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Abstract

We introduce a mixed-frequency score-driven dynamic model for multiple time series

where the score contributions from high-frequency variables are transformed by means

of a mixed-data sampling weighting scheme. The resulting dynamic model delivers a

flexible and easy-to-implement framework for the forecasting of a low-frequency time

series variable through the use of timely information from high-frequency variables. We

aim to verify in-sample and out-of-sample performances of the model in an empirical

study on the forecasting of U.S. headline inflation. In particular, we forecast monthly

inflation using daily oil prices and quarterly inflation using effective federal funds rates.

The forecasting results and other findings are promising. Our proposed score-driven

dynamic model with mixed-data sampling weighting outperforms competing models in

terms of point and density forecasts.

Keywords: Factor model; GAS model; Inflation forecasting; MIDAS; Score-driven

model; Weighted maximum likelihood.
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1 Introduction

In many studies concerning the forecasting of economic time series with several variables, we

often need to overcome complexities related to the different sampling frequencies at which

we observe the variables over time. The challenges of mixed data frequency are reviewed in

the context of econometric analysis by Ghysels and Marcellino (2016) and discussed in the

context of forecasting by Armesto et al. (2010) and Andreou et al. (2011). In particular,

in cases of economic forecasting where both economic and financial variables are relevant,

the distinction between low frequency and high frequency data sampling can be substantive.

Financial variables, such as stock prices, commodity prices and exchange rates, are typically

available at the daily frequency and increasingly at the intraday level (ultra-high frequency)

because it is relatively straightforward to electronically record financial transactions. On the

other hand, it is more complicated and more costly to collect data on economic variables,

such as inflation and gross domestic product (GDP) growth. Hence economic variables are

typically available at a quarterly or monthly level. When the interest is in the forecasting of

economic variables, the high-frequency financial variables may have a relevant role to play

as predictors and may be capable to improve the accuracy of forecasts.

A widely used method for incorporating high frequency data to produce forecasts of low

frequency variables is the Mixed Data Sampling (MIDAS) method of Ghysels et al. (2004).

MIDAS is a regression-based method that transforms the high frequency variables into low

frequency indicators via a parsimonious weighting scheme with possibly different weights to

data sampled at high frequency (within the low frequency period). The weighting scheme can

reflect the notion that more recent observations should be more informative to predict future

values of the low frequency variable. The MIDAS approach (or touch) can be used easily

within a (dynamic) regression model but it can also be adopted within other models such as

vector autoregressive and dynamic factor models. For instance, Marcellino and Schumacher

(2010) have considered a two step approach that combines principal component analysis and

MIDAS regressions.

In our current study we adopt a dynamic model with score-driven time-varying loca-

tion and scale parameters. Creal et al. (2013) and Harvey (2013) have developed a general

framework to specify time-varying parameter models in an observation-driven setting. The
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resulting class of models is referred to as Generalized Autoregressive Score (GAS) models.

The defining feature of GAS models is that the time-varying parameters are driven by the

score of the predictive log-likelihood function. The use of the score as an updating mecha-

nism is intuitive: it can be viewed as a Newton-Raphson update that delivers a better fit, in

terms of likelihood maximization, for the next period and conditional on past and current

time periods. The score-driven updates have an optimality property. Blasques et al. (2015)

show that the score update is optimal in minimizing the Kullback-Leibler divergence with

respect to an unknown true distribution. Score-driven models provide an appealing forecast-

ing method and they have been successfully employed in empirical applications to forecast

economic and financial variables, see for instance Delle Monache and Petrella (2017) on

forecasting inflation and Lucas and Zhang (2016) and Blasques et al. (2016a) on forecasting

exchange rates. In a more general context, the forecasting performance of GAS models is

investigated in detail by Koopman et al. (2016). Finally, GAS models are appealing because

they are flexible in terms of specification while retaining a simple practical implementation.

The estimation of unknown parameters in GAS models can be based on standard likelihood

inference that does not require computational-intensive or simulation-based methods.

Our main contribution is the introduction of a flexible and easy-to-implement forecasting

method for mixed frequency variables that is based on a score-driven dynamic model. In par-

ticular, we consider a factor structure where the score innovations from the high frequency

variables are transformed into the low frequency score function via a MIDAS weighting

scheme. We name the resulting approach MIDAS-GAS. The MIDAS-GAS model retains

all the appealing features of standard GAS models and elevates the MIDAS approach to

a more general device for handling mixed frequencies. For example, we illustrate how the

MIDAS-GAS framework can be used to specify mixed frequency models with heteroscedastic

errors and parameter updates that are robust against outliers. Furthermore, we adopt the

weighted likelihood approach of Blasques et al. (2016b) for the likelihood-based estimation

of parameters in the MIDAS-GAS model. We discuss how the proposed weighted likelihood

method can be reduced to the standard maximum likelihood method when considering only

the likelihood contributions of the variable of interest. These developments deliver a compu-

tationally fast and easy-to-implement methodology for parameter estimation, analysis and

forecasting. We illustrate the MIDAS-GAS framework to produce forecasts for monthly and
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quarterly U.S. headline inflation. In particular, for forecasting monthly inflation we consider

daily crude oil inflation as a predictor, and for quarterly inflation we take daily effective

federal funds rate (EFFR) as a predictor. We present a detailed account of the forecasting

study that includes comparisons with several competing models such as MIDAS regression

models, autoregressive models and standard GAS models. The results show a promising

performance of the MIDAS-GAS model in terms of point as well as density forecasts.

