
Li, Xiaoping; Chen, Long; Xu, Haiyan; Gupta, Jatinder N.

Article

Trajectory Scheduling Methods for minimizing total
tardiness in a flowshop

Operations Research Perspectives

Provided in Cooperation with:
Elsevier

Suggested Citation: Li, Xiaoping; Chen, Long; Xu, Haiyan; Gupta, Jatinder N. (2015) : Trajectory
Scheduling Methods for minimizing total tardiness in a flowshop, Operations Research
Perspectives, ISSN 2214-7160, Elsevier, Amsterdam, Vol. 2, pp. 13-23,
https://doi.org/10.1016/j.orp.2014.12.001

This Version is available at:
https://hdl.handle.net/10419/178246

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1016/j.orp.2014.12.001%0A
https://hdl.handle.net/10419/178246
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Operations Research Perspectives 2 (2015) 13–23
Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

Trajectory Scheduling Methods for minimizing total tardiness in a
flowshop
Xiaoping Li a,b,∗, Long Chen a,b, Haiyan Xu a,b, Jatinder N.D. Gupta c

a School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
b Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing, 211189, China
c College of Business Administration, University of Alabama in Huntsville, Huntsville, Al, USA

a r t i c l e i n f o

Article history:
Received 13 May 2014
Received in revised form
29 December 2014
Accepted 29 December 2014
Available online 13 January 2015

Keywords:
Scheduling
Heuristic
Permutation flow shop
Total tardiness

a b s t r a c t

In this paper, Trajectory Scheduling Methods (TSMs) are proposed for the permutation flowshop
scheduling problem with total tardiness minimization criterion. TSMs belong to an iterative local search
framework, in which local search is performed on an initial solution, a perturbation operator is deployed
to improve diversification, and a restart point mechanism is used to select the new start point of another
cycle. In termsof the insertion and swapneighborhood structures, six composite heuristics are introduced,
which exploit the search space with a strong intensification effect. Based on purely insertion-based
or swap-based perturbation structures, three compound perturbation structures are developed that
construct a candidate restart point set rather than just a single restart point. The distance between the
current best solution and each start point of the set is defined, according towhich the diversification effect
of TSMs can be boosted by choosing the most appropriate restart point for the next iteration. A total of
18 trajectory schedulingmethods are constructed by different combinations of composite heuristics. Both
the best andworst combinations are comparedwith three best existing sequential meta-heuristics for the
considered problem on 540 benchmark instances. Experimental results show that the proposed heuristics
significantly outperform the three best existing algorithms within the same computation time.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The permutation flow shop scheduling problem (PFSP) is im-
portant and prevalent in modern manufacturing systems (for ex-
ample, the flexible manufacturing environment) and in traditional
industry settings (such as chemical, food, and metal processing).
Not completing a job by its due date would lead to: (1) incurring
tardiness costs which depend on the penalty clauses in the con-
tract if there are any; (2) loss of goodwill which results in an in-
creased probability of losing the customer for some or all future
jobs; and (3) a damaged reputation which would turn other cus-
tomers away [1]. Therefore, minimizing total tardiness which is
closely related to the due dates agreed by all partners is of great
importance in manufacturing systems. In this paper, the PFSP to
minimize total tardiness considered,which is known to beNP-hard
in the strong sense [2] and can be denoted as F |prmu|


Tj [3].

For decades, many exact methods, heuristics, and meta-
heuristics have been proposed for the considered problem [4].

∗ Corresponding author at: School of Computer Science and Engineering,
Southeast University, Nanjing 211189, China. Tel.: +86 25 52090916; fax: +86 25
52090916.

E-mail address: xpli@seu.edu.cn (X. Li).

http://dx.doi.org/10.1016/j.orp.2014.12.001
2214-7160/© 2015 The Authors. Published by Elsevier Ltd. This is an open access artic
0/).
Exact methods are effective only for small size problems. Branch
& bound procedures [5–9] are exact methods for few jobs (usu-
ally less than 20 jobs) being scheduled on twomachines. However,
exact methods are seldom efficient in practical environments be-
cause usually there are more than 20 jobs to be scheduled onmore
than three machines. Therefore, heuristics and meta-heuristics
have been investigated. Generally, there are two types of heuris-
tics: constructive heuristics and composite ones. The construc-
tive heuristic NEHEDD [10] has been the most widely used, which
was adapted from NEH [11] using the EDD (Earliest Due Date)
rule to produce the seed. NEHEDD is always adopted by compos-
ite heuristics or meta-heuristics to generate initial solutions. For
example, NEHEDD is utilized to generate initial solutions of the typ-
ical composite heuristics [12]. Meta-heuristics are always adopted
for combinatorial optimization problems, which provide high level
strategies for exploring search spaces using differentmethods [13].
They generally obtain better solutions than simple constructive
heuristics but require significantly more computation time. Meta-
heuristics can be classified into population-based and trajectory
(or single point) methods [13].

Genetic algorithms (GAs) are the most common population-
based methods for the F |prmu|


Tj problem. The GA developed

in [14] generates initial individuals randomly and outperforms

le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

http://dx.doi.org/10.1016/j.orp.2014.12.001
http://www.elsevier.com/locate/orp
http://www.elsevier.com/locate/orp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2014.12.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xpli@seu.edu.cn
http://dx.doi.org/10.1016/j.orp.2014.12.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

14 X. Li et al. / Operations Research Perspectives 2 (2015) 13–23
the DE (Differential Evolutionary) algorithm [15] proposed later.
GAPR, GAPR2 and GADV [16] are three GA methods presented
recently, which seem to be the best existing sequential algorithms
for the considered problem. These three GAs use the EDD rule
or both the EDD dispatching rule and the NEHEDD heuristic to
generate one or two initial individual(s) while the other initial
individuals are generated randomly. Furthermore, based on these
three GAs, three cooperative genetic algorithms (CGAPR, CGAPR2,
and CGADV) were investigated in [17]. These investigations were
performed on 4, 8, and 12 parallel computers and found to be
relatively more effective than the GAPR, GAPR2, and GADV, which
used only one computer.

The popular Trajectory Scheduling Methods (TSMs) start with
an initial solution and improve it by a suitable strategy. Tabu
Search (TS) and Simulated Annealing (SA) are commonly adopted
complex strategies in TSMs. The two TS algorithms proposed
in [18] and [10] utilize the heuristic developed in [19] and the
EDD rule, respectively, to generate initial solutions. The four TS
and four SA algorithms presented in [12] produce initial solutions
using NEHEDD and apply several local search methods for further
improvement. The TS constructed in [20] adopts the Modified
Due Dates rule to generate the initial solution. The two SAs
introduced in [21] use the Earliest Apportioned Due Date rule as
the initial heuristic. The SA algorithm developed in [22] generates
the seed by a constructive heuristic and improves the current
solution by several local search methods. A complex strategy was
introduced in [23], which uses Ow’s algorithm [19] to generate
the initial solution and integrates SA with TS to obtain a high
quality solution. Besides SA and TS, Iterated Local Search (ILS) is an
effective trajectory meta-heuristic for combinatorial optimization.
Though ILS has been applied to job shop scheduling problems [24],
the PFSP with makespan minimization [25], and the PFSP with
total flow time minimization [26], it has not yet been used to
solve the F |prmu|


Tj problem according to the extensive and

comprehensive review on heuristics and metaheuristics for the
m-machine flowshop problem with total tardiness minimization
by E. Vallada, R. Ruiz and G. Minella [4].

In this paper, Trajectory Scheduling Methods (TSMs) are pro-
posed for PFSP with total tardiness minimization. There are three
components in each of the TSMs: Composite Heuristic, Adaptive
Perturbation, and Restart Point Selection. For the considered prob-
lem, six composite heuristics and three compound perturbation
methods are developed and compared. NEHEDD, the most widely
used rule for initial solutions, is adopted to generate the start point.
An adaptive perturbation operator is presented to produce a set of
candidate restart points. By defining the distance between a pair
of solutions, a restart point selection criterion is introduced to se-
lect the most promising restart point of the next iteration from the
candidate set.

