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Abstract

Are there economies of scale to data in internet search? This paper is first to use real search

engine query logs to empirically investigate how data drives the quality of internet search results.

We find evidence that the quality of search results improve with more data on previous searches.

Moreover, our results indicate that the type of data matters as well: personalized information

is particularly valuable as it massively increases the speed of learning. We also provide some

evidence that factors not directly related to data such as the general quality of the applied al-

gorithms play an important role. The suggested methods to disentangle the effect of data from

other factors driving the quality of search results can be applied to assess the returns to data

in various recommendation systems in e-commerce, including product and information search.

We also discuss the managerial, privacy, and competition policy implications of our findings.
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1 Introduction

The rise of the internet enables consumers to browse through and compare a broad range of products

before they ultimately choose the one that is closest to their expectations. This also poses new

challenges for firms in electronic commerce that seek to proactively engage with consumers and to

suggest the most relevant product to facilitate purchasing. Firms like Google, Netfix, and Amazon

are well known for their recommendation systems for product search and allegedly generate a

substantial share of sales via these recommendations. In the words of Steve Jobs, ”A lot of times,

people dont know what they want until you show it to them” (Arora, 2016).

These recommendation systems consist of two main components. First, they rely on big data,

to a large extent generated by customers in their previous purchases and product or information

searches. Second, they make use of algorithms, such as those used in machine learning, to predict,

from the underlying data, the most relevant products for the customers’ Search. General purpose

search engines like Bing, Google, and Yahoo! are perhaps the prime examples of such recommender

systems. These service providers face the task of organizing and indexing the virtually infinite

information available in the World Wide Web, then rank this content in order to provide the most

relevant search results to each individual user.

In perhaps no other market has the question of the role of data stirred such a vivid discussion

among industry participants, academic experts, and policy advocates than in general internet

search. A wide spectrum of opinions about the potential impact of accumulated search data on

search result quality. At one end of the spectrum, it is argued that data is a minor ingredient in

the recipe to provide relevant search results. Other factors that are not related to the sheer amount

of data are the key inputs of search result quality, such as the search engines ability to crawl and

index the documents published in the internet, to store and organize the retrieved catalogue, as

well as the algorithm used to retrieve the most relevant indexed documents to each search query

(Varian, 2016). Commentators at opposing ends of the opinion scale argue that data on previous

user search behavior is a crucial determinant of the quality of search results and search engines

learn from more data (McAfee et al., 2015). This line of argument went on to highlight the role

of data in strengthening Google’s market position, alleging that ”Google’s overwhelming strength

comes from its ownership of vast datasets” (Guardian, 2015).
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Despite the prominence of data-driven businesses and the surrounding heated policy discussion,

surprisingly little is known about the precise role of data in improving the quality of recommen-

dation systems, such as internet search. How much data is needed for optimal quality? And what

type of data? To our knowledge, this article is the first to address these important questions using

real data on user behavior obtained from a general purpose internet search engine. We study the

impact of accumulated search history data on the quality of internet search results using Yahoo!

data. The main aim of this paper is to propose to managers and policy makers such as competi-

tion authorities - an empirical strategy that allows isolating the impact of data on service quality

from other factors. The methods we bring forward are simple and straightforward to reproduce

in contexts other than general internet search. The data requirements are extremely low, as user

activity logs are available in every e-commerce firm. We apply a very simple and cheap measure to

quantify the quality of search results (the click-through-rate of the first displayed URL), and show

that our findings are robust to the use of a costly alternative quality measure based on editorial

reference judgements.

Our analysis leads to two conclusions. First, there is learning from user data. Second, person-

alized information is crucial. In particular, our analysis reveals that the quality of results displayed

to queries for which the search engine saw more personalized information (i.e. could track the

identity of searchers for a longer sequence of previous searches) improves faster than that of queries

with less personalized information available. This implies that the speed of learning from previous

searches is amplified by more personalized information.

2 Related Literature

Despite the public policy attention surrounding the question, economic literature to quantify the

effect of previously collected data on the quality of search results is surprisingly scarce. Chiou

and Tucker (2017) rely on a browsing database to analyze how storage of personalized information

affects the accuracy of search results. The authors exploit a policy change in European data

retention rules as identification strategy, arguing that the shortening of query log retention time

had no noticeable effect on the quality of search results. Our approach is different as our data

allows a much more precise measurement of search quality. Furthermore, we study the impact
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of personalized information on the quality of search results from an entirely different perspective:

Instead of studying the direct impact of personalized information on search result quality, we study

how personalized information mediates the speed of learning.

Bajari et al. (2018) examine the impact of data accumulation on the accuracy of retail forecasts.

They find that additional data on the forecasts and the subsequent realization of retail quantities

improves the accuracy of retail forecasts for a particular product. Observing more products in

a specific product category, however, has almost no effect on forecast accuracy. Similarly to our

approach, Bajari et al. (2018) account for non-data related improvements in forecast accuracy such

as improved technology by controlling for elapsed time. As opposed to our data set, the data used

by the authors do not allow to study the accumulation of different amount of data over the same

time span, which is a crucial step in our identification strategy. Hence, while our approaches share

the same underlying idea to control for non-data related factors, our dataset allows a different

implementation of the concept

Other contributions approach the topic of scale economies in data from a policy perspective:

Lerner (2014), Lambrecht and Tucker (2013) and Sokol and Comerford (2017) argue that economies

of scale from data collection are low (even for tail queries) and that positive feedback loops between

data collection and service quality (Pasquale, 2015; Bodapati, 2008; Stucke and Grunes, 2015)

should be expected to be weak. Schepp and Wambach (2015) and Sokol and Comerford (2017)

submit that the value of data is often of transitory nature and relevant only over a short time

period. Argenton and Prüfer (2012) provide methods for search engine providers to share search

logs with each other so they are better able to tab network externalities arising from more data.

Rubinfeld and Gal (2017) and Chiou and Tucker (2017) discuss the antitrust policy relevance of

big data and the extent to which data may become an entry barrier that hampers competition.

Our search engine data come from a particularly interesting market where the effect of data on

search result quality is widely discussed by industry, academia and policy advocates. There is a

spectrum of opinions about accumulated search datas potential impact on search result quality. At

one end of the spectrum, it is argued that data is a minor ingredient in the recipe to provide relevant

search results. Other factors that are not related to the sheer amount of data are the key inputs of

search result quality, such as the search engines ability to crawl and index the documents published

in the internet, to store and organize the retrieved catalogue, as well as the algorithm used to
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retrieve the most relevant indexed documents to each search query (Varian, 2016). Commentators

at the opposing end argue that data on previous user search behavior is a crucial determinant of

the quality of search results. In short, search engines learn from more data (McAfee et al., 2015).

Our research is also related to the broad literature on the role of big data in driving firm perfor-

mance, product development, and service quality. A vast amount of literature in various disciplines

addresses this topic. Excellent literature reviews are provided by Chen et al. (2012) for information

systems research, Chintagunta et al. (2016) for marketing and George et al. (2014) for management.

Clearly, the emergence of big data revolutionized e-commerce and raised research questions that go

beyond the borders of single disciplines: McAfee et al. (2012) discuss the overarching managerial

challenges of the big data revolution.

Our article is further related to the literature on online advertising (Goldfarb and Tucker, 2014),

in particular to the rapidly growing strand of research on targeted offers in marketing. A large share

of this literature develops methods exploiting purchase history data to explain observed marketing

outcomes, such as purchase probability (Moe and Fader, 2004; Bodapati, 2008; De et al., 2010)

and clickthrough rates (Ansari and Mela, 2003). Dou et al. (2007) and Yoganarasimhan (2016)

focus on the value of personal information for search quality and find that personal information

can significantly increase search quality, but the effect may depend on other factors, such as the

type of query or the length of user history. We contribute to this strand by highlighting once more

the importance of personalized information for targeting accuracy.

The role of personalized information in online markets also attracts considerable interest from a

public policy perspective, both from policy advocates and from academics. In Europe, for example,

the General Data Protection Regulation (GDPR, 2016) introduced broad rights for consumers to

control the data firms collect on them and granted public authorities the powers to issue significant

fines for breaches, reaching up to 4% of global annual company turnover. In recent years the

U.S. Federal Trade Commission, the US consumer protection watchdog, brought hundreds of cases

against companies violating privacy legislation (FTC, 2017).
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Figure 1 – Search Result Layout at Yahoo!, 2011

3 The Data

The data we use in this paper stem from Yahoo! and contain search logs spanning a period of

32 days from July 1, 2010, through August 1, 2010. A specific search log contains information

about the search term, the time when the search term was submitted, the computer from which

the search term originates, the returned list of results, and the clicking behavior of the user. Figure

1 illustrates the typical structure of the typical search results page (SERP) at Yahoo! at the time

our dataset was gathered. The search term, which we also refer to as query in the remainder of

this paper, is the sequence of characters a user types into the search bar of the search engine (in

the middle in Figure 1) in her quest for information. The corresponding paid advertisements are

displayed at the north and east edges of the search result lists. Our analysis focuses on organic

results, which are highlighted in Figure 1, and how the quality of these non-paid result lists may

improve due to more data.

