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Finite Sample Optimality of Score-Driven Volatility
ModelsI

Francisco Blasquesa, André Lucasa, Andries van Vlodropa

aVrije Universiteit Amsterdam and Tinbergen Institute

Abstract

We study optimality properties in finite samples for time-varying volatility models driven by the score

of the predictive likelihood function. Available optimality results for this class of models suffer from

two drawbacks. First, they are only asymptotically valid when evaluated at the pseudo-true parameter.

Second, they only provide an optimality result ‘on average’ and do not provide conditions under which

such optimality prevails. We show in a finite sample setting that score-driven volatility models have

optimality properties when they matter most. Score-driven models perform best when the data is fat-

tailed and robustness is important. Moreover, they perform better when filtered volatilities differ most

across alternative models, such as in periods of financial distress. These results are confirmed by an

empirical application based on U.S. stock returns.

Keywords: volatility models, score-driven dynamics, finite samples, Kullback-Leibler divergence,

optimality.

1. Introduction

The class of score-driven models introduced in Creal et al. (2011, 2013) and Harvey (2013)

has gained considerable popularity in the recent statistical literature. Score-driven models are

typically appreciated for their robustness properties since the models flexibly adapt themselves

to the distribution of the innovations. Despite being relatively new, a wide range of applications

of score-driven models is already available in the literature; see e.g. Harvey and Luati (2014) for

location and scale for fat-tailed data; Creal et al. (2014) for mixed measurement dynamic factor

models; Opschoor et al. (2017) for a multivariate dynamic covariance matrix; Blasques et al. (2016)

and Catania and Billé (2017) for applications to spatial models; and Janus et al. (2014), Lucas et al.

(2014, 2017), Salvatierra and Patton (2015), and Oh and Patton (2017) for recent applications to

score-driven copula models.
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Blasques, Koopman, and Lucas (2015) – from now on referred to as BKL2015 – provide one

of the theoretical motivations for score-driven models. They highlight the unique properties of

score-driven models by showing that these models are optimal in an information theoretic sense.

Their results, however, are only valid asymptotically when the model is evaluated at the limiting

pseudo-true parameter. Furthermore, their supporting Monte Carlo findings only illustrate that

score-driven models are optimal on average. Therefore, little is known about the finite sample

optimality properties of score-driven models.

In this paper, we try to fill this gap by answering two main questions. First, we study how

score-driven models perform when analyzed at a (finite-sample) parameter estimate rather than

at the pseudo-true parameter. Second, we investigate whether the better performance of a score-

driven volatility model depends on the properties of the data and the level of the time-varying

parameter itself: does the model perform better during either periods of high (or low) volatility,

and in the presence or absence of outliers and fat tails? As our benchmark we use the well-known

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model of Engle (1982) and

Bollerslev (1986), both with normally and Student’s t distributed error terms. We find that the

score-driven volatility model not only outperforms the GARCH models asymptotically, but also

in finite samples when evaluated at estimated parameter values, despite the considerable variation

in these estimates. We also find that the score-driven model performs better precisely when it

matters most, i.e., when volatility is high, data are fat-tailed, and robustness is most important.

Finally, we find empirically that score-driven volatility models perform best in periods of financial

distress. This finding is particularly useful in practice since it indicates that the optimality results

apply when we need them most.

Section 2 provides a further motivation and establishes the main concepts. Section 3 studies the

finite sample properties of score-driven volatility models evaluated at estimated parameter values.

Section 4 characterizes the volatility scenarios for which score-driven models perform best. Section

5 applies the results to U.S. stock returns. Section 6 concludes.

2. Score-driven volatility models and optimality

Let y1, y2, . . . , yT be a sample of financial returns with true time-varying conditional density

p0
t (yt | Yt−1), where Yt−1 = {y1, . . . , yt−1}. While the true unknown conditional density p0

t may be

potentially complex and nonparametric, we attempt to describe the distribution of the data using

a parametric model that generates a much smaller and simpler class of conditional densities. In

particular, we consider observation-driven models with a time-varying volatility component,

yt = σt εt, σ2
t+1 = h

(
σ2
t , yt;θ

)
, (1)

2



where {εt}t∈Z is a sequence of independent and identically distributed innovations with zero mean

and unit variance, h(·) is some measurable function, and θ is a vector of parameters. The function

h in (1) depends on one lag of σ2
t and yt only, but can easily be generalized to include more lags.

The key feature of (1) is that σ2
t depends on past values of yt only, which facilitates estimation of

θ by maximum likelihood (ML) using a standard prediction error decomposition. Let θ̂T denote

the ML estimator (MLE) based on a sample of size T .