The rest of the paper is organized as follows. Section 2 gives
the description of the F |prmu|


Tj problem. Section 3 discusses

the proposed Trajectory SchedulingMethods. Empirical evaluation
and comparison results of the proposed heuristics with existing
algorithms are shown in Section 4. Finally, Section 5 concludes the
paper with a summary of our findings and some fruitful directions
for future research.

2. Problem description

To define the F |prmu|


Tj problem, consider the following sce-
nario: a set of n jobs are processed on m machines where each
job requires m operations processed on m machines M1, . . . ,Mm
sequentially with the same order. Each operation has a predeter-
mined processing time and each machine can process one opera-
tion exclusively at a time. Preemption of jobs is not allowed.
Let J = {J1, . . . , Jn} be the job set and π(n) be a schedule of the
n jobs, i.e., a permutation of the n jobs, denoted as (π[1], . . . , π[n]).
π[k] ∈ J is the kth (k = 1, . . . , n) job in π(n). For convenience,
a dummy job π[0] is added to the beginning of π(n) with zero
processing time and zero due date, i.e., the sequence can also be
represented as π(n) = (π[0], π[1], . . . , π[n]). All the permutations
of the n jobs are denoted as Ω , i.e., Ω = {π(n)}. Let Ci,π[k] denote
the completion time of job π[k] on machine i, and Ci,π[0] = 0. ti,j
represents the processing timeof job j (j = 1, 2, . . . , n) onmachine
i (i = 1, 2, . . . ,m). For k = 1, . . . , n, Ci,π[k] = C1,π[k−1] + t1,π[k]
when i = 1 and Ci,π[k] = max{Ci−1,π[k] , Ci,π[k−1]} + ti,π[k] when i =
2, . . . ,m. The tardiness of job π[k] is Tπ[k] = max{Cm,π[k] − dπ[k] , 0},
where dπ[k] is the due date of job π[k]. The total tardiness of π(n)
can be denoted as

T (π(n)) =
n

k=1

Tπ[k] =

n
k=1

max{Cm,π[k] − dπ[k] , 0}. (1)

Obviously, the time complexity of calculatingT (π(n)) isO(mn).
The objective of the considered problem is to find the permutation
π∗(n) = argminπ(n)∈Ω{T (π(n))} among the n! solutions.

3. The proposed trajectory scheduling methods

Trajectory Scheduling Method (TSM) is composed of three
components: Composite Heuristic, Adaptive Perturbation, and
Restart Point Selection. A Composite Heuristic starts from an initial
solutionwhich is iteratively improved by an Iterated Improvement
until it is stalled at a local optimum. The local optimum is perturbed
by the Adaptive Perturbation. A new restart point is selected
by the Restart Point Selection and the Iterated Improvement
is performed again. The procedure is repeated until a given
termination condition is satisfied.

Initially, both the current solution π c and the current best
solution π b are generated by NEHEDD. An Iterated Improvement
procedure in a Composite Heuristic starts from π c where the
neighborhood is constructed by a neighborhood structure. If the
best solution π ℓ of the neighborhood is better than π c , π ℓ is
selected as the new π c . In every iteration, π b is replaced with π c

if π c is better than π b. This neighborhood searching procedure is
repeated until π c is not better than π b. Distinct from traditional
perturbation operators each of which generates only one restart
point, an Adaptive Perturbation method is developed to produce
a set of candidate restart points. To select the most appropriate
restart point from the candidate set, the distance from π b to
every candidate is calculated by the Restart Point Selection. If the
termination condition is not satisfied, the procedure is repeated.
The framework of the proposed trajectory scheduling methods is
depicted as Algorithm 1.

Algorithm 1 Framework of Proposed Trajectory Scheduling
Methods
1: Generate the start point π c by NEHEDD. π b

← π c .
2: repeat
3: Improve π c by some Composite Heuristic. π b

← π c if π c is
better than π b.

4: Produce a set of candidate restart points by Adaptive
Perturbation on π c .

5: The best solution of the candidate set is selected as the new
start point π c according to the Restart Point Selection.

6: until (The termination criterion is satisfied)
7: return π b.

3.1. Composite heuristics

According to the framework given in [27], a heuristic con-
tains three phases: index development, solution construction

X. Li et al. / Operations Research Perspectives 2 (2015) 13–23 15
Fig. 1. Schematic figures of the composite heuristics.
and solution improvement. A heuristic is regarded as compos-
ite if it employs another heuristic for one or more of the three
above-mentioned phases. In this paper, six composite heuristics,
CH1, . . . , CH6, are developed. The initial solution for each of these
six heuristics is constructed by NEHEDD [10]. This initial solution is
improved by iteratively searching a neighborhood constructed by
utilizing well-defined neighborhood structures. The six composite
heuristics differ in terms of themanner inwhich the neighborhood
structures are defined and iterative search is conducted.

3.1.1. Start point & neighborhood structures
NEH [11] is a simple but very good algorithm for permutation

flow shops with makespan minimization. In the original NEH
algorithm, a seed is generated by sorting all jobs in non-increasing
order of the sum of the processing times on machines. A final
solution is obtained in a constructive way. At each step, a new
job in the order of the seed is added and inserted to the best slot
to produce the best partial solution. There are two fundamental
components in NEH: the seed generation and the constructive
insertion. NEHEDD [10] adopts the same constructive insertion but
different seed generations, inwhich the seed is producedby sorting
all jobs in non-decreasing order of the due dates. EDD means the
Earliest Due Date. Since NEHEDD is the most used rule to generate
initial solutions for flowshop scheduling problems with due dates,
it is also adopted to generate the start point π c in this paper. For
a n-job m-machine problem, the time complexity of NEHEDD is
O(mn3). The final best solution π b is initialized as π c .

An initial solution is always improved by searching its neigh-
borhood,which is usually constructed by a neighborhood structure
defined as [13]: a neighborhood structure is a function N : Ω →
2Ω that assigns to every π ∈ Ω a set of solutions N (π) ⊆ Ω .
N (π) is called the neighborhood ofπ . For the neighborhoodN (π),
there are two commonly used extreme strategies to choose the im-
proved solution: the first improvement and the best improvement.
The former scans the neighborhoodN (π) and chooses the first so-
lution that is better than π while the latter exhaustively explores
the neighborhood and returns the solution with the best objective
function value (returns any one to break the tie if there ismore than
one solution with the best objective function value). In this paper,
the best improvement strategy is adopted.

A neighborhood structure is crucial for the search trajectory of
an algorithm because it determines the topological properties of
the search landscape. Each neighborhood defines one landscape.
Different heuristics have various search landscapes and search
trajectories because of their distinct neighborhood structures. Gen-
erally, insertion and swap are two fundamental operations of
heuristics, which can also be regarded as fundamental neighbor-
hood structures, NI and NS . Insertion neighborhood structure NI
on π generates neighborhood NI(π) with n(n − 1) neighbors by
sequentially taking out π[i] (0 < i ≤ n) and inserting it back to
all possible n− 1 slots (position i is excluded) of the remaining se-
quence. Swap neighborhood structure NS , however, produces the
neighborhoodNS(π) ofπ by exchanging jobsπ[i] andπ[j] (0 < i <

j ≤ n), i.e., |NS(π)| = 1
2n(n− 1).