An alternative approach to MIDAS-based methods for the treatment of mixed frequency

data is provided by state space time series analyses which rely on the Kalman filter. In this

approach we align the data at the highest data sampling frequency and introduce missing

observations for the low frequency variables. The Kalman filter is then used to handle these

artificial missing observations, see Mariano and Murasawa (2003), Schumacher and Breitung

(2008) and Blasques et al. (2016b) for such solutions and with interesting illustrations.

A limitation of this more rigorous approach compared to our MIDAS-GAS model is that

the Kalman filter requires Gaussian and homoscedastic errors. There is much empirical

evidence that shows the importance of accounting for heteroscedastic errors and fat-tailed

distributions to obtain more accurate forecasts for economic time series, see, for example,

Creal et al. (2014).

We proceed as follows. Section 2 introduces our general modeling framework based on the

MIDAS-GAS model and the weighted likelihood method for parameter estimation. Section

3 presents our MIDAS-GAS dynamic factor model with heteroscedastic errors and robust

parameter updates. Section 4 illustrates the two empirical applications with the forecasting

of both quarterly and monthly U.S. headline inflation. Section 5 concludes.

2 The MIDAS-GAS model

Assume that our aim is to forecast a key economic variable denoted by yLt . The variable

is observed sequentially over time at a low data sampling frequency as indicated by L. We

assume that another related variable xHt can be observed at a high data sampling frequency

as indicated by H where L < H. This variable is not of interest but we assume that it can be

exploited to obtain more accurate forecasts for the key variable yLt . Hence at each time point t

of the low frequency variable yLt we have the predictor xHt = (xH1,t, . . . , x
H
nx,t)

′ where xHt ∈ Rnx
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is a vector-valued variable that contains all available high frequency observations within the

time period t and where nx is the number of observations of the high frequency variable that

is available in time period t. For example, when we forecast monthly headline inflation, that

is yLt , using daily crude oil inflation, that is xHt , we have nx equal to the number of working

days in a month. For notational convenience and simplicity of exposition, we assume that the

both variables y and x are univariate. However, all results discussed below can be extended

to the multivariate case straightforwardly.

2.1 The MIDAS touch

Amongst the range of forecasting methods using mixed frequency data, the MIDAS regression

is regarded as a simple and direct forecasting method. Denote the h-step ahead forecast of

yLT by ŷLT+h|T where T denotes the sample size. This forecast can be constructed by the p-lag

MIDAS regression

yLt+h = c+Dp(B, β)yLt +Dp(B,α)
nx∑
i=1

ωi(ϕ)xHi,t + εt, (1)

for t =, . . . , T , where c is the intercept, Dp(B, z) = z0+z1B+. . .+zpB
p, for z = β, α is the lag

polynomial function with backshift operator B, unknown parameter vectors β = (β0, . . . , βp)
′

and α = (α0, . . . , αp)
′, and weighting coefficients ωi(ϕ) for i = 1, . . . , nx and for a parameter

vector ϕ, and εt is an identical independently distributed (iid) error with mean zero and

variance σ2. Ghysels et al. (2004) advocate a parsimonious weighting function for ωi(ϕ), for

i = 1, . . . , nx, based on exponential Almon lag or Beta lag parameterizations. The q-th order

exponential Almon lag is specified as

ωi(ϕ) =
exp(ϕ1i+ ϕ2i

2 + . . .+ ϕqi
q)∑nx

i=1 exp(ϕ1i+ ϕ2i2 + . . .+ ϕqiq)
,

for some q-dimensional parameter vector ϕ = (ϕ1, . . . , ϕq)
′. In practice, q is set equal to 2

which reduces the Almon lag to a normalized exponential quadratic weighting function. The

Beta lag is specified as

ωi(ϕ1, ϕ2) =
Beta(i/nx;ϕ1, ϕ2)∑nx
i=1 Beta(i/nx;ϕ1, ϕ2)

,
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where Beta(·;ϕ1, ϕ2) is the probability density function of a Beta distribution with parameter

vector ϕ = (ϕ1, ϕ2)
′. Figure 1 presents illustrations of weighting functions based on second

order exponential Almon lag and Beta lag; we can conclude that the shapes of these weighting

functions are very flexible. The parameters of the MIDAS regression include c, β, α, ϕ and

σ2 which can be estimated using either nonlinear least squares or maximum likelihood (ML)

and based on the MIDAS regression model (1). We obtain the h-step ahead forecast ŷLT+h|T

in the usual way. Andreou et al. (2011), and the references therein, present a more detailed

discussion on MIDAS regressions together with empirical applications.
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Figure 1: Weighting functions based on exponential Almon lag and Beta lag. The weights are

assigned to daily observations within a month using different parameters of the exponential Almon lag (left)

and the Beta lag (right) functions.

2.2 The MIDAS-GAS filter

We incorporare the mixed data sampling method using a parsimonious weighting function

for the class of score-driven models which are proposed by Creal et al. (2013) and Harvey

(2013). We refer to the resulting framework as MIDAS-GAS. The GAS filter provides a

convenient way of modeling time-varying parameters in an econometric model. Time-varying

parameters are specified as autoregressive processes where the innovations are given by the

score of the predictive log-likelihood function. This approach delivers an observation-driven

specification that facilitates inference because the likelihood function is available in closed
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form through the prediction error decomposition. The derivation of the MIDAS-GAS filter

is given below.

