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Abstract

The paper develops a new realized matrix-exponential GARCH (MEGARCH) model, which uses
the information of returns and realized measure of co-volatility matrix simultaneously. The paper
also considers an alternative multivariate asymmetric function to develop news impact curves. We
consider Bayesian MCMC estimation to allow non-normal posterior distributions. For three US
financial assets, we compare the realized MEGARCH models with existing multivariate GARCH
class models. The empirical results indicate that the realized MEGARCH models outperform the
other models regarding in-sample and out-of-sample performance. The news impact curves based
on the posterior densities provide reasonable results.

Keywords: Multivariate GARCH; Realized Measure; Matrix-Exponential; Bayesian Markov
chain Monte Carlo method; Asymmetry.

JEL Classification: C11, C32.



1 Introduction

Estimation and forecasting time-varying co-volatilities between assets plays an important role in

asset pricing, portfolio selections, and risk management. A popular approach is to estimate con-

ditional covariance matrices via the multivariate models of the class of generalized autoregressive

conditional heteroskedasticity (GARCH) (see the survey paper by McAleer (2005) as an example).

Over the past two decades, realized measures of volatility have received unprecedented atten-

tion in the academic literature on modeling and forecasting of stock market returns volatility. In

the traditional literature on GARCH models, Engle and Gallo (2006) and Shephard and Sheppard

(2010), among others, incorporated realized measures for modeling and forecasting volatility. In

addition, Hansen, Huang, and Shek (2012) suggested the realized GARCH framework, which pro-

vides a structure for the joint modeling of returns and realized measures of volatility. By extending

the work of Hansen, Huang, and Shek (2012), Hansen and Huang (2016) developed the realized

exponential GARCH (EGARCH) model, which is an extension of the EGARCH model of Nelson

(1991).

In this paper, we consider a multivariate extension of the realized EGARCH model of Hansen

and Huang (2016). For the model specification, two features of the EGARCH model of Nelson

(1991) are to accommodate asymmetric effects and to guarantee the positive value of conditional

volatility via the exponential transformation. For asymmetric effects from asset returns to future

volatility, Hansen and Huang (2016) consider the second-order approximation of Hermite polyno-

mials, rather than the absolute value function of standardized returns, as used in Nelson (1991).

We consider a multivariate version of this type of specification, and develops news impact curves,

as in Engle and Ng (1993). Turning to the positive definiteness of conditional co-volatility, we

use the matrix-exponential transformation as in Chiu, Leonard, and Tsui (1996) and Kawakatsu
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(2005). We also incorporate measurement errors of realized volatility and co-volatility measures

in the specification of the new realized matrix-exponential GARCH model.

For estimating the multivariate GARCH models, Vrontos et al. (2003) estimated several

bivariate ARCH and GARCH models, and found that maximum likelihood (ML) estimates of the

parameters were different from their Bayesian MCMC estimates. As the differences can be caused

by the non-normality of the parameters, Vrontos et al. (2003) suggest careful interpretation of

the ML estimation. For this reason, the Bayesian Markov chain Monte Carlo (MCMC) technique

is considered in the paper, so that non-normal posterior distributions are obtained.

The remainder of the paper is organized as follows. Section 2 introduces the new realized

MEGARCH model and its news impact curve. Section 3 explains the MCMC algorithm for the

Bayesian estimation in detail. Section 4 provides an empirical example for three stocks traded

on the New York Stock Exchange. Section 4 compares five kinds of symmetric and asymmetric

models, using the deviance information criterion of Spiegelhalter et al. (2002) and the Frovenius

norm of forecast error. Section 4 also examines the MCMC estimates of the parameters, and

presents the news impact curves for describing effects from stock returns to future (co-)volatility

of its own and other assets.. Finally, Section 5 gives some concluding remarks.

2 Realized Matrix-Exponential GARCH Model

We develop a multivariate extension of the realized EGARCH model of Hansen and Huang (2016).