The class of models in (1) includes many well-known models such as the ARCH model of

Engle (1982), the GARCH model of Bollerslev (1986), the EGARCH model of Nelson (1991), the

TGARCH model of Zakoian (1994), the QGARCH model of Sentana (1995), and many more. Each

of these models implies a parametric model density p(yt | σ2
t ; θ̂T ) = p(yt | Yt−1; θ̂T ) that aims to

approximate the true unknown conditional density p0
t (yt | Yt−1). The typical concrete objective is

to minimize a discrepancy D( · , · ) between the two distributions,

D
(
p0
t ( · | Yt−1) , p( · | Yt−1; θ̂T )

)
. (2)

Next, different models with different specifications for h in (1) can be compared in terms of

their ability to reduce the discrepancy in (2). BKL2015 showed that if one uses the familiar

Kullback-Leibler (KL) divergence as the discrepancy measure in (2), then we can identify a class

of observation-driven models that possesses unique fundamental approximation properties that

distinguish them from other models. This class of models is called score-driven models.

Score-driven models were introduced by Creal et al. (2011, 2013) and Harvey (2013).1 They

define the conditional density of yt given Yt−1 implicitly through a time-varying parameter ft that

is updated using the derivative of the time t log-likelihood function, also known as the score:

p(yt | Yt−1;θ) = p(yt | ft;θ) , ft+1 = ω + αst + βft , (3)

st := St ·
∂ log p(yt | ft;θ)

∂f
,

where St is a scaling matrix that is known given the data up to time t − 1. The model can be

generalized further by including more lags of ft and/or st, or by scaling the score by an estimate

of its local curvature via the matrix St. A typical concrete example of this model that we use

throughout this paper is based on a setting with ft = σ2
t and assuming a Student’s t distribution

with τ > 2 degrees of freedom and unit variance for εt in (1). Scaling the score by a factor pro-

portional to the time t inverse conditional Fisher information matrix to account for the curvature,

we then obtain a non-linear recurrence h(·) in (1) of the form

ft+1 = ω + α (wt y
2
t − ft) + β ft, wt =

(1 + τ−1)

1− 2τ−1 + τ−1 y2
t /ft

, (4)

1See www.gasmodel.com for a compendium of papers using score-driven dynamics.
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where θ = (ω, α, β, τ); see Creal et al. (2013) for further details. To ensure positivity of σ2
t at all

times, we assume σ2
1 > 0, ω > 0, and β > α > 0. If εt is normally distributed, τ−1 = 0 and wt = 1,

such that (4) reduces to the standard GARCH(1,1) recursion ft+1 = ω + α (y2
t − ft) + β ft =

ω + α y2
t + (β − α) ft. If τ−1 > 0, however, εt is modeled as a fat-tailed Student’s t distribution

and the recursion in (4) is fundamentally different from the GARCH(1,1) model with Student’s

t distributed innovations. In particular, outlying observations y2
t /ft are downweighted via wt,

thus lending the score-driven model a robustness feature. Intuitively, the score-driven dynamics

account for the fact that εt is fat-tailed. A large value of yt thus need not automatically be

attributed to an increase in volatility, but can also be due to the fat-tailed nature of the innovation

distribution. This results in a mitigated impact of such observations on the volatility dynamics in

the score-driven approach.

Let θ∗0 denote the MLE’s pseudo-true parameter, i.e., the probability limit of the MLE for θ

in (1) under the true (unknown) distribution p0
t (yt | Yt−1). Then BKL2015 derive an optimality

property for score-driven models like that in equation (4). They show that under appropiate

regularity conditions an observation-driven time-varying parameter model improves the local KL

divergence from time t to t+ 1 if and only if the volatility filter behaves like a score-driven filter,

i.e.,

D
(
p0
t ( · | Yt−1) , p( · | ft+1;θ∗0)

)
< D

(
p0
t ( · | Yt−1) , p( · | ft;θ∗0)

)
, (5)

if and only if ft is updated in the direction suggested by the score st as in (3), where D(·, ·) denotes

the local KL divergence.

The theoretical optimality results in BKL2015 are supported by a Monte Carlo study for the

score-driven volatility model in (4). These results show that the score-driven Student’s t based

volatility model outperforms the popular GARCH and t-GARCH specifications not only in a local

sense, but even in terms of global expected KL divergence. This suggests that a score-driven

approach can lead to a better description of the conditional data density, globally, and over time.

The results reported in BKL2015, however, are subject to two important limitations. First,

the model comparisons are performed by evaluating each parametric model at its (asymptotically)

best possible parameter, namely, the pseudo-true parameter θ∗0. There is no reason to assume that

the results continue to hold if the models are evaluated at the estimated parameter θ̂T in a finite

sample. To illustrate the potential extent of this problem, consider Figure 1. The figure shows the

results of an extensive simulation experiment where we generated T = 1, 000 data points from a

stochastic volatility data generating process (DGP),

yt = σt εt =
√
ft εt, log ft+1 = a+ b log ft + υt, (6)

where εt ∼ t(τ), i.e., εt follows a Student’s t distribution with unit variance and τ degrees of

freedom, and υt ∼ N(0, σ2
υ) is serially independent and independent from εt. For this stochastic

4



0 0.05 0.10
α̂ t-GAS

0

0.05

0.10

α̂
t-
G
A
R
C
H

Scatterplot α̂, τ = 5

Figure 1: Estimated α parameters of the Student’s t score-driven volatility model (t-GAS) against the standard

t-GARCH model. Pseudo-true values are plotted as a circle with plus.

volatility DGP we took the same parametrization as in BKL2015, (a, b, συ) = (0.00, 0.98, 0.065),

and considered τ ∈ {3, 4, 5, 7, 9}. For each generated series, we estimated θ = (ω, α, β, τ) by the

MLE θ̂T for both the score-driven model (t-GAS) and the t-GARCH model. We repeated the

process N = 1, 000 times for each DGP.

