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Abstract

We argue that existing methods for the treatment of missing observations in observation-driven models

lead to inconsistent inference. We provide a formal proof of this inconsistency for a Gaussian model with

time-varying mean. A Monte Carlo simulation study supports this theoretical result and illustrates how

the inconsistency problem extends to score-driven and, more generally, to observation-driven models,

which include well-known models for conditional volatility. To overcome the problem of inconsistent

inference, we propose a novel estimation procedure based on indirect inference. This easy-to-implement

method delivers consistent inference. The asymptotic properties are formally derived. Our proposed

method shows a promising performance in both a Monte Carlo study and an empirical study concerning

the measurement of conditional volatility from financial returns data.
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1 Introduction

Missing observations are often encountered in empirical studies and are typically treated as a nuisance. They

can occur for several reasons. For example, financial markets are closed during holidays and stock prices

are not recorded during these days. However, the underlying values of the stocks may still be changing due

to external events, even if no trading takes place. Missing observations can also be due to specific events

such as computer failures, loss of records, and budget constraints. A more systematic pattern of missing

observations typically occurs in the analysis of unequally spaced time series. A practical solution is to base

the analysis on an equally spaced time series and to insert “missing observations” in time periods which are

artificially introduced and for which no observations are available. The literature on the treatment of missing

observations in statistical inference is extensive; see, for example, Pigott (2001) for a review and for many

references on the subject.

Observation-driven time series models are widely employed to describe the time-variation in economic

and financial time series. Such models feature time-varying parameters that are driven by past observed

values of the time series. This is in contrast with parameter-driven models, where time-varying parameters

are driven by stochastic processes with their own source of error (Cox, 1981). A notable example of an

observation-driven model is the generalised autoregressive conditional heteroskedasticity (GARCH) model

of Engle (1982) and Bollerslev (1986). Creal et al. (2013) and Harvey (2013) recently introduced the class

of generalised autoregressive score (GAS) models that encompasses a wide range of observation-driven

models. Among others, the GARCH model, the exponential GARCH model of Nelson (1991) and the

Poisson autoregressive model of Davis et al. (2003) are special cases of GAS models. The peculiarity of

GAS models is that time-varying parameters are driven by the score of the predictive likelihood function.

The GAS approach has also delivered several novel specifications. Examples include the fat-tailed location

model of Harvey and Luati (2014), the copula model of Salvatierra and Patton (2015) and the spatial model

of Blasques et al. (2016b).

The handling of missing data in observation-driven models is widely discussed in empirical studies

where these models are implemented. The most common approach employed by practitioners is to set the

innovation of the observation-driven time varying parameter to zero, that is, to set the innovation to its

conditional expectation. This solution originates in the context of score-driven or GAS models. In this

case, the score innovation is set to zero when a missing observation occurs. Statistical inference is then

simply based on the maximization of the resulting pseudo likelihood function. We refer to this method as

the “setting-to-zero” strategy; see, for instance, Creal et al. (2014), Koopman et al. (2015), Lucas et al.

(2016), Delle Monache et al. (2016) and Buccheri et al. (2017). The “setting-to-zero” approach is appealing
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from a practical point of view as it is easy-to-implement and computationally not demanding, given the

closed form expression of the pseudo likelihood function. Furthermore, in analogy with the Kalman filter

for parameter-driven models, this approach can be justified by some intuitive arguments; see Lucas et al.

(2016). However, there is no formal discussion in the literature on the asymptotic properties of the method.

In this paper we show that the “setting-to-zero” strategy delivers inconsistent inference. We formally prove

the inconsistency of the pseudo maximum likelihood (pseudo ML) estimator for a GAS model defined for

a Gaussian distribution with a time-varying mean. We perform simulation experiments that show how the

inconsistency problem extends to other observation-driven models, including the GARCH model and the

Student-t GAS conditional volatility (t-GAS) model of Creal et al. (2013) and Harvey (2013).

We emphasise that a straightforward solution to missing observations in observation-driven models is

not available. This is in sharp contrast to the treatment of missing observations for parameter-driven models

that poses no additional challenges from an estimation perspective: missing observations can be integrated

out of the likelihood and exact maximum likelihood estimation can be performed. Most earlier contributions

on inference with missing observations has focused on linear time series models. For example, it is well

documented that for analyses based on the autoregressive moving average (ARMA) model with Gaussian

disturbances, missing observations can be handled within the Kalman filter; see Harvey and Pierse (1984).

However, we argue that no consistent procedure has been designed for observation-driven models, only

except for a special case such as the estimator of Bondon and Bahamonde (2012) for the ARCH model. Our

aim is to bridge this gap by developing an indirect inference method that delivers consistent inference in this

context.

Our indirect inference method for the treatment of missing observations can be adopted for general

classes of observation-driven models, but we focus on score-driven models for simplicity of exposition.

The proposed method is easy-to-implement and delivers a general approach to statistical inference for

observation-driven models with missing observations. The intuition behind using indirect inference in this

setting is the ability to replicate missing observations in the simulation step of the indirect inference method.

Therefore, under the assumption that the data are missing at random, we can exactly replicate the generating

process of the observed time series. The auxiliary model we consider is the one obtained by setting the

score innovation to zero. The asymptotic properties of the proposed estimator are formally derived. The

finite sample accuracy is studied in a Monte Carlo simulation experiment. We show that the finite sample

performance of the proposed estimator is comparable to that of the infeasible but efficient exact maximum

likelihood estimator. Finally, we compare the performance of our estimator in an empirical application

with financial data. In particular, we study the performance of alternative estimators in the context of a

conditional volatility Student’s t model applied to the daily S&P500 stock index.
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The remainder of the paper is organised as follows. Section 2 presents the modeling setting and describes

the “setting-to-zero” approach. Section 3 shows the inconsistency for the Gaussian GAS model with time

varying mean and presents simulation-based evidence of inconsistent behaviour of the pseudo MLE in the

context of a Gaussian score model of the conditional mean as well as other observation-driven models.

Section 4 introduces the new estimator and establishes its asymptotic properties. Section 5 presents a Monte

Carlo simulation study to evaluate the finite sample performance of the new estimator. Section 6 presents

an empirical illustration with financial data that compares our estimator against available alternatives in the

context of the conditional volatility Student’s t model. Section 7 concludes.

2 Pseudo ML for score-driven models with missing observations

For clarity of exposition we focus the discussion on the class of GAS models. However, since the score can

be regarded as the innovation of the time varying parameter, the arguments do not rely on a score-driven

parameter update. It follows that the “setting-to-zero” method is applicable to the wider class of observation-

driven models by rewriting the updating equation of the time-varying parameter as the sum of a memory

term and a zero-mean innovation term. Therefore, all results discussed in this section and the following

sections are applicable to observation-driven models in general.

We start our treatment for missing observations in observation-driven models by formally introducing

the “setting-to-zero” method. Given a univariate time series {yt}t∈Z, the class of score-driven models or

GAS models of Creal et al. (2013) and Harvey (2013) can be represented as

yt ∼ p(yt|ft; θ), ft+1 = ω + βft + αst, t ∈ Z, (1)

where p(·|ft; θ) is a conditional density function, ft is the time-varying parameter that is specified as an

autoregressive process with innovation st and θ is the vector containing all static parameters, including the

coefficients ω, β and α. The score innovation st is specified as

st = Stut, ut = ∂ log p(yt|ft; θ)/∂ft, t ∈ Z, (2)

where ut is the score and St is a scaling factor that is typically taken as a transformation of the Fisher

information; see Creal et al. (2013) for a more detailed discussion. The formulation is straightforward and

simple. We consider some specific examples in the next section.

We assume that the time series {yt}t∈Z is subject to missing observations. In particular, in each time

period t ∈ Z, the random variable yt is observed if It = 1 and not observed if It = 0. The process {It}t∈Z
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is assumed to be a stationary and ergodic process such that It = 1 with probability π and It = 0 with

probability 1 − π. Finally, we assume that the observations are missing at random: the data generating

process {yt}t∈Z is independent of {It}t∈Z.

The “setting-to-zero” method consists of setting the score innovation equal to zero st = 0 when the

corresponding observation is missing, that is when It = 0. Hence the time varying parameter is available

for all time points t and is recovered using the observed data only. The pseudo likelihood function is ob-

tained by using this filtered time-varying parameter for computing the conditional log-density function. The

estimation of the parameters in the model is carried out by maximising the resulting pseudo log-likelihood

function. More formally, the “setting-to-zero” method entails the following. In a first step, the filtered

parameter is obtained as

f̂t+1(θ) = ω + βf̂t(θ) + αItst, (3)

where the filter recursion is initialised at a fixed point f̂1(θ) ∈ R. The corresponding average log-likelihood

function is obtained by

L̂T (θ) = T−1
T∑
t=1

It log p(yt|f̂t(θ); θ), (4)

where T is the time series sample length, including the missing entries. We refer to (4) as the pseudo

log-likelihood function. Finally, the pseudo ML estimator is obtained as

θ̂T = arg sup
θ∈Θ

L̂T (θ), (5)

where Θ is a compact set that has the true parameter vector θ0 in its interior.

The “setting-to-zero” approach has been considered by Creal et al. (2014), Koopman et al. (2015), Lucas

et al. (2016), Delle Monache et al. (2016) and Buccheri et al. (2017), amongst others. It provides a practical

way to treat missing observation in the GAS framework. By considering a multivariate score-driven model,

Lucas et al. (2016) present some arguments to justify why this approach could be a reasonable way to handle

missing observations. Their arguments are based on the Expectation-Maximization algorithm, however, the

asymptotic properties of the resulting pseudo ML estimator are not discussed.

In the next section we argue that the “setting-to-zero” approach does not lead to the consistent estimation

of θ0. The problem is due to the fact that the pseudo likelihood (4) is not the actual likelihood of the

observations and this leads to an asymptotic bias in the parameter estimates. In general, it is not clear how

the true likelihood function for the observables can be obtained for observation-driven models. We do not
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know of theoretical results related to parameter estimation within score-driven models or, more generally,

within observations-driven models, when we have missing observations. This is the case even for well

known models such as the GARCH model. An exception is the very specific case of the least squares

estimator of the parameter vector in the autoregressive conditional heteroskedasticity (ARCH) model that is

explored by Bondon and Bahamonde (2012).