Let yt and xt be a financial asset return at day t and the log of its realized volatility measure,
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respectively. The Realized EGARCH of Hansen and Huang (2016) is given by:

yt = εt exp (ht/2) , εt ∼ N(0, 1)

xt = ξ + ht + δ(εt) + ut, ut ∼ N(0, σ2u) (1)

ht+1 = ω + ϕ(ht − ω) + τ(εt) + ψut,

where δ(ε) = δ1ε+δ2(ε
2−1) and τ(ε) = τ1ε+ τ2(ε

2−1), and εt and ut follow independent normal

distributions. The conditional log-volatility, ht, is determined by past information of innovation

terms, εt and ut. The asymmetric function, δ(ε) and τ(ε), can be interpreted as the second-

order approximation of the Hermite polynomials. Hansen and Huang (2016) consider a more

general framework, but their empirical results indicate that the above specification is sufficient

for practical purposes.

We extend the univariate model (1) to the multivariate case by considering matrix-exponential

transformation, as in Chiu et al. (1996). Chiu et al. (1996) suggested using the matrix-exponential

transformation in order to guarantee the positive definiteness of the covariance matrix. Kawakatsu

(2006) developed matrix-exponential GARCH models. For any square matrix, A, the matrix-

exponential transformation is defined by Exp(X) =
∑∞

i=0(1/i!)A
i, with A0 = I. The same result

is obtained by working with the spectral decomposition, as we have Exp(A) by replacing the

eigenvalues by their exponential transformation. Note that Exp(A) is positive definite, whenever

A is symmetric. In the same manner, Log(B) is defined by its spectral decomposition of a positive

definite matrix, B, with replacement of the logarithmic transformation of eigenvalues.

Let yt be an m-dimensional vector of financial asset returns. Define the matrix-logarithmic

transformation of an m×m matrix of realized volatility measures as Xt. We consider the realized
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matrix-exponential GARCH (MEGARCH) model defined by:

yt = Exp

(
1

2
Ht

)
εt, εt ∼ N(0, Im) (2)

Xt = Ξ+Ht +∆(εt) +U t, ut = vech(U t) ∼ N(0,Σu) (3)

Ht+1 = Ω+Φ⊙ (Ht −Ω) +G(εt) +Ψ⊙U t, (4)

where Ξ, Ω, Φ, Ψ are m×m symmetric matrices of parameters, Σu is an m∗-dimensional positive

definite matrix with m∗ = m(m + 1)/2, ⊙ denotes the operator of element-wise multiplication

(Hadamard product), εt and ut follow independent multivariate normal distributions, and ∆(ε)

and G(ε) are matrices of asymmetric functions, as defined below. By the specification (2)-(4), the

conditional volatility matrix, Exp(Ht), is determined by past information of innovation terms, εt

and ut.

As multivariate extensions of asymmetric functions, δ(ε) and τ(ε), we define:

∆(ε) = εδ′ + δε′ +Υ⊙ (εε′ − Im),

G(ε) = εγ ′ + γε′ + Λ⊙ (εε′ − Im),

(5)

respectively, where δ and γ are m-vectors of parameters, and Υ and Λ are m × m symmetric

matrices. By the specification (5), we obtain, E[∆(εt)] = O and E[∆(Gt)] = O with finite

covariance matrices.

By the structure of the realized MEGARCH model (2)-(5), yt and Xt are stationary, if {Ht}

is stationary. Since the process, {G(εt)+Ψ⊙U t}, has an independent and identical distribution

with mean zero, it can be considered as an innovation term. Hence the stationary condition is

|ϕij | < 1, where ϕij is the (i, j)-element of Φ.

We may consider an alternative specification of the asymmetric function based on the MEGARCH
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model of Kawakatasu (2006), as:

∆(ε) = unvech {Bδε+ F δ(ε
∗ − E(ε∗))} ,

G(ε) = unvech {Bε+ F (ε∗ − E(ε∗))} ,
(6)

where ε∗ is anm-vector with ith element |εi|, unvech (·) is the inverse operator of vech, andBδ, F δ,

B, and F are them∗×m matrices withm∗ = m(m+1)/2. These two realized MEGACRH models

reduce to the MEGARCH model by omitting (3), and setting Ψ = O in (4). In our empirical

analysis for model comparisons, we use the two MEGARCH and two realized MEGARCH models,

namely the MEGARCH model with (5) (quadratic function), the MEGARCH model with (6)

(Kawakatsu, 2006), the Realized MEGARCH model with (2)-(5), and the realized MEGARCH

model with (2)-(4) and (6) (Kawaktsu-type).

