designed according to the principle of
‘‘breadth first search’’ nor ‘‘depth first search’’. In the former case,
it will take too long to reach a reasonably correct prediction. In the
latter case, we get stuckwith just one plan andwill not have a gen-
eral view if asked to forecast the best solution. Instead, a suitable
approach in our case is to apply an A∗-search algorithm. The classic
representation of the A∗-search algorithm is described as follows,

f ′(n) = g(n) + h′(n) (4)

where g(n) is the total distance from the starting position to the
current location, and h′(n) is the estimated remaining distance
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Fig. 6. An example illustrating the four first steps in a simulation of a plan beginning with initial system state S0 with a distance of 100 to the desired end state. The available
action alternatives Ax are executed successively in the currently most favorable plan option.
from the current position to the goal (end) state. A heuristic func-
tion is used to create this estimate of the distance to the goal state.
The function f ′(n) is the sum of g(n) and h′(n), i.e., the current esti-
mated shortest path. The true shortest path f (n) is not discovered
until the A∗-algorithm is finished. Thismeans that based on a given
system state, we simulate the effect of each alternative action in
our plan but only one step at a time. Thus, for every alternative, we
obtain a new system state whose distance to the desired end state
can be calculated. Given the alternative that is best, i.e., closest to
our end state, we simulate the possible subsequent alternative ac-
tions that are provided but only one step ahead in our action/event
list. One of these alternatives leads to a condition that is closer than
the others. However, it is possible that all the alternatives actually
lead away from the target as shown by Fig. 6, step 3.

Therefore, we must also compare the new distance with the
best of the distances that have been simulated and recorded in the
previous simulation steps but had been passed over in favor of a
better sequence of alternative actions. The best sequence thus be-
comes the basis for the next simulation step. At any time, the user
can ask for the sequence which at that time appears to be the best,
i.e., the sequence of alternative actions that leads to a simulated
state that is closest to thedesired end state. Action lists in the inves-
tigated plans are obviously not infinite, whichmeans that theywill
gradually terminate. Consequently, the simulation program con-
tinues to execute the options that follow the second-best system
state. Given sufficient execution time, all optionswill eventually be
investigated. For the tool to function in thismanner, the simulation
system stores a list of all executed actions, the corresponding sys-
tem state, and the distance value. Therefore, the simulation kernel
provides a service to store all this information in a dynamic list and
is also able to restart the simulation from a previously stored state.

6.2. Distance functions in A∗-search

A problem in applying the A∗-search algorithm is to find a
proper distance function. In our model, the states of the actors and
the environment are described by a large amount of parameters,
which complicates the task of defining a credible distance func-
tion. The solution is to define a function that calculates the distance
based on the difference between parameter values of a given state
and the parameter values of the end state. The parameters are not
represented by real numbers but rather as histograms.

A state Si,yi is a vector of length n with different sub-states
Si,yi,j, where Si,yi,j is a distribution over {0, 1, 2, 3}, e.g., Si,yi,j, =
(0.2, 0.5, 0.2, 0.1), where the first 0.2 is the frequency of ‘‘0’’, 0.5
is the frequency of ‘‘1’’, etc. We have,

Si,yi = (Si,yi,1, Si,yi,2, . . . , Si,yi,n), (5)

where yi is the current sequence of choicesmade for all activitiesA1
to Ai. The initial state is known as S0,0, and the end state is referred
to as Se.

The distance ∆(Si,yi , Si+1,yi+1) between two successive states
Si,yi and Si+1,yi+1 is calculated as

∆(Si,yi , Si+1,yi+1) =

3
k=0

Si,yi,j (k) − Si+1,yi+1,j (k)
 . (6)

During the simulation, an assessment is carried out for howwell
each action is performed. This process is performed by the func-
tions g and h. Function g measures the consequence of all actions
performed as a distance from the initial state S0,0 to the current
simulated state Sx,yx action-by-action [31]. We have,

g (yx) =

x−1
i=0

∆

Si,yi , Si+1,yi+1


. (7)

Function h is a heuristic estimate of the remaining distance from
Sx,yx to the end state Se. The estimated distance from the current
state to the end state is given by

h (yx) = ∆

Sx,yx , Se


. (8)

With the total distance from the initial state to the end state,
the current state is

f (yx) = g(yx) + 80h(yx). (9)
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This representation is the distance function that is minimized
by A∗. The weight ‘‘80’’ was derived from experimentation to bal-
ance the performance of minimizing g and h and is domain depen-
dent.

7. Decision support methodology

Decision support is presented as a set of plans that are simi-
lar in structure and consequences. In this process, we cluster the
patterns of plan instances that are similar in structure and conse-
quences. ‘‘Similar in structure’’ means that the plan instances have
more or less carried out similar alternative actions. ‘‘Similar in con-
sequences’’ means that the plan instances travel the same distance
action-by-action towards the end state on average.

We observe the difference in consequences between two plans,
and we compare the difference in the incremental changes of g
and h, referred to as 1G and 1H , respectively, for each action Ak
and both plans Pi and Pj as they progress down the sequence of
additional actions Ak. For each Ak, we obtain,

1G

Pi.Ak, Pj.Ak


=

1g (Pi.Ak) − 1g

Pj.Ak

 (10)

and

1H

Pi.Ak, Pj.Ak


=

1h (Pi.Ak) − 1h

Pj.Ak

 (11)

where

1g (Pi.Ak) = g (Pi.Ak) − g (Pi.Ak−1) (12)

and

1h (Pi.Ak) = h (Pi.Ak) − h (Pi.Ak−1) , (13)

where i is an index for different plan instances, and k is the index
for actions.

Thus, Pi.Ak is a variable referring to the kth action of the ith plan,
which takes on an integer value that is the number of the alter-
native chosen for this action, e.g., P1.A3 = 41 implies that action
number 3 of plan number 1 executes alternative number 41.

In addition, we must measure the structural distance between
two plans, and this is accomplished using the Hamming [35] dis-
tance Ha, which measures the structural distance between Pi and
Pj.

We have,

Ha

Pi.Ak, Pj.Ak


=


0, Pi.Ak = Pj.Ak
1, Pi.Ak ≠ Pj.Ak

(14)

when both actions Pi.Ak and Pj.Ak exist within the simulated se-
quences Pi and Pj; otherwise 0, by definition.

Using this measure, we compare each action in two different
plans to calculate the structural distance between the plans. For
each action, we observe the alternative chosen in both plans.

We put these three measures together into an interaction
function that measures the overall distance between plan Pi and Pj.

We have,

J−ij = 1 −


1 −

1
|Ak|


k

Ha

Pi.Ak, Pj.Ak



×

1 −
1

|Ak|


k

1g (Pi.Ak) − 1g

Pj.Ak


max

k

1g (Pi.Ak) − 1g

Pj.Ak




×

1 −
1

|Ak|


k

1h (Pi.Ak) − 1h

Pj.Ak


max

k

1h (Pi.Ak) − 1h

Pj.Ak


 . (15)

In this work, the sums of the second and third lines are nor-
malized by the maximum difference, and all sums in the three fac-
tors are normalized by the number of actions of the plan. Thus,
J−ij ∈ [0, 1] and is ‘‘1’’ if one of the three measures is at maximum,
and is ‘‘0’’ if all three measures are at minimum.