3 Inconsistency of the pseudo ML estimator with illustrations

We formally discuss the inconsistency of the pseudo ML estimator for a location, or local mean, score-

driven model. We present a simulation experiment that provides further evidence of the inconsistency. We

illustrate the inconsistency of the pseudo ML estimator as a specific problem for score-driven time series

models. Two additional examples feature volatility models: the GARCH model and the conditional variance

Student’s t model.

3.1 Local mean model

Consider the data generating process for a conditional Gaussian distribution with a time varying mean as

given by

yt = µot + εt, εt ∼ N(0, σ2
0), µot+1 = ω0 + β0µ

o
t + α0(yt − µot ), t ∈ Z, (6)

where {µot}t∈Z is the time-varying mean process, {εt}t∈Z is an independent and identically distributed

(i.i.d) sequence of Gaussian random variables with mean zero and variance σ2
0 , and ω0, β0 and α0 are static

coefficients. Here we assume that the model is for a univariate series yt. A multivariate version of this

model is obtained by considering yt, µot and εt as (equally sized) vectors; this model is considered in the

illustration of Lucas et al. (2016). The local mean model (6) is a special case of the GAS model (1) –

(2) with p(yt|ft; θ) = N(µot , σ
2) and µot ≡ ft. The scaled score function is simply the prediction error

st = yt − µot ≡ εt. Since we can replace µoτ by yτ − ετ , for τ = t, t + 1, it follows almost immediately

that the updating equation for µot in (6) implies an autoregressive moving average model, an ARMA(1, 1)

model, for yt with autoregressive coefficient β0 and moving average coefficient α0−β0. Therefore, |β0| < 1

ensures the strict stationarity of the process (6).

For the developments given in this section, we simply assume that {It}t∈Z is an i.i.d. sequence of

Bernoulli random variables with success probability π. In case of model (6) for an observed sequence
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y1, . . . , yT , we obtain the filtered parameter µ̂t(θ) recursively by

µ̂t+1(θ) = ω + βµ̂t(θ) + αIt [yt − µ̂t(θ)] , (7)

where µ̂1(θ) ∈ R is an arbitrary chosen initial condition for the filter. The pseudo log-likelihood function is

then given by

L̂T (θ) = −T−1

∑T
t=1 It
2

log σ2 − T−1

2

T∑
t=1

It [yt − µ̂t(θ)]2 / σ2.

Under the assumption that the coefficients ω0, β0 and α0 are known, we can show that the estimator of σ2
0

is inconsistent as follows. The estimator of σ2
0 is

σ̂2
T = (

T∑
t=1

It)
−1

T∑
t=1

It(yt − µ̂t(θ0))2.

We start by noticing that µ̂t(θ0) does not converge to the true µot as t→∞ because µot depends on the infinite

past of {yt}t∈Z and for any π ∈ (0, 1) there are infinitely many missing observations. Let {µt(θ0)}t∈Z
denote the limit sequence to which µ̂t(θ0) converges as t → ∞. We further have that σ̂2

T converges in

probability to E[(yt − µt(θ0))2] = σ2
0 + E[(µot − µt(θ0))2]. The expectation E[(µot − µt(θ0))2] is strictly

larger than zero and therefore σ̂2
T overestimates the variance σ2

0 . This inconsistency is not limited to the

variance estimator. The next result shows the non-trivial fact that also the dependence coefficients β0 and

α0 cannot be estimated consistently when the “setting-to-zero” method is applied for missing observations.

Without loss of generality, we assume for the next result that ω0 and σ2
0 are known and equal to zero and

one, respectively.

Theorem 3.1. The pseudo ML estimator θ̂T defined in (5) for the local mean GAS model (6) is not consistent

for some θ0 := (α0, β0) in the interior of some compact parameter space Θ ⊂ (0, 1)2. In particular, there

exists an ε > 0 such that

P
(

lim inf
T→∞

‖θ̂T − θ0‖ > ε

)
= 1,

for some θ0 ∈ Θ and some π ∈ (0, 1).

Theorem 3.1 shows that the pseudo ML estimator of θ0 in the GAS model (6) is inconsistent. This

highlights a general problem for the treatment of missing observations in the context of GAS models.

Remark 3.1. The proof of Theorem 3.1 is written for some (α0, β0) ∈ (0, 1)2 but the result is considerably

stronger as the same argument seems applicable to any (α0, β0) ∈ (0, 1)2.
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Figure 1 presents the finite sample behaviour of the pseudo ML estimator for different sample sizes and

π = 0.75. The simulations suggest that the estimator is indeed inconsistent. The sample distribution of the

estimator is not collapsing towards the true parameter value. The results reveal the inconsistency for the

estimators of α0 and σ2
0 . In particular, we learn from Figure 1 that σ2

0 is overestimated. This is coherent

with the inconsistency argument presented above. The results in Figure 1 also provide some evidence that
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Figure 1: Kernel distribution of the pseudo ML estimator for the Gaussian local mean model. The results are obtained
from 1, 000 Monte Carlo replications. Different sample sizes are considered and π = 0.75.

α0 tends to be overestimated which is very intuitive. Assume that we have some sequence of consecutive

missing observations, then the first observation after this sequence is highly informative about the current

level of µot . Therefore, in order to approximate the true µot accurately, the parameter α should be large to give

the new observation much weight. This intuition originates from the Kalman filter equations of the “local

level model” with missing observations; see (Durbin and Koopman, 2012, section 2.7). After a sequence of

missing values the filter is updated faster. In case of the GAS local mean model, the magnitude of the step

is constant and therefore we obtain a positive bias.

3.2 GARCH model

The generalised autoregressive conditional heteroscedasticity (GARCH) model is specified for a univariate

zero-mean time series yt and is, in a slightly different fashion than usual, given by

yt =
√
htεt, ht+1 = ω0 + β0ht + α0(y2

t − ht), (8)

where {εt}t∈Z is an i.i.d sequence of normal random variables with zero mean and unit variance, and ω0,

β0 and α0 are static coefficients. The GARCH model (8) is a special case of the GAS model (1) – (2)

with p(yt|ft; θ) = N(0, ht) and ht ≡ ft. The scaled score function is simply the prediction error st =

y2
t − ht. Maximum likelihood estimation of the parameters in the GARCH model is the default option in

most empirical work. However, except for a few special cases such as the ARCH model estimator of Bondon
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and Bahamonde (2012), parameter estimation with missing observations has not been widely discussed.

Figure 2 is indicative of how the “setting-to-zero” estimation method in Section 2 can be problematic.

This becomes particularly clear by observing the sampling distribution of the pseudo ML estimator for

the parameter α0. The parameter α0 tends to be overestimated. A similar intuitive explanation as for the

GAS local mean model as discussed above applies here as well. The simulations strongly suggest that the

estimators of the parameters ω0 and β0 are biased.
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Figure 2: Kernel distribution of the pseudo ML estimator for the Gaussian GARCH model. The results are obtained
from 1, 000 Monte Carlo replications. Different sample sizes are considered and π = 0.75.

3.3 Conditional volatility Student’s t model

For our final illustration we consider the conditional volatility Student’s t model of Creal et al. (2013)

and Harvey (2013) for a univariate zero-mean time series yt. The model has rapidly become a widely

used framework for extracting volatility from time series of daily financial returns. It accounts for extreme

observations by not only considering a fat-tailed distribution for the observations but also through a robust

updating function of the conditional variance. The conditional volatility Student’s t model is a special case

of the GAS model (1) – (2) with p(yt|ft; θ) = t(0, ht, ν) and ht ≡ ft where t(0, ht, ν) is the Student’s t

density with mean zero, variance ht and degrees of freedom ν. The resulting model becomes

yt =
√
htεt, εt ∼ t(0, 1, ν0), ht+1 = ω0 + β0ht + α0

[
(ν0 + 1)y2

t

(ν0 − 2) + y2
t h
−1
t

− ht
]
, (9)

where {εt}t∈Z is an i.i.d. sequence of Student’s t distributed random variables and ω0, β0, α0 and ν0 are

static coefficients.

The same simulation experiment as above has been carried to assess the inconsistency of the pseudo ML

estimator in finite samples. Figure 3 presents the Kernel estimates of the distributions of the pseudo ML

estimates. The distributions seem to converge towards values that are different from the corresponding true
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parameter values. This is particularly the case for the parameters α0 and ν0. For example, the parameter α0

is clearly overestimated in the same way as for the Gaussian local mean and GARCH models. The parameter

ν0 appears to be underestimated by the pseudo-ML estimator.
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Figure 3: Kernel distribution for conditional volatility Student’s t model as in Figure 2.

4 The indirect inference estimator and its properties

To overcome the inconsistency problem of the pseudo ML estimator for the GAS models with missing

observations, we use a composite indirect inference estimator similar to the one proposed in Varin et al.

(2011) and Gourieroux and Monfort (2017). This indirect inference estimator averages the log-likelihoods

of the auxiliary models and delivers unbiased estimates of the parameter of interest. The idea is that we

can generate data from our GAS model and introduce missing observations for those time periods where

the actual observed data is missing. In this way, under the assumption of data missing at random, we can

simulate from the true generating process with missing data. We do not require any further assumption on

the missing value process {It}t∈Z except that it needs to be stationary and ergodic with π = EIt > 0.

These assumptions are imposed to rule out the possibility that from a certain time point onwards all data are

missing. Once we have our simulated samples, we can proceed with indirect inference and we consider the

pseudo ML estimator as auxiliary statistics. This approach provides consistent inference because the bias of

the pseudo ML estimator is present both in the simulation and real data estimates.
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More formally, we simulate S paths of length T from the GAS model in (1) and (2) for a given parameter

value θ̄ ∈ Θ, which we denote with {yi,t(θ̄)}Tt=1, i = 1, . . . , S. We treat yi,t, for i = 1, . . . , S, as missing

data if the corresponding real observation yt is missing. For each simulated path we obtain the pseudo log-

likelihood function as described in (4), which we denote with L̂i,T (θ, θ̄). We then compute the average of

these pseudo log-likelihoods as follows

L̂S,T (θ, θ̄) =
1

S

S∑
i=1

L̂i,T (θ, θ̄),

and we obtain the maximiser of L̂S,T (θ, θ̄) with respect to θ, that is,

θ̂S,T (θ̄) = arg sup
θ∈Θ

L̂S,T (θ, θ̄).