As an extension of Engle and Ng (1993), we can plot the news impact curve (NIC) via the

function

V = Exp
(
Ω+G

(
V −1/2y

))
, (7)

whih is obtained by setting Ht = Ω, U t = O, and Exp(Ht) = V in the realized MEGARCH

model, where V = E(yty
′
t).

3 Bayesian Estimation

3.1 MCMC Algorithm

In this subsection, we describe the Markov chain Monte Carlo (MCMC) technique for estimating

the realized MEGARCH model. For this purpose, we review briefly the development of MCMC

method in the GARCH literature. In the univariate class, Geweke (1989) suggested the impor-

tance sampling technique for estimating ARCH models, while Bauwens and Lubrano (1998), Kim,

Shephard and Chib (1998), Nakatsuma (2000), Vrontos, Dellaportas and Politis (2000), and Mit-

sui and Watanabe (2003) proposed several MCMC methods. Asai (2006) compared the above
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MCMC methods, and found that the best method is the so-called ‘tailored’ approach based on

the acceptance-rejection Metropolis-Hastings (ARMH) algorithm, with respect to the mixing, ef-

ficiency and computational requirement. For multivariate GARCH models, Vrontos, Dellaportas

and Politis (2003) used the Metropolis-Hastings algorithm of Vrontos, Dellaportas and Politis

(2000), while Ishihara, Omori and Asai (2015) worked with the tailored ARMH algorithm.

Based on recent developments of the MCMC technique, we can use a fast and efficient approach,

namely, the Delayed Rejection & Adaptive Metropolis (DRAM) algorithm of Haario et al. (2006).

The DRAM algorithm combines two ideas in the MCMC literature: adaptive Metropolis samplers

(Haario et al. 1999, 2001) and delayed rejection (Tierney and Mira, 1999; Green and Mira, 2001;

Mira 2002). The adaptive Metropolis sampler is based on the idea to create a Gaussian proposal

distribution with a covariance matrix calibrated using the sample path of the MCMC chain. The

basic idea of the delayed rejection is that, upon rejection in a Metropolis-Hastings algorithm,

instead of advancing time and retaining the same position, a higher stage move is proposed to

improve efficiency of the resulting MCMC estimators. We can apply the DRAM algorithm to

various univariate and multivariate conditional volatility models.

We explain the delayed rejection and the adaptive Metropolis-Hastings algorithm of the DRAM

algorithm of Haario et al. (2006). For the delayed rejection part, suppose the current position

of the Markov chain is θn = θ. As in a regular Metropolis-Hastings, a candidate move, θ
(1)
c , is

generated from a candidate generating density, q1(θ, ·) and accepted with the usual probability

α1(θ, θ
(1)
c ) = min

(
1, N1

D1

)
, where N1 = π(θ

(1)
c )q1(θ

(1)
c , θ) and D1 = π(θ)q1(θ, θ

(1)
c ) When it is re-

jected, instead of retaining the same position, θn+1 = θ, as we would do in a standard Metropolis-

Hastings, a second stage move, θ
(1)
c , is proposed. The second stage proposal is allowed to depend

not only on the current position of the chain but also on the rejected proposal: q2(θ, θ
(1)
c , ·).
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The second stage proposal is accepted with probability α2(θ, θ
(1)
c , θ

(2)
c ) = min

(
1, N2

D2

)
, where

N2 = π(θ
(2)
c )q1(θ

(2)
c , θ

(1)
c )q2(θ

(2)
c , θ

(1)
c , θ)[1−α1(θ

(2)
c , θ

(1)
c )] andD2 = π(θ)q1(θ, θ

(1)
c )q2(θ, θ

(1)
c , θ

(2)
c )[1−

α1(θ, θ
(1)
c )]. This process of delaying rejection can be iterated. If qi denotes the proposal den-

sity at the i-th stage, the acceptance probability at that stage is given by αi(θ, θ
(1)
c , . . . , θ

(i)
c ) =

min
(
1, Ni

Di

)
, where

Di = qi(θ, . . . , , θ
(i)
c )[qi−1(θ, . . . , θ

(i−1)
c )[qi−2(θ, . . . , θ

(i−2)
c ) · · ·

[q2(θ, θ
(1)
c , θ(2)c )[q1(θ, θ

(1)
c )π(θ)−N1]−N2]−N3] · · · −Ni−1]

Ni = π(θ(i)c )q1(θ
(i)
c , θ(i−1)

c )q2((θ
(i)
c , θ(i−1)

c , θ(i−2)
c ) · · · qi(θ(i)c , θ(i−1)

c , . . . , θ)

× [1− α1(θ
(i)
c , θ(i−1)

c )][1− α2((θ
(i)
c , θ(i−1)

c , θ(i−2)
c )] · · · [1− αi−1(θ

(i)
c , θ(i−1)

c , . . . , θ(1)c )].