Wepartition the set of all simulated plans into clusters using the
Potts spin model [36] in such a manner as to minimize the overall
sum of all interactions J−ij within each cluster.

The Potts spin problem consists of minimizing an energy func-
tion

E =
1
2

N
i,j=1

q
a=1

J−ij WiaWja (16)

by changing the states of the spins Wia, where Wia ∈ {0, 1}, and
Wia = 1 means that plan Pi is in cluster a. This model serves as a
clustering method if J−ij is used as a penalty factor if plan Pi and Pj
are in the same cluster.

For computational reasons, we use amean fieldmodel in which
spins are deterministic with Via = ⟨Wia⟩, Via ∈ [0, 1] to find the
minimum of the energy function. The Potts mean field equations
are formulated [37] as

Via =
e−Hia[V ]/T

K
b=1

e−Hib[V ]/T

(17)

where

Hia [V ] =

N
j=1

JijVja − γ Via (18)

and T is a parameter known as the temperature used to control the
influence of the interaction; this is a system parameter initialized
to

1
K

· max (−λmin, λmax) (19)

where K is the number of clusters, and λmin and λmax are the ex-
treme eigenvalues of M , where

Mij = J−ij − γ δij. (20)

Tominimize the energy function, (17) and (18) are iterated until
a stationary equilibrium state has been reached for each temper-
ature. Next, the temperature is lowered in a step-by-step manner
by a constant factor until ∀i, a. Via = {0, 1} in the stationary equi-
librium state, as shown in Fig. 7 [30,38].

To find the optimal number of clusters K we plot the energy
function (16) in a graph for different number of clusters K . We use
a convex hull algorithm to calculate the lower envelope of E. At an
arbitrary abscissa, the envelope function is bisected in a left and
right section, each of which is fitted by least squares to a straight
line. The acute angle between the two lines is maximized over all
bisection abscissas, and the maximizing abscissa is chosen as the
number of clusters [39].

These clusters represent sets of alternative plans that are avail-
able should re-planning become necessary. If a plan is in the midst
of execution, the decision-maker can observe evaluations of alter-
native continuations of the plan and determine which alternative
activities to avoid andwhich are preferable because they arewithin
a robust subset of plans.

Klein [40] demonstrated that the ability of decision-makers to
identifymore robust options increases substantially through visual
comparison. Instead of performing mental simulations of different
options, which is a highly error-prone process, Klein [40] allowed
the decision-makers to obtain a clear picture of the relationship be-
tween available options using graphical visualization of the conse-
quences of performing those options using simulations. However,
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Fig. 7. Potts spin clustering of simulated plans partitions the set of simulated plans
into clusters of similar plans.

the authors believe that presenting the decision space such that
the decision-makers receive efficient support in viewing synergies
and patterns is an ongoing challenge.

In Sections 7.1–7.7, we present a number of different analysis
and decision support methodologies that combine analytical and
visualization methodologies. The purpose of many of these visual-
ization methodologies is to provide the analyst with an overview
of the consequences of the plans in a data exploration mode.

7.1. Recording Decision-Makers’ selection of action alternatives

Amodified version of the A∗-algorithm is used in the simulation
engine that not only searches for the best path but also records all
paths that have encountered a leaf node in the search tree. These
recorded paths can later be visualized using our tree visualization
GUI, which means that a decision-maker will be able to browse
the complete tree and viewwhich nodes were included in the best
path in addition to other nodes that were almost included as well
as those that were discarded.

In Fig. 8, we are presented with an example of paths that were
visualizedwith the tree visualizationGUI. In this figure,we see that
nodes 1, 2, and 41 on the top were included in the best path (green
color). If the user clicks on node 61, which is located on the next
level in the tree, he will continue down the best path; however, if
he clicks on node 42 (yellow color), a path of lower quality will be
selected.

If the user clicks on node 61, its children on the next level are
shown (see Fig. 9). In this figure, there are two choices: either we
continue along the best path by selecting node 6, or we can browse
the tree through a node (white node 108) that has not been in-
cluded in any path.

Continuing further down the tree, we see in Fig. 10 that node 6
has five children. Nodes 8 and 7 are colored red because traveling
to those nodes diverts excessively from the optimum path. Nodes
10 and 5 are close to the best path, which passes through node 9.
Fig. 8. Tree visualization of a plan (level 4). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Tree visualization of a plan (level 5).

Using this type of visualization, which shows the best path in
a context where other alternatives are also expressed, gives the
decision-maker the ability to recognize the actions that affect the
total outcome at a certain step in the plan. This mechanism is im-
portant to show action traceability in the system.

7.2. Visualizing the best plan effects time series

During plan execution, it is valuable to analyze whether the en-
tire operation is approaching the desired end state, and one way
to determine whether this is the case is to define a set of advan-
tageous key states that must be achieved. Achieving such a state
(hence, moving from a present worse state) is known as obtaining
an effect. These actions are often stated on a high semantic level. A
typical example effect in the Bogaland scenario could be ‘‘Establish
order and stability in East Kasuria’’.

Because effects-based planning will typically involve designat-
ing a number of effects described in natural language whose fulfil-
ment are assumed to constitute the path towards achieving the end
state, it becomes interesting to examinewhat role such effects play
in the context of a simulation steered in the direction of a desired
end state. Because the end state is a point in parameter space that
the simulation attempts to reach, the effects should be viewed as
partitions of the parameter space that the simulation increasingly
occupies, and the intersection or center of gravity of these parti-
tions should be located close to the end state. Visualizing the ful-
filment of effects along the progression of simulation for the best
found plan (i.e., action numbers on the x-axis) should determine
whether the best course of action does indeed correlate with step-
wise achievement of the designated effects or whether success is
best achieved through other paths.

Conversely, monitoring the degree of fulfilment of effects al-
lows one to spotwhether a plan that eventually leads to a desirable
end-state does so by passing through unacceptable sub-states (as
given by dips in fulfilment of critical effects).

The total actor state is defined at each time by the matrix of 15
parameters with values 0, 1, 2, 3, for all 40 actors, where each pa-
rameter can change value as a result of each action. Formally, an
effect is defined as a limited volume or a union of volumes in the
15-dimensional parameter space. This representation is equivalent
to the 15 sub-intervals of the allowed parameter values 0, 1, 2, 3 (or
a union of such). The distance from the present collective actors’
state to an effect is the sum of the Manhattan (L1 metric) distances
from all actors’ current parameter values to the closest points (cor-
ners, sides, or hyperplane) of the effect as measured from each ac-
tor.
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Fig. 10. Tree visualization of a plan (level 6). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Time series of supporting effects and decisive points as measured by effect
fulfilment.