We consider a multivariate conditional distribution for the observable variables yLt and

xHt of the form

yLt , x
H
t |ft ∼ p(yLt , x

H
t |ft;ψ), (2)

where p(·|ft;ψ) is a (nx+1)-variate conditional density, ft is a time-varying parameter and ψ

is a vector of static parameters. Further we assume that yLt is independent of xHt conditional

on ft and also that the elements of the vector xHt are iid conditional on ft. These assumptions

are quite standard in the literature of multivariate GAS models and also state-space models

in general. Note also that the conditional independence does not imply that the variables are

independent because the dependence is determined by the common time-varying parameter

ft. Under these conditions, the joint conditional density of yLt and xHt can be factorized as

follows

p(yLt , x
H
t |ft;ψ) = py(y

L
t |ft;ψ)

nx∏
i=1

px(x
H
i,t|ft;ψ), (3)

where py(·|ft;ψ) is the conditional density function of yLt and px(·|ft;ψ) is the conditional

density function of xHi,t.

In the standard GAS framework, the time varying parameter ft is specified as an autore-

gressive process driven by the score of the predictive log-density in (3). Under some standard

differentiability conditions, the score ∇t = ∂ log p(yLt , x
H
t |ft;ψ)/∂ft is given by

∇t = ∇y
t +

nx∑
i=1

∇x
i,t,

where ∇y
t = ∂ log py(y

L
t |ft;ψ)/∂ft and ∇x

i,t = ∂ log px(x
H
i,t|ft;ψ)/∂ft. In the GAS literature,

the score in ∇t is sometimes rescaled to account for the curvature of the likelihood, see Creal

et al. (2013) for a more detailed discussion. By allowing some rescaling of the score, we

define the score innovation as

st = syt +
nx∑
i=1

sxi,t,

where syt = Syt∇
y
t and sxi,t = Sxi,t∇

xi
t for some given scaling factors Syt and Sxi,t. For instance,

these scaling factors can be chosen to be some transformation of the Fisher information or
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they can be simply set equal to one. The score innovation st is easy to interpret: syt can be

seen as the information from yLt to update the time-varying parameter ft, similarly, sxi,t can

be seen as the information from xHi,t to update ft. In standard GAS models, st is directly used

as innovation for the time varying parameter ft. This means that the source of information

are equally weighted over the score contributions sxi,t, i = 1, . . . , nx. Since our objective is

forecasting the variable yLt , it is quite restrictive to assume that the predictive content carried

by the elements sxi,t, i = 1, . . . , nx, is the same. For instance, it is reasonable to think that

the latest score innovations withing the time period t may be more informative in predicting

yLt+1, given that they are closer in time. We therefore introduce a MIDAS weighting scheme

for the score innovations sxi,t, that is,
∑nx

i=1 ωi(ϕ)sxi,t. In this way, the more recent score

innovations are allowed to receive more weight. The resulting MIDAS-GAS filter takes the

simple form

ft+1 = δ + βft + αys
y
t + αx

nx∑
i=1

ωi(ϕ)sxi,t, (4)

where δ, β, αy, αx and ϕ are static parameters to be estimated. The parameter β is the au-

toregressive coefficient of ft and the parameters αy and αx determine the relative importance

of yLt and xHt in predicting future values of yLt . Notice that the autoregressive dynamics of

ft in (4) is of order one, but it is straightforward to extend to higher orders. Furthermore,

in general, ft can be a vector of time-varying parameters.

The MIDAS-GAS model specified by equations (2)-(4) is very general: it allows a wide

class of observation densities to be considered. For instance, the MIDAS-GAS filter can be

employed when the observed variables yLt and xHt are ordinal or categorical and densities such

as the ordered logit are considered. We refer the reader to Creal et al. (2014) for possible

applications in this context. We present some MIDAS-GAS specifications with dynamic

mean and variance in Section 3. These specifications are well suited to obtain point and

density forecasts of economic variables.

2.3 Weighted likelihood estimation

One of the appealing features of GAS models is that the likelihood function is available

in closed form through a prediction error decomposition. Therefore ML estimation is easy

to implement and computationally fast. This is also the case for our MIDAS-GAS model
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in (2)-(4). For our MIDAS-GAS model, we need to estimate the parameter vector θ =

(ψ′, δ, β, αy, αx, ϕ
′)′ that contains all the static parameters of the model. In the following,

instead of ML, we consider a weighted maximum likelihood (WML) approach as proposed

by Blasques et al. (2016b). Blasques et al. (2016b) show that in a Gaussian dynamic factor

model with mixed frequency data, forecasting can be improved using parameters estimated

via a weighted maximum likelihood (WML) procedure. Its novelty is to introduce variable-

specific weights instead of observation-specific weights in the likelihood function. In our

setting, this method is particularly appealing because we are only interested in forecasting

the low frequency variable yLt and the high frequency variable xHt is just used as a predictor.

In our framework, following Blasques et al. (2016b), the weighted likelihood of the MIDAS-

GAS model can be written as

LWT (θ) =
T∑
t=1

log py(y
L
t |ft;ψ) +W

T∑
t=1

nx∑
i=1

log px(x
H
i,t|ft;ψ),

for a predetermined weight W ∈ [0, 1]. If the weigh W is equal to one, then the weighted

likelihood function is equal to the usual likelihood function, instead, if W is equal to zero,

then only the likelihood of the variable yLt is considered. We highlight that settingW = 0 may

lead to lack of identifiability of same parameters and this needs to be accounted when dealing

with specific models. Some parameter restrictions to ensure identifiability are discussed

in Section 4. Maximization of the weighted likelihood function can be done via standard

numerical routines. The weight W cannot be estimated together with the other parameters.