The computer from which the search term originates is identified by a cookie. The returned list
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of results we observe consists of the urls displayed on the first result page. The query, the cookie

and the urls of the first result page were anonymized by Yahoo!, so we can only observe unique

identifier codes instead of the actual values. The time the query was submitted is identified by a

unix timestamp. From the data, we are able to identify the order of the displayed results, so that

we know the positions of the urls on the result page.

We also observe the user’s actions after submitting their search request. Most of the time, these

actions simply consist of clicking on urls.1 The search log consists of the chronologically ordered

series of clicks the user performs on the urls of the first result page until she performs a terminal

action that ends the search log. There are three types of terminal actions: (i) the user clicks on a

url and does not return to the result page within a pre-specified time span (i.e. the url fulfilled the

informational need of the user); (ii) the user submits a new search term (which is encoded as “s”);

or (iii) the user performs an action encoded as “o” (i.e. “other click”) in the search log.2

In the remainder of this paper, we use the terms session, search log, and search interchangeably.

Our dataset consists of roughly 81 million search logs for 67652 different queries performed by

approximately 29 million different cookies. The queries we observe naturally differ in the number

of times they are searched. The number of observed searches by query varies from a minimum of

4 to a maximum of 10000. The observed searches are only a proxy for the true number of searches

performed on a query. Unfortunately, the data description offers no guidance on the relationship

between our observed measure and the true number of searches carried out on a query. The sample

is, however, a random sample from the totality of searches performed on the Yahoo! search engine.

This allows us to derive conclusions on the relative traffic, as the relative popularity of queries

should be adequately reflected by our proxy-measure: Due to the random sampling, queries should,

on average, be included in our sample proportionately to their overall popularity.

Thus, our proxy measure preserves, on average, the relative popularity of the queries. However,

the sample was constructed with the restriction that one query could not be sampled more than

10000 times. This implies that the average relative popularity between queries can only be precisely

1After clicking on a given url, the user can come back to the result page. If she does so, we also observe the
subsequent clicks she performs after returning to the result page.

2The data description does not clearly specify the nature of the actions encoded as “o”. If they appear in the
search log, actions encoded as “o” are always the last recorded action, this is why we postulate their terminal nature.
It is natural to assume that “o” summarizes behavior like closing the browser, long idle time after returning to the
result page, or any other action that signalizes the search engine that it is very likely that the user stopped his search.
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estimated when comparing queries with strictly less than 10000 searches. For instance, queries for

which we observe 8000 sessions should have been searched, on average, 4 times more often than

queries for which we observe 2000 sessions.3 On the other hand, comparing queries we observe

10000 times with queries we observe 2000 times does not allow us to draw conclusions on the

impact of a five-fold increase of popularity on quality. Rather, it only allows conclusions on the

impact of, at least, a five-fold increase of popularity. We will point to this restriction whenever

necessary; for now the reader should keep in mind that the dataset does not allow us to analyze

quality changes based on the true absolute number of searches. Rather, we will have to rely on a

relative measure of popularity for our analysis.

In the remainder of this paper we will refer to our proxy measure as number of searches/

sessions/ search logs; thus, we do not always emphasize the proxy nature of our variable.

3.1 Measurement of search result quality

The quality measure we use in this paper is based on the recorded clicking behavior of the user

after submitting a query. Each query returns an ordered list of urls on the first result page of the

search engine. This returned list of ordered urls can be considered as the output of the search

engine’s technology. Our aim is to analyze how the quality of this output evolves with the number

of searches performed on a given query. For each query - url combination, we calculate the click

through rate (CTR) on the top displayed url, which we define as:

CTRjl =

∑
s∈jl 1 {clickpos = 1}∑

s∈jl 1 {clickpos 6= 0 ∪ clickpos ∈ ∅}
(1)

Where j denotes the query, l the ordered url combination, s the session, and clickpos the position

of the last click in a session. For all the sessions associated with a given query-url combination, we

count the number of times the last click was performed on the url that appears on the top of the

result page (clickpos = 1), and divide this statistic by the total number of sessions where either (i)

the last click was not performed on the url in position 0; or (ii) there was no click (clickpos ∈ ∅).

A user action encoded as click on position 0 is a click that was performed above the first displayed

url, clicks above the first url are clicks on a spelling suggestion, clicks on an alternative proposed

3It should be clear that our proxy measure is subject to standard sampling error; we suppress this discussion here
for ease of exposition.
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formulation of the query, or clicks on an advertisement. The distribution of the last click position

is displayed in Figures 8 and 9 of Appendix A. 4

We decided to exclude clicks on position 0 because advertisements cannot be considered as

“generic” search results. Advertisements are positioned as a result of processes that go beyond the

objective of fulfilling the informational need of the user. Stated very roughly, their placement can

be considered as the result of a bargaining process added on top of the algorithm of the search

engine. As we are only interested in analyzing the performance of the algorithm in fulfilling the

informational need of the customer, we consider it reasonable to exclude clicks on position 0.

Our quality measure can be seen as measuring the extent to which the search algorithm achieves

what one might call “the ultimate goal of a search engine,” namely to place the most relevant content

for a search query at the top of the displayed result list.5 The idea behind this quality measure is

straightforward: A user having to click through several urls before finding the content that matches

their informational need experiences a worse search quality than a user who immediately finds their

desired content. Because users naturally inspect the proposed results from top to bottom, the search

experience should be best when the most relevant content is placed on top of the result list.

Users might, however, differ in their search perseverance: Some users might visit different urls

before returning to the first url for reasons which are unrelated to the quality of the first url. Some

users might have a specific taste for variety or simply a different time constraint than other users

confronted with the same ordered result list. Nonetheless, if they return to the first url, the search

engine can be assumed to have fulfilled its goal; it is for this reason that we consider the last

performed click of a session in our quality measure.

4The data do not allow for identify the exact nature of clicks on position 0. However, because advertisements
are usually placed above the first url, it is reasonable to assume that a large share of the clicks on position 0 are
likely to be clicks on advertisements. This presumption is particularly reasonable for so-called commercial queries,
i.e. queries that are submitted with the likely intent to buy a product. As the queries are anonymized, we are not
able to identify commercial queries (like, for instance, ”Play Station 3”). Rather than relying on an ad-hoc heuristic
to single out likely commercial queries (like defining a threshold of clicks on position 0 above which a query is likely
to be commercial), we found it more reasonable to ignore clicks on position 0. The reason for this being that queries
that are classified as commercial by the search engine might have been submitted for non-commercial reason by the
user. In this case, the user should be interested in the ”generic” content. By filtering out commercial queries by an
ad-hoc heuristic, we believe that we would unnecessarily lose information relating to the performance of the generic
algorithm.

5Displaying the most relevant search result at the top of the result page could be seen as an intermediate step in
the process of implementing search engine providers’ utopia: Delivering one single personalized search result for each
query. In an interview with Charlie Rose in 2005, Eric Schmidt, Google CEO from 2011 to 2015, stated the following:
”When you use Google, do you get more than one answer? [rhetorical question] Of course you do. Well, that’s a
bug. We should be able to give you the right answer just once. We should know what you meant. You should look
for information. We should get it exactly right.” (see Ferenstein, 2013)
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A unique feature in our dataset allows us to test the robustness of our results using an alternative

quality measure based on editorial judgements of query-url pairs for a subset of searches. An

explanation of the measure and the corresponding robustness checks are provided in an Appendix

C. The main limitation of this measure is that it rapidly reduces the number of observations; we

can only construct it for about one-third of the observed searches. The main results of our analysis

remain robust to the choice of the quality measure.

It is needless to point out that our quality measure is only a proxy for the ability of the search

engine to achieve its ”ultimate goal.” For instance, we implicitly assume that a user who does not

return to the result page after clicking a given url was satisfied with this url. Furthermore, some of

the clicks on position 0, which we ignore, might be indicative of a high performing algorithm, such

as a correct spelling suggestion or a better alternative formulation.6

For the remainder of the analysis, it is important to understand that our quality measure varies

for the same query as the displayed content on the first result page is either permutated or a new

content appears on the first result page. The ordered list of displayed results for a given query in

the sample changes for several reasons: Most prominently, the search engine might display different

result lists for the same query depending on the personalized information it has on the user.

Some query-url combinations are only rarely observed and might, therefore, provide unreliable

estimates of the quality of the result page. To reduce the noise, we base our analysis on rolling

window averages over 100 consecutive searches with a step size of 10 calculated for each query. To

be more precise, for each query, starting with the first session, we define a window of length 100

(i.e. spanning the first 100 sessions) and calculate the simple average over the values of CTRjl

for these 100 sessions. After completion of this step we move the window by a step size of 10 and

compute the average over the values of CTRjl for the next 100 sessions (i.e. the window spanning

s ∈ [11, 110]).7 We repeat this procedure until there are fewer than 100 sessions remaining.