The estimator θ̂S,T (θ̄) is not consistent to θ̄ and in general it converges to a pseudo true parameter vector

θ∗(θ̄) 6= θ̄ as T → ∞. Finally, we define the indirect inference estimator θ̃S,T as the parameter value θ̄ the

minimises a distance between the average pseudo ML estimator θ̂S,T (θ̄) obtained from simulations and the

point estimate θ̂T obtained from the real data, that is,

θ̃S,T = arg inf
θ̄∈Θ

∥∥∥θ̂S,T (θ̄)− θ̂T
∥∥∥ . (10)

In practice, the minimization can be performed using the Newton-Raphson methods that are imple-

mented in standard computer softwares for data analysis. The choice of the distance is irrelevant because

we have exact identification and therefore there is a parameter value θ̄ that sets any distance to zero. We

propose to average the log-likelihoods instead of the more common approach of averaging parameter esti-

mates because this leads to a more efficient estimator from a computational point of view. Our main results

for consistency and asymptotic normality of the indirect inference estimator (10) are presented next.

4.1 Consistency

Next we formulate sufficient conditions for the consistency and the asymptotic normality of the indirect

inference estimator. Assumption 4.1 imposes that the GAS model has a compact parameter space and that

it is correctly specified. In particular, the sample of observed data {yt}Tt=1 is generated by the GAS model

in (1) and (2) with true parameter vector θ0 ∈ Θ.

Assumption 4.1. The observed data {yt}Tt=1 is a realised path from stochastic process {yt}t∈Z that satisfies

the GAS’s equations (1) and (2) at θ0 ∈ Θ. Furthermore, the set Θ is compact.
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Assumption 4.2 states that the conditional density function p(y|f ; θ) is continuous in all arguments.

This is needed to ensure the continuity of the log-likelihood function.

Assumption 4.2. The function (y, f, θ) 7→ p(y|f ; θ) is continuous in R× R×Θ.

Assumption 4.3 requires the GAS model to generate stationary and ergodic data for any θ̄ ∈ Θ; see

Blasques et al. (2014b) for primitive conditions that ensure the stationarity and ergodicity of GAS processes.

This implies that also the observed data {yt}Tt=1 is stationary and ergodic since θ0 ∈ Θ. Assumption 4.3

further requires the independence of observed and simulated data from the missing values process {It}t∈Z.

Note that we do not specify a data generating process for the sequence {It}t∈Z. Instead, we take {It}t∈Z as

being an exogenous variable; see the discussion in Gourieroux et al. (1993).

Assumption 4.3. The sequence {yi,t(θ̄)}t∈Z is stationary and ergodic for every θ̄ ∈ Θ. Furthermore, the

sequences {yi,t(θ̄)}t∈Z, i = 1, . . . , S, and {yt}t∈Z are independent of the missing values process {It}t∈Z.

Assumption 4.4 imposes conditions on the filtered sequence, as defined in (3), obtained from the simu-

lated data. We let f̂i,t(θ, θ̄) denote the filter in (3) evaluated at θ ∈ Θ using a sample of data {yi,t(θ̄)}t∈Z,

which is simulated under θ̄ ∈ Θ. In particular, the filter is required to be invertible and to converge expo-

nentially fast and almost surely (e.a.s.)1 to a strictly stationary and ergodic limit sequence, uniformly over

(θ, θ̄) ∈ Θ×Θ. In practice, this assumption can be checked by means of Theorem 3.1 of Bougerol (1993);

see also Straumann and Mikosch (2006) for an application of this theorem to GARCH-type models and

Blasques et al. (2016a) for an application to GAS models.

Assumption 4.4. The function (θ, θ̄) 7→ f̂i,t(θ, θ̄) is a.s. continuous in Θ × Θ. Furthermore, the filter

{f̂i,t(θ, θ̄)}t∈N converges e.a.s. and uniformly to a limit strictly stationary and ergodic sequence {fi,t(θ, θ̄)}t∈Z,

sup
θ∈Θ

sup
θ̄∈Θ

|f̂i,t(θ, θ̄)− fi,t(θ, θ̄)|
e.a.s.−−−→ 0 as t→∞,

for every initialization f̂i,1(θ, θ̄) ∈ R.

Assumption 4.5 gives moment conditions that are standard in the ML estimation literature of GAS

models under misspecification; see Blasques et al. (2016a) for further details. The moment bounds on the

pseudo log-likelihood and its derivative with respect to the time-varying parameter fi,t, which we denote

by ∇f , allow the application of a uniform law of large numbers for the log-likelihood of the pseudo ML

estimator. In particular, the uniform log moment condition on the derivative ∇f is imposed to ensure that

1A sequence of positive random variables {xt}t∈Z is said to converge e.a.s. to zero if there is an γ > 1 such that γtxt
a.s.−−→ 0

as t diverges, see Straumann and Mikosch (2006).

12



the log-likelihood evaluated at the filter f̂i,t(θ, θ̄) converges to the limit log-likelihood evaluated at the limit

filter fi,t(θ, θ̄). This moment condition is typically implied by the contraction condition that is used in GAS

models to ensure that the filter is invertible.

Assumption 4.5. The log-likelihood satisfies the following moment conditions:

E sup
θ∈Θ

∣∣∣ log p
(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∣∣∣ <∞ for every θ̄ ∈ Θ,

E log+ sup
θ∈Θ

sup
f

∣∣∣∇f log p
(
yi,t(θ̄)|f ; θ

)∣∣∣ <∞ for every θ̄ ∈ Θ.

Assumption 4.6, together with the compactness of Θ and the continuity of the limit pseudo log-likelihood

on Θ, ensures the identifiable uniqueness of the pseudo true parameter θ∗(θ̄) for data obtained from any pa-

rameter vector θ̄ ∈ Θ.

Assumption 4.6. The pseudo-true parameter θ∗(θ̄) is the unique maximiser of the limit pseudo log-likelihood

L(·, θ̄) in Θ for every θ̄ ∈ Θ.

Proposition 4.1 establishes the consistency of the auxiliary pseudo ML estimators θ̂S,T (θ̄) and θ̂T as

T → ∞ to their respective pseudo true parameters θ∗(θ̄) and θ∗(θ0) for any θ̄ ∈ Θ. The proof explores

the argument laid down in Blasques et al. (2014a) and it is based on the classical results reviewed in White

(1994).

Proposition 4.1. Let Assumptions 4.1-4.6. hold. Then θ̂S,T (θ̄)
a.s.→ θ∗(θ̄) for every θ̄ ∈ Θ and θ̂T

a.s.→ θ∗(θ0)

as T →∞.

The consistency of our indirect inference estimator requires more than just the pointwise convergence

of the auxiliary estimator θ̂S,T (θ̄)
a.s.→ θ∗(θ̄) for every every θ̄ ∈ Θ. Assumptions 4.7–4.10 impose sufficient

conditions for the functional estimator θ̂S,T (·) to converge a.s. and uniformly in Θ to the binding function

θ∗(·). Assumption 4.7 imposes that p(y|f ; θ) is smooth in (y, f, θ) and that the filter f̂i,t(θ, θ̄) is smooth

in θ. These additional differentiability requirements allow us to work with the score and Hessian of the

log-likelihood to establish the uniform convergence of our auxiliary estimator.

Assumption 4.7. The function (y, f, θ) 7→ p(y|f ; θ) is 3 times continuously differentiable in R × R × Θ

and θ 7→ f̂i,t(θ, θ̄) is a.s. 2 times continuously differentiable in Θ for any θ̄ ∈ Θ.

Assumption 4.8 ensures that the filter derivative processes are invertible and converge exponentially fast

to their respective stationary and ergodic limits. This is a standard regularity condition which is designed

to ensure that the score and Hessian satisfy laws of large numbers and central limit theorems; see Potscher
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and Prucha (1997) for further details. We adopt the following notation: ∇kθ f̂i,t(θ, θ̄) is the kth derivative of

f̂i,t(θ, θ̄) w.r.t. θ;∇(0:k)
θ f̂i,t(θ, θ̄) denotes the vector containing the filter f̂i,t(θ, θ̄) and its derivatives of up to

kth order.

Assumption 4.8. The derivative filter ∇kθ f̂i,t(θ, θ̄) converges e.a.s. and uniformly to a stationary and er-

godic sequence {∇kθfi,t(θ, θ̄)}t∈Z as t→∞ for k = 0, 1, 2, that is,

sup
θ∈Θ

sup
θ̄∈Θ

∥∥∇(0:2)
θ f̂i,t(θ, θ̄)−∇(0:2)

θ fi,t(θ, θ̄)
∥∥ e.a.s.→ 0 as t→∞.

Assumption 4.9 provides additional moment bounds on the score and the Hessian of the log-likelihood

functions. Additional logarithmic moments are imposed on the derivative of the score and the Hessian

with respect to the filter fi,t(θ, θ̄). These moment conditions ensure that we can apply uniform laws of

large numbers to the score and the Hessian. We let ∇θ log p denote the score function, ∇2
θf log p denote

the derivative of the score with respect to the filter fi,t(θ, θ̄), ∇2
θθ log p denote the Hessian, and ∇3

θθf log p

denote the derivative of the Hessian with respect to the filter fi,t(θ, θ̄).

Assumption 4.9. The score and Hessian of the log-likelihood have one bounded moment,

E sup
θ̄∈Θ

sup
θ∈Θ

∥∥∇θ log p
(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∥∥ <∞;

E sup
θ̄∈Θ

sup
θ∈Θ

∥∥∇2
θθ log p

(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∥∥ <∞.
The derivatives of the score and Hessian have a logarithmic bounded moment,

E log+ sup
θ̄∈Θ

sup
θ∈Θ

sup
f (0:1)

∥∥∇2
θf (0:1) log p

(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∥∥ <∞;

E log+ sup
θ̄∈Θ

sup
θ∈Θ

sup
f (0:2)

∥∥∇3
θθf (0:2) log p

(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∥∥ <∞.
Assumption 4.10 ensures that the Hessian converges to a non-singular limit.

Assumption 4.10. The Hessian matrix E∇2
θθ log p

(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)
is non-singular for every θ, θ̄ ∈ Θ.

Assumption 4.7 states the fundamental identification condition for the indirect inference estimator. The

assumption that the so-called binding function θ∗ is injective is standard for indirect inference estimators

but often difficult to verify; see Gourieroux et al. (1993) for a discussion.

