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a b s t r a c t

We study the paper of Gao and Liu (2013). In the paper, the authors pay little attention to the customer’s
sojourn time in theirmodel although both the queue length and the busy cycle are seriously analyzed. The
objective of this note is to derive the sojourn time distribution of Gao and Liu’smodel without considering
Bernoulli schedule. A simple numerical example is also given to demonstrate our result.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For the past twenty years, a server vacation queue has been
widely investigated because it can be characterized by utilizing
the idle time of the server to do other work, such as maintenance,
machine repair, or just taking a break. In practice, many manufac-
turing and computing systems are modeled as the server vacation
queue [1,2].

In the classical server vacation queue, a server stops work-
ing during a vacation. Consider, however, that a system may be
equippedwith a substitute serverwhichworks at a different (prob-
ably lower) service ratewhile themain server leaves for a vacation.
Such a system is called a working vacation queue. The concept of a
working vacation is firstly introduced by Servi and Finn [3] to ana-
lyze a reconfigurable wavelength-divisionmultiplexing optical ac-
cess network.

The working vacation is typically divided into two policies:
multiple working vacations (MWV) and single working vacation
(SWV). TheMWVpolicy operates as follows. Themain server starts
a vacation if the system becomes empty. During a vacation, the
substitute server provides low-rate services to customers. If the
main server returns from a vacation finding no customers waiting,
it takes another vacation. Otherwise, it ends the vacation and
changes the service rate to the regular rate. For more details on
MWV policy, readers may refer to [4–10].
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0/).
Meanwhile, under the SWV policy, the server takes only one
vacation if the system becomes empty. Thus, if the main server re-
turns from a vacation finding no customers waiting, it waits un-
til a customer arrives without taking another vacation. Otherwise,
it changes the service rate to the regular rate. SWV can be re-
garded as a post-processing time during which the server works
at a lower service rate rather than stops working. For example,
an agent in a call center is required to do additional tasks after
speaking with a customer. The agent may provide service to the
next customer at a low rate while performing additional tasks. In
another case, suppose a machine with a policy in which it does
maintenance after one run of production while functioning at a
lower rate. Gao and Liu [11] investigated an M/G/1/SWV queue.
Chae et al. [12] discussed a GI/M/1/SWV queue and a discrete-
time GI/Geo/1/SWV queue. Banik [13] extended the system to a fi-
nite buffer GI/M/1/N/SWV queue. Lately, Xu et al. [14] studied the
discrete-time Geo/G/1/SWV queue.

We often encounter the situation that the server can stop the
vacation once some indices of the system, such as the number of
customers, achieve the certain value during a vacation. In many
real life congestion situations, urgent events occur during a vaca-
tion and the servermust come back towork rather than continuing
to take the residual vacation. For example, if the number of cus-
tomers exceeds the special value during a vacation and the server
continues to take the vacation, it leads to large cost of waiting
customers. Therefore, vacation interruption is more reasonable
to the server vacation queues. Vacation interruption was intro-
duced by Li and Tian [15,16] and it was applied to an M/G/1/MWV
queue [17], an M/G/1/MWV queue with retrials [18], a MAP/G/
1/MWV queue [19], an M/M/1 queue with balking and impatient
customers [20], and a discrete-time GIX /Geo/1/N queue [21].
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Gao and Liu [22] recently introduced a single working vacation
and Bernoulli-schedule vacation interruption policy into an M/G/1
queue. The server enters a single vacation when there are no cus-
tomers and he/she can take service at a lower rate in the vacation
period. On the other hand, the server can stop or continue the vaca-
tion according to the following policy: if there are customers in the
queue at the instant of a service completion, the server resumes a
normal service period with probability p (i.e., the vacation is inter-
rupted) or continues the vacation with probability 1 − p. Gao and
Liu [22] obtained the probability generating function (PGF) of the
stationary queue length at various epochs and analyzed the busy
cycle of the model. However, they paid little attention to the so-
journ time distribution in their work. The objective of this note is
to present the explicit Laplace–Stieltjes transform (LST) of the so-
journ time distribution of Gao and Liu’s model [22] with setting
p = 1 (i.e., the vacation is always interrupted). This allows us to an-
alyze the sojourn time distribution more simply and this note can
be a reference to derive the sojourn time distribution of an original
model.