6While the first point is mitigated by the fact that our measure is averaged over several searches, the latter cannot
be corrected due to lack of information on the precise nature of clicks on position 0.

7The choice of the window length reflects a trade off between granularity and reliability of the quality measure.
A large window length would not allow properly analyzing quality changes for queries that are rarely searched, while
a small window length in-sample results in a too noisy measure. The step size of 10 was mainly chosen to reduce the
computing time.
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4 Descriptives

This section provides some important insights into the data set, which helps motivate the approach

we choose to study the impact of data on the quality of search results. We start by calculating the

average quality as a function of observed searches in the sample period.8

CTRs =
1

NJs

∑
j∈Js

CTRjl (2)

Where Js denotes the set of queries for which we observe a particular number of sessions s and NJs

is the number of queries in Js, i.e. for each s ∈ [1, 10000] we observe in our dataset, we calculate

the average over CTRjl for all the queries which we observe at least s times. More formally, let

Sj denote the total number of sessions we observe for a given query j, then Js : {j : Sj ≥ s} and

NJs = |Js|.

The solid line of Figure 2 displays the local polynomial regression smooth of the average CTR

as a function of the observed sessions. The dashed line is the local polynomial regression smooth

of the initial quality of all the queries in Js:

ICTRs =
1

NJs

∑
j∈Js

CTRjl′ (3)

Where l′ is simply the first observed result list of each j ∈ Js. The statistics displayed in Figure

2 reveal that the average quality we observe for queries in Js is largely explained by the initial

quality for the queries in Js. The positive relationship between the initial quality and the in-

sample popularity measure of the queries begs the question whether in-sample popularity conveys

information about the pre-sample popularity and whether the positive relationship we observe in

Figure 2 can be seen as indicative for learning from data. We will elaborate more on this points in

Subsection 6.2.

While Figure 2 suggests that the in-sample quality evolution is, on average, small, Figure

3 reveals that the magnitude of the in-sample quality evolution of a query heavily depends on

its initial quality. Figure 3 displays the in-sample quality evolution (as measured by the rolling

8In this section only, some results are based on the original quality measure, namely the results displayed in
Figures 2 and 4
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window averages) for the most popular queries that accumulate evenly (Subsection 6.1 details the

definition of even accumulation and provides the justification for their use, we decided to postpone

this discussion for ease of exposition) for three different initial quality categories. More precisely,

∀s we compute:

∆CTR (s) =
1

NJi

∑
j∈Ji

(
CTRj (s)− CTRj (s = 1)

)
(4)

where s denotes the session that marks the left edge of each rolling window.9 In our case s takes the

values in {1, 11, 21, ..., 9901}. CTRj (s) denotes the rolling window average over values of CTRjl

evaluated at s and Ji :
{
j : CTRj (s = 1) ∈ [a, b)

}
. In words, for the queries in Ji, we calculate the

average difference between the rolling window values as s increases and the initial rolling window

value (s = 1). The choice of a and b determines the initial quality category. In Figure 3, we chose

[a, b) to be [0, 13) for the solid line, [13 ,
2
3) for the dashed line and [23 , 1] for the dotted line. 10 As seen

9This choice is necessarily somewhat arbitrary, we could have chosen any arbitrary value inside the window.
However, our choice allows interpreting the results displayed in figure 3 in a more natural way: By choosing the left
edge of the window, the statistic in Equation 4 is computed and displayed right after a given number of searches
elapsed.

10By basing the allocation of a query to a specific initial quality group on the rolling window average of the first
100 values of the original quality measure, we ensure we do not miss allocate queries. If we base our allocation rule
on a single value of CTRjl, we would run the risk of doing so based on rarely observed query-url combinations that
are uninformative of the true performance of the search engine on that query for the first observed sessions.
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in Figure 3, the in-sample quality evolution ranges from 7% for the lowest initial quality group to

0% for the highest initial quality group. Accounting for the initial quality of a query is thus crucial

when studying the in-sample quality evolution of queries. Figure 3 is representative and holds also

for less popular queries.

Another apparent pattern in the data is the dip we observe around 6000 searches. This dip is

likely due to the Yahoo! - Bing transition that occurred in the year 2010 and for which the testing

phase happens to overlap with our sample period. The dip that we observe around 6000 searches

largely coincides with a drop in quality on July 20th, as most of the queries that were searched

10000 times reached this number of searches around this date. In fact, shortly before July 20, 2010,

Yahoo! publicly announced its intention to begin testing Microsoft’s search engine online, running

the Bing algorithm on its real-life search traffic:

Though much of our testing is already happening offline, this month we’ll also test

the delivery of organic and paid search results provided by Microsoft on live Yahoo!

traffic -July 15, 2010 (Schwartz, 2010; Yahoo, 2010)

As seen in Figure 4, the queries experience a sudden and sharp quality reduction on July 20,
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2010. The daily average search quality on that day is around 12.5 percentage points lower than

the usual average. While it is extremely likely that the dip in quality is related to a timely limited

algorithm transition for testing purposes, the exact course of events remains unclear. In our view,

this sudden quality reduction is indicative of the importance of non-data related factors for the

quality of search results because it is a sudden change in the employed technology that likely

caused this event. In the remainder of the analysis, we ignore searches that occurred over the three

days period between July 19 and 21, 2010.

5 Disentangling Data from Non-Data Related Factors

A natural starting point to analyze the impact of data in our dataset is to compare the quality

evolution of queries depending on their popularity. If user-feedback data play an important role for

the quality of search results, we would naturally expect to see that more popular queries experience

a larger quality evolution than less popular queries.11 Taking the difference in the quality evolution

between more and less popular queries allows differencing out quality improving factors that are

unrelated to data.

As a simple example, think of the case of two group of queries: Queries we observe 2000

times and queries that we observe 10000 times. If the first group experiences an average quality

improvement of 5% and the latter a quality improvement of 8%, we would conclude that a minimum

of a 5 fold increase in data in our sample period leads to a quality improvement of 3%. The

differencing is sensible because it allows accounting for the fact that both groups might be subject

to common quality driving factors. To better understand what these common factors could be, it

is useful to revisit the major tasks of a search engine:

Crawling Search engines crawl the web to discover web pages available in the internet. This is

done by programs called crawlers, spiders, or bots that move from site to site detecting and

recording links to other web pages. These programs essentially map the internet by following

the link structure on websites. Crawling the internet is costly as it requires computing power

and storage space, with search engines differing in the size of their crawled database. It also

11User feedback is intrinsic in every action the user performs, thus a single search can be seen as “one unit of
user-feedback.”
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seems that there is significant variation over time in the number of crawled web pages by

various search engines.12

Indexing Search engines create a large database with keywords and other characteristics of the

crawled web pages. Other characteristics may include the title of the webpage, words high-

lighted with different types of font, and appearing at different locations on the page. The

extracted content is saved in a database that can be regarded as a stripped down and shortened

version of the internet. Indexing involves significant costs for storing the index databases.

Ranking Search engines use a ranking algorithm to attach a relevance-weight of each crawled and

indexed web page to various keywords. If a user enters a query into the search box, search

engines go through their index to retrieve the web pages that they consider most relevant to

the given keyword. Determining the relevance ordering of potentially millions of webpages to

various keywords is the task of the ranking algorithm of the search engine.

From the above description, it should be clear that the technological requirements of a search

engine offer ample room for non-data related quality factors. In our view, crawling and indexing

have little to do with data on previous searches. Those tasks are essentially rather mechanic

stocktaking and organization of the content of the web. The size of the web content inventory of

a search engine is mainly determined by factors like storage space and computing capacity. These

factors determine how frequently a search engine can crawl the web and the size of the database it

stores.

The ranking task is probably the channel through which user feedback data are most likely to

impact the quality of search results. Clicks performed by users and an assimilation of this clicking

behavior to specific user types might help the search engine infer the preferences of other users when

they search for a similar topic. However, it is also important to keep in mind that the ranking in

modern search engine technology is also based on factors that have little or nothing to do with

direct user feedback.13

12For an estimate of the number of web pages search engines know about, see http://www.worldwidewebsize.com/.
13One key determinant of the ranking is the link structure of the web. A specific website gains in relevance as an

increasing number of other websites link to this specific website and as these other website also increase in relevance.
This is the basic mechanism of Google’s PageRank algorithm. While Yahoo’s technology is undisclosed, industry
experts agree that every search engine relies on similar principles in this regard.
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In our view, the non-data related factors can best be accounted for by modeling them as

time-dependent. Time might approximate or capture developments in the storage and computing

capacities as well as the technological changes in ranking function, indexing methodology, and the

crawler, among others. Thus, when comparing the quality evolution of queries with different levels

of popularity, it is important to take time into account. Therefore, our analysis of the in-sample

quality evolution of queries will focus on queries that we observe for a similar time span. More

formally, we model the in-sample quality evolution of a query, ∆Qi, as:

∆Qi = fi(TSi, ti) (5)

Where fi is the query specific function that determines how the total number of searches, TSi,

and elapsed time, ti, translates into quality evolution during the sample period. TSi and ti are

in-sample quantities. The main idea of our identification strategy is to fix ti across all queries to t̄.