Assumption 4.11. The binding function θ̄ 7→ θ∗(θ̄) is continuous and injective in Θ.
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Theorem 4.1 delivers the consistency of the indirect inference estimator. The proof is different from

that found in Gourieroux et al. (1993) as we average auxiliary log-likelihoods instead of averaging auxiliary

estimators. This makes our estimator computationally faster when S is larger than 1. Additionally, our proof

handles the convergence of the filter {f̂i,t(θ, θ̄)}.

Theorem 4.1. Let Assumptions 4.1-4.11 hold. Then the indirect inference estimator is strongly consistent:

θ̃S,T
a.s.→ θ0 as T →∞.

4.2 Asymptotic normality

Asymptotic normality of the indirect inference estimator is derived from the asymptotic normality of the aux-

iliary pseudo ML estimators. The additional assumptions are designed to ensure that the auxiliary pseudo

ML estimators θ̂S,T (θ̄) and θ̂T of the GAS model are asymptotically normally distributed. Given that the

auxiliary model is misspecified, the score of the log-likelihood will generally fail to be a martingale differ-

ence sequence. In any case, the score can still satisfy a central limit theorem for sequences that are near

epoch dependent (NED) on an α-mixing sequence; see Wooldridge (1986), Gallant and White (1988), and

Theorem 10.2 in Potscher and Prucha (1997). Assumptions 4.12 and 4.13 impose the NED property on the

data, the filter, and the filter’s derivative; see Blasques et al. (2014a) for conditions that ensure the NED

property for score models.

Assumption 4.12. The sequence {yi,t(θ0)} is NED of size−1 of an α-mixing sequence of size−2r/(r− 1)

for some r > 2.

Assumption 4.13. The filter {fi,t(θ∗(θ0), θ0)} and its derivative {∇θfi,t(θ∗(θ0), θ0)} are both NED of size

−1 of an α-mixing sequence of size −2r/(r − 1) for some r > 2.

Assumption 4.14 imposes additional smoothness and bounded moments for the score. The Lipschitz

smoothness assumption ensures that the score inherits the NED property from the data and the score. The

2 + δ bounded moments ensure that the score satisfies a central limit theorem.

Assumption 4.14. The score ∇θ log p is Lipschitz continuous in yi,t, fi,t and ∇θfi,t. Furthermore, the

following moment is finite

E
∣∣∣∇θ log p

(
yi,t(θ0)

∣∣fi,t(θ∗(θ0), θ0), θ∗(θ0)
)∣∣∣2+δ

<∞ for some δ > 0.

Proposition 4.2 delivers the asymptotic normality of the auxiliary pseudo ML estimators.

15



Proposition 4.2. Let Assumptions 4.1-4.14. hold. Then

√
T
(
θ̂T − θ∗(θ0)

)
d→ N

(
0,Ω∗(θ0)−1Σ∗(θ0)Ω∗(θ0)−1

)
,

and
√
T
(
θ̂S,T (θ0)− θ∗(θ0)

)
d→ N

(
0,Ω∗(θ0)−1Σ∗S(θ0)Ω∗(θ0)−1

)
as T →∞,

where Ω∗(θ0) = E∇2
θθ log p

(
yi,t(θ0)|fi,t(θ∗(θ0), θ0); θ∗(θ0)

)
and Σ∗S(θ0) = 1

SΣ∗(θ0) + S−1
S K∗(θ0), with

Σ∗(θ0) = lim
T→∞

Var

(
1√
T

T∑
t=2

∇θ log p
(
yi,t(θ0)

∣∣fi,t(θ∗(θ0), θ0

)
; θ∗(θ0)

))
and

K∗(θ0) = lim
T→∞

Cov

(
1√
T

T∑
t=2

∇θ log p
(
yi,t(θ0)

∣∣fi,t(θ∗(θ0), θ0

)
; θ∗(θ0)

)
,

1√
T

T∑
t=2

∇θ log p
(
yj,t(θ0)

∣∣fj,t(θ∗(θ0), θ0

)
; θ∗(θ0)

))
for some i 6= j.

Finally, we obtain the asymptotic normality of the indirect inference estimator θ̃S,T as T → ∞. As-

sumption 4.15 imposes the continuous differentiability of θ∗.

Assumption 4.15. The binding function θ̄ 7→ θ∗(θ̄) is continuously differentiable in Θ.

Theorem 4.2 delivers the desired asymptotic normality of the indirect inference estimator as proven in

Gourieroux et al. (1993). As usual, the asymptotic variance is smaller for larger S. The expression for the

asymptotic variance is simpler than usual due to the fact that the structural and auxiliary parameter spaces

are the same.

Theorem 4.2. Let Assumptions 4.1-4.15. hold. Then

√
T
(
θ̃S,T − θ0

)
d→ N(0,WS) as T →∞,

where

WS :=
(

1 +
1

S

)[∂θ∗(θ0)

∂θ>

]−1

V (θ0)

[
∂θ∗(θ0)

∂θ

>
]−1

where V (θ0) denotes the asymptotic variance V (θ0) := Ω∗(θ0)−1(Σ∗(θ0)−K∗(θ0))Ω∗(θ0)−1.

4.3 Finite sample Monte Carlo study

We evaluate the finite sample behavior of the indirect inference estimator (10) through a simulation study.

More specifically, we consider the indirect inference estimator of the GARCH model (8) we employ the
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same simulation setting as in Section 3.2. Figure 4 displays the distribution of the estimator for different

sample sizes. We can see that the distributions are centered around the true parameter values. This suggests

that the indirect inference estimator can successfully eliminate the bias caused by the missing data; see

Figure 2 for a comparison with the pseudo-ML estimator.

We observe clearly that the distributions are collapsing towards the true parameter values as the sample

size increases. Furthermore, the distributions tend to become more symmetric and with a more normal shape

for larger sample sizes. These results confirm strongly the reliability of the indirect inference estimator and

the validity of its asymptotic properties. Similar findings are obtained for other models but are not reported

here for space considerations.
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Figure 4: Distribution of the indirect inference estimator for the GARCH model. The results are obtained from 500
Monte Carlo replications and S = 10. Different sample sizes are considered and π = 0.75.

5 Monte Carlo comparison among different estimators

In this section, we present the results of a Monte Carlo experiment to evaluate the finite sample performance

of the indirect inference estimator compared to the exact ML estimator and the pseudo ML estimator. We

consider the Gaussian GAS local mean model in (6). This choice is due to the fact that only for this model

the exact ML estimator is available when we have missing data. The GAS model (6), with ω0 = 0, can be

rewritten as a Gaussian ARMA(1,1) model of the form

yt = β0yt−1 + φ0εt−1 + εt,

where φ0 = α0 − β0. Therefore, we can use the Kalman filter to consistently estimate the model. In

presence of missing observations, the consistency of the ML estimator based on the Kalman filter has been

formally discussed in Jones (1980) and Kohn and Ansley (1986). Note that this comparison is possible only

for this specific model because in general there is not a clear way to obtain the exact likelihood function for
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GAS models with missing data. However, it is useful to see how our indirect inference estimator performs

compared to exact ML in this setting.

Table 1 reports a finite sample comparison among the indirect inference estimator, the exact ML esti-

mator and the inconsistent pseudo ML estimator in terms of relative bias and mean squared error (MSE).

The relative bias is the bias relative to the true parameter vale, which is computed as (θ̂T − θ0)/θ0. The

results are presented for sample sizes of T = 500, 1, 000 and 2, 000 observations. The missing observations

are generated from independent Bernoulli random variables where π is the probability of observing yt and

1 − π is the probability of having a missing observation. We study the behaviour of the estimators for sev-

eral values of π, namely π = 0.4, 0.6, 0.8 and 1. The latter case corresponds naturally to a sample without

any missing observations. The values reported are for a true parameter θ0 with β0 = 0.95, α0 = 0.3, and

σ2
0 = 1.0. The parameter ω0 is assumed to be known and it is set equal to zero.

Table 1 reveals very clearly that the bias of the pseudo ML estimator does not converge to zero when

the sample size increases. This is particularly clear for small values of π. The bias is also relevant in

relative terms. For instance, the parameter α has a bias of about 30% and σ2 has a bias of about 15% when

π = 0.4. Instead, the indirect inference estimator and the exact ML estimator have a negligible bias, even

in relative terms. In terms of the MSE, we find that the impact of the bias is more relevant for larger sample

sizes. These gains for the indirect inference estimator and the exact ML estimator over the pseudo ML are

stronger for the larger samples. Finally, the indirect inference estimator shows comparable performances

when compared to the exact ML estimator. In particular, the MSE of these two estimators are very close for

all the configurations considered in the experiment. This emphasises the accuracy of our proposed indirect

inference estimator. Indeed the advantage of the indirect inference estimator is that it can be applied to GAS

models in general while the exact ML estimator is only available in this particular setting.

Figure 5 presents the bias of the pseudo ML, exact ML and our proposed indirect inference estimator.

The plots show bias with respect to β, α and σ2 over a range of values of π. The advantage of our new

estimator becomes more relevant for small π, that is when the fraction of missing values is large. This

seems to be especially true for the estimation of the parameters α0 and σ2
0 . Furthermore, Figure 5 further

confirms how the exact ML estimator and the indirect inference estimator have a very similar performance.