Figure 1 presents the results for α̂T for both models for the case τ = 5.2 The figure also plots

the pseudo-true values α∗0 for both models as the circle with a plus around the point (0.020, 0.015).

We clearly see that there is substantial variability in the MLE point estimates obtained from a

t-GARCH and a t-GAS model. In particular, the point estimates in finite samples may differ

substantially from the asymptotic pseudo-true value as used in BKL2015. Sometimes the finite

sample estimate of the t-GARCH model is closer to its pseudo-true value, while at other times the

t-GAS estimate is closer. It is therefore difficult to say from the figure whether the asymptotic

optimality results carry over to the finite sample setting, either on average or conditionally. In

Section 3 we therefore demonstrate that the score-driven model still outperforms its competitors

in a KL divergence sense in finite samples.

A second drawback of the simulation results in BKL2015 is that they only show that the score-

driven model outperforms its competitors on average. It is not clear whether the outperformance is

due to the less interesting low-volatility periods, or to the more interesting high-volatility periods.

Particularly in periods of distress / high-volatility, we would appreciate a model that fits the true

DGP better. The top panel in Figure 2 shows that we can obtain more articulate results on

2Results for the other parameters (ω̂T , β̂T , τ̂T ) and for other degrees of freedom (τ) for the DGP reveal a similar

message and can be found in Figure 10 in the Appendix.
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Figure 2: The top panel shows the estimated conditional volatility paths for the t-GAS and t-GARCH models. The

arrows show the time points at which outliers impact the t-GARCH paths. The shaded regions show the periods of

volatility clustering. The bottom panel shows the difference in in-sample log predictive score for each observation.

when the score-driven volatility model and the GARCH alternatives differ. The figure plots the

filtered volatility paths for Google stock returns for the t-GARCH and t-GAS models. The shaded

areas highlight the periods of high volatility. The bottom panel shows the difference in in-sample

log predictive score between the two models. Positive values indicate a preference for the score-

driven t-GAS model. It is clear that the filtered volatilities differ mostly during high-volatility

periods. Also, the difference in log predictive scores are on average more positive during highly

volatile periods. Both features suggest that the score-driven approach may be most valuable during

periods when it matters most. The figure also highlights a number of outliers by means of arrows.

These observations appear to distort the filtered volatilities of the t-GARCH model much more

than their t-GAS counterparts, again highlighting that the asymptotic optimality properties of the

score-driven approach may extend to finite samples, and may be sharpened to include statements

conditional on the volatility level. We investigate this in detail in Section 4.

3. Optimality in finite samples

To investigate whether the asymptotic optimality properties of the score-driven approach char-

acterized in BKL2015 carry over to finite samples, we conduct an extensive Monte Carlo study.

In this study, we compare the standard GARCH model of Engle (1982) and Bollerslev (1986), the

6



Table 1: Models used in the Monte Carlo comparison

Model Observation Eq Innovation Density Transition Eq

GARCH yt =

√
f̃tεt εt ∼ N(0, 1) f̃t+1 = ω(1− β) + α(y2

t − f̃t) + βf̃t

t-GARCH yt =

√
f̃tεt εt ∼ t(τ̃) f̃t+1 = ω(1− β) + α(y2

t − f̃t) + βf̃t

t-GAS yt =

√
f̃tεt εt ∼ t(τ̃) f̃t+1 = ω(1− β) + αst + βf̃t

log-GAS yt = exp(f̃t/2)εt εt ∼ t(τ̃) f̃t+1 = ω(1− β) + αst + βf̃t

fat-tailed t-GARCH model of Bollerslev (1987), the t-GAS model of Equation (4) as introduced

by Creal et al. (2011, 2013), and the log-GAS model introduced in Harvey (2013). The latter uses

an updating equation for log volatility ft = log(σ2
t ). The different models and their specifications

are summarized in Table 1. For notational purposes, we indicate the (model) filtered volatility

by f̃t = f̃t(θ) and distinguish it from the true DGP volatility ft. We also use this notational

convention for the degrees of freedom parameter, which is τ̃ for the model, and τ for the DGP.

The Monte Carlo set-up is as described for Figure 1 in Section 2, with a stochastic volatility DGP.

None of the statistical models thus coincides with the DGP.