By doing so, differences in quality evolution should only be attributable to differences in TS and f .

If f , which can be thought of as the “type” of a query, is orthogonal to TS, we can learn about the

impact of data, by comparing the quality evolution of queries as TS varies. For the moment, we

postpone any discussion about the pre-sample search history and how it might affect our empirical

findings to the end of subsection 6.1.

6 Results

The result section is organized as follows: Subsection 6.1 presents the results based on the in-sample

quality evolution for our one month sample period. Subsection 6.2 presents findings that we consider

to be further corroborative evidence for the results from Subsection 6.1 and that highlight the long

term perspective.

6.1 In - Sample Analysis

According to our hypothesis about the quality evolution process of queries formulated in Equation

5, we wish to focus on queries that we observe over the entire sample period to hold the impact of

time, i.e. non-data related factors, constant. We achieve this by restricting the analysis to queries

that we observe at least 2000 times and which accumulate evenly over the sample period. We base
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our analysis on rolling window averages to obtain a reliable measure for the initial quality.14 It is

important to make sure that the time period that elapses for the calculation of one rolling window

is sufficiently similar across and within queries. Otherwise, time related factors would affect the

observed quality over the 100 searches used for one rolling window differently. This is undesirable if

we wish to properly control for non-data related (i.e. time related) factors in the quality evolution

process. It is for this reason that we focus on queries that accumulate evenly.

The definition of even accumulation is naturally somewhat arbitrary. In the context of our data,

a query would accumulate perfectly evenly if each day it accumulates 1/32% of all its searches that

we observe in the sample period. We base our criterion on a 3 day accumulation rate, i.e. 3/32%,

and drop each query that deviates by more than 8 percentage point from this criterion in any three

day period. From originally 10859 queries for which we observe more than 2000 searches, we are left

with 9377 after applying the procedure. The interested reader is referred to the tables in Appendix

A for query level summary statistics computed for different groups of queries.15

Another important concept in this section is the average amount of personalized knowledge

that the algorithm had when confronted with a search on a given query. Each time we observe a

search on a specific query, we know how often the cookie performing this search was observed in

the sample before searching for that query. For each search on a given query, we record the number

of times the cookie performing this search was observed previously and compute the average of this

number for each query. In the remainder of this section, we will call this measure average cookie

length (CL).

Remember from the discussion in the previous section that we are interested in the quality

evolution of the queries during the sample period. Approximating the in-sample quality evolution

as a linear function of the sessions, we can write:

Qis = IQi + βi × s+ εis (6)

The quality Qis after a given number of sessions s is a linear function in s plus the initial

14As we show in Section 4, the initial quality is an important feature to explain quality evolution in-sample. A
reliable measure for initial quality is only obtained by considering rolling window averages: Basing the initial quality
on the first click or the first query-url combination that we observe does not provide a reliable estimate of the initial
quality.

15The results of Figure 3 were computed based on the group of queries that accumulate evenly according to the
above definition.
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observed quality IQi. We are interested in estimating βi given query level characteristics. Note

that βi × TSi is the first order approximation of Equation 5 for ti ≈ 32 ∀i (because we focus on

queries that accumulate evenly). We estimate βi by a varying coefficient model. More precisely,

we estimate the following 4 specifications:

(I) βi = α0 + α1 × CLi + α2 × TSi + α3 × IQi + ui

(II) βi = α0 + α1 × CLi + α2 × TSi + α3 × IQi + α4 × TSi × CLi + ui

(III) βi = α0 + α1 × CLi + α2 × TSi + α3 × IQi + α5 × IQi × CLi + ui

(IV ) βi = α0 + α1 × CLi + α2 × TSi + α3 × IQi + α4 × TSi × CLi + α5 × IQi × CLi + ui

(7)

The coefficient α1 tells us how the marginal impact of one additional session on the quality is

affected by a longer average cookie length. We include the coefficient TSi to allow for non-linearity

in the in-sample quality evolution as a function of the number of total searches. It is only by

including TSi that we can capture scenarios in which queries with 2000 searches learn the same

as queries with 10000 searches. Omitting TSi would automatically imply that queries with 10000

searches learn more than queries with 2000 searches, unless βi = 0. IQi captures the change of

the learning slope as a function of the initial quality. Naturally, queries that start with a high

initial quality have less scope for learning. In the descriptive part of the analysis, we show that the

observed quality evolution depends heavily on the initial quality level of a query. The specifications

(II) − (IV ) allow for potential interactions between CL and TS and/or IQ. Estimation of the α

parameters is achieved by OLS after plugging the equations in 7 in Equation 6. Standard errors

are clustered on the query level to account for the query specific error term ui.

The regression results for the 4 specifications are presented in Table 1 from left to right. Before

commenting on the results in more detail, we want to point out that our regression specification

allows for an overall constant and a coefficient for the standalone initial quality variable that which

is different from one. While the inclusion of an overall constant is innocuous and guarantees that

the error has mean zero, the coefficient on the standalone initial quality variable departs from the

model formulation in Equation 6. Restricting the coefficient to 1 does not change the qualitative

implications of our results, quantitatively the results only change very marginally. The results for

the restricted version are presented in Appendix B.1.
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Table 1 – Regression Results for Specifications (I) - (IV)

(I) (II) (III) (IV)

initial quality 9.417e-01∗∗∗ 9.389e-01∗∗∗ 9.395e-01∗∗∗ 9.379e-01∗∗∗

(3.052e-03) (3.168e-03) (3.132e-03) (3.177e-03)

sessions 2.542e-06∗∗ -6.260e-06∗∗ -1.024e-05∗∗ -1.517e-05∗∗∗

(8.455e-07) (2.288e-06) (3.424e-06) (2.927e-06)

sessions x cookie (SC) 1.115e-06∗∗∗ 2.919e-06∗∗∗ 4.067e-06∗∗∗ 5.072e-06∗∗∗

(1.353e-07) (4.345e-07) (8.300e-07) (6.967e-07)

sessions x total sessions -3.686e-11 8.793e-10∗∗∗ -8.492e-11 4.582e-10
(1.020e-10) (2.644e-10) (1.019e-10) (2.993e-10)

sessions x initial quality -1.080e-05∗∗∗ -1.046e-05∗∗∗ 7.555e-06 7.365e-06
(1.132e-06) (1.141e-06) (4.113e-06) (4.205e-06)

SC x total sessions -1.904e-10∗∗∗ -1.127e-10∗

(4.802e-11) (5.506e-11)

SC x initial quality -3.893e-06∗∗∗ -3.810e-06∗∗∗

(9.696e-07) (1.002e-06)

Constant 3.998e-02∗∗∗ 4.174e-02∗∗∗ 4.128e-02∗∗∗ 4.229e-02∗∗∗

(2.083e-03) (2.158e-03) (2.149e-03) (2.176e-03)

Observations 5066880 5066880 5066880 5066880
Adjusted R2 0.883 0.883 0.883 0.883

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The coefficient α1 (SC) is positive and significant across all presented specifications.16 It reveals

a positive relationship between the average cookie length and speed of the observed quality im-

provement. The coefficients on the interaction between the average cookie length and initial quality

variables are always negative, which is natural: If a longer average cookie history implies a larger

quality improvement it nevertheless remains true that queries starting from a high initial quality

level cannot experience a large quality improvement. Thus, the slope for queries with a longer

cookie history must adjust downward more sharply than the slope for queries with a shorter cookie

history. The coefficients on the interaction between the cookie and the total searches variables are

also negative, indicating that the positive impact of the cookie length is somewhat mitigated when

allowing for non-linearities, as mentioned above. However, this mitigation of the cookie impact is

very limited in magnitude, as will become clear in what follows.

The regression results are better interpreted and understood in terms of fit. The following

16This result is robust to the choice of the quality measure, the inclusion of further standalone variables in the
above specification, and the restriction of the coefficient on the standalone variable on initial quality to the value of
one. It can also be shown that the pattern emerges when performing a non-parametric analysis: Comparing the mean
quality evolution of queries with an above median and below median average cookie length, we find that queries with
an above median average cookie length learn faster; the results of this analysis are displayed in Appendix B.2
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Figure 5 – Predicted quality evolution of model (IV). The left panel refers
to queries with an initial CTR of 25%, the right panel to queries
with an initial CTR of 75%. The black lines refer to queries with
an average cookie length of 3.5, the gray lines to queries with an
average cookie length of 6. The total number of searches of the
queries is displayed on the x-axis.

discussion is based on the most flexible specification (IV), the implication of the regression results

for the less flexible specifications should be easily understood from there. Figure 5 displays the

quality evolution for queries with an initial quality of 25% in the left panel and 75% in the right

panel.17 The cookie length chosen for the exposition in Figure 5 correspond to the rounded values

of the 25% and 75% percentile of the cookie length distribution of the queries used in the estimation

(see tables in Appendix A).