3.1.2. Composite heuristics
Generally, the result of NEHEDD is always improved by local

search procedures. The search landscape of each local search is
determined by the neighborhoods resulted in the procedure. A
neighborhood is generated by conducting a neighborhood struc-
ture. Each neighborhood defines one landscape. All local optimums
of the defined landscapes by an algorithm forms a trajectory. The
neighborhood structure is iteratively performed on the current so-
lutionπ c until there is no improvement, i.e., all the neighbors ofπ c

are not better than π c . According to the two neighborhood struc-
tures (NI and NS) and the iterated improvement schema, there are
six combinations. And six composite neighborhood structures are
defined: iterated NI , iterated NS , iterated combination of NI with
NS , iterated combination of NS with NI , iterated combination of
iterated NI with iterated NS , and iterated combination of iterated
NS with iterated NI .

In this paper, six composite heuristics CHi (i = 1, . . . , 6) are
constructed based on six composite neighborhood structures. Fig. 1

16 X. Li et al. / Operations Research Perspectives 2 (2015) 13–23
shows the schematic of the corresponding six composite heuristics,
denoted as CH1 ∼ CH6.

CH1 is identical to CH2 except that CH1 adopts NI as the
neighborhood structure while CH2 uses NS . In fact, CH1 has been
adopted for some flowshop scheduling problems [28–31]. That
CH1 outperforming CH2 for flowshop scheduling has also been
demonstrated in [30]. We adapt them to the considered problem
in this paper. Only the procedure of CH1 is given here. For the
returned solution π c of NEHEDD, the solution with the minimum
total tardiness amongNI(π

c) is searched anddenoted asπ ℓ. Ifπ ℓ is
better thanπ c ,π c is replacedwithπ ℓ. The neighborhood structure
NI(π

c) is performed again. The process is repeated until π ℓ is not
better than π c . π b is updated to π c if it is worse than π c . CH1 is
formally described in Algorithm 2.

Algorithm 2 Composite Heuristic CH1(π
c)

1: repeat
2: flag ← false.
3: π ℓ

← argmin{T (π)|π ∈ NI(π
c)}.

4: ifT (π ℓ) < T (π c) then
5: π c

← π ℓ, flag ← true.
6: until (flag = false)
7: π b

← argmin{T (π b),T (π c)}.
8: return π b.

CH3 and CH4 iterate the same way but use different orders of
NI and NS . For simplicity, only the procedure of CH3 is given. For
the returned solutionπ c ofNEHEDD, the solutionwith theminimum
total tardiness amongNI(π

c) is searched anddenoted asπ ℓ. Ifπ ℓ is
better thanπ c , it is assigned toπ c . The solutionwith theminimum
total tardiness among NS(π

c) is searched and denoted as π ℓ. If π ℓ

is better than π c , it is assigned to π c . The neighborhood structures
NI(π

c) andNS(π
c) are performed again ifπ c is improved by either

of the neighborhood structures. The process is repeated until there
is no improvement on π c . π b is updated to π c if it is worse than
π c . CH3 is formally described in Algorithm 3.

Algorithm 3 Composite Heuristic CH3(π
c)

1: repeat
2: flag ← false.
3: π ℓ

← argmin{T (π)|π ∈ NI(π
c)}.

4: ifT (π ℓ) < T (π c) then
5: π c

← π ℓ, flag ← true.
6: π ℓ

← argmin{T (π)|π ∈ NS(π
c)}.

7: ifT (π ℓ) < T (π c) then
8: π c

← π ℓ, flag ← true.
9: until (flag = false)

10: π b
← argmin{T (π b),T (π c)}.

11: return π b.

CH5 is similar to CH6, both of which are iterated procedures
of two components and each component is still an iterated NI or
iterated NS . Here just CH6 is illustrated because CH5 is similar to it.
The returned solutionπ c ofNEHEDD is assigned to the start point.π ℓ

is obtained by CH2(π
c). If π ℓ is better than π c , it is assigned to π c .

CH1(π
c) is then conducted and returns its solution π ℓ. Again, π c

is replaced with π ℓ if the latter is better than the former. CH2(π
c)

and CH1(π
c) are performed again if π c is improved by either of the

procedures, i.e., CH6 stops only there is no improvement on π c . π b

is updated to π c if it is worse than π c . CH6 is formally described in
Algorithm 4.

It is obvious that CH1 and CH2 usually spend the shortest com-
putation time while CH5 and CH6 require the longest computation
time among the six composite heuristics. Though the time com-
plexity of either of the two neighborhood structures (NI and NS)
Algorithm 4 Composite Heuristic CH6(π
c)

1: repeat
2: flag ← false.
3: π ℓ

← CH2(π
c).

4: π ℓ
← CH1(π

ℓ).
5: ifT (π ℓ) < T (π c) then
6: π c

← π ℓ, flag ← true.
7: until (flag = false)
8: π b

← argmin{T (π ℓ),T (π c)}.
9: return π b.

is O(mn3), the computational complexity of the above composite
heuristics is hard to estimate because of the unknown iteration
number. Though it is hard to decrease the worst time complexity
of the six methods, the simple speed-up method given in [16] can
be adapted to save a lot of computation time for the total tardiness
calculation.

3.2. Adaptive perturbation

3.2.1. Compound perturbation operators
The diversification effect should be increased when a search al-

gorithm traps into a local optimum. A perturbation operator is al-
ways adopted to boost diversification, which helps the algorithm
to jump out of a local optimum and reach a new solution. Appro-
priate perturbation strength is important: too weak a perturbation
might not enable the algorithm to escape from the basin of attrac-
tion of the local optimum just found. On the other side, too strong a
perturbationwouldmake the algorithm similar to a random restart
local search. Inappropriate restart points seriously deteriorate the
efficiency of an algorithm because the search process would spend
too much time on repetitive searches.

A perturbation operator guides the local optimum to a new so-
lution, which can be regarded as a function F : Ω → Ω which
maps a solution to another. Insertion and adjacent exchange are
the most commonly used perturbation operators, which are de-
noted as Fi and Fs, respectively. Fi gets a new solution by ex-
tracting a job from a sequence π and randomly reinserting it into
another slot of π . Fs obtains a new solution by exchanging a ran-
dom pair of adjacent jobs in π . Fc is a linear combination of Fi
and Fs which performs Fi with probability pc or conducts Fs with
probability 1− pc on π .

It is obvious that Fc becomes Fi if pc = 1 and turns into Fs if
pc = 0. Generally, a simple perturbation operator generates a solu-
tion by conducting a perturbation structure d independent rounds
(which is called perturbation strength). The processes performing
Fi, Fs and Fc are called SIPP (Simple Insertion Perturbation Pro-
cess), SEPP (Simple Exchange Perturbation Process) and IPP (Inte-
grated Perturbation Process), respectively. So the adjacent pairwise
interchange perturbation developed byDong et al. [26] is SEPP. The
solution obtained by SIPP is denoted as Fi(d, π), that by SEPP is
represented asFs(d, π), while that by IPP is shown asFc(d, pc, π).
Each of them is the only candidate restart point of the next itera-
tion and is accepted even if its total tardiness value is worse than
that of the current best solution π b.

Naturally, we want to accept a solution better than π b as
the new restart point because accepting a solution worse than
π b would require considerable computation time for repetitive
searches. Therefore, an appropriate restart point is desirable. In this
paper, three compound perturbation operators are constructed,
each of which performs one of the three above operators ω
independent cycles. So ω candidate restart points are produced
by each compound perturbation operator, which is denoted as
Φ . For example, Φ =

ω
k=1{Fc(d, pc, π b)} when IPP conducts ω

Fc cycles. The selection of the appropriate candidate as the new
restart point is important for the search trajectory of the proposed
algorithms. Therefore, we investigate the following Restart Point
Selection mechanism.