A cross validation approach can be used to select the weight. In the empirical application of

Section 4, we set the weight to zero and therefore consider only the likelihood contribution

of the univariate time series yLt . As shown in Blasques et al. (2016b), in principle, a different

choice of the weight may provide better out-of-sample results. However, we consider W = 0

to obtain a simple form of the likelihood function and to have a more realistic forecasting

comparison with other models. In case we set W equal to zero, the MIDAS-GAS model can

be regarded as a univariate model for yLt of the form

yLt ∼ py(y
L
t |ft;ψ), ft+1 = δ + βft + αys

y
t + αx

nx∑
i=1

ωi(ϕ)sxi,t.
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Although the weight W is set to zero, the high frequency variable xHt still enters into the

MIDAS-GAS time-varying parameter ft through the score innovations sxi,t. This model can

be viewed a univariate GAS model with an exogenous predictor xHt . Therefore, standard

asymptotic theory for ML estimation of GAS models in Blasques et al. (2014) applies in this

case.

3 A MIDAS-GAS factor model

In this section, we develop some factor models for mixed frequency data based on the general

MIDAS-GAS specification in (2)-(4). We can formulate a factor forecasting model, which is

essentially a multivariate time-varying location and scale model, with mixed frequency data

as follows yLt
xHt

 =

 1

λµ1nx

µt + σt

εyt
εxt

 , (5)

where εyt and εxt = (εx1,t, . . . , ε
x
nx,t)

′ are independent disturbance terms that follow some para-

metric distributions. The error εyt has mean zero and unit variance, instead, εxi,t has mean

zero and variance λσ. The vector 1nx is a vector of length nx that contains ones, and λµ is

a loading on the factor µt for xHt . The specification in (5) entails a factor structure for both

µt and σ2
t where λσ and λµ are the corresponding loadings for the high frequency variable.

We specify the dynamic location µt and scale σ2
t according to the MIDAS-GAS updating

equation in (4), that is,

µt+1 = δµ + βµµt + αyµs
y
t + αxµ

nx∑
i=1

ωi(ϕ)sxi,t,

σ2
t+1 = δσ + βσσ

2
t + αyσv

y
t + αxσ

nx∑
i=1

ωi(ϕ)vxi,t, (6)

where syt and sxi,t are the score contributions for the time varying mean µt and from the

variables yLt and xHi,t, respectively, and vyt and vxi,t are the score contributions for the time

varying variance σ2
t and from yLt and xHi,t, respectively. The functional forms of the score

innovations syt , s
x
i,t, v

y
t and vxi,t depend on the choice of the distributions of the error terms

εyt and εxt . In the following we consider two different specifications for the error terms: the
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Normal and the Student-t distribution. The use of a Student-t distribution leads to robust

updating of the time varying mean and variance.

In the first specification, we consider the errors to be normally distributed, i.e. εyt ∼

N(0, 1) and εxi,t ∼ N(0, λσ). Under this specification and considering a scaling factor for the

scores based on the Fisher information, we obtain that, up to a constant scale, the score

innovations are given by

syt = yLt − µt, sxi,t = xHi,t − λµµt,

vyt = (yLt − µt)2 − σ2
t , vxi,t = (xHi,t − λµµt)2 − λσσ2

t . (7)

In the second specification, we model εyt considering a Student-t distribution with zero mean

and unit variance, i.e. εyt ∼ tv(0, 1). In this way, the conditional density function of yLt is

given by

py(y
L
t |µt, σ2

t ; ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√
π(ν − 2)σ2

t

(
1 +

(yt − µt)2

(ν − 2)σ2
t

)− ν+1
2

,

where ν > 2 represents the degrees of freedom of the Student-t error εyt . The use of a

Student-t distribution can be particularly important for density forecasts when the time

series of interest yHt exhibits fat tails. Furthermore, as we shall see, the Student-t delivers a

robust update for our MIDAS-GAS model and this can also lead to an improvement in point

forecasts. Note that a Student-t distribution for the error term εxt can also be considered. In

the following, for simplicity, we consider a normal distribution for εxt . However, we highlight

that the choice of the distribution of εxt is less relevant than the one of εyt because we are

not interested in forecasting xHt and also the estimation of the model is based on WML with

W = 0. Under this second specification, we obtain that, up to some scaling constant, the

score innovations have the following form

syt =
(ν + 1)(yLt − µt)

(ν − 2) + (yLt − µt)2σ−2t
, sxi,t = xHi,t − λµµt,

vyt =
(ν + 1)(yLt − µt)2

(ν − 2) + (yLt − µt)2σ−2t
− σ2

t , vxi,t = (xHi,t − λµµt)2 − λσσ2
t . (8)

The score innovations syt and vyt in (8) are robust against otliers. This is one of the peculiar-

ities of the GAS approach when using fat-tailed distributions, see Harvey and Luati (2014)
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and Harvey (2013) for a discussion on robust score updates with the Student-t distribution.

We can identify three differences between the MIDAS-GAS model and the widely used

Gaussian linear dynamic factor model. First, we do not restrict εyt and εxt to come from

Gaussian distributions. Secondly, the dynamic factor process is non-linear due to the score

updating mechanism, which locally minimizes the KL divergence between the true measure

of the data and the one implied by the factor model as discussed in Blasques et al. (2015).