The remainder of this note is organized as follows. In Section 2,
we present some notations and preliminary results. In Section 3,
the main result on the sojourn time distribution is derived. Fi-
nally, numerical experiments are conducted to investigate the in-
fluence of the mean length of a vacation on the mean sojourn
time.

2. Preliminaries

Customers arrive at a single server queue, according to a Pois-
son process at a rate λ. The system under our study is governed by
a first-in first-out (FIFO) service discipline. The main server takes
only one vacation each time when the system becomes empty and
the substitute server provides services at a lower speed to the
customers during a vacation. If, at the instant of completing the ser-
vice, there are customers in the system during a vacation, the sys-
tem returns to the normal working level (i.e., vacation interruption
occurs). Otherwise, the main server continues the vacation. Mean-
while, if there are no customers when a vacation ends, the main
server waits until a customer arrives at the system without tak-
ing another vacation. Otherwise, the system switches to the nor-
mal working level. We assume that the service interrupted at the
end of a vacation is lost and it is restarted with a different distri-
bution at the beginning of the following normal service period. Let
S1 denote the service times during the normal service period. S1
has the probability density function (PDF) s1(x) and LST S∗

1 (θ). Let
S0 denote the service times during the vacation period. S0 has the
PDF s0(x) and LST S∗

0 (θ). The length of a vacation, denoted by V , is
exponentially distributed with the rate ν. We assume that the in-
terarrival times of customers, service times, and vacation times are
mutually independent.

Our system is represented by a Markov process. Let N(t) be the
number of customers in the systemat t . Let ξ(t) be the system state
at t and is defined as follows:

ξ(t) =


0, The system is in a working vacation period at t,
1, The system is in a normal service period at t.

N(t), ξ(t), SR,i(t), t ≥ 0

, for i ∈ {0, 1}, is then the Markov

process, where the supplementary variables SR,i(t) denote the
remaining service time at t when ξ(t) = i. To establish the system
equations we define the following limiting probabilities:

Pn,i = lim
t→∞

Pr {N(t) = n, ξ(t) = i} , n ≥ 0,

Pn,i(x)dx = lim
t→∞

Pr {N(t) = n, ξ(t) = i,

x < SR,i(t) < x + dx

, n ≥ 1.

With the above probabilities, we set up the system equations at
the steady state as follows:

(λ + ν)P0,0 = P1,0(0) + P1,1(0), (1)

−
d
dx

P1,0(x) = λP0,0s0(x) − (λ + ν)P1,0(x), (2)

−
d
dx

Pn,0(x) = λPn−1,0(x) − (λ + ν)Pn,0(x), n ≥ 2, (3)

λP0,1 = νP0,0, (4)

−
d
dx

P1,1(x) = P2,0(0)s1(x) + νP1,0s1(x) + λP0,1s1(x)

− λP1,1(x) + P2,1(0)s1(x), (5)

−
d
dx

Pn,1(x) = Pn+1,0(0)s1(x) + νPn,0s1(x) + λPn−1,1(x)

− λPn,1(x) + Pn+1,1(0)s1(x), n ≥ 2. (6)

From the above equations, we obtain intermediate results which
are used to express the sojourn time distribution. Let us define the
following LST and joint transform for i ∈ {0, 1}:

P∗

n,i(θ) =


∞

0
e−θxPn,i(x)dx; P∗

i (z, θ) =

∞
n=1

P∗

n,i(θ)zn.

Note that P∗

i (z, θ) is the joint transform of the queue length and
the remaining time of an ongoing service at arbitrary epochs. From
the PASTA property [23], P∗

i (z, θ) is stochastically equivalent to the
joint transform of the queue length and the remaining time of an
ongoing service at arrival epochs. Since the derivation of P∗

i (z, θ) is
a routine, we just present results (see Appendix for its derivation).
We have Eqs. (7)–(10) which are given in Box I.