As can be easily seen, a query with a longer average cookie history experiences a larger quality

evolution than a query with a shorter cookie history but otherwise identical parameters. The

negative coefficient on the interaction of the cookie length variable with the initial quality variable

leads to a reduction of this spread as the initial quality increases. The interaction between the total

searches variable and the cookie length variable allows the difference in slopes between queries with

2000 and queries with 10000 searches to vary across different cookie lengths. The negative sign

indicates the mitigation of the positive cookie effect as the total number of searches increases.

17The fact that the origin of the curves in both panels is slightly different from 25% and 75% is due to the constant
included and the unrestricted coefficient on the standalone initial quality variable in the model.
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As suspected from the small magnitude of the respective coefficient in the regression results, this

impact seems negligible.

As explained in the paragraph following Equation 6, the quality difference between the origin

and the end point of each line can be seen as the average first order approximation of Equation 5.

As elaborated in the discussion of Section 5, we propose to consider the difference in the quality

evolution between queries with different popularity to account for non-data related factors. With

this logic, the difference between the quality improvement described by the gray lines in the left

panel of Figure 5 corresponds to the impact of a minimum increase in popularity of least 5 times

for queries with an average cookie length of 6 and an initial quality of 25%. Analogously, the

difference between the quality improvement described black lines of the left panels corresponds to

the impact of an at least 5 times increase of popularity with an average cookie length of 3.5 and

an initial quality of 25%. Furthermore, the difference between these differences can be considered

as the reinforcement effect of the longer average cookie history on the data impact.

Table 2 displays the point estimates as well as the p-values of a corresponding analysis for 3

different initial quality levels for all specifications (I)− (IV ) ordered from top to bottom. The left

column pair refers to the data impact for queries with an average cookie history of 6, the middle

column pair refers to the data impact for queries with an average cookie history of 3.5 . The right

pair refers to the reinforcement effect, which is always positive and significantly different from zero.

Including an interaction effect between the cookie and the initial quality variables (which we argued

is reasonable) changes the results substantially. Unsurprisingly, the interaction effect between the

cookie and the total sessions variable only has a minor impact

According to our preferred specifications, the impact of a longer cookie history, as measured

by the interquartile range of the cookie length distribution, on an at least 5 fold increase in data

ranges from between 1.7% and 2.3% for queries with a high initial quality to between 5.5% and

6.2% for queries with a low initial quality. One reason for the faster learning process of queries

with a longer average cookie history might be that better knowledge about the individuals searching

for content enables the algorithm to assimilate this feedback to user-types. Learning from users

who are well known to the algorithm, enables the algorithm to better predict identical or similar

future search request by other users (who are also well known to the algorithm) by associating

their requests to the respective type. Another potential channel might be the greater reliability of
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Table 2 – Differences and Differences in Differences

CL = 6 CL = 3.5 Diff

Initial quality Estimate P-val Estimate P-val Estimate P-val

Specification (I)
.25 0.049∗∗∗ 0.000 0.026∗∗∗ 0.000 0.022∗∗∗ 0.000
.5 0.027∗∗∗ 0.000 0.005 0.170 0.022∗∗∗ 0.000

.75 0.006∗ 0.022 -0.017∗∗∗ 0.000 0.022∗∗∗ 0.000
Specification (II)

.25 0.044∗∗∗ 0.000 0.031∗∗∗ 0.000 0.013∗∗ 0.002
.5 0.023∗∗∗ 0.000 0.010∗ 0.013 0.013∗∗ 0.002

.75 0.002 0.422 -0.011∗ 0.015 0.013∗∗ 0.002
Specification (III)

.25 0.074∗∗∗ 0.000 0.012∗ 0.034 0.062∗∗∗ 0.000
.5 0.042∗∗∗ 0.000 -0.000 0.905 0.042∗∗∗ 0.000

.75 0.010∗∗∗ 0.000 -0.013∗∗∗ 0.000 0.023∗∗∗ 0.000
Specification (IV)

.25 0.070∗∗∗ 0.000 0.015∗ 0.021 0.055∗∗∗ 0.000
.5 0.039∗∗∗ 0.000 0.003 0.553 0.036∗∗∗ 0.000

.75 0.008∗∗ 0.009 -0.009∗ 0.016 0.017∗∗∗ 0.000
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

signals submitted by well-known or persistent users. A user repeatedly or persistently searching

for a specific content might convey much more information than users who quickly give up on

their quest for information. Furthermore, the search engine, by studying the browsing behavior of

individuals, might learn about the quality of the signals specific user types send when interacting

with the search engine in a specific way.

As mentioned at the end of Section 5, the pre-sample search history likely plays a role in the

proper assessment of the data impact on the in-sample quality evolution. The queries that we

compare in this section to learn about the impact of data should ideally be similar in terms of pre-

sample characteristics. It is reasonable to suspect that queries with a larger in-sample popularity

also had a larger pre-sample popularity. Given non-linearities in the learning process, this is

problematic. For instance, in the scenario of a concave learning function, our empirical analysis

would likely understate the impact of data, but in the scenario of a convex learning function, the

impact is likely overstated. We note that if such processes are at work in our data, we would expect

the variable TS to play a more noticeable role in our analysis. However, as we show, TS only

seems to play a minor role. As far as the pre-sample exposure time of the queries to the algorithm

is concerned, we assume that this latent factor is orthogonal to the observable characteristics we

use in our analysis. Further research based on more comprehensive data sets is warranted in order

to explicitly take into account those potential confounders.
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Despite these caveats, we find overwhelming evidence in our data that the speed of quality

evolution is significantly and positively impacted by the average amount of personalized information

the algorithm has on the searchers. This result is robust to various specifications and the quality

measure. Giving explicit consideration to non-data related factors in the quality evolution process,

we find a statistically significant and positive impact of data that is reinforced by personalized

information. The next section conceptualizes on the long run impact of data and provides further

corroborative evidence of the positive impact that personalized information has on the speed of

learning and the importance of data in general.

6.2 Long Run Considerations

If data-accumulation matters and if personalized information reinforces its impact on search result

quality during the sample period, we would also expect to see these forces at play when considering

the long run perspective. In Section 4, we already mention that the positive relationship between

the total number of searches in-sample and the initial quality (see Figure 2) might be indicative of

a positive relationship between the pre-sample popularity and quality.

In this section, we elaborate on the conditions under which the relative in-sample popularity

of queries can be considered a good proxy for their relative pre-sample popularity and show that

when we focus on queries that are likely to fulfill these conditions, we obtain a clearer relationship

between in-sample popularity and initial quality. Remember that we think of the quality of a query

i as a function of the accumulated searches TS and the time it was exposed to the algorithm t; in

this section the reader should think about t̂ and T̂ S as unobserved pre-sample quantities. For the

initial quality of a query, we write:

IQi = fi( ˆTSi, t̂i) (8)

Note that ˆTSi =
ˆTSi

t̂i
× t̂i = ˆ̄si × t̂i. The accumulated search history pre-sample is simply the

average number of searches by time unit, ˆ̄si, multiplied by the elapsed time, t̂i, since the query

first appeared. For the remainder of the exposition, we assume that t̂i is orthogonal to the average

search frequency per time unit, ˆ̄si. We consider this assumption fairly innocuous: We simply claim

that the average search frequency by month (or day, hour or second) is not systematically related

to the first time a query appeared.
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We wish to find queries for which the relative in-sample popularity is a good proxy for the

relative pre-sample popularity, i.e. we wish to find queries where for arbitrary i, j, we have:

E
(
TSi
TSj

)
≈ E

(
ˆTSi
ˆTSj

)
(9)

Where the quantities without a hat denote observed in-sample quantities. Note that, according

to the above assumption about the orthogonality between time and average searches by unit of

time and random sampling, this is equivalent to:

E
(
si
sj

)
≈ E

(
ˆ̄si
ˆ̄sj

)
(10)

The approximation in Equation 10 becomes more accurate as the accuracy of the numerator

and denominator on the left hand side of the equation increasingly approximates the numerator and

denominator of the right hand side. In other words, if we focus on queries where the total search

quantity over our one month sample period is a good estimator for the average search quantity per

month before the sample period, the relative in-sample popularity should approximate the relative

pre-sample popularity fairly well.

Which queries from our sample do we need to focus on to make the relative in-sample popularity

a good proxy for the relative pre-sample popularity? We need to focus on queries where the monthly

variance in popularity is small. This is likely the case for queries that converge to a constant level

of popularity. Queries that experience an abrupt drop or surge in popularity during our sample

period convey little information about their average pre-sample monthly popularity; the same is

true for queries with a decreasing and increasing trend, which are likely to be subject to seasonal

patterns.

To drop those queries, we elaborate on the idea of even accumulation introduced in the previous

section. If we drop queries that deviate from our even accumulation criterion, we should get rid of

trending queries or queries with erratic popularity changes. Of course, no query perfectly complies

with our constant accumulation criterion of 3
32% in any three day period. However, we can define

bounds around this criterion that queries need to fulfill in order not to be dropped and we can

shrink those bounds arbitrarily close to the perfect constant accumulation criterion.