Fig. 11 shows an example of monitoring four effects during the
execution of the best plan. In this example, we observe no trends
but note that three out of four effects are mostly achieved. This
observation is explained by the fact that we are actively striving
towards the end state (point) and not towards an effect (volume)
in parameter space because effects are only monitored but not ac-
tively aimed at in this work. Hence, in this example, we are neither
approaching nor distancing ourselves from any of the effects in any
major way (as measured by a degree of effect fulfilment calculated
from a distance measured in parameter space).

Another method used to assess the probability for achieve-
ments of the effects (and finally, the end state) is to use the CIM.
In the CIM, the expected impacts of actions on effects and effects
on the end-state are stated. Depending on the observed progress of
actions, and together with the commanders’ own observations of
the situation on any effect-level, the probability of achieving these
higher effects can be assessed [13].

7.3. Visualizing the multiple plan end-state time series

During the A∗-search, the simulator attempts to find a way to
traverse the search tree that minimizes f , which is the sum of the
distance traveled so far (g) plus the expected distance to the end
state (h), i.e., to minimize the expected total effort of the operation
required to move the actors to the end state. These measures are
computed and stored for every time step, i.e., after each execution
of an action. A monotonous decrease of h means that we are con-
tinuously approaching the end state. Function h has an analytical
definition according to Section 6.2, i.e., the sum of the Manhattan
distances from all actors’ present parameter values to the end state
(a point in parameter space). In practice, we do not know exactly
how to get to the end state even if we can assess the distance. Func-
tion g is the length of the path traveled thus far, i.e., the sum of the
L1 parameter value changes for each actor over all actions executed
thus far. Function g will always increase, but h (the distance to the
end state) might decrease in proportion to how successful an ac-
Fig. 12. Functions f , g , and h plotted vs. simulation step for the 10 best plans.

tion is or might increase for an action that shifts these parameters
away from the end state.

We can plot the measures vs. action number for a subset of the
best plans to obtain an estimate of how well the simulation man-
ages to approach the end state, as shown in Fig. 12. In the figure,
it appears that each plan step roughly moves us nearly the same
distance (nearly linear development of f and g) but is not reflected
as well in the development of h, i.e., we are certainly not marching
straight towards the end state (which should give a reduction of
h for each step as large as the increase of g). Rather, as displayed
in the noisy behavior of h, certain actions tend to take us farther
from the end state, producing increases of every second step in h.
For the example plan under investigation, we begin at simulation
step 0 with a distance h = 744.0 to the end state (not shown in
Fig. 12). The situation deteriorates for all 10 best simulations and
turns favorable after the fifth action. The quick deterioration is due
to a direct change of most of the parameters when BFOR enters Bo-
galand and initiates its first action. After the fifth action, the general
trend presented (as well as for all 10 000 simulations) produces a
slowly decreasing h. The best result reached is h = 792.3, as shown
in the figure. Hence, the plans currently under investigation do not
take us as far towards the end state (formally at h = 0). From the
analysis of these time series, it is obvious to the decision-maker
whether any plans under investigations are successful or require
additional development work. It should be pointed out that the
relatively similar result for the 10000 simulated plans is a direct
consequence of the A∗-search methodology that searches through
a tree of action alternatives. Because each simulation corresponds
to a path through this tree and many paths found by the search al-
gorithm are necessarily similar, they will also have similar charac-
teristics. This outcome is deliberate as we search for a set of good
plans (for the sake of robustness), but if a greater variance in the
result is sought, we can use other approaches instead that do not
include any search [41].
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Fig. 13. Animated bubble chart visualization of the best plan (at the start of
operations).

7.4. Actors’ time development

The simulation engine gives us different paths for which each
contains a solution to the problem, i.e., a chain of actions that must
be executed in a specific order.Within those actions, the actors’ pa-
rameters are affected based on logic developed by a Subject Matter
Expert (SME). For an analyst, it is interesting to note how the actors
progress during the entire execution of all actions.

Different approaches exist for how to visualize multiple vari-
ables at once. In our case,weprefer to visualize the following rather
heterogeneous entities:

• Actors’ parameters,
• Actions,
• Actors’ relationship to the blue forces,
• The importance of an actor based on economy, stability, and

dominance in the region,
• Temporal changes.

Visualizing multivariate heterogeneous data is not easy. Often
one must use different projection or transformation techniques or
coordinate systemswith odd shapes in which the perpendicular di-
mensions greater than three are transformed in different ways to
increase interpretability at the cost of losing a portion of the origi-
nal information. User intervention techniques can be applied, such
as that used in Yi et al. [42], which presents the idea of dust (multi-
attributed data points) and magnets (attractors, one for each at-
tribute). Magnets are placed and moved on a 2D surface using the
mouse on the screen and attract the data points originally gathered
in the center to move towards the magnets depending on their at-
tribute values. Hur and Yi [43] presented a tool known as SimulSort
for sorting multivariate data simultaneously. Different attribute
columns are sorted individually, and therefore, records end up split
between different rows. Records are identified by highlighting the
attribute values that belong to the same record by moving the cur-
sor over one of them. Several records canbehighlighted in different
colors and thus compared simultaneously.

For visualization of the entities in the bullet list above, we
choose to use a bubble chart combined with a subset of the anima-
tion effects demonstrated by Rosling during a lecture at TED [44];
see Figs. 13 and 14.

Wegroup the parameters into three different groups. One group
is soft factors, which consist of parameters related to an actor’s so-
cial status, i.e., social network, feeling as a group, etc., and this pa-
rameter is plotted on the y-axis. A higher value indicates a more
socially connected actor. Another group is hard factors, which con-
sist of parameters such as weapon power, infrastructure, etc. and
is plotted on the x-axis. A higher value indicates a more militar-
ily advanced actor. The third group consists of parameters such as
Fig. 14. Animated bubble chart visualization of the best plan (at the end of
operations).

economy, geographical dominance, and stability. This group is rep-
resented using the size of the bubble, and a larger bubble repre-
sents a more important actor.

The bubbles also have colors that represent the relationships
between the actor and the blue force BFOR. Green indicates a neu-
tral actor, blue indicates an ally, red indicates an enemy, and yellow
indicates an unknown or suspicious actor.

For each action, a complete new set of visualized data is ren-
dered. Putting all of those renderings together, the summarized
effects are animated bubbles that represent four-dimensional (X,
Y, size, color) system changes that occur with respect to time (i.e.,
execution of action). Furthermore, the visualization software also
contains different tool features, i.e., fast-forwarding and filtering,
based on visible actors in the GUI. This option makes it possible to
see changes (correlated or anti-correlated) that occurs simultane-
ously in one or several dimensions for several plotted entities.