Following BKL2015, we are foremost interested in the performance of the different models in

terms of their KL divergence. We evaluate the KL divergence between the true conditional density

p0
t (·|Yt−1) and the model-implied conditional density p(yt|ft, θ̂T ), where the latter is evaluated at

the point estimate θ̂T ,

D
(
p0
t ( · | Yt−1) , p( · | ft; θ̂)

)
=

∫ (
log p0

t (y | Yt−1)− log p(y | ft; θ̂T )
)
p0
t (yt | Yt−1) dy, (7)

where both expectations are taken with respect to the true conditional density p0
t . Given the

stationarity and ergodicity of the DGP, we can approximate the KL divergence using a sample

average over a very long path of H = 500, 000 observations,

1

H

H∑
t=1

log p0
t (yt | Yt−1)− 1

H

H∑
t=1

log p(yt | ft; θ̂T ), (8)

where the sample (with H observations) used to evaluate the KL divergence is different from the

sample (with T = 1, 000 observations) used to compute the MLE θ̂T . We repeat this calculation

for each of the N = 1, 000 simulated series of length T = 1, 000 with corresponding point estimates

θ̂T . As the average involving log p0
t (yt | Yt−1) in (8) does not depend on the estimated parameter

values, we only need to compute it once. We do so using a particle filter based on the DGP specified

for the simulation.

Besides the KL divergence we also consider the pathwise average root mean squared error

7
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Figure 3: Divergence criteria of the GARCH, t-GARCH, and log-GAS models (from left to right) relative to the

t-GAS model. The left panel displays the relative Kullback-Leibler (KL) divergences and the right panel displays

the RMSE for the DGP with degrees of freedom parameter τ ∈ {3, 5, 9}. The box plots show the interquartile range

(in the box), the median (white bar), the mean (black bar) and the middle 95% (from end to end). The divergence

criteria for the pseudo-true parameter values are shown in white circles. The sample consists of N = 1, 000 Monte

Carlo simulations for each τ ∈ {3, 5, 9}. Positive values indicate the t-GAS model performs better.

(RMSE). We compute the RMSE based on the filtered volatility paths as

R̂MSE(f, f̃) =

√√√√ 1

H

H∑
t=1

(
ft − f̃t(θ̂T )

)2

, (9)

where ft denotes the true volatility parameter from the DGP, and f̃t(θ̂T ) denotes the filtered

volatility evaluated at the estimated parameter value θ̂T for a specific model from Table 1. The

RMSE thus measures the model discrepancy in terms of the volatility parameter only, whereas the

KL divergence measures the discrepancy in terms of all distributional properties.

The results for this Monte Carlo study are depicted in Figure 3. The left-hand panel reports

the distribution of the average KL divergence and RMSE of the GARCH, t-GARCH and log-GAS

models relative to the t-GAS model. The relative KL divergence is approximately zero if the t-GAS

model and its competitor provide a similar description of the DGP. It is positive if the t-GAS model

provides a better description, and negative if the t-GAS model performs worse than its competitor.

The same holds for the RMSE (right-hand panel). The maximum relative KL divergence is one,

in which case the t-GAS model performs infinitely better. The results are presented as box-and-

whisker plots based on the N = 1, 000 simulated time series. There are three boxes for each of the

degrees of freedom considered, namely for τ = 3, 5, 9.

We see that the median relative performance in finite samples coincides with the asymptotic

performance (at the pseudo-true value) studied in BKL2015. There is, however, considerable spread

around this median (or asymptotic) relative performance. Still, we see that the t-GAS performs

considerably better in terms of KL divergence than the GARCH model, particularly if the DGP is

8



0 0.02 0.04 0.06 0.08 0.1
−0.04

−0.02

0

0.02

0.04

0.06

p

p̂
−
p

Large Sample

0 0.02 0.04 0.06 0.08 0.1
−0.04

−0.02

0

0.02

0.04

0.06

p

p̂
−
p

T = 1, 000

 

 

t-GAS (τ = 3)

t-GARCH
t-GAS (τ = 5)

t-GARCH

Low ft = σ
2
t

All ft = σ
2
t

High ft = σ
2
t

Figure 4: Unconditional deviation of VaRt(p)-break probabilities p̂ − p for the t-GAS and t-GARCH model for

nominal VaR levels p ∈ (0, 0.1]. The DGP has τ = 3 or τ = 5 degrees of freedom. The VaR is computed

under the model density p(yt | ft;θ), and the VaR-break probability p̂ is computed under the true DGP as p̂ =

H−1
∑H

t=1 1{yt < −VaRt(p)} for H = 500, 000. The left panel displays the results for the models evaluated at the

pseudo-true parameters (θ = θ∗
0). The right panel displays the averages over the N = 1, 000 replications of the

deviations evaluated at θ = θ̂T . Results are provided for all ft and for high and low ft, respectively.

fat-tailed (τ = 3). The median relative KL divergence is far above zero, and even accounting for the

spread across N = 1, 000 different samples, we still see that the entire box (inclusive of whiskers) is

far above the horizontal axis. If the DGP has lighter tails, the t-GAS model continues to perform

better, but the margin of outperformance decreases somewhat. This decrease is to be expected,

as for large τ also τ̂T is large, and the t-GAS and GARCH specifications coincide more and more.

The t-GAS model also has better KL divergence properties than its t-GARCH counterpart. The

outperformance is more modest, but still clearly visible. Though not uniform for every sample as in

the case of t-GAS versus GARCH, the KL divergence is better for t-GAS versus t-GARCH for the

vast majority of samples considered, at least for τ = 3 and τ = 5. Finally, the performance of the

t-GAS and log-GAS models are highly similar, such that we can conclude that the precise form of

parameterizing the time-varying parameter matters less in this case. All findings are corroborated

if we consider the relative RMSEs rather than the relative KL divergences.3

Volatility models like that in (1) are typically used to estimate economic or financial risk.