6 An empirical experiment for the S&P500 daily returns time series

To illustrate how the inconsistency problem of the pseudo ML estimator can affect inference in an empirical

study and how the use of the indirect inference estimator alleviates the problem, we analyse daily log-

differences of the Standard and Poor’s 500 stock index (S&P500) from January 2000 to December 2016.
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π = 0.40 π = 0.60
β α σ2 β α σ2

T = 500

Rel. bias
PML -0.009 0.321 0.164 -0.006 0.172 0.078
ML -0.012 0.001 -0.006 -0.009 -0.012 -0.009
II -0.009 0.016 -0.008 -0.006 0.001 -0.012

MSE
PML 0.028 0.120 0.204 0.023 0.075 0.121
ML 0.029 0.060 0.109 0.023 0.047 0.087
II 0.025 0.064 0.118 0.020 0.051 0.091

T = 1000

Rel. bias
PML -0.004 0.320 0.166 -0.004 0.174 0.084
ML -0.005 -0.007 -0.001 -0.005 -0.011 -0.002
II -0.004 0.009 -0.005 -0.004 -0.002 -0.005

MSE
PML 0.018 0.108 0.187 0.016 0.065 0.105
ML 0.018 0.042 0.078 0.016 0.033 0.058
II 0.014 0.045 0.084 0.013 0.035 0.062

T = 2000

Rel. bias
PML -0.002 0.316 0.168 -0.001 0.173 0.084
ML -0.002 -0.016 0.003 -0.002 -0.014 -0.002
II -0.001 -0.000 -0.003 -0.001 -0.003 -0.006

MSE
PML 0.011 0.100 0.177 0.010 0.058 0.095
ML 0.011 0.028 0.052 0.010 0.023 0.042
II 0.008 0.029 0.055 0.007 0.024 0.045

π = 0.80 π = 1.00
β α σ2 β α σ2

T = 500

Rel. bias
PML -0.006 0.072 0.029 -0.006 -0.003 -0.005
ML -0.009 -0.013 -0.009 -0.009 -0.009 -0.008
II -0.007 -0.004 -0.010 -0.006 -0.007 -0.007

MSE
PML 0.022 0.049 0.080 0.020 0.037 0.064
ML 0.022 0.041 0.073 0.021 0.037 0.065
II 0.019 0.044 0.076 0.018 0.039 0.067

T = 1000

Rel. bias
PML -0.004 0.074 0.034 -0.003 -0.001 -0.002
ML -0.005 -0.009 -0.003 -0.005 -0.004 -0.004
II -0.004 -0.005 -0.004 -0.003 -0.005 -0.003

MSE
PML 0.015 0.037 0.061 0.014 0.025 0.044
ML 0.015 0.028 0.049 0.014 0.025 0.044
II 0.012 0.029 0.051 0.011 0.026 0.046

T = 2000

Rel. bias
PML -0.001 0.072 0.033 -0.001 -0.004 -0.003
ML -0.002 -0.010 -0.003 -0.002 -0.006 -0.004
II -0.001 -0.006 -0.004 -0.001 -0.007 -0.004

MSE
PML 0.010 0.030 0.049 0.009 0.018 0.032
ML 0.010 0.020 0.036 0.009 0.018 0.032
II 0.007 0.021 0.037 0.007 0.019 0.033

Table 1: Simulation results for the pseudo ML (PML), indirect inference (II) and exact maximum likelihood (ML).
We report relative bias (Rel. bias) and mean squared error (MSE). The results are obtained from 500 Monte Carlo
replications with S = 10. The true parameter vector is θ0 = (0.95, 0.3, 1)>.
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Figure 5: Median of the sampling distribution of the pseudo ML estimator, the exact ML estimator and the indirect in-
ference estimator for different values of the probability π. The results are obtained from 500 Monte Carlo replications
and the sample size of the simulated series is T = 1, 000. For, the indirect inference estimator S = 10 is considered.

We adopt the conditional volatility Student’s t model (9) and carry out the pseudo ML and the indirect

inference methods for parameter estimation. The method of exact maximum likelihood is not feasible for

this model when there are missing observations. The occurrence of missing observations is widespread in

financial returns data because markets are regularly closed during the year. On these closure days there are

no financial transactions and hence we do not observe price changes. However, the underlying price of the

asset may still be changing during these days; see, for example, the discussions in Bondon and Bahamonde

(2012).

In our empirical experiment, we aim to investigate the behaviour of the two estimators when we have a

growing number of missing observations in the sample. We first estimate the model using all available data

in the sample. Then we artificially remove observations from the sample by drawing a Bernoulli random

variable with success probability π for each observation. If the outcome of the draw is zero, then we

consider the corresponding observation as missing. For this resulting sample with missing data, we estimate

the parameters in the model using the two methods that account for the missing observations. We repeat this

procedure 100 times for a given value of π. In this way, for a given value of π, we obtain the distribution

of the estimator. We use the full sample estimates as the benchmark to evaluate the performance of the

estimates based on the samples with missing data. We consider a range of different π values and repeat

the exercise as described. Clearly, this experiment is conditional on the full sample of observed data. The

variability of the estimates with missing data only originates from the randomness of the observations that

are removed and treated as missing through the Bernoulli draws.

Figures 6 and 7 report the results of this experiment. In particular, the figures show the bias distribution

of the estimators compared to the full sample estimators for different values of π. Figure 6 clearly reveals

that the pseudo ML estimates have a strong bias for the parameters α and ν. This is coherent with the
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Figure 6: Bias of the pseudo ML estimator compared to the corresponding full sample estimator for different values of
π. The grey areas represent confidence bounds of the bias, which are obtained from 100 random draws of the missing
data. The dashed line represents a bias equal to zero.
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for different values of π. The grey areas represent confidence bounds of the bias, which are obtained from 100 random
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findings provided by the simulation experiment. In particular, the estimator of α gets further away from the

corresponding full sample estimator as the probability of missing observations π increases. We observe this

divergence clearly in Figure 6 where the zero-line is not within the 90% variability bounds for large values

of π. A similar situation occurs for the parameter ν. As we have discussed throughout the paper, this issue

can be addressed by the consistent indirect inference estimator as proposed in Section 3 and studied in detail

in Section 4.
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Figure 7 provides evidence that the indirect inference estimation procedure does not lead to any bias

for any parameter, in particular when compared to the pseudo ML estimation results in Figure 6. We

have expected this result since the indirect inference estimator is consistent. However, a small bias may be

observed in this experiment since we are dealing with real data and the analysis is conditional on an observed

time series. Therefore, the model is possibly misspecified and may cause a slight bias. Furthermore, we

emphasise that the variability observed in the estimation is not due to the variability of the estimation. Our

analyses are based on a single time series and the randomness in the different draws is only due to the

Bernoulli missing value generator.

7 Conclusion

We have highlighted the theoretical issues that arise when missing observations are present in observation-

driven time series models and in particular in score-driven models. We have argued that the “setting-to-

zero” method may lead to the inconsistency of the maximum likelihood estimator. Based on theoretical

arguments and simulation experiments, we have confirmed the inconsistency problem. We further have

proposed a new estimation procedure based on the method of indirect inference that provides a simple and

general approach to obtain consistency and asymptotic normality in the presence of missing observations for

observation-driven time series models. Simulation experiments have shown that the proposed estimator has

comparable performances to the exact maximum likelihood estimator for a Gaussian score-driven location

model. Finally, an experiment with real financial data has illustrated the key importance of our results in a

practical context.
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A Appendix

A.1 Proofs of Section 3

Proof of Theorem 3.1. Let µt(θ) denote the limit of the filtered parameter µ̂t(θ) that is given by

µt(θ) = α

∞∑
k=1

[
k−1∏
i=1

ξ̃t−i

]
It−kyt−k, (11)

where ξ̃t = β − αIt. Furthermore, we denote with LT the pseudo log-likelihood function evaluated at the

limit filter µt(θ), i.e. LT (θ) = −2−1T−1
∑T

t=1 It(yt − µt(θ))2. Finally, we define the limit of the pseudo

log-likelihood L(θ) as L(θ) = −2−1πE[(yt − µt(θ))2].

To prove the theorem, we first show that the pseudo likelihood function L̂T (θ) converges a.s. and uni-

formly to L(θ), i.e. supθ∈Θ |L̂T (θ)− L(θ)| a.s.−−→ 0. Then, we show that this uniform convergence together

with Lemma A.2 implies that lim infT→∞ ‖θ̂T − θ0‖ > ε with probability 1.

As concerns the uniform convergence, an application of the triangle inequality yields

sup
θ∈Θ

∣∣∣L̂T (θ)− L(θ)
∣∣∣ ≤ sup

θ∈Θ

∣∣∣L̂T (θ)− LT (θ)
∣∣∣+ sup

θ∈Θ

∣∣∣LT (θ)− L(θ)
∣∣∣. (12)

Therefore, we just need to show that both terms on the right hand side of the inequality in (12) go to zero

almost surely. Regarding the first term, we have that supθ∈Θ |µ̂t(θ) − µt(θ)| goes to zero exponentially

almost surely (e.a.s.) by Lemma A.1. Then we obtain that the following inequality is satisfied for large

enough t

sup
θ∈Θ
|(yt − µt(θ))2 − (yt − µ̂t(θ))2| ≤ ηt sup

θ∈Θ
|µ̂t(θ)− µt(θ)|, (13)

where

ηt = 2 sup
θ∈Θ
|µt(θ)|+ 2|yt|+ 1 ≥ 2 sup

θ∈Θ
|µ∗t (θ)|+ 2|yt|

for any µ∗t between µt and µ̂t. Therefore, since {ηt}t∈Z is a stationary and ergodic sequence with bounded

moments of any order and supθ∈Θ |µ̂t(θ)− µt(θ)| goes to zero e.a.s., we conclude that the left hand side of

the inequality in (13) goes to zero almost surely by an application of Lemma 2.1 of Straumann and Mikosch

(2006). It is then immediate to see that supθ∈Θ |(yt − µt(θ))2 − (yt − µ̂t(θ))2| a.s.−−→ 0 implies the desired

result, i.e. supθ∈Θ |L̂T (θ)−LT (θ)| a.s.−−→ 0. Finally, the second term on the right hand side of the inequality

in (12) goes to zero almost surely by an application of the ergodic theorem of Rao (1962) provided that

E supθ∈Θ |yt − µt(θ)|2 < ∞. We note that E supθ∈Θ |yt − µt(θ)|2 < ∞ holds true as Θ is a compact set

contained in (0, 1)2 and moments of any order for µt(θ) exists for any θ ∈ Θ.
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From the uniform convergence supθ∈Θ |L̂T (θ)−L(θ)| a.s.−−→ 0 and Lemma A.2, we infer that there exists

an ε > 0 such that the following inequality is satisfied with probability 1

lim sup
n→∞

(
sup

θ∈Bε(θ0)
L̂T (θ)− sup

θ∈Bcε (θ0)
L̂T (θ)

)
< 0, (14)

where Bε(θ0) = {θ ∈ Θ : ‖θ0 − θ‖ < ε} and Bc
ε (θ0) = Θ/Bε(θ0). From the definition of θ̂T , we know

that L̂T (θ̂T ) = supθ∈Θ L̂T (θ) for any n ∈ N. Therefore, if we assume that lim infT→∞ ‖θ̂T − θ0‖ > ε with

probability smaller than 1, then the inequality in (14) must be satisfied with probability smaller than 1 since,

‖θ̂T − θ0‖ > ε ⇔ sup
θ∈Bε(θ0)

L̂T (θ) < sup
θ∈Bcε (θ0)

L̂T (θ)

and hence

P(‖θ̂T − θ0‖ > ε) = P
(

sup
θ∈Bε(θ0)

L̂T (θ) < sup
θ∈Bcε (θ0)

L̂T (θ)
)
< 1.