As shown in Mira (2001), the process of delaying rejection can be interrupted at any stage. In

our analysis, we try at most 5 times to move away from the current position, otherwise we let the

chain stay where it is.

Now we turn to the explanation of the adaptive Metropolis-Hastings algorithm. The basic idea

is to create a Gaussian proposal distribution with a covariance matrix calibrated using the sample

path of the MCMC chain. Following Haario et al. (2006), when the current position is θn = θn,

we consider the proposal distribution with the multivariate normal distribution with mean θ and

covariance matrix defined by:

Sn =

{
S0, n ≤ n0
spCov(θ0, . . . , θn), n > n0

where sp = 2.42/p, p is the dimension of θ, and Cov creates the sample covariance matrix. In

our analysis, we set n0 = 2, 000. Combining the two approaches, Haario et al. (2006) showed the

ergodicity of the DRAM algorithm.
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3.2 Bayesian Estimation of Realized MEGARCH Models

Let θ = (vech(Ω)′, vech(Φ)′,γ ′, vech(Λ)′, vech(Ξ)′, δ′, vech(Υ)′, vech(Ψ)′, vech(L)′)′, where L is

the lower triangular matrix calculated by the Cholesky decomposition of Σu. Rather than sam-

pling Σu, we consider sampling L as this parametrization always guarantees the positive definite-

ness of Σu without imposing any restrictions. For Y = (y1, . . . ,yT ) and X = (X1, . . . ,XT ), the

joint density function is given by:

f(Y ,X|θ) =
T∏
t=1

f(yt|Ht)f(Xt|yt,Ht,θ) (8)

with

f(yt|Ht) ∝ |Exp(Ht)|−1/2 exp

(
−1

2
y′
tExp(−Ht)yt

)
,

f(Xt|yt,Ht,θ) ∝ |Σu|−1/2 exp

(
−1

2
vech (U t)

′Σ−1
u vech (U t)

)
,

where U t = Xt −Ξ−Ht −∆ (Exp(−0.5Ht)yt) and H1 = Ω.

We assume the multivariate (truncated) normal distribution for the prior distribution:

vech(Ω) ∼ N(µω,Σω), vech(Φ) ∼ N(µϕ,Σϕ)× S(Φ), γ ∼ N(µγ ,Σγ),

vech(Λ) ∼ N(µλ,Σλ), vech(Ξ) ∼ N(µξ,Σξ), δ ∼ N(µδ,Σδ),

vech(Υ) ∼ N(µυ,Συ), vech(Ψ) ∼ N(µψ,Σψ), vech(L) ∼ N(µl,Σl),

where S(Φ) is the region in which Φ satisfies the stationary condition, µω = −4 1m∗ , Σω = 5Im∗ ,

µϕ = vech(0.15Im + 0.8 1m1
′
m), Σϕ = 5Im∗ , µγ = 0, Σγ = 5Im, µλ = 0.01 1m∗ , Σλ = 5Im∗ ,

µξ = 0, Σξ = 5Im∗ , µδ = 0, Σδ = 5Im, µυ = 0.01 1m∗ , Συ = 5Im∗ , µψ = 0.01 1m∗ , Σψ = 5Im∗ ,

and 1m is the m-dimensional vector of ones.

With the prior distribution p(θ), we consider the joint posterior distribution:

π(θ|Y ,X) ∝ p(θ)f(Y ,X|θ),
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which is proportional to the prior density times the joint density. To obtain the posterior quantities

of the parameters from the posterior distribution, we implement the MCMC algorithm:

1. Initialize θ.

2. Generate θ|Y ,X by the DRAM algorithm.

3. Go to Step 2.

For the implementation issues, we discard the first 5,000 samples as the burn-in and use the

subsequent 10,000 samples for estimation. We also set S0 as the asymptotic covariance matrix

of the ML estimates of the realized MEGARCH model, and draw an initial value of θ from a

multivariate normal distribution with the mean of their corresponding values of prior distribution

and the covariance matrix, S0.