3. Main results: sojourn time distribution

In this section, we express the LST of the FIFO sojourn time (i.e.,
the waiting time plus the service time) of a test customer (TC) in
terms of (7)–(10). A TC’s arrival may belong to one of the following
cases:
Case 1. A TC arriving during the working vacation period finds the
server idle. Then, the TC’s service is immediately started at a lower
service rate.
Case 2. A TC arriving during the normal service period finds the
server idle. Then, the TC’s service is immediately started at a
normal service rate.
Case 3. A TC arriving during the working vacation period finds that
the server is busy.
Case 4. A TC arriving during the normal service period finds that the
server is busy.

Let Wi denote the sojourn time of a TC that arrives in Case
i, i = 1, 2, 3, 4, and define W ∗

i (θ) = Pr {Case i} E

e−θWi

 Case i.
In Case 1, an arriving TC is immediately provided with service

at a lower rate. If the vacation service time is shorter than the
remaining vacation time, the TC’s service will be completed at a
lower rate. Otherwise, the working vacation ends and the server
must provide the TC with new service at a normal rate. Thus,
the TC’s sojourn time is the remaining vacation time plus the
normal service time. Note that the remaining time of the ongoing
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7)

8)

9)

0)
P0,0 =
λν(1 − λE[S1])

λ2 + λν + ν2 − λ2(1 + νE[S1])S∗

0 (ν)
, (

P0,1 =
ν2(1 − λE[S1])

λ2 + λν + ν2 − λ2(1 + νE[S1])S∗

0 (ν)
, (

P∗

0 (z, θ) =
λP0,0z


S∗

0 (ν + λ − λz) − S∗

0 (θ)


θ − ν − λ + λz
, (

P∗

1 (z, θ) =
P0,0z(1 − z)


S∗

1 (λ − λz) − S∗

1 (θ)
 

λ(λ + ν)

1 − S∗

0 (ν + λ − λz)

+ ν(ν + λ − λz)


(θ − λ + λz)(ν + λ − λz)


S∗

1 (λ − λz) − z
 (1

Box I.
vacation is stochastically equivalent to a new vacation time due
to the memoryless property of the exponential vacation time.
Considering this, we have

W ∗

1 (θ) = P0,0

Pr {S0 < V } E


e−θS0

 S0 < V


+ Pr {S0 ≥ V } E

e−θ(V+S1)

 S0 ≥ V


= P0,0

Pr {S0 < V } E


e−θS0

 S0 < V


+ Pr {S0 ≥ V } S∗

1 (θ)E

e−θV

 S0 ≥ V


= P0,0


S∗

0 (θ + ν) +
νS∗

1 (θ)

1 − S∗

0 (θ + ν)


ν + θ


. (11)

Since, in Case 2, a TC arriving during the normal service period
sees no customers, the TC is immediately provided with service at
a normal rate. Therefore, we have

W ∗

2 (θ) = P0,1 × S∗

1 (θ). (12)

In Case 3, we use the total probability theorem to obtainW ∗

3 (θ).
If the remaining vacation service time is shorter than the remaining
vacation time, after completing a service during the vacation
period, vacation interruption occurs and the server must come
back towork. Hence, the TC’s sojourn time is the sum of the normal
service times of the customers who are in the queue, plus the
remaining vacation service time of the customer in service. On
the other hand, if the remaining vacation service time is longer
than the remaining vacation time, the ongoing vacation service
is not completed and the server changes the service rate to the
normal rate at the instant of the vacation completion. Therefore,
the TC’s sojourn time is the sum of the normal service times of the
customerswhoare in the system, plus the remaining vacation time.
Putting these all together, we have

W ∗

3 (θ) =

∞
n=1


∞

x=0
Pn,0(x) Pr


SR,0 < V

 SR,0 = x


×

S∗

1 (θ)
n e−θxdx +

∞
n=1


∞

x=0
Pn,0(x)

×

 x

y=0
Pr


V = y| SR,0 = x


dy


S∗

1 (θ)
n+1 e−θydx

=

∞
n=1


∞

x=0
Pn,0(x)