This is a contradiction with respect to (14). Therefore, we can conclude that lim infT→∞ ‖θ̂T − θ0‖ > ε

with probability 1. This concludes the proof of the theorem.

Lemma A.1. For any (α0, β0, π) ∈ (0, 1)3 and any compact set Θ ⊂ (0, 1)2, we have that

sup
θ∈Θ
|µ̂t(θ)− µt(θ)|

e.a.s.−−−→ 0, as t→∞,

for any initialization µ̂1(θ) ∈ R.

Proof. The result can be obtained by an application of Theorem 3.1 of Bougerol (1993) to a sequence of

random functions {xt(·)}t∈N defined through a Stochastic Recurrence Equation (SRE) of the form

xt+1(θ) = φt(xt(θ), θ), t ∈ N, (15)

where x1(θ) ∈ R, the map (x, θ) 7→ φt(x, θ) from R × Θ into R is almost surely continuous and the

sequence {φt(x, θ)}t∈Z is stationary and ergodic for any (x, θ) ∈ R × Θ. Bougerol’s theorem ensures that

for any initialization x1(θ) the sequence defined by the SRE in (15) converges e.a.s. and uniformly in Θ to

a unique stationary and ergodic sequence {x̃t(θ)}. The conditions required to apply Bougerol’s result are:

(i) There is an x ∈ R such that E log+ (supθ∈Θ |φ0(x, θ)|) <∞,

(ii) E log+ (supθ∈Θ Λ0(θ)) <∞,

(iii) E log (supθ∈Θ Λ0(θ)) < 0,

where Λt(θ) = supx∈R |∂φt(x, θ)/∂x|.
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In our case we have that the sequence {µ̂t(θ)} is defined through the SRE in (7). As a result, we have

that φt(x, θ) = βx+ αIt(yt − x). Therefore we immediately obtain that Λt(θ) = |β − αIt|. Furthermore,

the limit function x̃t(θ) in our case is given by µt(θ), which is defined in (11). In the following we show

that the conditions of Bougerol’s theorem are satisfied.

First we note that there exists an x ∈ R such that E log+ (supθ∈Θ |φ0(x, θ)|) < ∞ because we can set

x = 0 and we immediately obtain that

E log+

(
sup
θ∈Θ
|φ0(x, θ)|

)
≤ E

(
sup
θ∈Θ
|αItyt|

)
≤ sup

θ∈Θ
|α|E|yt| <∞,

where the last equality is implied by the fact that supθ∈Θ |α| is finite by compactness of Θ and E|yt| is finite

because yt is a stationary ARMA(1,1) process for any (α0, β0) ∈ (0, 1)2 and thus moments of any order

exist. Second, we note that E log+ (supθ∈Θ Λ0(θ)) < ∞ and E log (supθ∈Θ Λ0(θ)) < 0 since Λt(θ) =

|β−αIt| is smaller than 1 with probability 1 for any θ ∈ Θ and therefore by compactness supθ∈Θ Λt(θ) < 1

with probability 1. This concludes the proof of the lemma.

Lemma A.2. For some (α0, β0, π) ∈ (0, 1)3 there exists an ε > 0 such that

sup
θ∈Bε(θ0)

L(θ) < sup
θ∈Bcε (θ0)

L(θ).

Proof. In the following, we shall show that ∂L(θ)/∂β|θ=θ0 6= 0 for some (α0, β0, π) ∈ (0, 1)3. Then,

given the smoothness of the function L(θ) in Θ and the assumption that θ0 is an interior point of Θ, we can

conclude that the supremum of L(θ) in Θ is not contained in the closure of the set Bε(θ0) for small enough

ε > 0. This immediately proves the statement of the Lemma.

We are therefore left with showing that ∂L(θ)/∂β|θ=θ0 6= 0 for some (α0, β0, π) ∈ (0, 1)3. First, we

obtain a closed form expression for L(θ) and ∂L(θ)/∂β. Expanding the square in the expression of L(θ),

we obtain that L(θ) = −2−1π(1 + E[µot − µt(θ)]2) as εt is independent of the past observations as well as

the missing value process {It}t∈Z. We also note that, expanding the recursion in (6), µot can be written as

µot = α0

∞∑
k=1

ξk−1
0 yt−k,
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where ξ0 = β0 − α0. Therefore, considering the expression of µt(θ) in (11), we obtain that

(µot − µt(θ))2 =
∞∑
k=1

∞∑
s=1

(
α2

0ξ
k+s−2
0 + α2

[
k−1∏
i=1

ξ̃t−i

][
s−1∏
i=1

ξ̃t−i

]
It−kIt−s

− αα0ξ
k−1
0

[
s−1∏
i=1

ξ̃t−i

]
It−s − αα0ξ

s−1
0

[
k−1∏
i=1

ξ̃t−i

]
It−k

)
yt−syt−k. (16)

For convenience, we split the double sum in (16) in three terms, namely the sum of elements such that k = s,

k < s and k > s.

Taking into account that {It}t∈Z is an i.i.d. sequence of Bernoulli random variables and the indepen-

dence between {yt}t∈Z and {It}t∈Z, we obtain that the expectation of the sum of terms in (16) such that

k = s, which we denote as s1, is given by

s1 =
∞∑
k=1

(
α2

0ξ
2(k−1)
0 + α2πξk−1

Z − 2αα0πξ
k−1
0 ξk−1

B

)
γ0

=

(
α2

0

1− ξ2
0

+
α2π

1− ξZ
− 2αα0π

1− ξ0ξB

)
γ0,

where ξB = E(ξ̃t) = β − πα, ξZ = E(ξ̃2
t ) = π(β − α)2 + (1 − π)β2 and γk = E(ytyt−k) is given in

Lemma A.3 for k ∈ N. Similarly, the expectation of the sum of terms in (16) such that k < s, which we

denote as s2, is given by

s2 =
∞∑
k=1

∞∑
s=1

(
α2

0ξ
2(k−1)+s
0 + α2πξAξ

s−1
B ξk−1

Z

− αα0π
(
ξk−1

0 ξs+k−1
B + ξs+k−1

0 ξk−1
B

))
βs−1

0 γ̃

=
α2

0ξ0γ̃

(1− ξ2
0)(1− ξ0β0)

+
α2π2ξAγ̃

(1− ξBβ0)(1− ξZ)

− αα0πξB γ̃

(1− ξ0ξB)(1− ξBβ0)
− αα0πξ0γ̃

(1− ξ0ξB)(1− ξ0β0)
,

where ξA = β−α and γ̃ is given in Lemma A.3. Finally, it can be easily noted that the expectation of the sum

of terms in (16) such that k > s is equal to s2. As a result, we can conclude that E(µot −µt(θ))2 = s1 +2s2.

We can now compute the derivative with respect to β of s1 and s2. By elementary calculus, we obtain that

the derivative of s1 evaluated at θ = θ0 is given by

ṡ1 =
∂s1

∂β

∣∣∣∣∣
θ=θ0

=

(
2ξoBα

2
0π

(1− ξoZ)2
− 2α2

0ξ0π

(1− ξ0ξoB)2

)
γ0.
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Similarly, the derivative of s2 evaluated at θ0 is given by

ṡ2 =
∂s2

∂β

∣∣∣∣∣
θ=θ0

= ṡ22 + ṡ23 + ṡ24,

where

ṡ22 =α2
0π

2γ̃

(
(1− ξoBβ0)(1− ξoZ) + ξoAβ0(1− ξoZ) + 2ξoAξ

o
B(1− ξoBβ0)

(1− ξoBβ0)2(1− ξoZ)2

)
,

ṡ23 =− α2
0πγ̃

(
(1− ξoBβ0)(1− ξoBξo0) + ξoBξ0(1− ξoBβ0) + ξoBβ0(1− ξoBξ0)

(1− ξoBβ0)2(1− ξ0ξoB)2

)
,

ṡ24 =− α2
0πγ̃

(
ξ2

0(1− ξ0β0)

(1− ξ0β0)2(1− ξ0ξoB)2

)
,

with ξoA, ξoB and ξoZ denoting ξA, ξB and ξZ evaluated at (α, β) = (α0, β0). The derivative of L(θ) with

respect to β and evaluated at θ0 is therefore given by ∂L(θ)/∂β|θ=θ0 = −2−1π(ṡ1 + 2ṡ2). Finally, we

conclude the proof of the theorem by noticing that the derivative is different from zero for some (α0, β0, π) ∈

(0, 1)3. For instance, it is easy to verify that the derivative is different from zero at the point (α0, β0, π) =

(0.2, 0.95, 0.5). Other values can be used to obtain the same result.

Lemma A.3. When σ2
0 = 1 and ω0 = 0, the autocovariance function of yt, namely γk = E(ytyt−k), is

given by

γk =


1 +

α2
0

1−β2
0
, if k = 0

βk−1
0 γ̃, if k ≥ 1

,

where γ̃ = α0 +
α2

0β0

1−β2
0
.

Proof. The proof follows immediately by noting that yt is an ARMA(1,1) that has the following MA(∞)

representation

yt = α0

∞∑
i=1

βi−1
0 εt−i + εt,

where εt ∼ N(0, 1). It is then straightforward to obtain the expression for the autocovariance function

γk.
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A.2 Proofs of Section 4

Proof of Proposition 4.1. We obtain the consistency of θ̂S,T (θ̄), for every θ̄ ∈ Θ, by appealing to Theorem

3.4 in White (1994). In particular, we show that L̂S,T (θ, θ̄) converges a.s. to a limit deterministic function

L(θ, θ̄) = E log p
(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)
uniformly in θ ∈ Θ, for every θ̄ ∈ Θ, that is,

sup
θ∈Θ
|L̂S,T (θ, θ̄)− L(θ, θ̄)| a.s.→ 0 ∀ θ̄ ∈ Θ as T →∞, (17)

and that θ = θ∗(θ̄) is the identifiably unique minimiser of the limit criterion L(θ, θ̄), that is,

sup
θ∈Θ : ‖θ−θ∗(θ̄)‖>δ

L(θ, θ̄) < L(θ∗(θ̄), θ̄), ∀ δ > 0, θ̄ ∈ Θ . (18)

The identifiable uniqueness of θ∗(θ̄) in (18) follows by the compactness of Θ (Assumption 4.1), the

uniqueness of θ∗(θ̄) ∀ θ̄ ∈ Θ (Assumption 4.6) and the continuity of L(·, θ̄) for every θ̄ ∈ Θ, which is

ensured by the continuity and uniform convergence of L̂S,T (·, θ̄) shown below.