7.5. Explaining the impact of actions

An explanation function for interpreting the impact of actions is
based on a sensitivity analysis of the impact of different actions on
the success of the plan inwhichwe systematically vary the alterna-
tives of each action of the plan, one action at a time, while holding
all if the other actions unchanged in a series of simulations. This
sensitivity analysis shows the relative level of importance of mak-
ing the correct selection of alternatives for each action. Using the
explanation function, a decision-maker can find the most impor-
tant actions in a plan and focus his attention on actions for which
successful decision-making is crucial to the success of the entire
plan.

As we work with plans consisting of several actions Ak, we
must measure the impact of each action on the evaluation
{fikl (Pi.Ak = l)}l of plan Pi, where i is the index of the plan, k is the
index of the action, and l is the index of the alternative. This im-
pact can be denoted ∂ fikl/∂Ak. Given a discrete set of evaluations
{fikl (Pi.Ak = l)}l, we approximate the differentiation as a normal-
ized difference between maxl fikl (Pi.Ak = l) and the average of all
{fikl (Pi.Ak = l)}l. We have,

∂ fikl (Pi.Ak)

∂Ak

 =

1
nik

nik
j=1

fikj − fikl

1
nik

nik
j=1

fikj

(21)

where nik = |{fikl (Pi.Ak = l)}l| is the number of alternatives for
Pi.Ak [45].

Because the variance in this measure can be large between dif-
ferent plans Pi, wemight choose to use boxplots for a small number



48 J. Schubert et al. / Operations Research Perspectives 2 (2015) 36–56
Fig. 15. Conceptually, a plan Pi is a choice of alternatives for a sequence of actions,
one for each consecutive action to be executed, i.e., the red-colored path. Each cyan-
colored path in this six-action planning problem corresponds to one neighboring
plan with Pi.A4 = {1, 2, 4, 5, 6} for action 4. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

of good plans for each action Ak. For example, we will examine box
plots for the five best plans over all alternatives for the averages of
all actions Ak,

∂ fikl (Pi.Ak)

∂Ak

5

i=1
. (22)

To find the impact of the actions, we must perform additional
simulations. The A∗-search algorithm is intended to deliver the
best plans that it finds relative to success in reaching the end state,
as reflected in the distance f from the start state to the end state
(i.e., the lower, the better). Each of these plans consists of a se-
quence of actions for which the actions have several alternative
methods of execution, and a planmust choose one alternative from
each of these actions. Certain actions in the simulation turn out
to be more important than others for plan success. To determine
how much a plan relies on a selection of a certain action alterna-
tive for its success, one might compare a good plan Pi found by the
A∗-algorithm with plans that are structurally similar to it in cer-
tain respects. This process can be carried out by comparing Pi with
neighboring plans that only differ from Pi in the selection of alter-
natives for one single multi-alternative action, as shown in Fig. 15.
Thus, we have

n
k=1


0, Pi.Ak = Pj.Ak
1, Pi.Ak ≠ Pj.Ak

= 1. (23)

We simulate all neighbors for each good plan Pi already found
with a variation compared with Pi of exactly one action alternative
at a time. For each action Ak , we simulate Pi, where the selected
alternative for action Ak is replaced by another alternative to Ak
in the additional simulations. The result is the set Pik consisting of
|Pi.Ak| − 1 neighboring plans where

∀Pi, Pi.Ak : Pik (Pi, Pi.Ak)

=


Pj

Pi.Am = Pj.Am, ∀m ≠ k
Pj.Ak ≠ Pi.Ak

|Pi.Ak|−1

j=1
. (24)

After working through all actions with alternatives and chang-
ing only one action at a time, we obtain as many neighboring plans
for Pi as the total number of additional alternative actions, exclud-
Fig. 16. Spread in sensitivity of the five best plans forwhich each action’s sensitivity
is computed for g and h, similar to (22) for f .

ing the alternatives that are components of Pi itself. For a set of n
actions, there are |Pi.Ak|−1 alternatives to an action Ak in addition
to the one in Pi. We have a total of

n
k=1

(|Pi.Ak| − 1) (25)

neighboring plans that must be compared with Pi. In our analysis,
we use g and h instead of f as the refined qualitymeasures of a plan
and investigate how they are affected by systematic variations of
each action of the plan.

We look at ∂g/∂A and ∂h/∂Awhen varying only a single action
at a time, as shown in Fig. 16.

The sensitivity of g does not appear pronounced except for ac-
tion 7, 21, and 25 based on the highest median value (read as the
line in each blue box) over the five plans, where a selection of an
alternative other than the one present in the main plan appears to
give a slightly worse (higher) value of g . For h, a larger number of
the actions show a pronounced sensitivity, e.g., actions 7, 12, and
16, based on the highestmedian value (red line) over the five plans.

With this tool, a decision-maker can focus his attention onmak-
ing the best selection of alternatives where it is most important.

7.6. Regression tree analysis

Regression Analysis Trees [46] can be used to hierarchically find
the importance of a set of input variables in a dependent continu-
ous output variable. After simulation and traversal of the A∗-search
tree, the 10000 best planswere obtained. As described above, each
plan consists of a set of input actions in which certain actions have
several discrete alternatives for which each plan produced from
A∗-search consists of a certain combination of action alternatives,
and the continuous g or h value may be chosen as the dependent
output for each plan. The 10000 plans provide a good statistical
foundation for building a regression tree on these data to find the
most important actions, as shown in Fig. 17. It appears that the cho-
sen alternative of action A25 has largest influence on h, followed by
A7 in both next branches, etc. Note that the split can depend on a
certain action more than once at different levels.

Once a regression tree has been built, it can be used as a rough
prediction tool for the dependent variable, given a newplan. A stop
condition must be chosen for the further splitting into branches;
eventually the tree will split into 10000 leaves, one per simulated
plan, but its predictive power will decrease the deeper the tree is
traversed andwill be basedmore on random noise from theMonte
Carlo process than themajor statistical tendencies that are of inter-
est. Given a set of alternatives that a planner has chosen, one can
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Fig. 17. A regression tree of h based on 10000 simulations. Only the 18 most important bifurcations or branches on 5 levels are shown; the full tree with the default Matlab
statistical toolbox setting produces nearly 1500 branching points on 22 levels (overlapping texts are due to the view plot-out function for regression trees in the toolbox and
cannot easily be overcome).
follow the path that this plan would take in the tree and find the
g and h values of the plan proposed by the full tree based on the
10000 simulations. This process has been performed for the 100
best plans resulting from a second set of 10000 simulations with
a new seed, and the paths of these plans are followed in the tree
to find the values of g and h that the tree proposes. A comparison
with the real values of g and h for those 100 plans can be found
in Fig. 18. The traceability is good for g , but worse for h. However,
the variance is higher for the predicted g than for h. The predicted
h is higher than the real value. For the 4000 plans with the worst
(highest) f , the situation is actually reversed. Perhaps this outcome
is not difficult to understand; it is easier for the regression analysis
to find the systematic progress for how far we have traveled (g)
than for how far it is to the goal (h) because the previous value lies
inherently in the effect of the conducted actions, whereas the latter
is not as easy to assess. It may be possible to compute the distance
from the final actor parameter state to the end state in parameter
space, but this task is not as easy.