X. Li et al. / Operations Research Perspectives 2 (2015) 13–23 17
Table 1
Job pairs of the two sequences.

Sequence Job-pairs

x (1, 2) (3, 1) (1, 4) (1, 5) (3, 2) (2, 4) (2, 5) (3, 4) (3, 5) (5, 4)
y (2, 1) (1, 3) (1, 4) (5, 1) (2, 3) (2, 4) (2, 5) (4, 3) (5, 3) (5, 4)
3.2.2. Restart point selection
If the best solution F ∗ in Φ is better than F b, i.e., T (π∗) <T (π b), π b is replaced with F ∗ as the restart point of the next

iteration. Otherwise, an appropriate solution should be selected
fromΦ as the new restart point. Measuring the difference between
F ∗ andF b is key in this selection process. Differentmeasurements
are suitable for distinct operators, such as six pairs of adjacent jobs
being used in the perturbation operator [26], four removed jobs
in the destruction phase in [28,29], and eight removed jobs in the
destruction phase in [32]. In this paper, a new distance between
two sequences is defined, based on which the most appropriate
restart point is selected.

For two n-job sequences x and y, we define the distance D(x, y)
from x to y by a number of different job-pairs (a job-pair is a pair
of jobs, different order means different job-pairs.) between x and
y. For example, x = (3, 1, 2, 5, 4) and y = (2, 5, 1, 4, 3). Table 1
shows the job-pairs of the two sequences.

Job-pairs (1, 2) in sequence x means 1 is in front of 2. Job-pairs
(2, 1) in sequence ymeans 2 is in front of 1. Table 1 illustrates that
there are four identical job-pairs between the two sequences: (1,
4), (2, 4), (2, 5), and (5, 4). The other six are different. Therefore,
D(x, y) = 6.

To calculate D(x, y), the job-pairs of x are inversed to x′. Then
D(x, y) is the number of identical job-pairs between x′ and y. The
inverse matrix E = [ei,j]n×n and the sequential matrix F = [fi,j]n×n
are introduced, in which ex[k],x[l] =


1 ifk > l
0 otherwise and fy[k],y[l] =

1 ifk < l
0 otherwise . The value ex[k],x[l] = 1 implies that x[l] locates before

x[k] in x when k > l, or there is a job-pair (x[l], x[k]) in x. The value
fy[k],y[l] = 1 indicates that y[l] locates after y[k] when k < l or
there is a job-pair (y[k], y[l]) in y. A binary variable gi,j is defined

as gi,j = ei,j ⊗ fi,j =

1 ifei,j = 1andfi,j = 1
0 otherwise . In the matrix G =

E ⊗ F = [gi,j]n×n, gi,j=1 means that the positive job order of
the pair (i, j) in y is identical to the inverse one in x, i.e., the job
orders of x and y at positions i and j are just reversed. Therefore,
D(x, y)=

n
i=1

n
j=1 gi,j.

For the above example, the corresponding matrixes E and F are

E =


0 0 1 0 0
1 0 1 0 0
0 0 0 0 0
1 1 1 0 1
1 1 1 0 1

 , F =


0 0 1 1 0
1 0 1 1 1
0 0 0 0 0
0 0 1 0 0
1 0 1 1 0

 .

So

G = E ⊗ F =


0 0 1 0 0
1 0 1 0 0
0 0 0 0 0
0 0 1 0 0
1 0 1 0 0


and D(x, y) =

5
i=1

5
j=1 gi,j = 6.

We note that D(x, y) = D(y, x) and D(x, y) = 0 if x = y.
However, the probability that x = y is low, particularly for the first
iterations. The time complexity of computing D(x, y) is O(n2).

In this paper, non-zerominπ∈Φ{D(π, π b)} is just adopted as the
measure the difference between two solutions. In other words, the
candidate solution arg minπ∈Φ{D(π, π b)} is selected as the restart
point if minπ∈Φ{D(π, π b)} ≠ 0.
3.2.3. Proposed compound perturbation methods
Based on the three perturbation structures, three compound

perturbation operators CP1, . . . , CP3 are developed. CP1 performs
SIPP ω independent cycles, CP2 performs SEPP ω independent
cycles,while CP3 performs IPPω independent cycles. In every cycle,
one of the three perturbation structures is conducted for d rounds.
Because of their similarity, we just show the process of CP3.

A candidate restart pointFc(d, pc, π) is generated by IPP,which
conductsFc d independent rounds. In every round,Fi is performed
with probability pc or Fs is done with probability 1 − pc , i.e., a
random job is removed from a sequence π c and reinserted into
another slot with probability pc whereas a random pair of adjacent
jobs of π c are swapped with probability 1− pc . IPP is performed ω
independent cycles and Φ =

ω
k=1{Fc(d, pc, π c)} is obtained. For

eachπ ∈ Φ , the distanceD(π, π b) betweenπ and the current best
solutionπ b is calculated. If the solutionπ∗with theminimum total
tardiness inΦ is better than π b, i.e.,T (π∗) < T (π b), π b is replaced
with π∗ and π∗ is assigned as the new restart point. Otherwise,
the solutionwithminimumD(π, π b) is selected as the new restart
point π ℓ. minπ∈Φ{D(π, π b)} = 0 is not allowed because it implies
that the two solutions are identical. So a candidate Fc(d, pc, π)
is abandoned if D(π, π b) and Fc is run again to produce another
candidate. The procedure CP3 is formally described in Algorithm 5.

Algorithm 5 Compound Perturbation Method CP3
1: Dist ← n2, Φ ← ∅, i← 1, Flag ← false.
2: repeat
3: π c

← π b.
4: for j = 1 to d do
5: Generate a random number λ ∈ [0, 1].
6: if (λ ≤ pc) then
7: π c is changed by randomly removing a job and

reinserting it into another slot.
8: else
9: π c is changed by randomly exchanging a pair of adjacent

jobs.
10: if D(π c, π b) = 0 then
11: Continue. \\∗ Go to Step 4 and generate a candidate

solution again.∗\\
12: else
13: i← i+ 1, Φ ← Φ ∪ {π c

}.
14: until (i > ω)
15: for (each π ∈ Φ) do
16: ifT (π) < T (π b) then
17: π b

← π , π ℓ
← π , Flag ← true.

18: if (Flag = false) then
19: for (each π ∈ Φ) do
20: if D(π, π b) < Dist then
21: Dist ← D(π, π b), π ℓ

← π .
22: return π b and π ℓ.

The perturbation strength d, probability pc and ω are three
important parameters for Fc . CP3 would become IPP if d = 1
while it would be similar to a random search if d is too big. CP3
turns into CP1 if pc = 1 whereas it becomes CP2 if pc = 0. When
ω = 1, there is only one candidate which is the restart point.
However, the minimum distance would be very close to π b with
a high probability if ω is big enough, which results in too weak a
perturbation. These parameters will be calibrated in Section 4.

18 X. Li et al. / Operations Research Perspectives 2 (2015) 13–23
The computational complexity of algorithm CP3 depends on the
number of π c with D(π c, π b) = 0 generated between Steps 4–9
of Algorithm 5, which is uncertain. However, the time complexity
between Steps 2–14 is only O(dω) if only a few solutions π c

with D(π c, π b) = 0 are generated. Because the time complexity
between Steps 19–21 is O(n2ω) and d < n, the lower bound of the
time complexity of CP3 is O(n2ω).

3.3. Trajectory scheduling methods

There are 18 combinations for the six proposed composite
heuristics and three perturbation methods, i.e., 18 trajectory
scheduling methods can be constructed for the considered
problem. For simplicity, we denote the trajectory scheduling
method as TSMij which combines CHi with CPj (i = 1, . . . , 6; j =
1, . . . , 3), where NEHEDD is adopted to generate the initial solution
π c . π c is improved by conducting CHi. A new restart point is
generated by performing CPj. Then, heuristic CHi is applied again.
The process is repeated until the terminal criterion is satisfied.
TSMij is constructed just by instantiation the Composite Heuristic
with CHi (i = 1, . . . , 6) and the Adaptive Perturbation with CPj
(j = 1, . . . , 3) for Algorithm 1. Similar to other meta-heuristics,
the time complexity of TSM algorithms is hard to estimate because
of the unknown iteration numbers between Step 2 and Step 6 in
Algorithm 1.