3.3 Illustration with Simulated Data

We generated T = 1, 000 observations for the bivariate (m = 2) realized MEGARCH model (2)-

(5), with parameter values listed in Table 1, which also shows the ML and Bayesian MCMC results.

For the Bayesian MCMC results, the posterior means are computed by averaging the simulated

draws; The 95% credible intervals are calculated using the 2.5th and 97.5th percentiles of the

simulated draws. P -value is for the convergence diagnostics suggested by Geweke (1992), in which

the test statistic approaches to the standard normal distribution if the corresponding Markov

chain is stationary for the retained 10,000 samples. P -values indicate that all series converge after

discarding the first 5,000 samples. Compared wth the ML estimates, the posterior means are close

to the ML estimates. The 95% credible intervals are wider than the 95% confidence interval for

the data set. The acceptance rate for the DRAM algorithm is 0.9435, which is close to 1 due to

the delayed rejection part of the DRAM.
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Figure 1 shows the estimated posterior densities for (ω11, ω21, ω22, ϕ11, ϕ21, ϕ22). Except for

ϕ11, the estimated desnities are far from the normal distribution with the same mean and variance.

As shown by Vrontos et al. (2003) and Asai (2006), the posterior densities for the GARCH class

model are generally non-normal.

Figure 2 illustrates the news impact curve, which shows effects from ith return to the (i, j)th

element of the one-step ahead conditional covariance matrix (i, j = 1, 2), given by equation (7). As

a feature of the MCMC technique, we obtain its posterior mean and 95% interval simultaneously.

For the specification with the data set, the effects from the ith return (i = 1, 2) on its own

conditional variance draws asymmetric curves, while the effects on other conditional variance give

(nearly) flat lines. The effects on conditional co-volatility give asymmetric curves, but they are

negligible when the impacts are positive.

4 Empirical Analysis

Three stocks traded on the New York Stock Exchange are selected, namely: Bank of America

(BAC), General Electric (GE), and International Business Machines (IBM). Based on the vector

of returns for the m = 3 stocks computed for a 1-minute interval of trading day at t between

9:30 am and 4:00 pm, we calculated the daily values of the estimates of integrated co-volatility

matrix, via the approach of Koike (2016). The estimator of Koike (2016) is robust to jumps

and microstructure noise, and has an ability to handle asynchronicity of the times at which

transactions are recorded. As in Asai and McAleer (2017), we modify the estimator of Koike

(2016) to guarantee the positive definiteness of the covariance matrix, by the threshold method

of Bickel and Levina (2008). We denote the estimate of integrated co-volatility matrix at dat t as

Ct, giving Xt = Log(Ct). The sample period starts at August 31, 2006, and ends on October 26,
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2012, giving 1500 observations. We also calculated the corresponding return vector, yt.

The sample is divided into two periods. The first 1000 observations cover the bankruptcy of

Lehmann Brothers (September 15, 2008) and the Greek government requesting an initial loan

from the EU (April 23, 2010). The former is the start of the global financial crisis, while the latter

is the beginning of the European debt crisis. The last 500 observations are used for forecasting.

Table 2 presents the descriptive statistics of the returns, volatility ad co-volatility. The empir-

ical distribution of the returns is heavily skewed to the left and is highly leptokurtic. Regarding

volatility and co-volatility, they are skewed to the right, with evidence of heavy-tails in all series.

Figure 3 shows the volatility and co-volatility of the three stocks, indicating that volatilities and

co-volatilities are high in the period of turbulence caused by the global and European financial

crises.

Using the return, volatility and co-volatility for three stocks, we estimated two kinds of realized

MEGARCH models: one is based on the asymmetric function (5), while the other is based on (6).

To compare these models, we also estimate two MEGARCH models (2) and (4), with U t = O

and G(ε) defined by (5) or (6), respectively. As a benchmark model, we use the BEKK model of

Baba et al. (1987) and Engle and Kroner (1995):

yt = H
1/2
t εt,

Ht+1 = Ω+A(yty
′
t −Ω)A′ +B(Ht −Ω)B′,

(9)

where Ht is the conditional covariance matrix, A and B are m × m square matrices, Ω is an

m-dimensional positive definite matrix. The specification is known as the ‘variance targeting’

BEKK model (see Laurent, Rombouts, and Violante (2012)).