Two figures of merit used to estimate this progress are the re-
substitution error and the cross-validation error of a tree. With the
re-substitution error, we use the root mean square of the g and h
values predicted by the tree compared with the true values when
we use the plans fromwhichwe built the tree. The cross-validation
used ‘‘splits the training data into 10 parts at random. It trains 10
new trees, each one on nine parts of the data. It then examines
the predictive accuracy of each new tree on the data not included
in training that tree. This method gives a good estimate of the
predictive accuracy of the resulting tree, since it tests the new trees
on new data’’ [47]. In the case of g and h for the 100 best plans
shown in Fig. 18, these errors are approximately 1%–2%.

In a real situation, the planning process may not begin at the
top of the regression tree because the actions are ordered by exe-
cution and not by importance, but the planning procedure is often
performed in a certain order. However, in this paper, actions for
different plans are executed in the same order, and only the choice
of alternative for each action differs between the plans. This ap-
proach places a strong constraint on the planning procedure. In ad-
dition, improvisation could be important for success, especially for
handling the consequences of extreme events [48]. To increase the
number of analyzed options available for improvisation, one could
perform simulations in which two or more activities are swapped
or selected activities not executed at all (i.e., swapping two rows
or removing one row in Fig. 15). This loosening of planning con-
straints would expand the already huge A∗ search space and has
therefore not been considered.

As an alternative to regression trees,Martignon et al. [49] inves-
tigated fast-and-frugal trees, which are unbalanced trees that have
at least one exit node at each level, i.e., at least one branch from
each node directly terminates at a leaf. Regression trees are usually
not fast and frugal, e.g., the regression tree in Fig. 17 is not fast and
frugal because neither branch from A25 terminates at a leaf. The
authors claim that fast-and-frugal trees are more psychologically
plausible for decision-makers and may be applied more rapidly in
time-critical situations. In a test using theUC IrvineMachine Learn-
Fig. 18. Plots of real (blue) values of g and h for the best 100 plans froma simulation
with a new seed as well as the predicted (red) values of g and h from the regression
tree in Fig. 17 trained with the 10000 plans from the first simulations. The ratio of
predicted and real values is shown in the respective lower plot. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

ing Repository, researchers found the predictive accuracy of fast-
and-frugal trees to be 1%–7% worse than that of regression trees,
whereas the standard deviation for one type of fast-and-frugal tree,
known as Zig, was lower than that of the regression trees.

7.7. Estimating the boundary of potential failure of an operational
plan

We summarize the information contained in a cluster of plans
by using a hyperplane created by a Support VectorMachine (SVM).
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We are mainly interested in the distances from a chosen plan to
its boundary with classes other than its own. Several stages are
needed to achieve this result. First, we need to find the best way
to represent the training data for use in the SVM, and this includes
normalization. Second,wemust analyze the problemof finding op-
timal SVM-parameters and a kernel. Finally, we analyze the dis-
tances. An SVM analysis finds the hyperplane that is oriented so
that the margin between the support vectors of different classes is
maximized.

The concept of treating the objects to be classified as points in
a high-dimensional space and finding a hyperplane that separates
them is not unique to the SVM. The SVM, however, is different from
other hyperplane-based classifiers in how the hyperplane is cho-
sen. If we use a linear kernel and define the distance from the sep-
arating hyperplane to the nearest data point as the margin of the
hyperplane, then the SVM selects themaximummargin for a sepa-
rating hyperplane. Selecting this hyperplane maximizes the SVM’s
capability to calculate the correct classification of previously un-
seen plan instances. When representing the classification bound-
ary by the SVM optimal hyperplane, each dimension has a bound
for the corresponding action in the plan. Using the SVM decision
function, each action can be evaluated by its presence in the tested
plans presented to the decision function. In this way, we can cor-
rect our bad plans to good plans by simply changing the bad ac-
tions.

The first step is to adapt the plans to the SVM machinery. SVM
requires that each data instance be represented as a vector of real
numbers. Let a plan contain R actions that can take any value rep-
resenting a valid alternative for this action.We generateN number
of R-dimensional vectors for training. The plans are clustered into
different classes to be used as training targets yi. Training plans are
represented by vectors xi = {xi1, . . . , xil}. The plan vectors xi are
all normalized. Scaling them before applying the SVM is very im-
portant. This is done to avoid having attributes in greater numeric
ranges dominate those in smaller numeric ranges.

The basic idea of SVM is to find a linear decision boundary to
separate instances of two classes within a space. In the case of a
linear function f , a separating hyperplane, written in terms of a
weight vectorw and a threshold b, takes the form f (x) = (x,w)+

b, with w ∈ X, b ∈ R and where ( , ) denotes the dot product. We
want to minimize the norm ∥w∥

2
= (w,w), as shown in Fig. 19.

This can be formulated as a convex optimization problem.
Minimize

1
2

∥w∥
2 (26)

subject to

yi − (xi,w) − b ≥ 1, i = 1, . . . , l. (27)

The support vectors lie on the supporting hyperplanes of the
two classes. The support vector optimal hyperplane is the hyper-
plane that lies in the middle of the two parallel supporting hyper-
planes (of the two classes)withmaximumdistance dmax = 2/∥w∥.
We have the decision function,

sign(wx + b) (28)

which defines the division of different classes and is also used to
classify plans under test.

The complexity of a function’s representation by support vec-
tors is independent of the dimensionality of the input space X and
depends only on the number of support vectors.

The accuracy of an SVM model is largely dependent on the se-
lection ofmodel parameters. Some flexibility in separating the cat-
egories is needed. SVM implementations have a cost parameter C ,
which controls the tradeoff between generalization ability and fi-
delity to the training set. This parameter gives the model a soft
margin that permits some misclassifications [50]. Increasing C in-
creases the cost of misclassification of plans and forces a more ac-
Fig. 19. Optimal linear divider of two separate classes.

curate model to be created. A search is used to find the optimal
value of C .

Using a hyperplane, we may separate the feature vectors into
two classeswhen there are only two target categories [51], but how
do we handle the case where we have more than two classes? The
two most used methods are: (i) ‘‘one against many’’, where each
category is split and all of the other categories are merged, and (ii)
‘‘one against one’’, where k(k−1)/2models are constructed and k is
thenumber of categories. In thiswork,weuse the second approach,
and we evaluate classes against each other.

7.7.1. Implementation of SVM
We perform an experiment of 1000 evaluated plans that are

clustered by Potts spin clustering into eleven different clusters
based on their characteristics andoutcomes. Each action of the plan
holds a unique integer number representing the alternative per-
formed for that action. A trainingmatrix of the 1000 different plans
of length 46 is normalized with respect to each action. The eleven
clusters are represented as classes, which in turn are represented
by any integer between 1 and 11.