4. Experimental results

We now describe the computational experiments conducted to
compare the effectiveness of the proposed composite algorithms
with the existing algorithms to solve the PFSP to minimize total
tardiness. For this purpose, the best heuristics out of the 18
proposed algorithms are compared with GAPR, GAPR2, and GADV,
the best existing sequential algorithms for the considered problem
developed in [16]. All the 21 algorithms are implemented in Java
and performed on the same virtualmachinewith Intel i5-3470 CPU
(four cores, 2.2 GHz) and 1 GB Memory. Though CGAPR, CGAPR2
and CGADV proposed in [17] are the most effective existing
algorithms for the considered F |prmu|


Tj problem, they are not

comparedwith the proposed trajectory schedulingmethods in this
paper because they are cooperative algorithms performed onmore
than one computer while our proposed algorithms are sequential
ones conducted only on one computer.

Different testing instance sets are used for calibrating the in-
volved parameters and comparing the algorithms in this paper.
For calibrating parameters, problem instances are randomly gener-
ated according to [16,17], where instances with size n ∈ {50, 150,
250, 350} and m ∈ {10, 30, 50} are tested. The processing times
are uniformly distributed in [1, 99]. Due dates are generated in
terms of the Tardiness Factor F and the Due Date Range R, with
a uniform distribution between B(1− F −R/2) and B(1− F +R/2)
where B is a tight lower bound of the makespan given by Tail-
lard [33]. For each instance size, the following combinations of F
and R are concerned, F ∈ {0.2, 0.4, 0.6} and R ∈ {0.2, 0.6, 1}. For
a given F and R, there are five instances for each combination of n
andm. Therefore, there are 4×3×3×3×5 = 540 instances in to-
tal. However, the 540benchmark instances given at http://soa.iti.es
are adopted to compare the involved algorithms.

In this paper, effectiveness of methods is measured by RDI
(Relative Deviation Index), which is commonly used to evaluate
performance of scheduling problems with tardiness criterion
[10,12,16]. RDI is defined by

RDI =
T (M)−T (B)T (W)−T (B)

× 100% (2)
whereT (M) denotes the total tardiness of algorithm M ,T (B) andT (W) are respectively the best and the worst solutions of the
involved algorithms on each instance. The index lies between 0
and 100. The closer to 0 the better the algorithm is. Note that if
the worst and the best solutions are similar, all the combinations
would provide the best (same) solution and hence, the index value
would be 0 (the best index value).

Generally, there are four possible terminal criteria for iterative
methods [13]: maximum computation time, maximum number
of iterations, finding a solution with the objective function
value less than a predefined threshold value, or reaching the
maximum number of iterations without improvements. Use of
the maximum number of iterations is unfair for the different size
problems. In view of the NP-hardness of the considered problem,
it is unreasonable to assume that a solution with the objective
function value less than a predefined threshold value found in a
reasonable amount of computational effort. Themaximumnumber
of iterations without improvements is only used to compare the
proposed composite heuristics among themselves. For comparing
the performance of the proposed composite algorithms with
existing algorithms, the maximum number of iterations without
improvements is hard to find since a big number would consume
huge computation time and a small number may miss better
solutions formany cases. Therefore, amaximum computation time
is adopted as the termination criterion, which were also used
in [16,17,28,29]. Themaximum computation time of (n×m/2× t)
milliseconds is set as the termination criterion where t is the total
number of iterations being considered. This function is related
to the number of job n and the number of machine m. More
computation time is allocated for bigger n and m.

4.1. Parameter calibration

To calibrate the three parameters (d, pc , andω) in the compound
perturbation methods, the three parameters are restricted to
{3,4,5,6,7}, {0,0.2,0.4, 0.6,0.8,1} and {1,10, 20,30,40}, respectively.
The different value of pc represents a different compound
perturbation method. e.g., pc = 0 indicates CP1, pc = 1 indicates
CP2 and other values represent CP3. Every instance is conducted 5
independent times. Therefore, there are 5×6×5 = 150 parameter
combinations and 150 × 540 × 5 = 405 000 tests in total for
the calibration. The maximum computation time (n×m/2× 120)
milliseconds is set as the terminal criterion.

RDI is calculated for each algorithm on all the instances. The
three parameters are analyzed experimentally using the multi-
factor analysis of variance (ANOVA) method. First, the three main
hypotheses (normality, homoscedasticity, and independence of
the residuals) are checked by residuals from the experiments. Since
all the p-values in the experiments are close to zero, they are
not analyzed in this paper. Greater F-ratio implies more effective
the factor. Interactions between (or among) any two (or more
than two) factors are not considered because the corresponding
F-ratios are quite small. The results are shown in Table 2, from
which it can be observed that parameters for CP1 and CP2 exerts
little influence while those for CP3 exert great influence on any
composite heuristic CHi. In other words, a trajectory scheduling
method is more robust by integrating a composite heuristic with
the hybrid perturbation structure than just integrating it with the
simple inserting or exchanging structure.

To further illustrate the impact of different values of every
parameter on each trajectory method, TSM53 is taken as an
example. The Means plot and the Tukey HSD intervals of pc , ω and
d at the 95% confidence level are depicted in Fig. 2. Fig. 2 shows
that pc exerts great influence on TSM53, of which the performance
achieves the best when pc = 0.4. Fig. 2 indicates thatω = 40 is the
best among the five tested parameters. Fig. 2 illustrates that TSM53
obtains the best RDI when d = 4.

X. Li et al. / Operations Research Perspectives 2 (2015) 13–23 19
Fig. 2. Means plot and the Tukey HSD intervals at the 95% confidence level for pc , ω and d.
Table 2
Best combination of parameters for TSMij .

Algorithm CP1 CP2 CP3
ω d ω d ω d pc

CH1 30 3 10 6 30 4 0.2
CH2 30 3 1 8 20 4 0.4
CH3 40 3 20 6 30 3 0.8
CH4 30 4 20 5 30 3 0.2
CH5 10 3 40 5 40 4 0.4
CH6 20 4 30 4 30 3 0.2

4.2. Performance comparison on the proposed composite heuristics

In this section, performance of various CHi heuristics is com-
pared with that of NEHEDD. Different from the other comparisons
in this paper, every instance is performed only once because the
heuristics are deterministic. Therefore, there are 540 tests in to-
tal. The terminal criterion is set as the maximum number of iter-
ations without improvements. In the performance measurement
RDI,T (B) andT (W) are the best and the worst solutions selected
from the seven compared methods on each instance. Effectiveness
and efficiency of the compared heuristics are shown in Tables 3 and
4, respectively.

From Table 3, it can be observed that NEHEDD has the worst
effectiveness among the seven algorithms. CH1 and CH2 are the
worstwhile CH3 and CH4 are the best on average of the 6 composite
heuristics. The average RDI of CH4 is only 4.78% while that of CH1
is 32.67%. CH3 and CH4 outperform CH1 and CH2 on all instances.
Though CH5 and CH6 also outperform CH1 and CH2 on most
instances, they are outperformed by CH3 and CH4 on all instances.
As well, the methods with NS ahead of NI are always better
than those with NI ahead of NS , e.g., CH2 is better than CH1, CH4
outperforms CH1, and CH6 is not worse than CH5 both on average
and on most instances.

Table 4 shows that NEHEDD without local search is the fastest
among the 7 compared algorithms with an average CPU time
1.635 s. For the composite heuristics, CH1 and CH2 are faster than
CH5 and CH6, which are also faster than CH3 and CH4. So better
performance implies more CPU time for the compared heuristics.
Table 3
Effectiveness comparison on the six composite heuristics and NEHEDD .