Table 3 presents diagnostic results for the MCMC methods for estimating the five models. The

acceptance rate is close to one for the delayed rejection of the DRAM algorithm. The minimum of
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thw P -values diagnostics suggested by Geweke (1992) indicates that all Markov chains converged.

To compare the in-sample performance of the five models, we use the DIC (deviance informa-

tion criterion) of Spiegelhalter et al. (2002), defined by:

DIC = Eθ|Y ,X [D(θ)] + pD,

pD = Eθ|Y ,X [D(θ)]−D(Eθ|Y ,X [θ]), D(θ) = −2 log f(Y ,X|θ) + Cdata

where Cdata is a constant term that depends only on the data set {Y ,X}. Table 4 shows the

estimates of DIC for the five models. The realized MEGARCH model (quadratic function) has

the smallest DIC estimate, while the BEKK model has the largest DIC. Taking account of the

minimum and maximum values in the fluctuations of DIC, there are clear differences between the

realized MEGARCH models and the MEGACH models, and differences between the MEGARCH

models and BEKK model. On the other hand, there is an overlap of the distributions of DICs of

the two realized MEGACRH models. Compared with the differences in the models, the differences

based on the asymmetric function are minor.

Figure 4 shows the box plots of the posterior densities for the parameters of the realized

MEGARCH model with the quadratic function. Figure 4 implies that the posterior densities have

skewed and heavy-tails, which are non-normal. The densities of ϕij have a mass larger than 0.9,

indicating high persistence for the process of Ht. To examine the relationship between returns

and future (co-)volatilities, we need a careful consideration since the (i, j)-element of Ht does

not necessarily correspond to the (i, j)-element of Exp(Ht). Figure 5 presents the news impact

curves for the realized MEGARCH models with the quadratic function. Figure 5(a)(j)(r) shows

the asymmetric news impacts for their own future volatilities. Figure 5(g)(m) indicates that the
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news impacts from GE/IBM to future volatility of BAC are relatively large, while Figure 5(h)(l)

illustrates the asymmetric effects from GE/IBM to future co-volatility between BAC and itself.

The remaining news effects are relatively small. The results are reasonable as the financial sector

is considered to be sensitive to the fluctuations of stocks in other sectors for the period which

covers the GFC and EDC.

Fixing the sample size as T = 1, 000, we re-estimated all the models to obtain one-step-ahead

forecasts of co-volatility matrices based on updated posterior distributions. We use Ch as a proxy

for the true co-volatility matrix, and define the forecast error matrix as:

Eh = Ch − Exp
(
Hf

h

)
,

where Hf
h is the one-step-ahead forecast at time h. We compare the five models’ out-of-sample

forecast root-mean-squared error (RMSE) based on the Frobenius norm of the forecast error,

which is defined by

FN =
1

500

∑
h

||ET+h|| =
1

500

∑
t

∑
i,j

e2ij,T+h

1/2

, (10)

for the last 500 observations.

Table 5 presents the estimates of FN . The realized MEGACRH model (quadratic function)

has the smallest posterior mean, which is close to the results of the alternative realized MEGARCH

model. The upper bounds of the 95% credible interval of the FN of the realized MEGARCHmodels

are smaller than the lower bounds for the BEKK and the two MEGARCH models, implying the

superiority of the structure of the realized MEGARCH model. Figure 6 shows the forecasts of

the dynamic correlations and their corresponding realized measures calculated via cij,t/
√
xii,tcjj,t,

where cij,t is the (i, j) element of Ct. Figure 6 indicates that the forecasts of the correlation

dynamics capture the realized correlation well.
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For the period which covers the GFC and EDC, the empirical results show that the new

realized MEGARCH model gives the best fit to the data, and the best forecasts. Between the two

realized MEGARCH models, the quadratic asymmetric function provides better results, although

the difference is minor.