In the next paragraphs, we show that the stricter the bounds, the clearer the relationship
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Figure 6 – Relationship between the median initial quality and the number
of total searches. Each median value is calculated for the queries
falling within a specific quantity group, as specified on the x-
axis. The dotted line displays the median values calculated for
all queries. The dashed line is calculated based on queries that
deviate no more than 4 percentage points from our constant fre-
quency definition. The solid line is calculated based on queries
that deviate no more than 3 percentage points from our constant
frequency definition.

between the initial quality we observe and the in-sample popularity (wish proxies pre-sample pop-

ularity). This is exactly what we would expect to happen if accumulation of data (and hence

feedback) matters because in-sample relative popularity becomes a better proxy for relative pre-

sample popularity. Note that the orthogonality assumption between t̂i and ˆ̄si implies that the

elapsed exposure time before the sample period started is - on average - constant across different

search quantities.

Figure 6 displays the medians for queries belonging to different quantity groups. As shown, the

relationship between the initial quality and the in-sample popularity becomes clearer, the stricter

we define the bounds around the constant frequency definition. Under the hypothesis that data

accumulation does not matter, we would not expect to see this pattern emerge. The confidence

intervals around the medians of the dotted and solid lines do not overlap for the first four quantity

groups (see Appendix B.3). It is also remarkable that the differences between the median value
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Figure 7 – Relationship between the median initial quality and the number of
total searches. The dotted lines refer to queries with an average
cookie length exceeding the 66% percentile. The dashed lines
refer to queries with an average cookie length between the 33%
and 66% percentile. The solid lines refer to queries below the 33%
percentile. The percentiles vary across group of total searches and
frequency restrictions. The left panel displays the result for the
queries that deviate no more than 3% from our constant frequency
definition. The right panel displays the results for all the queries
in the sample (no restriction on the search frequency)

of smallest and largest quantity group gradually increases as the constant frequency requirement

becomes stricter.18

To assess the impact of the average amount of personalized information on the long run impact

of data, we split the queries into three groups based on the 33% and 66% percentile of the average

cookie length distribution. Figure 7 displays the relationship between the in-sample quality and

the initial quality for each of these three groups. The left panel refers to queries that deviate no

more than 4 percentage points from the perfect constant frequency definition. The right panel

refers to all queries with more than 2000 searches in our sample (i.e. no restriction on the type

of accumulation). Again, focusing on queries fulfilling a stricter constant frequency requirement

seems to strengthen the relationship between in-sample total searches and initial quality for each

cookie length group.

18We decided to only show three lines for ease of exposition, the graph for seven different thresholds is displayed
in Appendix B.3
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Furthermore, the results are consistent with the results from the in-sample analysis in Subsection

6.1, which provided strong evidence for the hypothesis that the speed of learning seems to be

reinforced by a longer average cookie history. Two observations point in this direction: firstly,

for the same number of in-sample searches (which proxy pre-sample searches) the initial quality is

higher for queries with longer average cookie history. Secondly, the relationship between the in-

sample searches and the initial quality is highest for queries between the 33% and 66% percentile

and comparatively flat for the lower and upper 33% of the cookie length distribution. This is

consistent with a scenario in which a longer average cookie history increases the speed of learning

to a point where a majority of queries belonging to the upper 33% of the cookie length distribution

are already out learned at the beginning of our sample period (also for comparatively small values

of pre-sample popularity).

Of course the conclusions of the above analysis should be taken with a grain of salt: A potential

important confounding factor, like the “type” of a query (difficult vs. easy), cannot be accounted

for due to data limitations. However, the above analysis combined with the in-sample analysis

from Subsection 6.1 (where a confounding factor like the “type” of a query could to some extent

be controlled for by accounting for the initial quality) provide strong indication in favor of the

hypothesis that user feedback data matter in both the long- and short-runs. Furthermore, the

speed of learning is positively influenced by the average knowledge the algorithm has about the

searcher.

7 Conclusion

In this paper, we empirically examine the question of to what extent does user data about previous

searches drive the quality of subsequent internet search results. To do so, we provide a method

to disentangle the effects of user data from other factors, such as the size of the search engine’s

indexed content or the quality of the search engine’s ranking algorithm.

We find that additional data on previous searches on the same keyword tends to improve the

quality of search results. Moreover, our results highlight that the type of data matters. In particular,

having a larger quantity of personalized information about the clicking behavior of users increases

the speed of learning from previous data. Additional personalized information systematically leads
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to quicker quality improvement. At the same time, we find indications that factors not directly

related to user data play an important role.

Our insights have important management implications and can be generalized to any search

recommendation technology in e-commerce, including information and product search. Such tech-

nologies are critical elements of e-commerce and are widely used by leading firms, such as Netflix

and Amazon. Anecdotal evidence suggest that the quality of recommendation technology improves

significantly with additional data. This paper suggests methods to disentangle the effect of data

from other factors driving the quality of recommendations. The data requirements are very low:

simple activity logs routinely retained by these e-commerce services suffice. Managers need to con-

sider carefully which types of data to invest in and where to allocate resources for data analysis. A

key factor in this decision should be which type of data improves the quality of results the most.

Our results show that personalized data is the most valuable. Therefore, closely tracking the activ-

ity of a few users over time may be more valuable for businesses than collecting non-personalized

data covering a large number of users.

Our results may also inform competition policy by qualifying, in a detailed manner, how data

may give rise to economies of scale. We find evidence that data matters for internet search quality.

Our results also call for awareness from antitrust policy regarding potentially anti-competitive firm

behavior that seeks to lock in relatively few users for a longer period of time. Since information

about the individual user is particularly important in triggering economies of scale, capturing users

for a longer time period may grant firms a data advantage that is difficult for competitors to

overcome. Assessing how market demand depends on search result quality (and, therefore, on

data) and to what extent accumulated data impose an entry barrier are interesting questions for

further research.

Finally, our insights are also highly relevant for consumer and privacy policy. They lend support

to initiatives that enable users of IT services to easily carry their personal data to other service

providers, including Article 20 of the General Data Protection Regulation, which provides EU

citizens the right to data portability. As it is individual data that drives recommendation quality

the most, allowing users to control and carry their data to competitors may be a smart way of

mitigating potential market power. However, at the same time, our results are also consistent

with personalized data on one user enabling the service provider to offer better results to other
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users. Thus, there might be externalities from data across users. These externalities, in turn, may

even result in suboptimal levels of switching justifying consumer policy attention. A systematic

theoretical and empirical assessment of user switching in light of externalities from data across

users would be a valuable contribution to future research.
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Appendices

Appendix A

Table 3 – Summary statistics all queries

mean sd min p25 p50 p75 max count

total searches 1194.04 2467.43 3 19 115 851 10000 67652
average cookie length 4.06 2.18 1 2.79 3.56 4.78 67.3 67652
average pos. last click∗ 2.18 1.19 1 1.21 1.84 2.85 10 66370
share generic clicks 0.56 0.25 0 0.37 0.57 0.78 1 67652
share clicks on pos 0 0.25 0.18 0 0.096 0.24 0.38 1 67652
share clicks on other∗∗ 0.09 0.09 0 0.018 0.058 0.12 1 67652
share no clicks 0.10 0.11 0 0.038 0.067 0.12 1 67652

Note: All click measures refer to the position of the last click
∗ only generic clicks are considered
∗∗ other clicks sumarize clicks below last url, new searches and clicks encoded as o

Table 4 – Summary statistics queries with more than 2000 searches

mean sd min p25 p50 p75 max count

initial CTR on pos 1 0.58 0.29 0 0.31 0.66 0.84 1.00 10859
total searches 6041.51 2998.11 2001 3132 5471 9653 10000 10859
average cookie length 4.98 1.99 1.08 3.54 4.51 5.95 19.6 10859
average pos. last click∗ 1.79 0.84 1 1.14 1.41 2.30 7.52 10858
share generic clicks 0.62 0.24 0 0.44 0.65 0.84 0.97 10859
share clicks on pos 0 0.22 0.16 0 0.077 0.19 0.35 0.83 10859
share clicks on other∗∗ 0.06 0.06 0 0.021 0.042 0.086 0.56 10859
share no clicks 0.10 0.11 0.0079 0.047 0.062 0.095 1 10859

Note: All click measures refer to the position of the last click
∗ only generic clicks are considered
∗∗ other clicks sumarize clicks below last url, new searches and clicks encoded as o

Table 5 – Summary statistics queries used in regression analysis

mean sd min p25 p50 p75 max count

initial CTR on pos 1 0.59 0.29 0 0.34 0.68 0.84 1.00 9377
total searches 6060.99 2986.75 2001 3162 5509 9638 10000 9377
average cookie length 4.93 1.89 1.08 3.53 4.48 5.93 19.0 9377
average pos. last click∗ 1.76 0.84 1 1.14 1.38 2.23 7.52 9376
share generic clicks 0.63 0.23 0 0.47 0.67 0.84 0.97 9377
share clicks on pos 0 0.22 0.16 0 0.076 0.19 0.35 0.83 9377
share clicks on other∗∗ 0.06 0.06 0 0.021 0.040 0.081 0.56 9377
share no clicks 0.09 0.10 0.010 0.047 0.061 0.088 1 9377