Instance CH1 CH2 CH3 CH4 CH5 CH6 NEHEDD

50× 10 33.77 32.57 6.43 4.68 23.29 15.88 100.00
50× 30 59.25 34.97 8.34 10.20 26.03 28.98 100.00
50× 50 67.92 39.10 10.67 9.90 33.31 28.66 100.00
150× 10 20.80 27.77 4.02 1.40 15.41 11.07 100.00
150× 30 40.61 32.92 3.46 7.22 24.46 21.07 100.00
150× 50 53.68 37.19 4.72 6.19 30.16 29.59 100.00
250× 10 14.40 26.11 1.51 1.38 12.26 8.26 100.00
250× 30 32.07 30.68 4.37 2.67 21.80 18.15 100.00
250× 50 22.13 20.13 3.09 2.69 37.08 32.16 100.00
350× 10 17.05 26.33 6.08 5.94 10.22 7.80 100.00
350× 30 14.18 16.22 3.51 2.08 32.36 27.99 100.00
350× 50 16.12 15.49 4.75 3.01 41.09 38.44 100.00

Average 32.67 28.29 5.08 4.78 25.62 22.34 100.00
Table 4
Average CPU time (s) comparison on the six composite heuristics and NEHEDD .

Instance CH1 CH2 CH3 CH4 CH5 CH6 NEHEDD

50× 10 0.016 0.017 0.133 0.114 0.028 0.036 0.000
50× 30 0.044 0.053 0.307 0.291 0.075 0.093 0.010
50× 50 0.070 0.078 0.457 0.410 0.117 0.140 0.016
150× 10 0.611 0.550 2.967 3.108 0.802 0.822 0.183
150× 30 1.384 1.359 9.176 8.784 2.004 2.028 0.444
150× 50 2.108 2.104 14.467 15.824 3.165 3.246 0.666
250× 10 2.345 2.462 10.392 10.465 3.559 3.621 0.683
250× 30 5.787 6.429 34.435 34.951 9.193 9.591 1.713
250× 50 8.675 9.836 61.718 60.631 14.616 15.316 2.713
350× 10 5.498 6.306 16.621 16.665 9.630 9.822 1.596
350× 30 14.412 16.782 52.529 52.330 25.372 26.860 4.401
350× 50 22.189 25.861 90.133 90.048 39.779 42.165 7.200

Average 5.262 5.986 24.445 24.469 9.028 9.478 1.635

20 X. Li et al. / Operations Research Perspectives 2 (2015) 13–23
Table 5
Effectiveness comparison on 12 trajectory scheduling methods with the maximum computational time n×m/2× 120.

Instance TSM31 TSM32 TSM33 TSM41 TSM42 TSM43 TSM51 TSM52 TSM53 TSM61 TSM62 TSM63

50× 10 25.62 30.53 22.55 19.34 18.07 18.98 23.91 30.72 21.27 17.11 15.39 17.00
50× 30 24.04 28.77 21.73 18.23 19.57 19.18 23.12 29.49 21.64 17.41 18.03 17.53
50× 50 25.83 29.22 25.53 21.11 21.23 20.31 24.09 30.20 23.04 19.62 18.79 18.06
150× 10 29.61 33.72 24.79 18.58 19.21 19.24 25.82 31.86 19.63 16.07 16.88 15.20
150× 30 31.43 34.89 26.40 20.92 20.14 20.64 25.50 33.05 19.37 14.03 14.14 13.59
150× 50 29.86 35.81 25.51 21.09 20.54 22.93 26.56 33.10 18.27 14.52 15.58 15.64
250× 10 31.35 35.49 28.65 18.94 18.32 18.37 25.59 29.73 21.12 14.00 14.61 11.98
250× 30 33.71 35.12 28.81 21.77 21.90 21.10 26.49 32.10 19.73 11.82 12.11 11.18
250× 50 30.19 34.00 27.45 21.48 20.70 22.25 24.16 32.37 17.87 12.56 12.94 12.68
350× 10 31.46 34.25 30.92 21.55 23.35 22.84 24.72 27.76 22.00 13.70 14.46 11.54
350× 30 35.19 37.93 32.73 23.01 22.41 22.89 27.40 33.68 22.48 11.17 13.29 10.95
350× 50 33.50 36.65 31.21 24.86 24.55 25.35 25.03 31.63 19.50 12.43 13.22 12.33
Average 30.15 33.87 27.19 20.91 20.83 21.17 25.20 31.31 20.49 14.54 14.95 13.97
4.3. Performance comparison on the proposed trajectory scheduling
methods

To compare performance of the proposed trajectory schedul-
ing methods, five replications are executed on each instance.
Therefore, there are 540 × 5 = 2700 tests in total. The maximum
computation time ((n×m/2× t) milliseconds) is set as the termi-
nation criterion where t takes a value from {60, 90, 120}. Because
CH1 and CH2 heuristics show theworst effectiveness among the six
composite heuristics, they are not integrated with the three com-
pound perturbation methods, i.e., 12 trajectory scheduling meth-
ods (TSMij, i = 3, . . . , 6, j = 1, . . . , 3) are compared by RDI. The
parameters shown in Table 2 are adopted. In themeasurement RDI,T (B) andT (W) are the best and the worst solutions selected from
the 12 compared trajectory schedulingmethods performed 5 inde-
pendent times on each instance, i.e., the best and worst among the
60 values. From the experimental results, we observed the three
maximum computation time termination conditions show similar
performance on the 12 methods. We just give the results with the
maximum computation time n×m/2× 120 in Table 5.

Table 5 illustrates that the TSMs based on CH6 outperform
the other 9 trajectory scheduling methods on all instances. For
example, the average RDI of TSM33, TSM43, and TSM53 is 27.19%,
21.17%, and 20.49%, respectively whereas that of TSM63 is only
13.97%. On the other hand, among the three trajectory scheduling
methods based on each composite heuristic CHi (i = 3, . . . , 6),
TSMi3 (perturbed by CP3) always outperforms the other two and
TSMi2 (perturbed by CP2) is often the worst method. For example,
the average RDI of TSM61, TSM62, and TSM63 is 14.54%, 14.95%,
and 13.97%, respectively. This implies that the hybrid perturbation
structure is more effective than the only insertion-based and the
only swap-based ones.

Details about the performance for each trajectory scheduling
methods with different numbers of jobs and machines are shown
in Figs. 3 and 4. Figs. 3 and 4 show that TSM63 is the best one
while TSM32 is the worst one for each job number n and machine
number m. With the increasing of n, the difference between each
TSM is increasing while that for m is more or less the same.
This phenomenon implies that the performance of TSM is more
sensitive to the job number n.

Table 6 shows the comparisons of the best three methods
(TSM61, TSM62 and TSM63) with different termination criteria (t ∈
{60, 90, 120}). It can be seen that TSM63 is the best for each
termination criterion. i.e., the average RDI for TSM63 is 47.98,
37.85 and 30.65, respectively. The performance of all the three
algorithms is improved with the increasing of the termination
criterion. i.e., the average RDI for TSM61 is 50.20, 39.31 and 31.76,
respectively.
Fig. 3. Average RDI (%) of the 12 trajectory scheduling methods with different n.

Fig. 4. Average RDI (%) of the 12 trajectory scheduling methods with differentm.

4.4. Performance comparison with existing algorithms

Both the best and worst trajectory scheduling methods TSM63
and TSM32 in Table 5 are selected to comparewith the best existing
sequential algorithms GAPR, GAPR2 and GADV. Every instance is
performed 5 independent times, i.e., there are 540 × 5 = 2700
tests in total. The maximum computation time (n × m/2 × {60,
90, 120} milliseconds) is set as the termination criterion. As well,
in the performancemeasurement RDI of the compared algorithms.T (B) and T (W) are respectively the best and the worst solutions
selected among the five compared algorithms running five times
with three termination criteria on each instance. In other words,T (B) andT (W) are the best and theworst among the 5×5×3 = 75
values of each instance size. The results are shown in Table 7.

Table 7 indicates that RDI of each algorithm decreases with an
increase in the computation time for each of the 12 subsets of

X. Li et al. / Operations Research Perspectives 2 (2015) 13–23 21
Table 6
Comparisons of the best three methods with different termination criteria.