Third, the MIDAS touch incorporated in the dynamic factor process (6) further balances

the predictive information from yLt and xHt . This differs from the MIDAS factor model

of Marcellino and Schumacher (2010) which extract factors from xHt and treat the high

frequency factor as regressors in the standard MIDAS regression. It is also different from

the MIDAS dynamic factor model of Frale and Monteforte (2011), which is basically a

bivariate Gaussian model with observation vector (yLt ,
∑nx

i=1 ωi(ϕ)xHi,t)
′ and a single factor.

Both models require Gaussian errors and a linear structure so that principal component

analysis (PCA) and Kalman filter can be used to extract factors and produce forecasts. The

GAS filter in our model has the appealing feature that it does not limit us in a Gaussian and

linear world. In time series models, density forecasts are usually improved by incorporating

stochastic volatility. This has been extensively documented by the rich literature studying

the forecasting performance of models with stochastic volatility, for example Kim et al.

(1998), Tse and Tsui (2002), and Chib et al. (2002) among others. However, estimation of

such models is computationally demanding and Bayesian methods are often used. Instead,

the estimation of the MIDAS-GAS is straightforward.

4 Forecasting headline inflation

In this section, we employ the MIDAS-GAS factor model for forecasting U.S. headline infla-

tion. We consider two applications. In the first application, we forecast monthly headline

inflation using daily crude oil inflation. Instead, in the second application, we forecast quar-

terly headline inflation using daily EFFR. In this way, we can access the performance of the

MIDAS-GAS model with different frequencies and different variables as predictors.
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4.1 Forecasting monthly inflation with daily oil prices

4.1.1 The dataset and in-sample results

There is evidence in the literature that oil prices have relevant predictive content for U.S. in-

flation, see Clark and Terry (2010) and Stock and Watson (2003) for instance. We consider

time series of monthly U.S. headline inflation and crude oil inflation from January 1986 to

November 2017. Figure 2 shows the plot of the time series.
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Figure 2: The headline CPI inflation and oil price inflation. Left: The monthly headline inflation

computed as the first difference of the logarithm of monthly CPI indices. Right: The daily oil price inflation

computed as the first difference of the logarithm of daily WTI crude oil prices.

We consider the MIDAS-GAS factor model presented in Section 3 based on WML with

W = 0. We impose some parameter restrictions. In particular, we consider a random walk

process for the time varying mean by imposing βµ = 1 and δµ = 0. Furthermore, we set

λσ = 1 to ensure identifiability. Note that λσ could be set equal to any positive value and

the resulting model would be equivalent, up to a reparameterization. Finally, we consider a

second order exponential Almon lag function for the MIDAS weights with ϕ = (ϕ1, ϕ2)
′. The

factor MIDAS-GAS model with the above restrictions can be written as univariate model
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for yLt of the form

yLt = µt + σtε
y
t , µt+1 = µt + αyµs

y
t + αxµ

nx∑
i=1

ωi(ϕ)sxi,t,

σ2
t+1 = δσ + βσσ

2
t + αyσv

y
t + αxσ

nx∑
i=1

ωi(ϕ)vxi,t, (9)

where the score innovations have the functional form either as in (7) or (8), depending on

the choice of the error distribution.

We estimate 4 different specifications of the MIDAS-GAS model in (9). The t-MIDAS-

GASg has a Student-t error for yLt and the score innovations given in (8), the t-MIDAS-GAS

is the same as the t-MIDAS-GASg but without conditional heteroscedasticity, i.e. βσ = αxσ =

αyσ = 0, the MIDAS-GASg has a normal error for yLt and the score innovations given in (7),

and the MIDAS-GAS is the same as the MIDAS-GASg but without conditional heteroscedas-

ticity, i.e. βσ = αxσ = αyσ = 0. Table 1 reports the estimation results. We can see that the

ν λxµ αyµ αxµ αyσ αxσ δσ βσ llik AIC

t-MIDAS-GASg 4.92 0.18 0.14 0.08 0.34 0.00 0.02 0.78 294.86 -569.72

t-MIDAS-GAS 4.11 1.24 0.35 0.18 - - 0.05 - 265.20 -516.40

MIDAS-GASg - 0.31 0.13 0.10 0.26 0.00 0.04 0.91 162.04 -306.08

MIDAS-GAS - 1.76 0.33 0.15 - - 0.05 - 122.81 -233.62

Table 1: Full-Sample parameter estimates of MIDAS-GAS factor models using monthly
inflation with daily oil prices. The last two columns report the log-likelihood AIC criterion, respectively.

Student-t distribution improves the in-sample fit. This can be noted from the better perfor-

mance of the models with Student-t error in terms of Akaike information criterion (AIC).

Additionally, the estimated degrees of freedom parameters ν are very small (around 4), in-

dicating the presence of fat tails. The better fit of the Student-t is not surprising since the

headline inflation series exhibits several extreme observations, see Figure 2. Furthermore, we

also note that the conditional heteroscedasticity of the error term delivers a clear in-sample

improvement in terms of AIC. Also this finding is coherent with the volatility clustering of

the inflation series that we can see in Figure 2.

Finally, Figure 3 reports the estimated MIDAS weighting functions for the four different

model specifications. We can see that estimated functions give more weight to the more
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recent observations of the high frequency variable. This result is coherent with the idea that

observations that are farther away in time should be less relevant for forecasting the future

values of the variable of interest. Furthermore, we also note that the results seem consistent

across the different models since the shape of the four weighting functions is very similar.
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Figure 3: Estimated MIDAS-GAS weighting functions for the four model specifications using
monthly inflation with daily oil prices. The horizontal axis indicates the day in the month (there are
about 21 working days in a month). More weight on the last days of the month indicates that more recent
observations are more relevant.