Therefore, as a final exercise we also compare the different models in direct economic terms. A

well-known risk measure is Value-at-Risk, or VaR, which is defined as a quantile of the conditional

distribution p(yt | ft; θ̂T ) for profits or returns yt, such that larger losses than VaRt(p) only occur

3We note that if one estimates the t-GARCH model parameters through (Gaussian) QML as is typically done

in the literature, one obtains the same estimates of ω, α, β as for the GARCH model. As a result, the RMSE in

the right panel of Figure 3 for GARCH coincides with the RMSE of the t-GARCH model estimated using Gaussian

QML. We see that ML estimation of the t-GARCH model performs slightly better than Gaussian QML estimation

in terms of RMSE performance.

9



with probability (at most) p, i.e.,

P [yt < −VaRt(p) | Yt−1] = p.

We compute the VaRt(p) based on the model distribution p(yt | ft; θ̂T ) and then evaluate its

accuracy under the true DGP. Note that all models considered are mis-specified for the DGP.

We approximate the true probability of a loss larger than VaRt(p) by the time series average of

indicator functions over a long sample H, i.e., p̂ = H−1
∑H
t=1 1{yt < −VaRt(p)}. We do this for

different nominal probability levels p ∈ (0, 0.1] and two different degrees of freedom for the DGP,

τ = 3, 5. Figure 4 presents the results.

The unconditional (All ft = σ2
t ) VaR-break probabilities p̂ roughly coincide with the nominal

levels p for both degrees of fat-tailedness (τ = 3, 5) considered, both for the t-GAS and t-GARCH

model, and both at the pseudo-true parameter (large sample) and at the finite sample estimates

(T = 1, 000). This is already interesting: despite the fact that both the score-driven GAS model

and the GARCH model are mis-specified for the stochastic volatility DGP, they are able to reliably

estimate the tail shape of the distribution by the approximating statistical model. The conditional

results for high and low (true) volatility levels, however, reveal a clear difference between the

performance of the t-GAS and t-GARCH model.4 Both for high and low volatility levels the

difference |p̂−p| is closer to zero for the t-GAS model, indicating that for extreme volatilty outcomes

the score-driven t-GAS specification captures the tails of the distribution more accurately. This

result holds at the pseudo-true value, but carries over to the finite sample setting as well. More

specifically, the t-GARCH has too high a p̂ compared to p vis-à-vis the t-GAS model. This means

that the t-GARCH quantile is not far enough out into the tails, implying that the t-GARCH

underestimates volatility in case volatility and thus risk is high. Similarly, for low volatility levels

the t-GARCH quantile is too far out into the tail and overestimates volatility and thus risk. In both

cases, the t-GAS model positions the appropriate risk quantile more accurately. We investigate

the origin of these differences in more detail in the next section.

4. Performance over different volatility states

Both Figures 2 and 4 are suggestive that the t-GAS model outperforms the t-GARCH model

particularly in the tails of the volatility distribution. This includes the distressed periods during

which outperformance matters most in economic terms. In this section we study this phenomenon

in more detail to uncover its origins.

4High volatility levels refer to values of ft above the 90th percentile of the unconditional distribution of ft in (6).

Similarly low volatility levels refer to values below the 10th percentile.
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Figure 5: Relative KL divergences between the t-GAS and t-GARCH models conditional on a true variance fT at

time T for the stochastic volatility model DGP. Positive values indicate the t-GAS performs better. The left panel

shows the results when evaluated at the pseudo-true parameter values, while the right panel shows the results for

the average over the finite sample estimates θ̂T . Number of replications is N = 1, 000 for each of the parameter

draws θ̂T .

We first investigate the KL divergence behavior of the different models conditional on the true

volatility state. For this, we set up a new set of simulations. As we want to condition on a particular

volatility level, we want to simulate data in such a way that the final volatility level is high (or

low), as desired. Therefore, for a grid of final volatility levels fT , we simulate backwards a range

of volatility paths fT , fT−1, . . . , f1 that could have let up to the current volatility level. Given

the Gaussian autoregressive structure of the stochastic volatility DGP in (6), the log-volatility

process is time reversible and we can simulate past volatility scenarios by the simple time-reversed

recursion

log ft−1 = a+ b log ft + υt, υt ∼ N(0, σ2
υ),

for (a, b) = (0.00, 0.98); see Ōsawa (1988). We use 1,000 (backward) simulated volatility paths

fT , . . . , f1 to draw paths of yt as in (6). This allows us to construct estimates of the expected

KL divergences at time T conditional on fT for both the t-GAS and t-GARCH model. For each

model and each parameter draw θ̂T obtained earlier, the conditional (on fT ) expected relative KL

divergence is estimated by the average over the KL divergences at time T for the 1,000 backward

simulated volatility paths.