S∗

1 (θ)
n e−(θ+ν)xdx

+

∞
n=1


∞

x=0
Pn,0(x)

ν

S∗

1 (θ)
n+1

θ + ν


1 − e−(θ+ν)x dx

=
θ + ν − νS∗

1 (θ)

θ + ν

∞
n=1

P∗

n,0(θ + ν)

S∗

1 (θ)
n
+
νS∗

1 (θ)

θ + ν

∞
n=1

Pn,0

S∗

1 (θ)
n

=
θ + ν − νS∗

1 (θ)

θ + ν
P∗

0


S∗

1 (θ), θ + ν


+
νS∗

1 (θ)

θ + ν
P∗

0


S∗

1 (θ), 0

. (13)

Finally, in Case 4, our systembehaves as a standardM/G/1 queue
while the server is busy. Hence, the TC’s sojourn time is the sum of
the normal service times of the customers who are in the queue,
plus the remaining normal service time of the customer in service.
This leads to

W ∗

4 (θ) =

∞
n=1


∞

x=0
Pn,1(x)


S∗

1 (θ)
n e−θxdx

=

∞
n=1

P∗

n,1(θ)

S∗

1 (θ)
n

= P∗

1


S∗

1 (θ), θ

. (14)

LetW denote the unconditional sojourn time of a TC. Combining
(11)–(14), we haveW ∗(θ) given by

W ∗(θ) =
W ∗

1 (θ) + W ∗

2 (θ) + W ∗

3 (θ) + W ∗

4 (θ)

W ∗

1 (0) + W ∗

2 (0) + W ∗

3 (0) + W ∗

4 (0)

=
P0,0


λ(θ − λ)S∗

0 (θ + ν)

θ + ν − νS∗

1 (θ)

+ θS∗

1 (θ)

λ2

+ ν(θ + λ + ν)


λ(ν + θ)

θ − λ + λS∗

1 (θ)
 .

(15)

Remark 1. Now that we are dealing with the Poisson arrival
process queuing system, the PASTA property [23] is employed to
deriveW ∗

i (θ).

4. Numerical examples

In this section, we first present some numerical examples to in-
vestigate the influence of the mean vacation time on the mean so-
journ time. In all cases, customer arrivals are generated according
to a Poisson process at a rate of 0.75. The normal service time dis-
tributions are assumed to follow one of the three distributions: ex-
ponential in Fig. 1, hyperexponential in Fig. 2, and Erlang in Fig. 3.
Specifically, we use Exp(1) in Fig. 1. The density function used in
Fig. 2 is pλ1e−λ1t + (1 − p)λ2e−λ2t , where p = 0.25, λ1 = 1.5,
and λ2 = 0.9. In Fig. 3, we use Erlang (3, 3). That is, the normal
service time is the sum of three independent exponential random
variables having a common rate 3. On the other hand, we use the
exponential distribution for the working vacation service time: we
commonly use the Exp(0.25) in all the figures.

The vertical axis of each figure represents the mean sojourn
time, E[W ], and the horizontal axis showsmean vacation time, ν−1.
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Fig. 1. Mean sojourn time of the M/M/1 over the mean length of a vacation.
Fig. 2. Mean sojourn time of the M/H2/1 over the mean length of a vacation.
Fig. 3. Mean sojourn time of the M/E3/1 over the mean length of a vacation.
In each figure, we compare the mean sojourn time of three types
of vacation policies: the single vacation (SV), the single working
vacation (SWV), and the single vacation and vacation interruption
(SWV + VI).

As shown in all the figures, E[W ] increases with an increase
of ν−1, and when ν−1 approaches 0, E[W ] will arrive at a fixed
value, i.e., our system is reduced to the standard M/G/1 queue.
Furthermore, as expected, the SWV + VI policy outperforms
both the SV policy and the SWV policy. This is explained by the
following: the longer the mean vacation time is, the higher the
probability that vacation interruption occurs becomes. In other
words, a long vacation time leads the server to come back to a
normalworking levelmore frequently. As a result, more customers
are taken up for service at a normal service rate.