As concerns the uniform convergence in (17), for every θ̄ ∈ Θ, the triangle inequality yields

sup
θ∈Θ
|L̂S,T (θ, θ̄)− L(θ, θ̄)| ≤ sup

θ∈Θ
|L̂S,T (θ, θ̄)− LS,T (θ, θ̄)|+ sup

θ∈Θ
|LS,T (θ, θ̄)− L(θ, θ̄)|, (19)

where LS,T (θ, θ̄) denotes the log-likelihood function evaluated at the limit filter {fi,t(θ, θ̄)}. Therefore,

the desired uniform convergence follows if both terms on the right side of the inequality in (19) go to zero

almost surely. As concerns the first term, from Assumptions 4.4 and 4.5, we obtain that

sup
θ∈Θ
|L̂S,T (θ, θ̄)− LS,T (θ, θ̄)| =

= sup
θ∈Θ

∣∣∣ 1

ST

S∑
i=1

T∑
t=2

(
log p

(
yi,t(θ̄)|f̂i,t(θ, θ̄); θ

)
− log p

(
yi,t(θ̄)|fi,t(θ, θ̄); θ

))∣∣∣
≤ 1

ST

S∑
i=1

T∑
t=2

sup
θ∈Θ

∣∣∣ log p
(
yi,t(θ̄)|f̂i,t(θ, θ̄); θ

)
− log p

(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∣∣∣
≤ 1

ST

S∑
i=1

T∑
t=2

sup
θ∈Θ

sup
f

∣∣∣∇f log p
(
yi,t(θ̄)|f ; θ

)∣∣∣× sup
θ∈Θ

∣∣∣f̂i,t(θ, θ̄)− fi,t(θ, θ̄)∣∣∣ a.s.→ 0.

The a.s. convergence to zero follows by an application of Lemma 2.1 of Straumann and Mikosch (2006)

since the Lipschitz coefficient {supθ∈Θ supf |∇f log p(yi,t(θ̄)|f ; θ)|} is strictly stationary and ergodic with

a logarithmic moment (Assumption 4.5) and supθ∈Θ |f̂i,t(θ, θ̄)− fi,t(θ, θ̄)|
e.a.s.→ 0 (Assumption 4.4).2

2We emphasise that {supθ∈Θ supf |∇f log p(yi,t(θ̄)|f ; θ)|} is stationary and ergodic since it is a measurable function of the
stationary and ergodic sequence {yi,t(θ̄)} (Assumption 4.3).
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As concerns the second term on the right hand side of (19), we obtain the uniform convergence

sup
θ∈Θ
|LS,T (θ, θ̄)− L(θ, θ̄)| a.s.→ 0,

by an application of the ergodic theorem of Rao (1962), applied to the sequence {log p
(
yi,t(θ̄)|fi,t(·, θ̄); ·

)
}

with elements taking values in the Banach space of continuous functions C(Θ) equipped with supremum

norm. We notice that the sequence {log p(yi,t(θ̄), fi,t(·, θ̄), ·)} is strictly stationary and ergodic since each

element is a measurable function of the strictly stationary data yi,t(θ̄) and the limit filter fi,t(·, θ̄), for every

θ̄ ∈ Θ (Assumptions 4.3 and 4.4). Additionally, log p
(
yi,t(θ̄)|fi,t(·, θ̄); ·

)
has a uniform bounded moment

for every θ̄ ∈ Θ by Assumption 4.5. This enables the application of Rao (1962)’s law of large numbers and

obtain the desired result.

We can therefore conclude that θ̂S,T (θ̄) is strongly consistent for θ∗(θ̄). Furthermore, we note that

the strong consistency of θ̂T to θ∗(θ0) follows immediately since θ̂T has the same stochastic properties of

θ̂S,T (θ̄) with S = 1 and θ̄ = θ0. This concludes the proof of the Proposition.

Proof of Theorem 4.1. Following Theorem 3.4 in White (1994), we obtain the consistency of our indirect

inference estimator by showing that the indirect inference criterion ‖θ̂S,T (θ̄)− θ̂T ‖ satisfies

sup
θ̄∈Θ

∣∣∣ ‖θ̂S,T (θ̄)− θ̂T ‖ − ‖θ∗(θ̄)− θ∗(θ0)‖
∣∣∣ a.s.→ 0 as T →∞, (20)

and that θ0 is the identifiably unique minimiser of the limit criterion

inf
θ̄∈Θ : ‖θ̄−θ0‖>δ

‖θ∗(θ̄)− θ∗(θ0)‖ > ‖θ∗(θ0)− θ∗(θ0)‖ = 0 ∀ δ > 0.

The identifiable uniqueness follows immediately from the compactness of the parameter space and the

continuity and injective nature of the binding function θ∗(·) (Assumption 4.11); see Potscher and Prucha

(1997).

As concerns the uniform convergence of the criterion in (20), the reverse triangle inequality and the

triangle inequality yield

sup
θ̄∈Θ

∣∣ ‖θ̂S,T (θ̄)− θ̂T ‖ − ‖θ∗(θ̄)− θ∗(θ0)‖
∣∣ ≤

≤ sup
θ̄∈Θ

‖θ̂S,T (θ̄)− θ̂T − θ∗(θ̄)+θ0‖ ≤ sup
θ̄∈Θ

‖θ̂S,T (θ̄)− θ∗(θ̄)‖+ ‖θ̂T − θ0‖.
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Therefore, the desired result follows if both terms on the right hand side of the above inequality go a.s. to

zero. We obtain that the convergence of θ̂T to θ∗(θ0) follows by an application of Proposition 4.1 and the

uniform convergence of θ̂S,T (θ̄) to θ∗(θ̄) follows by an application of Lemma A.4.

Proof of Proposition 4.2. The asymptotic normality of the auxiliary statistics is obtained by appealing to

Theorem 6.2 in White (1994). In particular, we obtain the asymptotic normality of θ̂ST (θ0) by verifying the

following conditions:

(i) The strong consistency of the auxiliary estimator θ̂S,T (θ0)
a.s.→ θ∗(θ0);

(ii) Twice continuous differentiability of the pseudo log-likelihood function L̂S,T (θ, θ0) with respect to θ;

(iii) Asymptotic normality of the score evaluated at the pair (θ∗(θ0), θ0)

√
T∇θL̂S,T (θ∗(θ0), θ0)

d→ N(0,Σ∗S(θ0));

(iv) Uniform convergence of the Hessian

sup
θ∈Θ

∥∥∇2
θθL̂S,T (θ, θ0)− E∇2

θθLS,T (θ, θ0)
∥∥ a.s.→ 0.

(v) The Hessian matrix Ω∗(θ0) = E∇2
θθLS,T (θ∗(θ0), θ0) is non-singular.

First we note that Condition (i) is satisfied by an application of Proposition 4.1 and Condition (ii) is

satisfied by assumption.

As concerns condition (iii), we can re-write the score of the likelihood as

√
T∇θL̂S,T (θ∗(θ0), θ0) =

√
T∇θL̂S,T (θ∗(θ0), θ0)−

√
T∇θLS,T (θ∗(θ0), θ0)

+
√
T∇θLS,T (θ∗(θ0), θ0).

Therefore, the desired result can be proved by showing that a central limit theorem applies to the limit score

√
T∇θLS,T (θ∗(θ0), θ0)

d→ N(0,Σ∗S(θ0)),

and showing that that the remainder term vanishes almost surely

√
T∇θL̂S,T (θ∗(θ0), θ0)−

√
T∇θLS,T (θ∗(θ0), θ0)

a.s.→ 0 as T →∞.
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In particular, we obtain that the limit score is asymptotically Gaussian by an application of a central limit

theorem for sequences that are NED on α-mixing sequences; see Theorem 10.2 in Potscher and Prucha

(1997). Note that {yi,t(θ0)}, {fi,t(θ∗(θ0), θ0)} and {∇θfi,t(θ∗(θ0), θ0)} are NED of size −1 on an α-

mixing sequence (Assumptions 4.12 and 4.13), the score ∇θ log p is Lipschitz continuous on the first two

arguments (Assumption 4.14) and it has two bounded moments (Assumption 4.14). Therefore, it follows that

the score is NED of size -1 on the same α-mixing sequence; see Lemma 1 in Andrews (1991) and Corollary

6.8 in Potscher and Prucha (1997). Furthermore, since the α-mixing sequence has size −2r/(r − 1) for

some r > 2, and the score has mean zero and r moments (Assumption 4.14), we conclude that the score

satisfies a central limit theorem; see Wooldridge (1986), Gallant and White (1988) and Theorem 10.2 in

Potscher and Prucha (1997). We thus have that

√
T∇θLS,T (θ∗(θ0), θ0) :=

1√
TS

S∑
i=1

T∑
t=2

∇θ log p
(
yi,t(θ0)

∣∣fi,t(θ∗(θ0), θ0

)
; θ∗(θ0)

) d→ N(0,Σ∗S(θ0)),

where the asymptotic covariance matrix of the score is Σ∗S(θ0) = S−1Σ∗(θ0) + S−1
S K∗(θ0) with

Σ∗(θ0) = lim
T→∞

Var

(
1√
T

T∑
t=2

∇θ log p
(
yi,t(θ0)

∣∣fi,t(θ∗(θ0), θ0

)
; θ∗(θ0)

))

and K∗(θ0) = lim
T→∞

Cov

(
1√
T

T∑
t=2

∇θ log p
(
yi,t(θ0)

∣∣fi,t(θ∗(θ0), θ0

)
; θ∗(θ0)

)
,

1√
T

T∑
t=2

∇θ log p
(
yj,t(θ0)

∣∣fj,t(θ∗(θ0), θ0

)
; θ∗(θ0)

))
for some i 6= j.