4.1.2 Out-of-sample exercise

We consider two forecasting tasks: point forecast and density forecast. Point forecast is

usually the central task carried out in central banks. For example, inflation forecast facilitates

the use of forward-looking monetary policy which helps calculate the ex ante real interest

rate to determine the aggregate demand or IS curve for an economy. Additionally, density

forecast is important because it provides a risk metric measuring how accurate the point

forecast is. We evaluate the performance of point forecasts using the Forecast Mean Squared

Error (FMSE) and density forecasts using the log score criterion. The log score criterion

is a standard method for evaluating density forecasts that is based on Kullback-Leibler

divergence, see for instance Geweke and Amisano (2011).

We split the full data sample, which consists of 383 months, into two subsamples: the

15



first 200 months are used as in-sample training period and the remaining months are used

for the out-of-sample evaluation period. We consider a rolling window forecasting exercise.

Therefore the length of the in-sample estimation period is equal to 200 for all forecasts. We

consider multi-step forecasts: from 1 step ahead to 6 steps ahead. Besides our 4 MIDAS-GAS

models, we include several competing models in the comparison. We include MIDAS regres-

sion models, autoregressive models, standard GAS models and the MIDAS factor model of

Frale and Monteforte (2011). For these models, we consider Student-t error distributions and

conditional heteroscedasticity. Table 2 illustrate the specification of the competing models

included in the comparison. We note that the MIDAS regression models and the autoregres-

sive models are estimated as a direct forecasting method for each forecasting horizon.

Model description

t-MIDASg(p) The p-lag MIDAS regression model in (1) with Student-t and heteroscedastic error.

t-MIDAS(p) The p-lag MIDAS regression model in (1) with Student-t error.

MIDASg(p) The p-lag MIDAS regression model in (1) with normal and heteroscedastic error.

MIDAS(p) The p-lag MIDAS regression model in (1) with normal error.

t-ARg(p) Autoregressive model of order p with Student-t and heteroscedastic error.

t-AR(p) Autoregressive model of order p with Student-t error

ARg(p) Autoregressive model of order p with normal and heteroscedastic error.

AR(p) Autoregressive model of order p with normal error.

t-GASg Standard GAS model with Student-t and heteroscedastic error.

t-GAS Standard GAS model with Student-t error.

GASg Standard GAS model with normal and heteroscedastic error.

GAS Standard GAS model with normal error.

fMIDAS The MIDAS factor model of Frale and Monteforte (2011).

Table 2: Specification of the competing models used in the out-of-sample exercise.

Table 3 reports the results of the forecasting study. We can see that MIDAS-GAS models

tend to have the best performance in terms of point forecasts, except for 1 step ahead

forecasts. Furthermore, we note that the inclusion of conditional heteroscedasticity and

Student-t errors also plays a major. This can be noted from the fact that the t-MIDAS-

GASg model tends to have the best performance among the MIDAS-GAS models. We obtain

a similar result for density forecasts. Here the t-MIDAS-GASg has the best performance for

several forecasting horizons. Overall we can conclude that MIDAS-GAS models deliver

accurate forecasts compared to a wide pool of competing models.
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Forecast Mean Squared Error Log score criterion

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

t-MIDAS-GASg 1.00 1.00 1.00 1.00 1.00 1.00 0.43 0.27 0.15 0.14 0.15 0.11
t-MIDAS-GAS 0.93 1.04 1.06 1.06 1.08 1.06 0.38 0.17 0.05 0.05 0.11 0.05
MIDAS-GASg 1.00 1.10 1.00 1.06 1.09 1.02 -0.42 -0.94 -1.10 -1.13 -0.92 -1.02
MIDAS-GAS 0.93 1.17 1.18 1.16 1.18 1.11 -0.55 -1.00 -1.12 -1.18 -1.14 -1.26

t-MIDASg(2) 0.91 1.00 1.04 1.04 1.03 1.03 0.49 0.21 0.11 0.01 0.21 -0.06
t-MIDAS(2) 0.93 1.08 1.05 1.09 1.06 1.05 0.30 0.20 -0.11 -0.00 0.05 -0.09
MIDASg(2) 0.87 1.03 1.08 1.09 1.10 1.11 -0.40 -0.91 -1.19 -1.25 -1.19 -1.18
MIDAS(2) 0.93 1.04 1.21 1.19 1.20 1.18 -0.73 -1.22 -1.28 -1.43 -1.32 -1.34

t-MIDASg(4) 0.99 1.08 1.04 1.01 1.02 1.04 0.47 0.24 0.12 0.12 0.14 0.12
t-MIDAS(4) 0.99 1.12 1.07 1.02 1.02 1.08 0.31 0.11 0.06 -0.03 0.05 -0.00
MIDASg(4) 0.94 1.11 1.12 1.08 1.17 1.06 -0.38 -0.87 -1.12 -1.21 -1.09 -1.12
MIDAS(4) 0.96 1.14 1.13 1.13 1.19 1.12 -0.67 -1.26 -1.19 -1.47 -1.31 -1.27