Note: All click measures refer to the position of the last click
∗ only generic clicks are considered
∗∗ other clicks sumarize clicks below last url, new searches and clicks encoded as o
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Figure 8 – Distribution of the position of the last click. Searches that end with no click are discarded from
the calculation. Positions 1 to 10 describe generic urls. Position 0 is extensively discussed in
Section 3.1. Position 11 describes an url below the 10 generic urls (such as “go to next page”).
“s” stands for a new search and “ o” for another click (see Section 3).
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Figure 9 – Distribution of the position of the last click conditional on the last click being performed on a
generic url
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Appendix B

B.1 Regression tables restricted vs. unrestricted estimation

Table 6 – Restricted Results for Specifications (I) - (IV)

(I) (II) (III) (IV)

initial quality 1.000e+00 1.000e+00 1.000e+00 1.000e+00
(.) (.) (.) (.)

sessions 9.804e-06∗∗∗ 8.459e-06∗∗∗ -1.969e-06 3.320e-08
(9.094e-07) (2.205e-06) (3.364e-06) (2.833e-06)

sessions x cookie (SC) 1.160e-06∗∗∗ 1.447e-06∗∗∗ 3.940e-06∗∗∗ 3.515e-06∗∗∗

(1.343e-07) (4.228e-07) (8.308e-07) (6.817e-07)

sessions x total sessions -1.256e-10 1.942e-11 -1.740e-10 -4.034e-10
(1.028e-10) (2.594e-10) (1.029e-10) (2.968e-10)

sessions x initial quality -2.150e-05∗∗∗ -2.153e-05∗∗∗ -4.606e-06 -4.390e-06
(1.143e-06) (1.143e-06) (3.997e-06) (4.132e-06)

SC x total sessions -3.028e-11 4.781e-11
(4.662e-11) (5.423e-11)

SC x initial quality -3.664e-06∗∗∗ -3.702e-06∗∗∗

(9.697e-07) (9.909e-07)

Constant 4.159e-03∗∗∗ 4.169e-03∗∗∗ 4.117e-03∗∗∗ 4.101e-03∗∗∗

(9.585e-04) (9.591e-04) (9.572e-04) (9.572e-04)

Observations 5066880 5066880 5066880 5066880
Adjusted R2

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 7 – Original Results for Specifications (I) - (IV)

(I) (II) (III) (IV)

initial quality 9.417e-01∗∗∗ 9.389e-01∗∗∗ 9.395e-01∗∗∗ 9.379e-01∗∗∗

(3.052e-03) (3.168e-03) (3.132e-03) (3.177e-03)

sessions 2.542e-06∗∗ -6.260e-06∗∗ -1.024e-05∗∗ -1.517e-05∗∗∗

(8.455e-07) (2.288e-06) (3.424e-06) (2.927e-06)

sessions x cookie (SC) 1.115e-06∗∗∗ 2.919e-06∗∗∗ 4.067e-06∗∗∗ 5.072e-06∗∗∗

(1.353e-07) (4.345e-07) (8.300e-07) (6.967e-07)

sessions x total sessions -3.686e-11 8.793e-10∗∗∗ -8.492e-11 4.582e-10
(1.020e-10) (2.644e-10) (1.019e-10) (2.993e-10)

sessions x initial quality -1.080e-05∗∗∗ -1.046e-05∗∗∗ 7.555e-06 7.365e-06
(1.132e-06) (1.141e-06) (4.113e-06) (4.205e-06)

SC x total sessions -1.904e-10∗∗∗ -1.127e-10∗

(4.802e-11) (5.506e-11)

SC x initial quality -3.893e-06∗∗∗ -3.810e-06∗∗∗

(9.696e-07) (1.002e-06)

Constant 3.998e-02∗∗∗ 4.174e-02∗∗∗ 4.128e-02∗∗∗ 4.229e-02∗∗∗

(2.083e-03) (2.158e-03) (2.149e-03) (2.176e-03)

Observations 5066880 5066880 5066880 5066880
Adjusted R2 0.883 0.883 0.883 0.883

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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B.2 Descriptive analysis – personalized information
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Figure 10 – Average quality evolution of queries with an average cookie history length above the median
vs. quality evolution of queries with an average cookie history length below the median.
Each panel displays the results for a specific initial quality category. Each figure within a
panel displays the results for a specific quantity group. There are 5 quantity groups: queries
with total searches ∈ (i) [2000, 4000); (ii) [4000, 6000); (iii) [6000, 8000); (iv) [8000, 10000);
and (v) {10000}. The lines display simple averages based on the rolling window values of
the quality measure. The lines expand until the left edge of each quantity group to prevent
attrition. The median value of the average cookie length is 4.48. The queries considered are
the same as the ones used in the main analysis of Subsection 6.1.
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B.3 Appendix Long Run Considerations
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Figure 11 – Relationship between the median initial quality and the number of total searches. Each
median value is calculated for the queries falling within a specific quantity group, as specified
on the x-axis. The different constant frequency criterions are noted in the legends. The lines
for a deviation of no more than 7% and 8% are omitted for ease of exposition; these do not
differ substantially from the lines for a deviation of no more than 9%.
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Figure 12 – Relationship between the median initial quality and the number of total searches. Each
median value is calculated for the queries falling within a specific quantity group, as specified
on the x-axis. The red vertical lines denote the 95% confidence interval for queries deviating
no more than 3% from the constant frequency requirement. The blue vertical lines denote
the confidence interval of the medians calculated for all queries with more than 2000 total
searches.
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Appendix C Robustness checks based on the editorial quality mea-
sure

Our data set comes with 659,000 editorial quality judgments collected from human experts on
query-url pairs. The editorial quality judgments assess the relevance of a url for a specific query
by a numerical grade ranging from 0 (not at all relevant) to 4 (highly relevant). By aggregating
the editorial quality judgments of multiple urls displayed on the first result page, it is possible to
obtain an overall “grade” for the quality of the result page.

As it requires considerable human resources, collecting editorial quality judgments is a very
expensive process. The information retrieval literature on the advantages and disadvantages of
editorial based quality measures is abundant and it is beyond the scope of this appendix to provide
an in depth discussion or review of it. Our approach is to provide a very brief description of the
editorial quality measure and, subsequently, to repeat the analysis provided in the paper based on
the editorial quality measure.
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C.1 The Editorial Quality Measure

The discounted cumulative gain is a widely used quality measure in the information retrieval (IR)
literature. It is based on editorial quality judgments of query-url pairs based on the assessment
of human experts. For example, assume that a specific url that was shown as a consequence of
a specific query was rated with a relevance grade of 4 by a human expert. Furthermore, assume
that this url was shown on position 2 of the corresponding result page. Then, we say that the
discounted gain of this url with relevance (rel) 4 on position j = 2 is given by:

DG =
2relj − 1

log2(j + 1)
=

24 − 1

log2(2 + 1)
, (11)

The numerator captures the informational “gain” that the searcher obtains by being provided
this url. The denominator discounts for the fact that the url is displayed in position 2: The searcher
had to “scan” through the search result page to be provided with this url. Note that by applying
the logarithm of base 2 to the denominator, the gain of a document displayed on the first position
is not discounted. To assess the quality of the entire result page, one possibility is to add up the
discounted gain of all the documents displayed on the first result page. Assume for convenience that
all 10 documents on the first result page are assigned a relevance judgment, then the discounted
cumulative gain is given by:

DCGp =

p=10∑
j=1

2relj − 1

log2(j + 1)
, (12)

Two criteria determine the value of the DCG: (I) the general relevance of the documents available
on the result page and (II) the ranking of the documents. (I) simply captures the idea that providing
documents with relevant content is generally desirable (i.e. a lot of documents rated 4 are better
than a lot of documents rated 1). (II) captures the idea that, given a specific set of documents with
a given relevance, it is desirable to display the most relevant documents at the top of the result
page (the ordering 4,3,2 is better than the ordering 2,3,4). The DCG captures both dimensions.

Obviously, to be able to compute the DCG for the entire result page, we need relevance judg-
ments for all the urls presented on the result page. This is only very rarely the case in our dataset.
Furthermore, in order to be able to compare different result pages based on the DCG criteria , we
need to restrict our attention to result pages where the same number of consecutive urls come with
relevance judgments. Thus, in the remainder of this appendix, we focus on result pages where the
first 3 urls come with a relevance judgment. Each url has 5 possible relevance judgments (from 0
to 5). Hence, there are 53 = 125 different possible combinations of relevance judgments.