Figure 5 presents the average relative KL divergences of the t-GAS versus the t-GARCH model

conditional on the value of fT . Positive values indicate that the t-GAS model does better. Both

panels in Figure 5 illustrate that the t-GAS indeed performs better in the tails of the volatility

distribution (high and low values of fT ), both at the pseudo-true parameter (left panel) and at

the finite sample estimates (right panel). The fatter tailed the DGP, the more pronounced is the

11



0 250 500 750 1000
1

6

f
t
=

σ
2 t

Paths of ft = σ
2
t

0 400 600 1000
1

6

0 500 1000
1

6

0 1000
0

3.5

t

0 250 500 750 1000
−0.5

0

0.5

R
K
L
D
iv

Expected Relative KL Divergences

0 400 600 1000
−0.5

0

0.5

0 500 1000
−0.5

0

0.5

0 1000
−0.5

0

t

 

 

τ = 3 τ = 4 τ = 5 τ = 9

Figure 6: Relative KL divergences between the t-GAS and t-GARCH models for four pre-specified paths of ft = σ2
t .

Positive values indicate the t-GAS performs better. The left panels visualize the volatility paths. The right panels

show the time series of expected relative KL divergences. For each path we take τ ∈ {3, 4, 5, 9}. The expectations

are obtained using Nf = 2, 500 Monte Carlo simulations.

difference. The pattern is stronger at the pseudo-true parameter, because the finite sample results

are averaged across a wide range of finite sample estimates, see Figure 1. To sum up, Figure 5

clearly indicates the better performance of the t-GAS model in periods of high (and low) volatility.

This holds both in terms of accuracy of the fit in the tails of ft (Figure 4) and in terms of relative

KL divergence (Figure 5).

The results are further corroborated in Figure 6. Here we plot the relative KL divergence over

time for a number of deterministic volatility paths. Similar paths were used in Engle (2002) to

show how well a model keeps track of the true time-varying parameters. The figure shows that

the t-GAS outperforms the t-GARCH model in periods of high and low volatility. For example,

for the sine wave pattern, we see peaks in relative KL divergence around t = 0, 250, 500, 750, 1000,

which are precisely the times at which volatility is at a peak or a trough. Similar patterns emerge

for the pulse and sawtooth case. We see a short underperformance of the t-GAS precisely at the

time of the volatility break in those cases, but already quickly after the t-GAS picks up again and

outperforms the t-GARCH in terms of relative KL divergence. The results are consistent across

different degrees of fat-tailedness (τ) of the DGP.

The better performance of the t-GAS model should be closely related to the t-GAS model

stepping more often in the correct direction than the t-GARCH model, or, at least, stepping less

aggressively in the wrong direction. Figure 7 visualizes that this is indeed the case, particularly
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Figure 7: Illustration of the differences in the scaled score functions of the t-GAS and t-GARCH models. The left

panel displays the shape of the scaled score functions for different values of τ̃ , a fixed f̃t = σ̃2
t = 4, and an incoming

|yt|. The right panel shows the sign regions of these scaled score functions.

for more fat-tailed data, i.e., for lower values of τ . The left panel plots the scaled score steps of

the t-GAS model for a range of estimated degrees of freedom τ̃ . For τ̃ → ∞, the t-GAS and the

t-GARCH model coincide. The left panel shows that the t-GAS model is increasingly robust if the

innovations in the model are fatter tailed (small τ̃). This robustness property is what drives the

better performance under fat-tailedness: outliers have a reduced impact, which causes the t-GAS

model to step less quickly in the wrong direction.

The right panel in Figure 7 illustrates when the t-GAS and t-GARCH models step in different

directions. The white regions indicate where the t-GAS and the t-GARCH models step in the same

direction, either by decreasing volatility (left-hand white region) or by increasing it (right-hand

white region). The black region in the middle indicates where the two models step in different

directions. If τ̃ is large (vertical axis), the region of |yt| where the two models take a differently

signed step is small. If τ̃ is small, i.e., if we account for a high degree of fat-tailedness, the region

is substantial and explains part of the difference in performance between the two models, as the

models step into different directions more often.

The different performance of the two models becomes even clearer if we introduce the concept

of local improvements (LI) and the corresponding conditional probability of a local improvement

(CPLI).

Definition 1 (LI). An update from f̃t to f̃t+1 is called a Local Improvement (LI) if

D
(
p0
t (yt | Yt−1) , p(yt | f̃t+1;θ∗0) , Y

)
< D

(
p0
t (yt | Yt−1) , p(yt | f̃t;θ∗0) , Y

)
,
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where

D
(
p0
t ( · | Yt−1) , p( · | f̃t;θ∗0) , Y

)
=

∫
Y

(
log p0

t (y | Yt−1)− log p(y | f̃t;θ∗0)
)

p0
t (y | Yt−1) dy,

is the local KL divergence over the set Y , and where Y = {y : |y − yt| < δ}, δ → 0.

Definition 2 (CPLI). The Conditional Probability of a Local Improvement (CPLI) of a parameter

update at time t given f̃t and yt is defined as

CPLI(f̃t, yt) = P

[
D
(
p0
t (yt | Yt−1) , p(yt | f̃t+1; θ̂T ) , Y

)
< D

(
p0
t (yt | Yt−1) , p(yt | f̃t; θ̂T ) , Y

) ∣∣∣∣∣ yt, f̃t
]
,

where Y = {y : |y − yt| < δ}, δ → 0, and where the probability P[ · | yt, f̃t] is taken with respect to

the randomness in θ̂T .