t-ARg(2) 0.97 1.12 1.13 1.13 1.15 1.15 0.43 0.19 0.11 0.10 0.09 -0.07
t-AR(2) 0.97 1.17 1.17 1.19 1.19 1.17 0.26 0.18 -0.14 -0.08 0.05 -0.14
ARg(2) 1.01 1.22 1.19 1.19 1.25 1.16 -0.47 -0.83 -1.25 -1.36 -1.23 -1.21
AR(2) 1.03 1.24 1.24 1.26 1.25 1.26 -0.72 -1.20 -1.33 -1.44 -1.38 -1.43

t-ARg(4) 0.98 1.16 1.13 1.15 1.19 1.16 0.42 0.15 0.10 0.03 0.04 -0.09
t-AR(4) 0.98 1.22 1.20 1.19 1.23 1.21 0.30 0.11 0.04 -0.11 -0.06 -0.13
ARg(4) 0.93 1.10 1.10 1.10 1.13 1.10 -0.35 -0.91 -1.16 -1.24 -1.03 -1.11
AR(4) 0.92 1.16 1.15 1.18 1.16 1.18 -0.69 -1.20 -1.27 -1.44 -1.41 -1.37

t-GASg 1.01 1.11 1.12 1.11 1.12 1.14 0.20 0.11 0.04 0.09 0.08 0.05
t-GAS 0.95 1.11 1.20 1.24 1.21 1.20 0.34 0.15 0.03 0.02 0.04 -0.02
GASg 0.91 1.15 1.14 1.18 1.14 1.18 -0.39 -0.91 -1.33 -1.35 -1.12 -1.21
GAS 0.93 1.21 1.22 1.26 1.22 1.23 -0.46 -1.03 -1.34 -1.51 -1.23 -1.31

fMIDAS 0.97 1.13 1.12 1.14 1.14 1.09 -0.48 -0.80 -1.21 -1.19 -1.04 -1.27

Table 3: Relative MSE and log score criterion for the different model specifications using
monthly inflation with daily oil prices. The first 6 columns of the table report the ratio between the
MSE of each model with respect to the MSE of benchmark model (t-MIDAS-GASg) for several forecasting
horizons (from 1 to 6 steps ahead). A value greater than 1 indicates that a model is underperforming the
benchmark model instead the opposite is true when the MSE ratio is smaller than 1. The last 6 columns
report the log score criterion for several forecasting horizons (from 1 to 6 steps ahead).

4.2 Forecasting quarterly inflation with EFFR

4.2.1 The dataset and in-sample results

In the following, we report the results of a second empirical study where we employ the

MIDAS-GAS model in (9) for forecasting quarterly U.S. headline inflation using daily EFFR.

In this case, we consider quarterly instead of monthly inflation to see how the MIDAS-GAS

model performs at different frequencies. We also use a different high frequency variable: the

EFFR, which is available daily since 1955. The use of EFFR to forecast inflation is quite

natural since the EFFR is one of the main tools used by the Federal Reserve to control

inflation, see Armesto et al. (2010) for an application on predicting inflation with EFFR.

The time series we consider are from the first quarter of 1955 to the first quarter of 2017.
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Figure 4 shows the quarterly headline inflation series and the daily EFFR series.
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Figure 4: The headline CPI inflation and EFFR series. Left: The quarterly headline inflation.

Right: The daily effective federal founds rate series.

ν λxµ αyµ αxµ αyσ αxσ δσ βσ llik AIC

t-MIDAS-GASg 7.36 1.49 0.46 0.14 0.23 0.07 2.21 0.87 -319.83 659.66

t-MIDAS-GAS 5.16 1.38 0.45 0.13 - - 2.87 - -333.89 681.78

MIDAS-GASg - 1.62 0.54 0.11 0.23 0.21 2.31 0.81 -476.68 971.36

MIDAS-GAS - 1.61 0.51 0.09 - - 3.44 - -511.36 1034.72

Table 4: Full-Sample parameter estimates of MIDAS-GAS factor models using quarterly
inflation with daily EFFR. The last column reports the log-likelihood of the estimated models. The

last two columns report the log-likelihood AIC criterion, respectively.

Table 4 reports the estimates of the MIDAS-GAS models. The in-sample e results are

in line with those obtained for the monthly inflation. In particular, the Student-t distri-

bution gives a better fit since outliers are present in the series, see Figure 4. Furthermore,

also including conditional heteroscedasticity improves the in-sample results. Finally, Figure

5 reports the estimated MIDAS weighting functions. We can see that estimated functions

give much more weight to the more recent observations of the high frequency variable. This

finding shows how different variables can lead to different weighting schemes. A possible in-

terpretation of this high weight on the very last observations of the quarter is that the EFFR

is adjusted by the Federal Reserve to account for some economic and financial conditions
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and therefore most predictive content of the EFFR for inflation is lagged to the last 20 days

of the quarter.

0 10 20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

i−th day of the quarter

w
ei

gh
ts

t−MIDAS−GASg
t−MIDAS−GAS
MIDAS−GASg
MIDAS−GAS

Figure 5: Estimated MIDAS-GAS weighting functions for the four model specifications using
quarterly inflation with daily EFFR. The horizontal axis indicates the day in the quarter (there are
about 63 working days in a quarter). More weight on the last days of the quarter indicates that more recent
observations are more relevant.