We decided to restrict our attention on result pages with 3 consecutive relevance judgments for
the first 3 urls to obtain a quality measure with greater depth than the one we use for our main
analysis (which has a depth of one). We stopped at a depth of 3 in order to not lose too many
result pages: compared to our initial sample of ∼ 80 Million result pages, we are left with ∼ 29
Million result pages when using our DCG based quality measure. Furthermore, a depth of 3 seems
reasonable because, conditional on seeing a click on a generic url, ∼ 90% of all clicks are performed
on one of the first three urls (see figure 8).

Each of the 125 possible combinations of relevance judgments is associated with a DCG-value.
This measure is convex in the sense that if we order the 125 DCG values from lowest to highest, we
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obtain a convex shaped curve. For example, the absolute increase in DCG moving from a result list
with the grades 1, 1, 1 to 2, 1, 1 is smaller than the absolute increase in DCG for moving from 3, 3, 3
to 4, 3, 3. This is due to the fact that the relevance judgment enters the DCG-formula exponentially.
For the purpose of our analysis, we find this property undesirable. In the above example, it is not
clear which kind of change is valued more by the consumer. Instead of relying directly on the
DCG for our quality measure, we rely on the ordering dictated by the DCG. Therefore, our quality
measure ranges from 1 to 125. If two result combination result in a tie with respect to the DCG
measure, they are also tied with respect to our quality measure. Furthermore, we normalize our
quality measure to be between 0 and 1. For convenience, we label the quality measure “rank,”
reminiscent of the fact that our result pages can be ranked from 1 to 125 according to our quality
measure.
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C.2 Descriptive Analysis

Figures 13 and 14 reproduce the results from Figures 2 and 3 of the descriptive part of our main
analysis. As can be seen, the findings remain similar. The initial quality level increases as a function
of the total searches that we measure in-sample (Figure 13). Furthermore, the quality evolution
that we measure in-sample decreases with the initial quality level (Figure 14).

As opposed to the results of our main analysis, in Figure 13 the average quality is slightly below
the average initial quality. As can be seen from Figure 14, this is due to the fact that queries starting
from a high initial quality level seem to experience a slight decrease in quality. Furthermore, the
negative relationship between the initial quality and the in-sample quality evolution is not as clearly
pronounced as for our click based quality measure. The two lowest initial quality groups experience
roughly the same increase in quality, with the middle initial quality group even performing slightly
better than the lowest initial quality group.

Interestingly, the average daily quality as measured by the rank does not pick up the dip in
quality that we observe with the click based quality measure on the 20th of July. This is not due
to the fact that we observe fewer result pages with 3 consecutive relevance judgments for the first
3 urls, as one might suspect. A closer analysis also reveals that the group of queries for which we
observe 3 consecutive ranks (hence for which we can calculate our rank quality measure) experience
a sharp decrease in quality as measured by our click based quality measure. This finding is troubling
as it suggests that the DCG does not pick up a well documented event that resulted in a decrease
in quality measured by different quality indicators: The number of searches for which we record
no click at all experiences a 5 fold increase compared to its long term average. The average click
though rate on the first 3 urls also decreases by roughly 15 percentage points compared to its long
term average.
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C.3 In-sample Analysis

Table 1 displays the regression results based on the rank quality measure. As for the analysis
based on the click based quality measure, the dependent variable is calculated based on rolling
window averages for 100 consecutive searches. Figure 16 displays the resulting fit for specification
(IV). The results confirm that our in-sample findings are robust to the rank quality measure. The
impact of the cookie length variable is positive across all specifications. For specification (II) the
coefficient is not significant. As explained in the corresponding section of the paper, it is reasonable
to interact the cookie length variable with the initial quality variable to account for the fact that
queries starting from a higher initial quality level have less scope for quality improvement. For the
specifications that include this interaction, we find a significant and positive effect of the cookie
length variable.

The left column pair of Table 2 presents the estimated differences (and p-values) in quality
evolution between queries we observe 10000 times and queries we observe 2000 times when the
average cookie length is equal to 6. Each row stands for a different initial quality level under
one of the 4 specifications (I) -(IV) (from top to bottom). The middle column pair repeats the
same analysis for queries with an average cookie length of 3.5. The right column pair presents the
estimates differences between the point estimates of the left and middle column along with the
p-values. As for our main results, we find that a longer average cookie history reinforces economies
of scale from data. For low initial quality levels, the impact is significant across all specification
except (II).

Table 8 – Results for Specifications (I) - (IV) for editorial quality Judgments

(1) (2) (3) (4)
(I) (II) (III) (IV)

initial quality 9.755e-01∗∗∗ 9.751e-01∗∗∗ 9.741e-01∗∗∗ 9.741e-01∗∗∗

(2.847e-03) (2.912e-03) (2.927e-03) (2.938e-03)

sessions 1.450e-06 -8.100e-07 -4.085e-06 -3.679e-06
(1.050e-06) (2.984e-06) (2.595e-06) (3.016e-06)

sessions x cookie (SC) 4.811e-07∗∗∗ 9.750e-07 1.641e-06∗∗ 1.552e-06∗

(1.354e-07) (6.001e-07) (5.451e-07) (6.206e-07)

sessions x total sessions 8.013e-11 3.140e-10 7.665e-11 3.172e-11
(1.199e-10) (3.281e-10) (1.196e-10) (3.658e-10)

sessions x initial quality -6.372e-06∗∗∗ -6.312e-06∗∗∗ 1.811e-06 1.840e-06
(1.008e-06) (1.020e-06) (2.886e-06) (2.990e-06)

SC x total sessions -5.147e-11 9.884e-12
(6.560e-11) (7.541e-11)

SC x initial quality -1.625e-06∗ -1.633e-06∗

(6.326e-07) (6.637e-07)

Constant 1.050e-02∗∗∗ 1.075e-02∗∗∗ 1.140e-02∗∗∗ 1.136e-02∗∗∗

(2.008e-03) (2.039e-03) (2.082e-03) (2.074e-03)

Observations 2707043 2707043 2707043 2707043
Adjusted R2 0.928 0.928 0.928 0.928

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9 – Differences and Differences in Differences

CL = 6 CL = 3.5 Diff

Initial quality Estimate P-val Estimate P-val Estimate P-val

Specification (I)
.25 0.030∗∗∗ 0.000 0.020∗∗∗ 0.000 0.010∗∗∗ 0.000
.5 0.017∗∗∗ 0.000 0.007 0.078 0.010∗∗∗ 0.000

.75 0.004 0.170 -0.005 0.188 0.010∗∗∗ 0.000
Specification (II)

.25 0.028∗∗∗ 0.000 0.021∗∗∗ 0.000 0.007 0.134
.5 0.016∗∗∗ 0.000 0.008 0.067 0.007 0.134

.75 0.003 0.382 -0.004 0.380 0.007 0.134
Specification (III)

.25 0.038∗∗∗ 0.000 0.013∗ 0.017 0.025∗∗ 0.002
.5 0.022∗∗∗ 0.000 0.005 0.229 0.017∗∗ 0.001

.75 0.006 0.071 -0.003 0.503 0.008∗∗∗ 0.000
Specification (IV)

.25 0.038∗∗∗ 0.000 0.013∗ 0.039 0.025∗ 0.017
.5 0.022∗∗∗ 0.000 0.005 0.327 0.017∗ 0.025

.75 0.006 0.122 -0.003 0.527 0.009 0.077
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 16 – Predicted quality evolution of model (IV). The left panel refers
to queries with an initial CTR of 25%, the right panel to queries
with an initial CTR of 75%. The black lines refer to queries with
an average cookie length of 3.5, the gray lines to queries with an
average cookie length of 6. The total number of searches of the
queries is displayed on the x-axis.
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C.4 Long Run Considerations

An analysis based on the concepts developed in the corresponding section of the main paper delivers
similar result. Here, the use of the editorial based quality measure also does not substantially alter
our results. The results from Figure 17 are not as clear as the corresponding results based on
the click based quality measure. Figure 18 suggests that this might be mainly due to composition
effects. Once the average cookie length is taken into account, the result based on the rank quality
measure closely match the results based on the click based quality measure: Focusing on queries for
which the in-sample popularity is likely to be a good proxy for the pre-sample popularity reveals a
stronger relationship between the in-sample searches and the initial quality measure.
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Figure 17 – Relationship between the median initial quality and the number
of total searches. Each median value is calculated for the queries
falling within a specific quantity group as specified on the x-
axis. The dotted line displays the median values calculated for
all queries. The dashed line was calculated based on queries
that deviate no more than 4 percentage points from our constant
frequency definition. The solid line is calculated based on queries
that deviate no more than 3 percentage points from our constant
frequency definition.
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Figure 18 – Relationship between the median initial quality and the number
of total searches. The dotted lines refer to queries with an av-
erage cookie length exceeding the 66% percentile. The dashed
lines refer to queries with an average cookie length between the
33% and 66% percentile. The solid lines refer to queries below
the 33% percentile. The left panel displays the result for the
queries which deviate no more than 3% from our constant fre-
quency definition. The right panel displays the results for all the
queries in the sample (no restriction on the search frequency).
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