5 Conclusion

The paper developed a new realized matrix-exponential GARCH (MEGARCH) model, which is

an extension of univariate realized exponential GARCH model of Hansen and Huang (2016). We

considered the Bayesian MCMC estimation technique, which gives non-normal posterior distribu-

tions. Using returns and realized measures of the co-volatility matrix for three stocks traded on

NYSE, we found that the realized MEGARCH models outperformed the BEKK and MEGARCH

models for in-sample and out-of-sample performance. The news impact curves based on the pos-

terior densities presented reasonable results.

The new realized MEGARCH model and Bayesian MCMC estimation open the possibility for

many interesting research directions. We may develop a realized version of the BEKK model,

the dynamic conditional correlation model of Engle (2002), and the Cholesky GARCH model of

Dellaportas and Pourahmadi (2012). For these issues, we need to wait for further research on

modeling the appropriate specification of the measurement equation of the realized measure of

co-volatility matrix, so that its conditional and realized covariance matrices are positive definite.
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Table 1: Comparison of ML and Bayesian MCMC Results for Simulated Data

Parameter ML 95% Confidence Posterior 95% Credible P -value
Value Estimate Interval Mean Interval (Conv.)

ω11 = 1 1.1521 (0.7930, 1.5112) 1.2743 (0.3371, 2.6156) 0.9185
ω21 = 0 0.1850 (0.0289, 0.3411) 0.1915 (−0.1830, 0.5547) 0.8065
ω22 = 1 1.6565 (1.3510, 1.9621) 1.8296 (0.9419, 2.6976) 0.9612
ϕ11 = 0.98 0.9579 (0.9522, 0.9636) 0.9610 (0.9371, 0.9830) 0.9972
ϕ21 = 0.80 0.8098 (0.7963, 0.8232) 0.8068 (0.7563, 0.8464) 0.9980
ϕ22 = 0.95 0.9443 (0.9355, 0.9532) 0.9503 (0.9227, 0.9805) 0.9996
γ1 = −0.4 −0.2482 (−0.2620,−0.2344) −0.2550 (−0.2978,−0.2083) 0.9830
γ2 = −0.2 −0.2135 (−0.2235,−0.2035) −0.2142 (−0.2447,−0.1817) 0.9566
λ11 = 0.4 0.3406 (0.3174, 0.3638) 0.3706 (0.2934, 0.4377) 0.9624
λ21 = 0.3 0.1703 (0.1554, 0.1851) 0.1963 (0.1434, 0.2495) 0.9236
λ22 = 0.2 0.0889 (0.0827, 0.0952) 0.0934 (0.0740, 0.1156) 0.9018
ξ11 = −1.0 −1.4393 (−1.5255,−1.3531) −1.5320 (−1.7445,−1.3128) 0.9789
ξ21 = −0.5 −0.6166 (−0.6459,−0.5872) −0.6234 (−0.6965,−0.5408) 0.9878
ξ22 = −1.5 −2.1303 (−2.1945,−2.0662) −2.1929 (−2.4124,−1.9637) 0.9567
δ1 = −0.1 −0.0856 (−0.0978,−0.0735) −0.0947 (−0.1303,−0.0555) 0.9865
δ1 = −0.2 −0.2106 (−0.2211,−0.2001) −0.2138 (−0.2543,−0.1763) 0.9695
υ11 = 0.20 0.1700 (0.1480, 0.1920) 0.1930 (0.1136, 0.2524) 0.9234
υ21 = 0.15 0.0971 (0.0852, 0.1090) 0.1194 (0.0728, 0.1650) 0.9028
υ22 = 0.10 0.0371 (0.0317, 0.0426) 0.0352 (0.0066, 0.0659) 0.8096
ψ11 = 0.1 0.4361 (0.4188, 0.4534) 0.4421 (0.3471, 0.5010) 0.9631
ψ21 = 0.3 1.0591 (1.0446, 1.0735) 1.0598 (1.0129, 1.1046) 0.9990
ψ22 = 0.2 0.4798 (0.4523, 0.5073) 0.4827 (0.3891, 0.5837) 0.9839
l11 = 0.500 0.9144 (0.8811, 0.9478) 0.9404 (0.8262, 1.0736) 0.9985
l21 = 0.075 0.0666 (0.0367, 0.0965) 0.0919 (0.0018, 0.1845) 0.7750
l31 = −0.060 −0.0734 (−0.1055,−0.0412) −0.0594 (−0.1590,−0.0326) 0.7154
l22 = 0.250 0.4268 (0.4078, 0.4457) 0.4307 (0.3900, 0.4748) 0.9686
l32 = 0.120 0.1558 (0.1302, 0.1814) 0.1640 (0.0852, 0.2535) 0.8600
l33 = 0.200 0.4097 (0.3950, 0.4243) 0.4286 (0.3810, 0.4753) 0.9960
Acceptance

Rate 0.9435

Note: P -value is for the convergence diagnostic statistics suggested by Geweke (1992).
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Table 2: Descriptive Statistics of Returns, Volatilities and Co-Volatilities

Stock Mean Std.Dev. Skew. Kurt.