4.2.2 Out-of-sample exercise

We perform a rolling window forecasting exercise as considered in the previous empirical

application. The out-of-sample period is from 1993 to 2017. Table 5 reports the results of

the forecasting study for the quarterly inflation series using daily EFFR as predictor. We

can see that the MIDAS-GAS models tend to have the best performance in terms of point

forecasts, except for 1 step ahead forecasts. In this case however the MIGAS-GASg seems to

have the best performance for most horizons. As concerns the density forecasts, we see that

the MIDAS-GAS models have the best performance for all forecasting horizons and in this

case the Student-t distribution plays a major role. As before, we conclude that MIDAS-GAS

models give accurate forecasts.
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Forecast Mean Squared Error Log score criterion

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

t-MIDAS-GASg 1.00 1.00 1.00 1.00 1.00 1.00 -1.42 -1.55 -1.48 -1.61 -1.59 -1.58
t-MIDAS-GAS 1.03 1.00 1.02 1.04 1.05 1.02 -1.41 -1.56 -1.55 -1.64 -1.62 -1.67
MIDAS-GASg 1.02 0.99 1.01 0.95 0.96 0.95 -2.23 -2.19 -2.18 -2.20 -2.20 -2.12
MIDAS-GAS 1.00 1.00 1.07 1.03 1.01 1.01 -2.22 -2.26 -2.21 -2.24 -2.22 -2.21

t-MIDASg(2) 0.96 1.05 1.10 1.02 1.04 1.09 -1.98 -2.12 -1.81 -1.94 -2.10 -1.84
t-MIDAS(2) 0.99 1.13 1.14 1.07 1.11 1.15 -1.76 -1.86 -2.02 -2.04 -1.98 -1.86
MIDASg(2) 0.98 1.12 1.13 1.04 1.06 1.09 -2.22 -2.25 -2.25 -2.25 -2.24 -2.26
MIDAS(2) 0.99 1.13 1.13 1.06 1.10 1.13 -2.30 -2.28 -2.34 -2.32 -2.31 -2.32

t-MIDASg(4) 1.04 1.12 1.09 1.06 1.13 1.13 -1.82 -1.69 -2.00 -1.82 -1.66 -1.85
t-MIDAS(4) 1.02 1.13 1.14 1.07 1.16 1.15 -1.81 -1.73 -2.02 -1.84 -1.79 -2.18
MIDASg(4) 1.02 1.11 1.10 1.02 1.10 1.12 -2.25 -2.25 -2.24 -2.25 -2.27 -2.27
MIDAS(4) 1.01 1.13 1.13 1.08 1.15 1.14 -2.33 -2.27 -2.36 -2.29 -2.30 -2.33

t-ARg(2) 1.06 1.09 1.10 1.03 1.14 1.14 -1.78 -1.95 -2.12 -1.88 -1.83 -1.90
t-AR(2) 1.03 1.12 1.13 1.03 1.16 1.14 -1.77 -2.13 -2.20 -1.94 -1.88 -2.32
ARg(2) 0.98 1.09 1.08 1.00 1.12 1.13 -2.17 -2.18 -2.26 -2.41 -2.16 -2.18
AR(2) 1.00 1.10 1.09 1.02 1.12 1.14 -2.28 -2.24 -2.36 -2.43 -2.26 -2.22

t-ARg(4) 1.07 1.12 1.11 1.04 1.16 1.13 -1.75 -1.99 -2.11 -1.94 -1.81 -1.82
t-AR(4) 1.04 1.13 1.15 1.04 1.16 1.15 -1.76 -2.12 -2.15 -1.95 -1.84 -2.38
ARg(4) 0.99 1.10 1.11 1.06 1.09 1.12 -2.25 -2.23 -2.29 -2.44 -2.27 -2.27
AR(4) 0.98 1.10 1.14 1.06 1.16 1.13 -2.27 -2.26 -2.35 -2.43 -2.27 -2.27

t-GASg 1.04 1.06 1.01 1.02 1.02 1.00 -1.59 -1.74 -1.72 -1.86 -1.86 -1.86
t-GAS 1.06 1.09 1.03 1.04 1.05 1.03 -1.71 -1.86 -1.83 -1.98 -1.97 -1.95
GASg 0.97 1.08 1.04 1.03 1.01 0.96 -2.13 -2.20 -2.21 -2.26 -2.22 -2.17
GAS 1.01 1.12 1.07 1.03 1.02 1.01 -2.22 -2.29 -2.26 -2.28 -2.25 -2.25

fMIDAS 1.00 1.11 1.07 1.03 1.01 1.01 -2.22 -2.26 -2.31 -2.30 -2.28 -2.30

Table 5: Relative MSE and log score criterion for the different model specifications using
quarterly inflation with daily EFFR. The first 6 columns of the table report the ratio between the
MSE of each model with respect to the MSE of benchmark model (t-MIDAS-GASg) for several forecasting
horizons (from 1 to 6 steps ahead). A value greater than 1 indicates that a model is underperforming the
benchmark model instead the opposite is true when the MSE ratio is smaller than 1. The last 6 columns
report the log score criterion for several forecasting horizons (from 1 to 6 steps ahead).

5 Conclusion

In this paper, we have introduced a novel approach for forecasting with mixed frequency data:

the MIDAS-GAS model. The MIDAS-GAS model transforms the score contributions of the

high frequency variables through a MIDAS weighting scheme. The proposed approach has

several advantages as it retains all the appealing features of GAS models while accounting

for mixed frequencies. Based on the general MIDAS-GAS framework, we have developed a

novel forecasting model with dynamic factor structures for mean and variance. The method

has shown a promising forecasting performance in two empirical applications on forecasting

U.S. headline inflation using crude oil prices and EFFR. Finally, the MIDAS-GAS modeling

framework can also be used for nowcasting. We leave this for future research.
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