Note that this expression of the covariance matrix Σ∗(θ0) is due to the fact that the scores of the pseudo

log-likelihood can be correlated. Additionally, we obtain that

∥∥√T∇θL̂S,T (θ∗(θ0), θ0)−
√
T∇θLT (θ∗(θ0), θ0)

∥∥
≤ 1√

TS

S∑
i=1

T∑
t=2

sup
f (0:1)

∥∥∥∇2
θf (0:1) log p

(
yi,t(θ0)

∣∣fi,t(θ∗(θ0), θ0

)
; θ∗(θ0)

)∥∥∥
×
∥∥∇0:1

θ f̂i,t(θ
∗(θ0), θ0)−∇0:1

θ fi,t(θ
∗(θ0), θ0)

∥∥ a.s.→ 0.

The almost sure convergence to zero follows by Lemma 2.1 in Straumann and Mikosch (2006) since the first

factor of the product above is stationary and ergodic with a logarithmic moment (Assumption 4.9) and the

second factor vanishes e.a.s. by Assumption 4.8. This implies that the double sum converges almost surely
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and therefore we obtain the a.s. convergence to zero because of 1/
√
T .

As concerns Condition (iv), we obtain that the triangle inequality yields

sup
θ∈Θ

∥∥∇θθL̂S,T (θ, θ0)− E∇θθLS,T (θ, θ0)
∥∥

≤ sup
θ∈Θ

∥∥∇θθL̂S,T (θ, θ0)−∇θθLS,T (θ, θ0)
∥∥+ sup

θ∈Θ

∥∥∇θθLS,T (θ, θ0)− E∇θθLS,T (θ, θ0)
∥∥

We are therefore left with showing that both terms on right hand side of the above inequality go to zero

almost surely. First, we note that the second therm vanishes by application of Rao (1962)’s ergodic theorem

since the required uniform moment condition is provided by Assumption 4.9. Instead, for the second term

we obtain that

sup
θ∈Θ

∥∥∇θθL̂S,T (θ, θ0)−∇θθLS,T (θ, θ0)
∥∥

≤ 1√
TS

S∑
i=1

T∑
t=2

sup
θ∈Θ

sup
f (0:2)

∥∥∥∇3
θθf (0:2) log p

(
yi,t(θ0)

∣∣fi,t(θ, θ0); θ
)∥∥∥

× sup
θ∈Θ

∥∥∇0:2
θθ f̂i,t(θ, θ0)−∇0:2

θθ fi,t(θ, θ0)
∥∥ a.s.→ 0.

where the almost sure convergence to zero follows by Lemma 2.1 in Straumann and Mikosch (2006) since

the required log moment condition for the first factor is given by Assumption 4.9 and the e.a.s. convergence

of the second factor is given by Assumption 4.8.

As concerns Condition (v), we have that this condition is immediately satisfied by Assumption 4.10.

Therefore, we conclude that

√
T
(
θ̂S,T (θ0)− θ∗(θ0)

)
d→ N

(
0,Ω∗(θ0)−1Σ∗S(θ0)Ω∗(θ0)−1

)
as T →∞.

Finally, we note that the asymptotic normality of θ̂T follows immediately since θ̂T has the same stochastic

properties of θ̂S,T (θ0) with S = 1. This concludes the proof of the Proposition.

Proof of Theorem 4.2. The proof of this theorem is available in Gourieroux et al. (1993). Note that the

asymptotic normality of the auxiliary statistics is obtained in Proposition 4.2 and that, asymptotically, we

have

Var
(√

T
(
θ̂T − θ̂S,T (θ0)

))
= Ω∗(θ0)−1

[
Σ∗(θ0) +

1

S
Σ∗(θ0) +

S − 1

S
K∗(θ0)− 2K∗(θ0)

]
Ω∗(θ0)−1

=
(

1 +
1

S

)
Ω∗(θ0)−1

(
Σ∗(θ0)−K∗(θ0)

)
Ω∗(θ0)−1.

Finally, we note that the form of the asymptotic covariance matrix simplifies because of exact identification.
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Lemma A.4. Let Assumptions 4.1-4.11 hold. Then, the pseudo ML estimator θ̂S,T (θ̄) converges a.s. and

uniformly to θ∗(θ̄), that is,

sup
θ̄∈Θ

‖θ̂S,T (θ̄)− θ∗(θ̄)‖ a.s.→ 0 as T →∞.

Proof. First, we note that an application of the mean value theorem yields

sup
θ̄∈Θ

‖θ̂S,T (θ̄)− θ∗(θ̄)‖ ≤ sup
θ̄∈Θ

‖∇θL̂S,T (θ∗(θ̄), θ̄)‖ sup
θ∈Θ

sup
θ̄∈Θ

∥∥∥(∇2
θθL̂S,T (θ, θ̄)

)−1∥∥∥
Therefore, the desired result is obtained if

sup
θ̄∈Θ

‖∇θL̂S,T (θ∗(θ̄), θ̄)‖ a.s.→ 0 as T →∞, (21)

and

sup
θ∈Θ

sup
θ̄∈Θ

∥∥∥(∇2
θθL̂S,T (θ, θ̄)

)−1∥∥∥ a.s.→ c 6= 0 as T →∞, (22)

are satisfied.

As concerns the convergence in (21), we obtain that

sup
θ̄∈Θ

‖∇θL̂S,T (θ∗(θ̄), θ̄)‖

≤ sup
θ̄∈Θ

‖∇θL̂S,T (θ∗(θ̄), θ̄)−∇θLS,T (θ∗(θ̄), θ̄)‖+ sup
θ̄∈Θ

‖∇θLS,T (θ∗(θ̄), θ̄)‖.
(23)

The second term on the right hand side of (23) vanishes a.s. by application of the ergodic theorem of Rao

(1962). In particular, E∇θLS,T (θ∗(θ̄), θ̄) = 0 for any θ̄ ∈ Θ and the uniform moment condition on the

score in Assumption 4.9 ensures the a.s. uniform convergence of ∇θLS,T (θ∗(θ̄), θ̄) to zero as T diverges.

Instead, for the the first term on the right hand side of (23), we obtain that

sup
θ̄∈Θ

∥∥∇θL̂S,T (θ∗(θ̄), θ̄)−∇θLS,T (θ∗(θ̄), θ̄)
∥∥

≤ 1

ST

S∑
i=1

T∑
t=2

sup
θ∈Θ

sup
θ̄∈Θ

∥∥∇θ log p
(
yi,t(θ̄)|f̂i,t(θ, θ̄); θ

)
−∇θ log p

(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∥∥
≤ 1

ST

S∑
i=1

T∑
t=2

sup
θ∈Θ

sup
θ̄∈Θ

sup
f (0:1)

∥∥∇2
θf (0:1) log p

(
yi,t(θ̄)|f̂i,t(θ, θ̄); θ

)∥∥
× sup
θ∈Θ

sup
θ̄∈Θ

∥∥∇(0:1)
θ f̂i,t(θ, θ̄)−∇(0:1)

θ fi,t(θ, θ̄)
∥∥ a.s.→ 0.
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This follows by an application of Lemma 2.1 in Straumann and Mikosch (2006) since the first factor on the

right hand side of the above inequality is stationary and ergodic with a logarithmic moment (Assumption

4.9) and the second factor vanishes e.a.s. by Assumption 4.8.

The uniform convergence of the inverse Hessian in (22) is obtained by establishing the uniform conver-

gence of the Hessian to a non-singular limit E∇2
θθ log p

(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)
(Assumption 4.10), that is,

sup
θ∈Θ

sup
θ̄∈Θ

∥∥∥(∇2
θθL̂S,T (θ, θ̄)

)−1∥∥∥ a.s.→ c 6= 0

⇐ sup
θ∈Θ

sup
θ̄∈Θ

∥∥∥∇2
θθL̂S,T (θ, θ̄)− E∇2

θθ log p
(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∥∥∥ a.s.→ 0.

The uniform convergence above is shown as follows. First, we obtain that

sup
θ∈Θ

sup
θ̄∈Θ

∥∥∥∇2
θθL̂S,T (θ, θ̄)− E∇2

θθ log p
(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∥∥∥
≤ sup

θ∈Θ
sup
θ̄∈Θ

∥∥∥∇2
θθL̂S,T (θ, θ̄)−∇2

θθLS,T (θ, θ̄)
∥∥∥

+ sup
θ∈Θ

sup
θ̄∈Θ

∥∥∥∇2
θθLS,T (θ, θ̄)− E∇2

θθ log p
(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∥∥∥ .
(24)

The second term on the right hand side of inequality (24) vanishes a.s. to zero by an application of the

ergodic theorem of Rao (1962), since ∇2
θθ log p

(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)
has a uniformly bounded moment by

Assumption 4.9. As concerns the first term on the right hand side of inequality (24), we obtain that

sup
θ∈Θ

sup
θ̄∈Θ

‖∇2
θθL̂S,T (θ, θ̄)−∇2

θθLS,T (θ, θ̄)‖

≤ 1

ST

S∑
i=1

T∑
t=2

sup
θ∈Θ

sup
θ̄∈Θ

∥∥∇2
θθ log p

(
yi,t(θ̄)|f̂i,t(θ, θ̄), θ

)
−∇2

θθ log p
(
yi,t(θ̄)|fi,t(θ, θ̄); θ

)∥∥
≤ 1

ST

S∑
i=1

T∑
t=2

sup
θ∈Θ

sup
θ̄∈Θ

sup
f (0:2)

∥∥∇3
θθf (0:2) log p(yi,t(θ̄), f̂i,t(θ, θ̄), θ)

∥∥
× sup
θ∈Θ

sup
θ̄∈Θ

∥∥∇(0:2)
θ f̂i,t(θ, θ̄)−∇(0:2)

θ fi,t(θ, θ̄)
∥∥ a.s.→ 0,

where the a.s. convergence to zero is obtained by an application of Lemma 2.1 in Straumann and Mikosch

(2006). In particular, the first factor on the right hand side of the above inequality is strictly stationary

and ergodic with a bounded logarithmic moment (Assumption 4.9) and the second factor vanishes e.a.s. by

Assumption 4.8. This concludes the proof of the lemma.
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