The concept of LI is intuitive. At time t, conditional on the filtered f̃t, the incoming yt contains

new information about the true unknown conditional density. Therefore, in order to track this true

unknown density by the statistical model, the best we can do is to aim for an increase in the model

density at yt using the update step for the time-varying parameter from f̃t to f̃t+1. The LI is

evaluated at the pseudo-true parameter θ∗0. The CPLI can be used to assess the improvement

behavior at the finite sample estimate θ̂T . As θ̂T is random, the binary check in Definition 1 is

replaced by the probability statement in Definition 2, where the randomness in the estimate θ̂T is

integrated out.

The top panels of Figure 8 show the LI results for the t-GARCH (left panel) and t-GAS (right

panel) models evaluated at their pseudo-true parameters under the stochastic volatility DGP with

τ = 3. For each pair (f̃t, yt), white indicates that the model has an LI, whereas black indicates

that the model does not have an LI. It is clear that the black region is much larger for the t-

GARCH than for the t-GAS model. Particularly for very high volatility levels, the region where

the t-GARCH model does not attain an LI becomes very wide. The black region for the t-GAS

model at high volatility levels, however, remains small. This supports our earlier findings that the

t-GAS performs very well in such (economically relevant) cases.

To test whether the results in the top panels carry over to the finite sample setting, the lower

two panels in Figure 8 show the results for the CPLIs. The CPLI indicates how often an update

delivers an LI in finite samples across many different possible outcomes for θ̂T . Of course, the

concept of a CPLI is complicated by the fact that the distribution of θ̂ML is not independent of

f̃t. In the Appendix we give a detailed description of our weighting procedure to obtain the CPLI

values, accounting for the dependence between θ̂T and f̃t. The bottom panels of Figure 8 present

the CPLI results for samples of size T = 1, 000 and a fat-tailed (τ = 3) DGP using N = 10, 000

estimates for the t-GARCH and t-GAS parameters θ̂T . The pattern for the LI is supported by
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Figure 8: Local Improvement (LI) and Conditional Probability of a Local Improvement (CPLI) results. The top-left

panel provides the (|yt|, f̃t) region for which the t-GARCH model attains an LI (white area) or not (black area)

when evaluated at the pseudo-true parameter under the stochastic volatility DGP from Section 2 (for τ = 3). The

top-right panel provides these regions for the t-GAS model. The bottom panels display the CPLIs for both models

as a heat map, lighter colors indicating a higher probability of an LI. The CPLIs are calculated based on a weighted

average of the LIs for N = 10, 000 estimated parameters under the stochastic volatility DGP (for τ = 3).

the CPLI results. The CPLIs of the t-GAS model are considerably higher than those of the t-

GARCH model over the entire (f̃t, |yt|) plane, resulting in a much smaller region for the t-GAS

where no improvements are obtained. It is also clear that particularly for high volatility levels f̃t

the difference between both models is most pronounced. This is relevant in practice since it is

precisely during periods of financial distress that different filters are more likely to give different

estimates of the conditional volatility and thus of risk.
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5. Empirical application: Clusters of volatility in stock returns

In this section, we show that the results obtained thus far also apply to empirical data. We

consider two large company stocks, namely Goldmann Sachs (GS) and Google (GOOGL). For both

stocks we use the total return index, which we obtain from Datastream. We take daily data for the

period from 01-04-2008 until 19-03-2012, which provides us two samples consisting of T = 1, 000

observations each. Figure 9 shows the log-returns for both series. Two periods of high variability

for both stocks are evident, namely the financial crisis (2008-2009) and part of European sovereign

debt crisis (2011-2012). Volatility appears low in the rest of the sample.

The bottom rows in each of the two panels of Figure 9 show that the differences in filtered

volatility paths are most noticeable during periods of high volatility and outliers. This is in line

with the results from Section 4. During the financial crisis we see that the filtered path of the t-GAS

model indicates higher levels of the conditional variance compared to the t-GARCH model. We

also see that the filtered t-GARCH conditional variance can strongly increase with the occurance

of an outlier. For instance, for Google there is a peak with exponential decay in the volatility

pattern at the beginning of the sample. Similar peaks with subsequent decay patterns are also

seen at other times for both stocks for the t-GARCH model. The filtered conditional variances

for the t-GAS model on the other hand are much more robust. This robustness property of the

t-GAS is in line with the good performance of the model in the simulation setting, particularly for

fat-tailed data; see Figures 5–7.