We use the LIBSVM library [52] in this work. Important in LIB-
SVM is the choice of its parameters. Parameter optimization is per-
formedby a full search of a pre-definedparameter set. Cross valida-
tion is used for selection of the best parameters for this training set,
meaning that each combination of parameter choices is checked
using cross validation, and the parameters with the best cross-
validation accuracy are chosen. Using the selected parameters, the
finalmodel is trained on the entire training set.We use the optimal
hyperplane defined by the SVM for determining the distance from
any plan to the boundary of the classes for the other plans.

Because LIBSVM only delivers output for calculating the dis-
tance to the support vectors, the plans nearest the hyperplane of
each class, we use an extra class for the plan under execution. This
is (by definition) the only support vector of this class, and the dis-
tance from any specific plan of interest to the hyperplane can be
calculated. Most interesting is how the distance for a specific plan
under execution changes depending on how many of the actions
have been performed. To be able to calculate this, the SVM needs
to be re-trained for each new number of performed actions.
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Table 3
Pseudo code for the investigation.

1. Select the plan to be investigated and put it in a separate class. Update the
input label vector.
2. For the length of the plan = 2 to 46:
2.1 Select the optimal parameters for training.
2.2 Train the model.
2.3 Calculate the distances using (29) and (30).

3. Plot the distances.

The primal variablew is not a direct output of LIBSVM. Instead,
we use the provided support vectors (SVs) and the coefficients for
the support vectors (sv_coef);

w = SVs × sv_coef. (29)

The model is trained for 12 classes: 11 classes from pre-
calculated Potts spin clustering and one class containing the plan
under execution. Training is performed 45 times for each investi-
gation, each training with successively longer plans, from a plan
length of two actions to training on the full matrix with 43 actions
(and f , g , and h); see Table 3.

Note that this process is normally very sensitive to noise and
outliers in the training data. SVMs generally have problems with
unbalanced problems where one of the classes has many more
training examples than the other. For a balanced training set, the
outliers from class A end up in the middle of training examples
from class B, and the algorithm can then identify them as outliers.
Here, we have an extreme case with only one training example in
one class, and thus the algorithm does not have enough informa-
tion to identify outliers in the other class. Our data are a selection
of the best plans out of a much larger set of plans and are carefully
clustered before training. The probability of noisy data and outliers
is low and should not be a problem.

For all points from the hyperplane HP[(xi,w) + b = 0], the
distance between the plan of interest and the hyperplane HP is

d =
1

∥w∥
. (30)

This is the distancemeasurewe use for calculating the distances
from the tested plan to the border of another class.

7.7.2. Using hyperplanes as decision support
Single plans are tested against all of the other plans, and the re-

sult is plotted in Figs. 20–22. The length of the plans is on the x-axis
and the distances on the y-axis. The distances from the tested plan
to the border of another class varywith the length of the plan. First,
the best plan is chosen from all of the other plans; the best plan
is the one with the lowest value of h. The distance from the best
plan to the nearest hyperplane of all other classes using successive
longer plans is shown in Fig. 20. This figure shows ten curves, one
for each class combined to class 12 representing the single tested
plan.

In Fig. 21, we show another view of the same result by taking
theminimum distance of all eleven classes in Fig. 20 at each length
of the plan.

The eleven classes are designed unsupervised with respect to
plans, structure and g value in the preceding clustering stage. Each
class is determined by its content. Because it is the 1000 best plans
that are clustered, they are all relatively good but a little different
in character. It could be said that each class is determined by the
quality of its best plan (min h value).

Because most of the plans are ‘‘good’’ we take a look at the ten
best plans with regard to h. In Fig. 22, minimum distances, created
in the sameway as in Fig. 21, are plotted for the ten best plans with
regard to h. The best plan is plotted in red for comparison. We can
see that the best plan does not always have the largest minimum
distance to neighboring classes.
Fig. 20. Distance d (30) of the best plan during execution towards the eleven
hyperplanes.

Fig. 21. Minimum distance d of the best plan during execution to the closest
hyperplane.

Fig. 22. Minimum distance d of the ten best plans (the best plan is in red). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Table 4
Some actions in the Bogaland scenario.

Establish liaison Protect Oil/gas/key infrastructure
Establish liaison Deploy in Visby area in (some) force and negotiate
Establish NFZ/MEZ D-day enforce cease fire by deploying in Visby area
D-day stabilize situation by deploying in between Deploy in Visby
Deploy in secure parts Kill/capture non-compliant
E. Kasuria E. Mida local police enforcing Negotiate and buy out Kasuria and/or Mida
Support E. Kasuria and E. Mida local police Handover to Bogaland Authorities
Neutralize MDCT by negotiating Disarm compliant FWF regular units on Gotland
Liaise with Kasuria and neutralize MDCT Liaise, neutralize other irregulars
Neutralize MDCT Neutralize all irregulars
Liaise and kill/capture MDCT Liaise, neutralize and disarm all irregulars
Kill/capture MDCT Neutralize and disarm all irregulars
Survey oil/gas/key infrastructure with BFOR mil. units (no protection) Stabilize situation by deploying in between West Kasuria and West Mida
Protect oil/gas/key infrastructure with BFOR mil. units Establish liaison
Survey oil/gas/key infrastructure Disarm FWF regular units in W. Kasuria and W. Mida kill/capture non-compliant
The graphs show zero distance for some lengths of plans. This
is natural because the class of origin for the investigated plan has
zero distance to this plan, as it is included in this class. Also there
are mostly very small differences between the classes, and, thus,
their boundaries can lay tangent to each other.

By using views as in Fig. 21, we can provide decision support
during execution of a military operational plan. During the exe-
cution, we observe in this figure the distance towards the clos-
est (of eleven different) boarders for the plan under execution as
we progress down the sequence of actions. The result shows that
longer plans have larger margin to other classes.

In Fig. 20, the analyst observes amore refined view andmay ob-
serve which other cluster of plans we might be approaching. The
difference in outcomes by the current plan and the plans in the
other cluster can then be observed by comparingwith the best plan
of that other cluster.

8. Simulation result analysis

8.1. Overall description of the Bogaland full-scale simulation experi-
ment

For the purpose of our experiment, we consider an extensive
part of the Bogaland scenario that covers all actions performed by
our own forces (BFOR) from day −70 to day +360. This scenario
contains three operational phases; deployment, shaping and secu-
rity support. During the deployment phase, actions such as secur-
ing the ports of disembarkation or establishing a No Fly Zone (NFZ)
are deployed. The shaping phase includes actions that require en-
gagement with opposing forces, such as neutralizing irregular or-
ganizations’ powerbases, enforcing embargoes or restricting flow
of irregular recruits and illegal arms.

Finally, actions in the security support phase are launched to
ensure support and a correct handover of power to the local gov-
ernment. These actions include providing security support to the
election process, supporting Non-Government Organizations
(NGOs), and identifying and isolating harmful actors from the Bo-
galand population.