5. Conclusion

In this note, we studied sojourn time distribution of Gao and
Liu’s queuing model [22] without considering Bernoulli schedule.
Using the intermediate results in the process of solving system
equations, we easily derive the explicit LST of the sojourn time
distribution of our model.

Appendix. Derivation of P∗
i (z, θ)

First we take the LSTs of (2), (3), (5), and (6) in Section 2 and get

−

θP∗

1,0(θ) − P1,0(0)


= λP0,0S∗

0 (θ) − (λ + ν)P∗

1,0(θ), (A.1)

−

θP∗

n,0(θ) − Pn,0(0)


= λP∗

n−1,0(θ) − (λ + ν)P∗

n,0(θ),

n ≥ 2, (A.2)
−


θP∗

1,1(θ) − P1,1(0)


= P2,0(0)S∗

1 (θ) + νP1,0S∗

1 (θ)

+ λP0,1S∗

1 (θ) − λP∗

1,1(θ) + P2,1(0)S∗

1 (θ), (A.3)

−

θP∗

n,1(θ) − Pn,1(0)


= Pn+1,0(0)S∗

1 (θ) + νPn,0S∗

1 (θ)

+ λP∗

n−1,1(θ) − λP∗

n,1(θ) + Pn+1,1(0)S∗

1 (θ), n ≥ 2. (A.4)
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0)
P∗

1 (z, θ) =
P0,0z(1 − z)


S∗

1 (λ − λz) − S∗

1 (θ)
 

λ(λ + ν)

1 − S∗

0 (ν + λ − λz)

+ ν(ν + λ − λz)


(θ − λ + λz)(ν + λ − λz)


S∗

1 (λ − λz) − z
 (A.1

Box II.
1)
P(z) = P0,0 + P0,1 + P∗

0 (z, 0) + P∗

1 (z, 0)

=
P0,0(ν + λ)

λ
+

P0,0z

λ


1 − S∗

0 (ν + λ − λz)
 

λ(1 − z) + ν

1 − S∗

1 (λ − λz)


+ ν(ν + λ − λz)

1 − S∗

1 (λ − λz)


λ(ν + λ − λz)

S∗

1 (λ − λz) − z
 (A.1

Box III.
Multiplying (A.1) through (A.4) by zn and then summing over all
possible values of n, together with (1) and (4) in Section 2, we gain

(θ − ν − λ + λz)P∗

0 (z, θ) = P0(z, 0) − λP0,0zS∗

0 (θ), (A.5)
(θ − λ + λz)P∗

1 (z, θ)

= z−1P1(z, 0)

z − S∗

1 (θ)

− S∗

1 (θ)

×

z−1P0(z, 0) + νP0,0z + νP∗

0 (z, 0) − (λ + ν)P0,0

, (A.6)

where Pi(z, 0) =


∞

n=1 Pn,i(0)z
n for i ∈ {0, 1}. Inserting θ =

ν + λ − λz into (A.5) and then simplifying it, we have

P0(z, 0) = λP0,0zS∗

0 (ν + λ − λz). (A.7)

Similarly, substituting θ = λ − λz into (A.6) and simplifying it
using (A.7), we obtain

P1(z, 0) =
zS∗

1 (λ − λz)

λP0,0


1 − S∗

0 (ν + λ − λz)

+ νP0,0(1 − z) − νP∗

0 (z, 0)


S∗
1 (λ − λz) − z

.

(A.8)

Incorporating (A.7) back into (A.5) then yields

P∗

0 (z, θ) =
λP0,0z


S∗

0 (ν + λ − λz) − S∗

0 (θ)


θ − ν − λ + λz
. (A.9)

With (A.7)–(A.9), (A.6) can be rewritten as Eq. (A.10) which is given
in Box II.

Remark A.1. The PGF of the system size at arbitrary epochs, de-
noted by P(z), is given by Eq. (A.11) in Box III where P0,0 =

λν(1−λE[S1])
λ2+λν+ν2−λ2(1+νE[S1])S∗

0 (ν)
, which can be determined by the normal-

izing condition, P0,0 + P0,1 + P∗

0 (1, 0) + P∗

1 (1, 0) = 1.
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