Instance TSM61 TSM62 TSM63

t = 60 t = 90 t = 120 t = 60 t = 90 t = 120 t = 60 t = 90 t = 120

50× 10 43.88 37.03 31.55 37.96 31.63 27.21 42.77 36.52 31.15
50× 30 50.02 43.21 39.10 54.15 45.74 40.05 52.94 44.67 39.85
50× 50 54.84 48.24 43.22 53.37 46.13 41.03 50.36 44.56 39.86
150× 10 45.90 36.51 30.47 46.56 37.81 31.69 42.52 33.97 28.80
150× 30 54.87 43.05 34.81 55.45 42.36 35.34 51.54 40.81 33.60
150× 50 60.48 45.92 36.66 61.79 48.31 39.51 58.31 47.62 39.60
250× 10 42.34 32.88 25.78 42.81 33.48 26.79 37.12 28.37 21.77
250× 30 48.87 36.92 28.13 50.44 37.99 28.61 44.04 33.94 26.46
250× 50 56.59 42.41 32.39 58.21 43.49 33.58 55.27 42.25 32.62
350× 10 39.41 28.92 22.17 41.02 30.94 23.51 37.76 26.54 19.18
350× 30 48.52 35.45 25.68 53.08 39.13 30.77 48.21 34.96 24.72
350× 50 56.72 41.20 31.13 59.78 43.32 32.76 54.90 39.94 30.19
Average 50.20 39.31 31.76 51.22 40.03 32.57 47.98 37.85 30.65
Table 7
Performance comparison of TSM against the best existing meta-heuristics.

Instance t = 60 t = 90 t = 120
TSM63 TSM32 GAPR GAPR2 GADV TSM63 TSM32 GAPR GAPR2 GADV TSM63 TSM32 GAPR GAPR2 GADV

50× 10 39.75 48.13 54.31 53.78 52.93 38.20 45.79 53.57 51.10 50.52 36.86 44.33 51.93 49.37 49.37
50× 30 42.31 49.80 56.45 55.41 54.50 41.01 47.47 55.21 52.99 52.00 39.93 46.20 53.73 50.57 50.29
50× 50 43.39 50.88 56.80 53.81 54.15 41.78 49.26 55.05 51.28 51.43 40.56 47.85 53.55 49.69 49.54
150× 10 39.90 47.05 55.03 59.62 59.09 37.74 45.15 52.53 57.36 57.05 36.49 43.95 51.29 55.99 55.74
150× 30 41.66 51.73 52.38 61.30 60.28 39.30 50.53 49.84 58.24 57.87 37.01 49.85 48.07 56.70 56.68
150× 50 42.73 54.90 53.39 60.50 60.00 39.95 53.46 51.05 58.93 58.18 37.56 52.16 49.93 57.99 57.04
250× 10 38.16 44.05 52.88 55.02 53.68 36.22 42.85 50.21 53.04 52.36 34.98 41.56 49.16 52.03 51.43
250× 30 39.73 52.72 53.72 58.92 58.14 37.33 51.23 51.33 57.25 56.85 35.48 49.73 50.11 56.38 55.97
250× 50 40.66 51.27 54.13 58.58 58.14 38.06 49.01 51.53 55.87 56.45 36.18 47.74 49.57 55.00 54.88
350× 10 37.92 42.93 51.78 53.32 53.59 36.30 41.51 48.95 52.18 51.47 35.17 40.14 47.63 50.99 50.56
350× 30 39.86 50.47 51.39 55.13 54.86 37.60 48.13 49.90 52.50 53.33 35.48 47.71 49.07 51.64 52.45
350× 50 39.16 48.13 50.02 53.72 54.66 37.05 46.77 48.83 51.62 52.57 35.09 45.63 47.60 50.40 52.02

Average 40.44 49.34 53.52 56.59 56.17 38.38 47.60 51.50 54.36 54.17 36.73 46.40 50.14 53.06 53.00
problem instances, i.e., the more computation time is, the better
are the solutions. For example, the average RDI of TSM63 for in-
stance 50×10with t ∈ {60, 90, 120} is 39.75%, 38.20% and 36.86%,
respectively. TSM63 and TSM32 achieve the best performance on all
instance groups. The average RDIs of TSM63 and TSM32 are much
better than that of the other three for the corresponding three com-
putation time cases. For example, the average RDI of TSM32 is only
46.40% while that of GAPR, GAPR2, and GADV is 50.14%, 53.06%,
and 53.00%, respectively, when t = 120. The size of instances ex-
erts little influence on effectiveness of TSM . It is hard to explicitly
figure out the exact tendency. However, the general tendency is
that RDI increases with m, e.g., RDIs of TSM63 are 36.86%, 39.93%
and 40.56% for different m when n = 50, t = 120. Therefore, TSM
usually finds better solutions for the small instances.

Means plot, showing the significance difference in effective-
ness, is depicted in Fig. 5 for all the compared algorithms with
t = 60, t = 90 and t = 120. From Fig. 5, it can be observed
that TSM63 and TSM32 obtain the best performance among the com-
pared algorithms for all the termination criterion. As well, the
average RDI differences of all the algorithms between two termi-
nation conditions are almost the same, which indicates that the
algorithms converge similarly.

To further investigate the influence of the number of jobs and
machines to the performance of each method, test results with
t = 90 are selected. Details are shown in Figs. 6 and 7. Figs. 6 and 7
show that TSM63 much better than other existing algorithms while
TSM32 ismore or less the sameas them.With the increasing ofn and
m, the difference between the compared algorithms are similar.
This phenomenon implies that the performances of compared
algorithms are not sensitive to the job number and the machine
number.
Fig. 5. Interactions and 95.0 Percent Tukey HSD Intervals for all the compared
algorithms with t = 60, t = 90 and t = 120.

From a global point of view, Table 8 shows the result of
comparisons with the same best and worst solutions. The best
and worst composite heuristics (CH4 and CH1), the best trajectory
scheduling methods TSM63 and the best existing algorithm GAPR
are compared. From the table, it can be seen that TSM63 is best
(14.98) while CH1 is the worst (94.48) among the compared
algorithms.GAPR ismuchbetter thanboth the composite heuristics
(CH4 and CH1) with the average RDI 30.88. The average RDI of
all the compared algorithms have no obvious trends when the
machine number m increases. However, the average RDIs of CH1
and CH4 become worse while those of TSM63 and GAPR become
better with the increasing of the job number n.

22 X. Li et al. / Operations Research Perspectives 2 (2015) 13–23
Fig. 6. Average RDI (%) of the compared methods with different n and t = 90.

Fig. 7. Average RDI (%) of the compared methods with differentm and t = 90.

Table 8
Comparisons with the same best and worst solutions.

Instance CH1 CH4 TSM63 GAPR

50× 10 89.93 65.38 28.42 26.35
50× 30 88.08 68.38 20.59 62.04
50× 50 88.43 59.89 9.77 34.90
150× 10 98.45 42.34 11.61 46.61
150× 30 96.33 80.59 27.46 37.36
150× 50 99.86 76.75 27.62 35.20
250× 10 97.23 36.68 12.80 39.29
250× 30 89.31 56.69 15.77 35.55
250× 50 99.67 95.32 1.46 4.01
350× 10 97.89 93.54 0.93 6.66
350× 30 90.32 89.72 3.63 10.30
350× 50 98.24 98.24 19.72 32.29

Average 94.48 71.96 14.98 30.88

5. Conclusion

Trajectory Scheduling Methods (TSM) are presented in this
paper for the Permutation Flow Shop Scheduling Problem (PFSP) to
minimize total tardiness. Six composite heuristics, CH1, . . . , CH6,
are constructed based on the Insertion and Swap neighborhood
structures to boost the intensification of TSM . Three compound
perturbation methods, CP1, . . . , CP3, are developed to generate
a set of candidate starting points with different perturbation
strengths. The distance of each candidate from the current best
solution is defined. The candidate with the shortest distance is
selected as the new starting point of the next iteration to get a
balance between diversification and intensification. 18 trajectory
scheduling methods TSMij are constructed by combining CHi and
CHj.