Return
BAC −0.2423 3.6214 −0.2525 13.054
GE 0.1230 1.2211 −0.3447 7.1232
IBM −0.0511 1.8591 −0.1674 11.200

Volatility
BAC 4.1286 10.338 8.8001 134.34
GE 0.7827 1.7139 8.4851 107.38
IBM 1.7100 4.0020 7.8978 92.847

Co-Volatility
(BAC,GE) 0.3694 1.2924 9.0682 124.53
(BAC,IBM) 0.6565 2.3697 7.9425 89.802
(IBM,GE) 0.4781 1.1807 7.5428 80.038

Table 3: MCMC Diagnostic Results

Model AR Min. P -value Median P -value Max. P -value

Real MEGARCH (qd) 1.0000 0.1629 09345 0.9996
Real MEGARCH (abs) 1.0000 0.1624 0.8681 1.0000
MEGARCH (qd) 1.0000 0.1767 0.8600 0.9996
MEGARCH (abs) 0.9697 0.1765 0.7521 0.9920
BEKK 1.0000 0.1710 0.8821 0.9965

Note: ‘AR’ denotes the acceptance rate of the DRAM algorithm. P -value is for the convergence diagnostic
statistic of Geweke (1992).
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Table 4: DIC Estimates

Model Ranking DIC S.E. DICmax DICmin

Real MEGARCH (qd) 1 25776.56 (155.84) 26278.34 25293.42
Real MEGARCH (abs) 2 26246.57 (334.48) 27648.75 25148.74
MEGARCH (qd) 3 32414.06 (53.14) 32677.01 32292.61
MEGARCH (abs) 4 32706.78 (150.76) 33252.62 32287.65
BEKK 5 36373.84 (67.64) 36679.49 36217.02

Table 5: Estimates of Frovenious Norm for Out-of-Sample Forecast Errors

Posterior 95% Credible
Model Ranking Mean Interval

Real MEGARCH (qd) 1 5.9444 (5.8446, 6.1054)
Real MEGARCH (abs) 2 6.1601 (6.0535, 6.3466)
MEGARCH (qd) 3 7.3730 (7.2344, 7.6333)
MEGARCH (abs) 4 9.8408 (9.6167, 10.6414)
BEKK 5 10.0824 (9.8822, 10.4021)
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Figure 1: Estimated Posterior Density for Simulated Data

Note: Histograms are normalized to estimate densities. The red line shows the corresponding normal density with

the same mean and variance.
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Figure 2: Estimated News Impact Curves for Simulated Data

Note: Posterior mean (solid line) and 95% interval (dotted lines) of the news impact curve via equation (7).
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Figure 3: Estimated Co-Volatility Matrix for Stock Returns

Note: Time series plots of (i, j)th element of covariance matrix; BAC (i, j = 1), GE (i, j = 2) and IBM (i, j = 3).
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Figure 4: Boxplots of Posterior Samples for the Realized MEGARCH Model

Note: The numbers for i and j indicate one of three stocks, namely, (1) BAC, (2) GE, and (3) IBM.
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Figure 5: Estimated News Impact Curves for Stock Market Data

Note: Posterior mean (solid line) and 95% interval (dotted lines) of the news impact curve via equation (7), which

measures the effect on (i, j)th element of co-volatility matrix by the impact of kth return, where the number indicates

three stocks, namely, (1) BAC, (2) GE, and (3) IBM.
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Figure 6: Realized Measures and Forecasts of Dynamic Correlations

Note: Figures 6(a)-(c) show the realized correlations, while Figures 6(d)-(f) illustrate the estimated posterior means

(solid line) and 95% intervals (dotted lines) of the one-step-ahead forecasts of correlation dynamics.
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