These three operational phases are carried out through 43 dif-
ferent BFOR actions. Each action has between 1 and 8 alternative
ways to proceed. A few of them may not be performed. Fur-
thermore, some of these actions are divided into sub-actions, i.e.,
actions that can only be launched as a consequence of which alter-
native is selected for an earlier action. In total, our scenario con-
tained 2.164 × 1023 alternative plans. Table 4 lists the first thirty
actions modeled in our scenario.

Altogether, 40 actors were modeled in this scenario. These ac-
tors are listed in Table 5. The colors to the left of each actor indicate
the initial roles of the actors in the scenario. The color blue repre-
Table 5
All actors in the Bogaland scenario.

sents BFOR and its allies, whereas the color red shows the enemies.
Green stands for neutral actors, and yellow actors are those actors
whose position or relation to us is not clear or yet to be determined.

Each of the 40 actors in the scenario is defined by 15 state vari-
ables, which together present the total ability of that actor and its
internal state, as shown in Table 1. This sums to 600(=40 × 15)
variables and 1.722 × 10361(=4600) possible scenario states. For
the purpose of our experiment, we initialized these variables using
data from SMEs. This also includes actors’ relations to each other.
We define the desired goal state variables for each actor in cooper-
ation with SMEs.

During the course of the scenario, the actors are directly or in-
directly affected by the actions carried out by BFOR. For each such
action, all involved actors are first noted, and their roles in the ac-
tion are defined, e.g., the actor that is enforcing the action is blue,
the receiver of the action is red, etc.

For these involved actors, the values of state variables are al-
tered as a result of the action. This is what is meant by direct effect.
All of the other actors are affected based on their relationship with
the directly involved actors, e.g., if my friend is being attacked by
actor A1, then my relationship with A1 is being negatively affected.

When executing the actions, the simulation performs graph
traversal of the action tree,which is our complete set of plans, using
the A∗-algorithm. Each action that is executed results in a set of re-
actions (i.e., actions conducted by other actors) as the actors’ state
variables and relations to other actors are being updated. These re-
actions might in turn result in a new iteration of reactions. In our
experiment, we limit the number of reaction iterations to two.

As explained in Section 6, we use Monte Carlo simulations to
obtain a frequency function of the entire outcome space of our ac-
tions. The number of Monte Carlo simulations in our experiment
was limited to 20.
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Fig. 23. Histograms of the distributions of the 15 different parameters (the same as the internal state variables in Table 1). Each histogram bar is summed over all actors
and actions for the best plan.
The experiment was run on one 3.1 GHz Intel Xeon E5-2687W
CPU with 64 GB RAM. The experiment terminated after the first
10 000 plans, i.e., the A∗-algorithm terminated when it reached
10000 leaves in our action tree. On average the time it took to
generate, simulate and evaluate one plan instance was 24 s. Each
experiment run took 2.8 days to executewithout any parallel com-
puting. A description of the simulation system is available in [53].

8.2. The simulation output data

For our scenario, the simulator produced 10000 rows of data,
which is a small fraction of the total theoretical amount of output.
When analyzing the data, we found different patterns, which have
been visualized. Fig. 23 shows the parameter distribution for the
best plan. Note that the parameters are distributed in different
ways because the scenario affected different parts of an actor
during the entire execution. For an explanation of each value (0–4),
see Table 1. For example, in the best plan, we observe several
skewed distributions, e.g., weaponpower and livingconditions. We
notice that for most actors, the livingconditions are Not suffering,
limited resources (value 2, Table 1), while a few actors areworse off.

The plans that were generated were of different sizes because
some of the 43 actions may not be performed in some plans. On
average, plans executed 39 actions; see Fig. 24. Note that a shorter
planmay give a lesser g-value, but this does not guarantee that the
h-value will also be small.

There are several alternative methods to visualize the disper-
sion of measurement data. Dispersion of data can be due to mea-
surement errors or underlying stochastic behavior, such as the
Monte Carlo process in our simulation. Edwards et al. [54] discuss
different ways to visualize dispersions of measurement data; the
Fig. 24. The distribution of plan sizes for the 10000 plans. The plan sizes differ from
plan to plan because a varying number of actions are executed.

uncertainty dispersion implies how people tend to interpret the
uncertainties depending on how they are visually represented, e.g.,
as box plots, error bars, scatterplots or various probability density
distributions. In general, box plots are easy to understand and seem
to give a better match between real dispersion and the interpreta-
tion the viewer gets. In Figs. 25–27, we see the f , g and h-values for
the actual plan sizes. For the f -value, we observe a constant f , as g
and h values balance each other. For the g-value, we see that, the
more actions a plan have, the higher the value becomes, which is
natural because more work has been done in the operation. What
can be noted in Fig. 27 is that the h-value seems to drop as the plan
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Fig. 25. Box plots over the average f -value for different plan sizes.

Fig. 26. Box plots over the average g-value for different plan sizes.

Fig. 27. Box plots over the average h-value for different plan sizes.

sizes grow. However, there are some outliers with small h-values
and fewer actions executed, e.g., one very effective plan was found
with only 38 actions executed, shown in Fig. 27.

After simulating 1000 plans, we plotted the f -values in ascend-
ing order; see Fig. 28. Here we can see that, in practice, the best
plans (lowest f -values) were obtained after a few hundred simula-
tions.
Fig. 28. The different f -values for 1000 sorted plans.

9. Discussion

It is easy to observe from the analysis that progress is made
by the best plan. A comparison between the two bubble charts of
Figs. 14 and 15 demonstrates the progress made. However, from
the time series of h-values in Fig. 13, we see that the progress
made is far from the progress we try to attain. This analysis alone
demonstrates to plan developers that only a small step is being
taken in the right direction, i.e., h is lowered by approximately 5%.
They need to develop better actions and many more of them to
approach the end state. One interesting observation is that, while
there are 1.722 × 10361 different states to the scenario, there are
only 2.164 × 1023 possible plans in the experiment. As each plan
will end up in one scenario state, it is virtually impossible to exactly
reach the end state, which is a single state in the scenario.

From the requirement of having a robust set of alternative plans,
it is necessary to alter the traditional A∗-algorithm. First, we decide
not to stop the algorithmwhen the first complete plan is evaluated;
instead, we continue to evaluate more plans to find a robust set of
plans. Secondly, it is necessary to introduce a weight in the calcu-
lation of f as the plans under evaluation never reach the end state;
we use f = g +80h. This is domain dependent andmay be altered.
If the plans evaluated are more successful, the weight will be low-
ered. Because g ≫ h and the variance of g is much greater than
the variance of h, it is obvious that the weight of h must be much
higher than that of g (because we are never able to reach h = 0 in
the A∗-search). The value ‘‘80’’ was found by extensive experimen-
tation such that the impact from h on the minimization of f was
slightly greater than the impact from g .