To make a statement about the relative performance of the t-GAS and t-GARCH models for

empirical data, we consider the local improvements. The second and third row in each panel of

Figure 9 show the indicator time series for LI and the time series of the CPLI. As the kernel

weights used to compute the CPLIs in Figure 8 are not available for a single realized empirical

time series, we use the asymptotic approximation to the distribution of θ̂T and equal weights to

compute the CPLI in Figure 9. The diamonds on the horizontal axis indicate the times when there

was no local improvement (LI) of the model. Overall for the whole sample period, it is clear that

the t-GAS model performs better than its t-GARCH counterpart. The majority of the update

steps for the t-GAS model yield a local improvement. The CPLIs are correspondingly high, such

that this result is not sensitive to the uncertainty in the maximum likelihood estimator θ̂T . The

opposite holds for the t-GARCH model. There are many periods in which the model does not

yield a local improvement, and the CPLI values are correspondingly low.

When looking into the properties of the periods during which the t-GAS model does better than

the t-GARCH, we confirm the findings of our simulation study in Sections 3 and 4. During periods

of high volatility we see that the t-GAS model continues to make local improvements, while the

t-GARCH performs poorly. There are also some periods during which the t-GAS model does not
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Figure 9: Local performance for the t-GAS and t-GARCH models for log-returns for Google (top part) and Goldman

Sachs (bottom part). The sample period is 01-04-2008 until 19-03-2012. The top row in each panel shows the series

of log-returns. The second and third row display the time series for the CPLI and the times when the model did not

have an LI (� on the x-axis) for the t-GAS and t-GARCH model, respectively. The fourth row displays the filtered

variances f̃t = σ̃2
t for the t-GAS and t-GARCH models.
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make local improvements. These periods, however, are particularly during episodes of moderate to

low volatility. Such periods are economically less interesting than the periods of financial distress.

So in line with the results for simulated data, the empirical results support the conclusion that the

t-GAS model outperforms the t-GARCH model when it matters most.

6. Conclusion

The results in this paper further characterize the optimality properties of score-driven models

and considerably extend the findings of Blasques et al. (2015). In particular, we have shown that

the optimality properties of score-driven volatility models carry over from the asymptotic setting

to finite samples. This is remarkable given that finite samples show considerable dispersion of the

maximum likelihood estimates due to the strong non-linearity of score-driven models.

Moreover, we found that score-driven models are optimal when it matters most: (a) when

the data is fat-tailed and robustness is important, and (b) in periods of financial distress when

true volatilities are high and filtered volatilities differ mostly across models. It is precisely then

that differences are also large in terms of economic risk measures such as distribution quantiles,

or Value-at-Risk. Using new simulations, we were able to pinpoint the origin of the differences.

Score-driven models step in the correct direction when updating the time-varying parameter more

often than traditional competing models, such as the GARCH model. Defining the concept of

the conditional probability of a local improvement (CPLI), we were able to show that the CPLI

is substantially larger for the score-driven model compared to the GARCH model. This holds

particularly when volatility levels are high.

The results were corroborated for empirical data on U.S. stock returns. Also there, the empirical

CPLIs were much higher for the score-driven model than for its GARCH counterpart. Particularly

during highly volatile periods such as the 2008 financial crisis, the score-driven model stepped more

often into the right direction. Combined, the results point to a further underpinning of the use of

score-driven models also in an empirical, finite sample setting.
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Appendix

Computing the Conditional Probability of a Local Improvement (CPLI)

We express the CPLI as the probability of obtaining a Local Improvement (LI) conditional on yt

and f̃t, i.e., the probability that LI = LI(yt, f̃t, θ̂T ) = 1. We have

CPLIt = P[LIt | yt, f̃t] =

∫
LI(yt, f̃t, θ̂T ) p(θ̂T | yt, f̃t)dθ̂T

=

∫
LI(yt, f̃t, θ̂T )

p(f̃t, yt | θ̂T ) p(θ̂T )∫
p(f̃t, yt | θ̂T ) p(θ̂T )dθ̂T

dθ̂T

≈
M∑
i=1

w
(i)
t LI(yt, f̃t, θ̂

(i)

T ),

w
(i)
t =

p(f̃t, yt | θ̂
(i)

T )∑M
j=1 p(f̃t, yt | θ̂

(j)

T )
, (10)

where θ̂
(i)

T , i = 1, ...,M , denotes a set of draws from the density p(θ̂T ). In our computations we

use M = 10, 000. To estimate the density p(f̃t, yt | θ̂
(i)

T ) for each θ̂
(i)

T , we simulate a long series

{yt} from the DGP and compute the corresponding series {f̃t(θ̂
(i)

T )}. We use these two series

as inputs for a standard bivariate kernel density estimate, which is plugged back into (10). The

kernel density estimates are (nearly) singular for low values of α̂, i.e., in cases where the filtered

variance f̃t is estimated to be (almost) constant. These cases cause numerical instabilities and are,

moreover, not interesting for the concept of the CPLI. We therefore exclude cases with α̂ < 0.0001

when computing the lower panel in Figure 8.
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Figure 10: The figure shows the estimated parameters of the t-GAS against the t-GARCH model under the SV model in

Equation (6). The rows show the different parameters, while the columns show the various degrees of freedom τ in the

DGP. The pseudo-true parameters are shown as red squares.

21


	Introduction
	Score-driven volatility models and optimality
	Optimality in finite samples
	Performance over different volatility states
	Empirical application: Clusters of volatility in stock returns
	Conclusion