For each TSMij, three critical parameters are tested on 540
random instances and the best values are determined according
to the experiments. By testing the proposed composite heuristics
CH1, . . . , CH6 on the benchmark individually, the best four
CH3, . . . , CH6 are selected to combinewith the different compound
perturbation methods CP1, . . . , CP3. Results show that TSM63 and
TSM32 are the best and worst ones among the 12 combinations
and the hybrid perturbation structure is more effective. Both
TSM63 and TSM32 heuristics are compared with the best existing
sequential algorithms GAPR, GAPR2 and GADV for PFSP. Although
all the compared algorithms show a similar convergency, TSM63
and TSM32 improve the effectiveness of the algorithms for the
considered problem significantly, which implies that not only the
composite heuristics but also the proposed perturbation structure
play an important role in the proposed trajectory scheduling
methods.

This development in this paper also suggests some fruitful di-
rections for future research. For example, the proposed trajectory
methods can also be used to solve several other scheduling prob-
lems like the hybrid flowshop problems and manufacturing cell
scheduling problems. Further, scheduling problems with several
other performance measures, like the total earliness and tardiness
penalties, can be solved using the proposed methods. Therefore,
it is worthwhile to further explore and develop the proposed com-
posite heuristics and the perturbation techniques to solve a variety
of scheduling problems.

Acknowledgments

This work is supported by the National Natural Science Founda-
tion of China (Grants 61272377) and the Specialized Research Fund
for the Doctoral Program of Higher Education (20120092110027).

References

[1] Sen T, Gupta SK. A state-of-art survey of static scheduling research involving
due dates. Omega 1984;12(1):63–76.

[2] Du J, Leung J.Minimizing total tardiness on onemachine is np-hard.MathOper
Res 1990;15(3):483–95.

[3] Pinedo M. Scheduling: theory, algorithms, and systems. Springer; 2012.
[4] Vallada E, Ruiz R, Minella G. Minimising total tardiness in the m-machine

flowshop problem: A review and evaluation of heuristics and metaheuristics.
Comput Oper Res 2008;35(4):1350–73.

[5] Sen T, Dileepan P, Gupta JN. The two-machine flowshop scheduling problem
with total tardiness. Comput Oper Res 1989;16(4):333–40.

[6] Kim Y. A new branch and bound algorithm for minimizing mean tardiness in
two-machine flowshops. Comput Oper Res 1993;20(4):391–401.

[7] Pan J, Fan E. Two-machine flowshop scheduling to minimize total tardiness.
Internat J Systems Sci 1997;28(4):405–14.

[8] Pan J, Chen J, Chao C. Minimizing tardiness in a two-machine flow-shop.
Comput Oper Res 2002;29(7):869–85.

[9] Schaller J. Note on minimizing total tardiness in a two-machine flowshop.
Comput Oper Res 2005;32(12):3273–81.

[10] Kim Y. Heuristics for flowshop scheduling problems minimizing mean
tardiness. J Oper Res Soc 1993;19–28.

[11] Nawaz M, Enscore E, Ham I. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega 1983;11(1):91–5.

[12] Kim Y, Lim H, Park M. Search heuristics for a flowshop scheduling problem
in a printed circuit board assembly process. European J Oper Res 1996;91(1):
124–43.

[13] Blum C, Roli A. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Comput Surv (CSUR) 2003;35(3):268–308.

[14] Onwubolu G, Mutingi M. Genetic algorithm for minimizing tardiness in flow-
shop scheduling. Production Planning & Control 1999;10(5):462–71.

[15] Onwubolu G, Davendra D. Scheduling flow shops using differential evolution
algorithm. European J Oper Res 2006;171(2):674–92.

[16] Vallada E, Ruiz R. Genetic algorithms with path relinking for the minimum
tardiness permutation flowshop problem. Omega 2010;38(1):57–67.

[17] Vallada E, Ruiz R. Cooperative metaheuristics for the permutation flowshop
scheduling problem. European J Oper Res 2009;193(2):365–76.

[18] Adenso-Díaz B. Restricted neighborhood in the tabu search for the flowshop
problem. European J Oper Res 1992;62(1):27–37.

[19] OwP. Focused scheduling in proportionate flowshops.Manage Sci 1985;31(7):
852–69.

[20] Armentano V, Ronconi D. Tabu search for total tardiness minimization in
flowshop scheduling problems. Comput Oper Res 1999;26(3):219–35.

[21] Parthasarathy S, Rajendran C. Scheduling to minimize mean tardiness and
weighted mean tardiness in flowshop and flowline-based manufacturing cell.
Comput Ind Eng 1998;34(2):531–46.

http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref1
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref2
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref3
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref4
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref5
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref6
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref7
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref8
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref9
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref10
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref11
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref12
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref13
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref14
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref15
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref16
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref17
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref18
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref19
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref20
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref21

X. Li et al. / Operations Research Perspectives 2 (2015) 13–23 23
[22] Hasija S, Rajendran C. Scheduling in flowshops to minimize total tardiness of
jobs. Int J Prod Res 2004;42(11):2289–301.

[23] Adenso-Díaz B. An sa/ts mixture algorithm for the scheduling tardiness
problem. European J Oper Res 1996;88(3):516–24.

[24] Lourenčo H. Job-shop scheduling: Computational study of local search
and large-step optimization methods. European J Oper Res 1995;83(2):
347–364.

[25] Stützle T.. Applying iterated local search to the permutation flow shop
problem. FG Intellektik. TU Darmstadt, Darmstadt. Germany.

[26] Dong X, Huang H, Chen P. An iterated local search algorithm for the
permutation flowshop problem with total flowtime criterion. Comput Oper
Res 2009;36(5):1664–9.

[27] Framinan JM, Leisten R, Ruiz-Usano R. Comparison of heuristics for flowtime
minimisation in permutation flowshops. Comput Oper Res 2005;32(5):
1237–54.
[28] Ruiz R, Stützle T. An iterated greedy heuristic for the sequence dependent
setup times flowshop problem with makespan and weighted tardiness
objectives. European J Oper Res 2008;187(3):1143–59.

[29] Ruiz R, Stützle T. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European J Oper Res 2007;177(3):
2033–49.

[30] Osman I, Potts C. Simulated annealing for permutation flow-shop scheduling.
Omega 1989;17(6):551–7.

[31] Taillard E. Some efficient heuristic methods for the flow shop sequencing
problem. European J Oper Res 1990;47(1):65–74.

[32] Pan Q, Tasgetiren M, Liang Y. A discrete differential evolution algorithm for
the permutation flowshop scheduling problem. Comput Ind Eng 2008;55(4):
795–816.

[33] Taillard E. Benchmarks for basic scheduling problems. European J Oper Res
1993;64(2):278–85.

http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref22
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref23
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref24
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref26
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref27
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref28
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref29
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref30
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref31
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref32
http://refhub.elsevier.com/S2214-7160(15)00002-0/sbref33

	Trajectory Scheduling Methods for minimizing total tardiness in a flowshop
	Introduction
	Problem description
	The proposed trajectory scheduling methods
	Composite heuristics
	Start point & neighborhood structures
	Composite heuristics

	Adaptive perturbation
	Compound perturbation operators
	Restart point selection
	Proposed compound perturbation methods

	Trajectory scheduling methods

	Experimental results
	Parameter calibration
	Performance comparison on the proposed composite heuristics
	Performance comparison on the proposed trajectory scheduling methods
	Performance comparison with existing algorithms

	Conclusion
	Acknowledgments
	References