While it is obvious thatwemay achieve thatwhichwe optimize
for, we are still surprised by the small variations in the minor
effects monitored (but not strived for) in Fig. 12 when there is
much action taking place in the scenario as demonstrated by the
bubble charts. These effects were developed independently of the
end state, i.e., not as partitions of the end state. Thus, they may not
lie directly in the path of optimization towards the end state.

In evaluating the impact and importance of different actions, it
is interesting to compare the sensitivity analysis box plots of Sec-
tion 7.5with the regression tree analysis of Section 7.6.We observe
that the action A25, with the most negative impact in Fig. 17, is the
first action to be split by the regression tree in Fig. 18 and that A7,
with the highest 3rd quartile in the box plot, is the second action
split in the regression tree. Together, these methods complement
each other as the box plots provide the impact of all actions and
the regression tree provides the importance of each action given
the splits that are made on previous levels. Alternately, the regres-
sion tree also provides a partition of the alternatives for each action
at each split.

In addition, the regression tree is highly successful in making
predictions on the outcome of the simulation on g and h with er-
rors of approximately 1%–2%. This is achieved for each plan in mil-
liseconds compared to 24 s for simulation of the plan. Thus, once
trained, the regression treemay act as decision supportwhenmany
plans need to be evaluated in a short timespan during re-planning
of a plan under execution.
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Finding the border of an operation is analyzed in Section 7.7.
In Fig. 21, we observe the distance from the best plan towards the
borders of other groups of plans during execution action-by-action
of the best plan. As these borders are eleven dimensional hyper-
planes in (Z+)11, it is not possible to visualize them for decision
makers. Instead, we present a time series of the distance from the
best plan to all neighboring groups of plans as actions are being ex-
ecuted step-by-step. If this type of presentation is combined with
other information on the evaluated performance of the plans in
other groups, this gives the commander knowledge of which of the
eleven borders should be monitored carefully during plan execu-
tion.

We believe that the analyses of borders, together with the box
plots and actual monitoring of the progress of an operation, are
themost important components during plan execution. During the
plan development process, all methods of analysis present impor-
tant views of the plan under development.

One additional observation that was made during the project is
the need to provide computer system support to SMEs in scenario
and plan development. A scenario as large as 40 agents, where each
agent is modeled by 15 parameters with their own internal agen-
das and external relations, as well as a plan of 43 actions with 109
alternatives, is too large to handle manually in an efficient man-
ner. The behavior modeling discussed in Section 5 reduces the size
of the problem by introducing an aggregated generic model. This
is a step in the right direction towards providing design support
to SMEs. However, the development of the plan with all its alter-
natives was performed manually by an SME. While direct design
support was outside the scope of the project, it will be crucial to
provide computer system support for SMEs developing plans and
scenarios that prevent them from making logical errors in opera-
tional planning.

10. Conclusion

In this article, we demonstrate that it is possible to draw im-
portant conclusions about the adequacy of a military operational
plan in its ability to achieve a predetermined end state. By model-
ing alternative plans and a scenario, we are able to analyze the best
possible plans available within the bounds put forward bymilitary
planners through an extensive set of data analysis procedures. We
conclude that this analysis will provide decision makers with in-
formation about how far the best plans advance towards the stated
goal, if they are surrounded by a robust set of alternative plans, and
which actions are most important. This gives planners early feed-
back during plan development and gives commanders information
on where to focus their attention during plan execution.
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Appendix

• Action is an activity well-bounded in space and time that is in-
tended to result in some form of advantageous change of local
or regional state. Example: ‘‘Arrest key DSD leaders’’, ‘‘Take con-
trol over suburb Hallunda’’.

• Action alternatives are different ways to conduct an action in
space and time that may use different resources. There is one
alternative that needs to be chosen for each action of the plan.
This preferred alternative (chosen and evaluated by the simu-
lator) is the alternative that implies a change of state that takes
largest step towards the end-state. All alternatives are intended
to obtain the same result, but can bemore or less costly or prone
to failure depending on the overall situation. Example: Alterna-
tive tactical ways to ‘‘Arrest key DSD leaders’’ such as attacking
their headquarters in order tomake them to give up, or alterna-
tively, to show strength of force and convince them to give up
after negotiation.

• Action sequence is a set of several action alternatives chosen
and evaluated by the simulator, one per action that are con-
ducted in a sequence. Some of them might have alternatives,
and the sequence consists of one alternative from each action.
Example: ‘‘Secure sea port of own troop debarkation’’, then ‘‘De-
bark own forces in the operational area’’, and finally ‘‘Establish
camps and headquarters’’.

• Actors are entities that execute actions in an operation. In a
simulation, actors are often more or less autonomous software
agents that interact. Each actor has its own set of resources, an
action repertoire, an internal state and relationship with other
actors. Actors can be groups of people, who somehow have a
common identity and purpose.

• CIM Cross Impact Matrix is a matrix where alternatives for dif-
ferent actions are evaluated as to their compatibility.With cross
impact analysis it is possible to detect some internal inconsis-
tencies within a plan before simulation.

• Effect is somewhat abstract; the joint consequences of a set of
state-changes due to executed actions are expected to lead to
one or several pre-defined and measurable effects such as ‘‘Es-
tablish order and stability in East Kasuria’’. It should be noted
that one or several actions can contribute to one or several dif-
ferent effects.Mathematically an effect is a set of possible states.

• End-state is the ultimate goal of the whole operation we are
conducting and the ultimate goal that we try to reach by exe-
cuting a plan with an appropriate sequence of actions. The end-
state can be seen as an intersection of effects in the operational
area (often nation, or at least region-wide). Mathematically the
end-state is a single point in parameter space.

• Evaluated action is an actionwhich is simulated and where the
resulting change of state is evaluated to see howmuch it moves
the current state towards the end-state.

• Event is an occurrence that causes a change of state in a simu-
lation.

• Execution of an action or a plan is the process of trying to obtain
the objectives of the action (obtaining the action’s state-change)
or the plan (obtaining the end-state).

• Plan is a combination of all actions that have to be executed in
order to come closer to or, ideally, reach the end-state. Some of
the actions have two or more action alternatives out of which
one and only one has to be chosen for each action. Example: A
combination of action alternatives such as securing a sea port
for own troop debarkation, debarking own forces in the opera-
tional area, establish camps and headquarters, establish inter-
dicted corridors for enemy troops and vessels, establish order
in liberated areas, etc.

• Planning is the process of selecting among available action al-
ternatives to find a suitable plan in order to achieve a desirable
end-state.

• Re-planning is the repeated process of setting up a new plan
for the rest of the operation, normally after some actions have
already been executed. Usually, a plan does not hold perfectly
from start to beginning due to unforeseen events or conditions,
so a re-planning has to be done to get back ‘‘on track’’ towards
the end-state. Re-planning is just like planning but limited to
future actions when some subset of the action sequence has al-
ready been performed.

• Simulation is the method for implementing a model over time,
where a model is a physical, mathematical or otherwise logical
representation of a system, entity, phenomenon, or process.

• Situation is the total state of all actors and objects in a system,
including ongoing actions.
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